
Scalable Interpretability via Polynomials

Abhimanyu Dubey
Meta AI

dubeya@fb.com

Filip Radenovic
Meta AI

filipradenovic@fb.com

Dhruv Mahajan
Meta AI

dhruvm@fb.com

Abstract

Generalized Additive Models (GAMs) have quickly become the leading choice for
interpretable machine learning. However, unlike uninterpretable methods such as
DNNs, they lack expressive power and easy scalability, and are hence not a feasible
alternative for real-world tasks. We present a new class of GAMs that use tensor
rank decompositions of polynomials to learn powerful, inherently-interpretable
models. Our approach, titled Scalable Polynomial Additive Models (SPAM) is
effortlessly scalable and models all higher-order feature interactions without a
combinatorial parameter explosion. SPAM outperforms all current interpretable
approaches, and matches DNN/XGBoost performance on a series of real-world
benchmarks with up to hundreds of thousands of features. We demonstrate by
human subject evaluations that SPAMs are demonstrably more interpretable in prac-
tice, and are hence an effortless replacement for DNNs for creating interpretable
and high-performance systems suitable for large-scale machine learning. Source
code is available at github.com/facebookresearch/nbm-spam.

1 Introduction
Interpretable machine learning systems suffer from a tradeoff between approximation and inter-
pretability: high-performing models used in practice have millions of parameters and are highly
non-linear, making them difficult to interpret. Post-hoc explainability attempts to remove this trade-
off by explaining black-box predictions with interpretable instance-specific approximations (e.g.,
LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017]), however, they are notoriously unsta-
ble [Ghorbani et al., 2019a, Lakkaraju and Bastani, 2020], expensive to compute [Slack et al., 2021],
and in many cases, inaccurate [Lipton, 2018]. It is therefore desirable to learn models that are instead
inherently-interpretable (glass-box), i.e., do not require post-hoc interpretability, but provide better
performance than inherently-interpretable classical approaches such as linear or logistic regression.

This has led to a flurry of research interest in Generalized Additive Models [Hastie and Tibshirani,
2017], i.e., methods that non-linearly transform each input feature separately, e.g., tree-based GAM
and GA2Ms [Lou et al., 2013], or NAMs [Agarwal et al., 2021]. While these are an improvement
over linear methods, due to their highly complex training procedures, they are not a simple drop-
in replacement for black-box methods. Furthermore, it is not straightforward to model feature
interactions in these models: the combinatorial explosion in higher-order interactions makes this
infeasible without a computationally expensive feature selection [Lou et al., 2013, Chang et al., 2021].

Contrary to these approaches, we revisit an entirely different solution: polynomials. It is folklore in
machine learning that since polynomials are universal approximators [Stone, 1948, Weierstrass, 1885],
hypothetically, modeling all possible feature interactions will suffice in creating powerful learners
and eliminate the need for intricate non-linear transformations of data. Furthermore, polynomials can
also provide a rubric for interpretability: lower-degree polynomials, that have interactions between a
few features are interpretable but likely less accurate, whereas polynomials of higher degree have
larger predictive power at the cost of interpretability. Thus, not only are polynomial models capable
of capturing all possible interactions between features, they also give practitioners the ability to
select a suitable model (order of interactions, i.e., degree) based precisely on their requirement in the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/facebookresearch/nbm-spam

interpretability-performance tradeoff. However, such an approach has till date remained elusive, as
learning interpretable feature interactions efficiently and at scale remains an open problem.

In this paper, we introduce a highly scalable approach to modeling feature interactions for inherently
interpretable classifiers based on rank decomposed polynomials. Our contributions are:

1. First, we present an algorithm titled Scalable Polynomial Additive Models (SPAM) to learn
inherently-interpretable classifiers that can learn all possible feature interactions by leveraging
low-rank tensor decompositions of polynomials [Nie, 2017b]. To the best of our knowledge,
SPAM is the among the first Generalized Additive Models with feature interactions scalable
to 100K features. SPAM can be trained end-to-end with SGD (backpropagation) and GPU
acceleration, but has orders of magnitude fewer parameters than comparable interpretable models.

2. We demonstrate that under a coarse regularity assumption (Assumption 1), SPAM converges
to the optimal polynomial as the number of samples n ! 1. Furthermore, we establish novel
non-asymptotic excess risk bounds that match classic bounds for linear or full-rank polynomials.

3. SPAM outperforms all current interpretable baselines on several machine learning tasks. To the best
of our knowledge, our experimental benchmark considers problems of size (number of samples,
and dimensionality) orders of magnitude larger than prior work, and we show that our simple
approach scales easily to all problems, whereas prior approaches fail. Moreover, we demonstrate
that the need for modeling feature interactions is as important as non-linear feature transformations:
on most real-world tabular datasets, pairwise interactions suffice to match DNN performance.

4. We conduct a detailed human subject evaluation to corroborate our performance with practical
interpretability. We demonstrate that SPAM explanations are more faithful compared to post-
hoc methods, making them a drop-in replacement for black-box methods such as DNNs for
interpretable machine learning on tabular and concept-bottleneck [Koh et al., 2020] problems.

2 Related Work

Here we survey the literature most relevant to our work, i.e., interpretable ML with feature interactions,
and polynomials for machine learning. Please see Appendix Section B for a detailed survey.

Transparent and Interpretable Machine Learning. Early work has focused on greedy or ensemble
approaches to modeling interactions [Friedman, 2001, Friedman and Popescu, 2008] that enumerate
pairwise interactions and learn additive interaction effects. Such approaches often pick spurious
interactions when data is sparse [Lou et al., 2013] and are impossible to scale to modern-sized
datasets due to enumeration of individual combinations. As an improvement, Lou et al. [2013]
proposed GA2M that uses a statistical test to select only “true” interactions. However GA2M fails to
scale to large datasets as it requires constant re-training of the model and ad-hoc operations such as
discretization of features which may require tuning for datasets with a large dimensionality. Other
generalized additive models require expensive training of millions of decision trees, kernel machines
or splines [Hastie and Tibshirani, 2017], making them unattractive compared to black-box models.

An alternate approach is is to learn interpretable neural network transformations. Neural Additive
Models (NAMs, Agarwal et al. [2021]) learn a DNN per feature. TabNet [Arık and Pfister, 2021]
and NIT [Tsang et al., 2018] alternatively modify NN architectures to increase their interpretability.
NODE-GAM [Chang et al., 2021] improves NAMs with oblivious decision trees for better perfor-
mance while maintaining interpretability. Our approach is notably distinct from these prior works: we
do not require iterative re-training; we can learn all pairwise interactions regardless of dimensionality;
we can train SPAM via backpropagation; and we scale effortlessly to very large-scale datasets.

Learning Polynomials. The idea of decomposing polynomials was of interest prior to the deep
learning era. Specifically, the work of Ivakhnenko [1971], Oh et al. [2003], Shin and Ghosh [1991]
study learning neural networks with polynomial interactions, also known as ridge polynomial networks
(RPNs). However, RPNs are typically not interpretable: they learn interactions of a very high order,
and include non-linear transformation. Similar rank decompositions have been studied in the context
of matrix completion [Recht, 2011], and are also a subject of interest in tensor decompositions [Nie,
2017a, Brachat et al., 2010], where, contrary to our work, the objective is to decompose existing
tensors rather than directly learn decompositions from gradient descent. Recently, Chrysos et al.
[2019, 2020] use tensor decompositions to learn higher-order polynomial relationships in intermediate
layers of generative models. However, their work uses a recursive formulation and learns high-degree
polynomials directly from uninterpretable input data (e.g., images), and hence is non-interpretable.

2

3 Scalable Polynomial Additive Models
Setup and Notation. Matrices are represented by uppercase boldface letters, e.g., X and vectors
by boldface lowercase, i.e., x. We assume that the covariates lie within the set X ✓ Rd, and the
labels lie within the finite set Y . Data (x, y) 2 X ⇥Y are drawn following some unknown (but fixed)
distribution P. We assume we are provided with n i.i.d. samples {(xi, yi)}ni=1 as the training set.

Motivation. Generalized Additive Models [Hastie and Tibshirani, 2017] are an excellent
design choice for interpretable models, as they learn transformations of individual features,
allowing us to model exactly the contribution of any feature. A typical GAM is as follows.

 ���������������������������������
Interpretability

f(x) =
dX

i=1

fi(xi)| {z }
order 1 (unary)

+
dX

j>i

fij(xi, xj)| {z }
order 2 (pairwise)

+ · · ·+ f1...d(x)| {z }
order d

.

 ���������������������������������

Performance

Where fi, etc., are possibly non-linear transformations. It is evident [Lou et al., 2013] that as
the order of interaction increases, e.g., beyond pairwise interactions, these models are no longer
interpretable, albeit at some benefit to performance. While some approaches (e.g., Agarwal et al.
[2021], Chang et al. [2021]) learn fi via neural networks, we want to learn the simplest GAMs, i.e.,
polynomials. Specifically, we want to learn a polynomial P (x), of order (degree) k d of the form:

P (x) = b+
dX

i=1

w(1)
i · xi +

dX

i,j

w(2)
ij · xixj + ...

dX

i1...,ik

0

@w(k)
i1...ik

·
kY

j=1

xij

1

A .

Here, the weights W(l) = {w(l)
i1...il

}, 1 l k capture the l�ary interactions between subsets of
l features. For small values of d and k, one can potentially enumerate all possible interactions and
learn a linear model of O(dk) dimensionality, however this approach quickly becomes infeasible for
large d and k. Furthermore, the large number of parameters in P (x) make regularization essential for
performance, and the computation of each interaction can be expensive. Alternatively, observe that
any polynomial that models k�ary interactions can be written as follows, for weights {W(l)}kl=1,

P (x) = W(1) �1 x+W(2) �2 x+ ...W(k) �k x+ b.

Here, the weights W(l) 2 Rdl

are written as a tensor of order l, and the operation �l refers to a
repeated inner product along l dimensions, e.g., W 2 Rd2

, x>Wx = W �2 x = (W � x) � x
where � denotes the inner product. More generally, any symmetric order l tensor admits an equivalent
polynomial representation having only degree�l terms. Now, this representation is still plagued
with the earlier curse of dimensionality for arbitrary weight tensors {W(l)}kl=1, and we will now
demonstrate how to circumvent this issue by exploiting rank decompositions.

3.1 Learning Low-Rank Decompositions of Polynomials

The primary insight of our approach is to observe that any symmetric tensor W(l) of order l also
admits an additional rank decomposition [Nie, 2017a, Brachat et al., 2010] (⌦ being the outer
product):

W(l) =
rX

i=1

�i · ui ⌦ ui · · ·⌦ ui| {z }
l times

.

Where {ui}ri=1 are the (possibly orthonormal) d dimensional basis vectors, r 2 Z+ denotes the
rank of the tensor, and the scalars {�i}ri=1,�i 2 R denote the singular values. Our objective is to
directly learn the rank decomposition of an order l tensor, and therefore learn the required polyno-
mial function. This gives us a total of O(rd) learnable parameters per tensor, down from a previous
dependence of O(dl). This low-rank formulation additionally enables us to compute the polynomial
more efficiently. Specifically, for a degree k polynomial with ranks r = {1, r2, ..., rk}, we have:

P (x) = b+ hu1,xi+
r2X

i=1

�2i · hu2i,xi2 +
r3X

i=1

�3i · hu3i,xi3...+
rkX

i=1

�ki · huki,xik. (1)

Where {uli}rli=1, {�li}rli=1 denote the corresponding bases and eigenvalues for W(l). The above term
can now be easily computed via a simple inner product, and has a time as well as space complexity

3

of O(dkrk1), instead of the earlier O(dk). Here, krk1 simply represents the sum of ranks of all the
k tensors. Note that low-rank decompositions do not enjoy a free lunch: the rank r of each weight
tensor can, in the worst case, be polynomial in d. However, it is reasonable to assume that correlations
in the data X will ensure that a small r will suffice for real-world problems (see, e.g., Assumption 1).

Optimization. For notational simplicity, let us parameterize any order k polynomial by the weight
set ✓ = {b,u1, {�2i,u2i}r2i=1, ..., {�ki,uki}rki=1} 2 Rr(d+1) where from now onwards r = krk1 =
1 + r2 + r3 + ...+ rk denotes the cumulative rank across all the tensors. We write the polynomial
parametrized by ✓ as P (·;✓), and the learning problem for any loss ` is:

select ✓? = argmin
✓2⇥

nX

i=1

`(P (xi;✓), yi) + � · R(✓). (2)

Here, ⇥ denotes the feasible set for ✓, and R(·) denotes an appropriate regularization term scaled by
� > 0. We can show that the above problem is well-behaved for certain data distributions X .

Proposition 1. If the regularization R and loss function ` : Y ⇥ Y ! [0, 1] are convex, � > 0 and
X ⇢ Rd

+ then the optimization problem in Equation 2 is convex in ✓ for ⇥ ⇢ Rr(d+1)
+ .

Proposition 1 suggests that if the training data is positive (achieved by renormalization), typical loss
functions (e.g., cross-entropy or mean squared error) and R such as Lp norms are well-suited for
optimization. To ensure convergence, one can use proximal SGD with a small learning rate [Nitanda,
2014]. In practice, we find that unconstrained SGD also provides comparable performance.

3.2 Improving Polynomials for Learning

Geometric rescaling. Learning higher-order interactions is tricky as the order of interactions
increases: the product of two features is an order of magnitude different from the original, and
consequently, higher-order products are progressively disproportionate. To mitigate this, we rescale
features such that (a) the scale is preserved across terms, and (b) the variance in interactions is
captured. We replace the input x with x̃l = sign(x) · |x|1/l for an interaction of order l. Specifically,

P (x) = hu1,xi+
r2X

i=1

�2i · hu2i, x̃2i2 +
r3X

i=1

�3i · hu3i, x̃3i3...+
rkX

i=1

�ki · huki, x̃kik + b. (3)

We denote this model as SPAM-LINEAR. We argue that this rescaling for unit-bounded features
ensures higher interpretability as well as better learning (since all features are of similar variance).
Note that for order 1, x̃1 = x. For k � 2, consider a pairwise interaction between two features
xi = 0.5 and xj = 0.6. Naively multiplying the two will give a feature value of xixj = 0.3
(smaller than both xi and xj), whereas an intuitive value of the feature would be p

xixj = 0.54,
i.e., the geometric mean. Regarding the reduced variance, observe that unconstrained, the variance
V(xixj) V(xi) · V(xj) and V(pxixj) V(pxi)V(

p
xj)

p
V(xi) · V(xj). If the features

have small variance, e.g., V(xi) = V(xj) = 10�2 and are uncorrelated, then the first case would
provide a much smaller variance for the interaction, whereas the rescaling would preserve variance.

Shared bases for multi-class problems. When we are learning a multi-class classifier, it is observed
that learning a unique polynomial for each class creates a large model (with O(2drC) weights)
when the number of classes C is large, which leads to overfitting and issues with regularization.
Instead, we propose sharing bases (u) across classes for all higher order terms, and learning class-
specific singular values (�) for all higher order terms (� 2) per class. For any input x, P (x;✓) =
SOFTMAX{Pc(x;✓)}Cc=1, where, for any class c 2 {1, ..., C},

Pc(x;✓) = bc + huc
1,xi+

r2X

i=1

�c
2i · hu2i, x̃2i2 +

r3X

i=1

�c
3i · hu3i, x̃3i3...+

rkX

i=1

�c
ki · huki, x̃kik.

The terms in green denote weights unique to each class, and terms in red denote weights shared
across classes. This reduces the model size to O((d + r)C + rd) from O(rdC). We set ` as the
cross-entropy of the softmax of {Pc(·,✓)}Cc=1, as both these operations preserve convexity.

Exploring nonlinear input transformations. Motivated by non-linear GAMs (e.g., GA2M [Lou
et al., 2013] and NAM [Agarwal et al., 2021]), we modify our low-rank decomposed algorithm by
replacing x̃l for each l with feature-wise non-linearities. We learn a non-linear SPAM P (·;✓) as,

P (x;✓) = b+ hu1, F1(x)i+
r2X

i=1

�2i · hu2i, F2(x)i2 + ...+
rkX

i=1

�ki · huki, Fk(x)ik.

4

Here, the function Fi(x) = [fi1(x1), fi2(x2), ..., fid(xd)] is a Neural Additive Model (NAM) [Agar-
wal et al., 2021]. We denote this model as SPAM-NEURAL. For more details on the NAM we use,
please refer to the Appendix Section C. Note that the resulting model is still interpretable, as the
interaction between features xi and xj , e.g., will be given by (

Pr2
k=1 �2ku2kiu2kj) · f2i(xi)f2j(xj)

instead of the previous (
Pr2

k=1 �2ku2kiu2kj) ·
p
xi · xj for typical SPAM.

Dropout for bases via �. To capture non-overlapping feature correlations, we introduce a basis
dropout by setting the contribution from any particular basis to zero at random via the singular values
�. Specifically, observe that the contribution of any basis-singular value pair (u,�) at order l is
�hu,xil. We apply dropout to � to ensure that the network learns robust basis directions.

3.3 Approximation and Learning-Theoretic Guarantees

We present some learning-theoretic guarantees for SPAM. Proofs are deferred to Appendix Section A.
Proposition 2. Let f be a continuous real-valued function over a compact set X . For any threshold
✏ > 0, there exists a low-rank polynomial P : X ! R such that supx2X |f(x)� P (x)| < ✏.

The above result demonstrates that asymptotically, decomposed polynomials are universal function
approximators. Next, we present an assumption on the data-generating distribution as well as a novel
excess risk bound that characterizes learning with polynomials more precisely (non-asymptotic).
Assumption 1 (Exponential Spectral Decay of Polynomial Approximators). Let Pk denote the
family of all polynomials of degree at most k, and let P?,k denote the optimal polynomial in Pk, i.e.,
P?,k = argminP2Pk E(x,y)⇠P[`(P (x), y)]. We assume that 8k, P?,k admits a decomposition as
described in Equation 1 such that, for all 1 l k, there exist absolute constants C1 < 1 and
C2 = O(1) such that |�lj | C1 · exp (�C2 · j�) for each j � 1 and l 2 [1, k].

This condition is essentially bounding the “smoothness” of the nearest polynomial approximator of f ,
i.e., implying that only a few degrees of freedom suffice to approximate f accurately. Assumption 1
provides a soft threshold for singular value decay. One can also replace the exponential with a slower
“polynomial” decay with similar results, and we discuss this in the Appendix Section A. We can now
present our error bound for L2 regularized models (see Appendix for L1-regularized models).
Theorem 1. Let ` be 1-Lipschitz, � 2 (0, 1], the generalization error for the optimal degree-k
polynomial P?,k be E(P?,k) and the generalization error for the empirical risk minimizer SPAM
bPr,k, i.e., bPr,k = argminP

Pn
i=1 `(P (xi), yi) with ranks r = [1, r2, ..., rk] be E(bPr,k). Then, if

P satisfies Assumption 1 with constants C1, C2 and �, we have for L2�regularized ERM, where
kuijk2 Bu,2 8i 2 [k], j 2 [ri], and k�k2 B�,2 where � = {{�ij}rij=1}ki=1, with probability at
least 1� �,

E(bPr,k)� E(P?,k) 2B�,2

kX

l=1

(Bu,2)
lprl

!r
d

n
+

C1

C2
·

kX

i=2

exp(�r�i)

!
+ 5

r
log (4/�)

n
.

The above result demonstrates an expected scaling of the generalization error, matching the bounds
obtained for L1 (see Appendix Section A) and L2�regularized linear classifiers [Wainwright, 2019].
We that the rank r = krk1 has an O(r) dependence on the Rademacher complexity. This highlights
a trade-off between optimization and generalization: a larger r gives a lower approximation error
(smaller second term), but a larger model complexity (larger first term). Observe, however, that even
when r = ⌦((log d)p) for some p � 1, the approximation error (second term) diminishes as o(1

dp�).
This suggests that in practice, one only needs a cumulative rank (poly)logarithmic in d. The above
result also provides a non-asymptotic variant of Proposition 2; as n, r ! 1, E(bPr,k) ! E(P?,k)+.

4 Offline Experiments
Here we evaluate SPAM against a set of benchmark algorithms on both classification and regression
problems. The baseline approaches we consider are (see Appendix Section C for precise details):

• Deep Neural Networks (DNN): These are standard multi-layer fully-connected neural networks
included to demonstrate an upper-bound on performance. These are explained via the perturbation-
based LIME [Ribeiro et al., 2016] and SHAP [Lundberg and Lee, 2017] methods in Section 5.

• Linear / Logistic Regression: These serve as our baseline interpretable models. We learn both L1

and L2�regularized models on unary and pairwise features (
�d
2

�
features) with minibatch SGD.

5

Table 1: Evaluation of SPAM on benchmarks against prior work. ("): higher is better, (#): lower is
better, ⇤⇤: variance across trials is < 0.001, ⇤ : variance across trials is < 0.005. Boldface red denotes
the best black-box model, boldface green denotes the best interpretable model, boldface denotes
where SPAM Order 3 is best. Runs averaged over 10 random trials with optimal hyperparameters.

Model
Regression Binary Multi-Class Classification Obj. Det.
RMSE (#) AUROC (") Accuracy (") mAP (")

CH FICO CovType News CUB iNat CO114
Interpretable Baselines

Linear (Order 1) 0.7354⇤⇤ 0.7909⇤⇤ 0.7254⇤⇤ 0.8238⇤⇤ 0.7451⇤⇤ 0.3932⇤⇤ 0.1917⇤⇤

Linear (Order 2) 0.7293⇤⇤ 0.7910⇤⇤ 0.7601⇤⇤ — 0.7617⇤⇤ 0.4292⇤⇤ 0.2190⇤⇤

EBMs (Order 1) 0.5586⇤⇤ 0.7985⇤⇤ 0.7392⇤⇤ — — — —
EB2Ms (Order 2) 0.4919⇤⇤ 0.7998⇤⇤ — — — — —

NAM 0.5721⇤ 0.7993⇤⇤ 0.7359⇤⇤ — 0.7632⇤⇤ 0.4194⇤⇤ 0.2056⇤⇤

Uninterpretable Black-Box Baselines
XGBoost 0.4428⇤⇤ 0.7925⇤⇤ 0.8860⇤⇤ 0.7677⇤⇤ 0.7186⇤⇤ — —

DNN 0.5014⇤⇤ 0.7936⇤⇤ 0.9694⇤⇤ 0.8494⇤⇤ 0.7684⇤⇤ 0.4584⇤⇤ 0.2376⇤⇤

Our Interpretable Models
SPAM (Linear, Order 2) 0.6474⇤⇤ 0.7940⇤⇤ 0.7732⇤⇤ 0.8472⇤⇤ 0.7786⇤⇤ 0.4605⇤⇤ 0.2361⇤⇤

SPAM (Neural, Order 2) 0.4914⇤⇤ 0.8011⇤ 0.7770⇤⇤ — 0.7762⇤⇤ 0.4689⇤⇤ —
SPAM (Linear, Order 3) 0.6410⇤⇤ 0.7945⇤⇤ 0.8066⇤⇤ 0.8520⇤ 0.7741⇤⇤ 0.4684⇤⇤ 0.2368⇤

SPAM (Neural, Order 3) 0.4865⇤ 0.8024⇤ 0.8857⇤⇤ — 0.7753⇤⇤ 0.4722⇤⇤ —

Table 2: Tabular Datasets
Name California Housing (CH) FICO Cover Type (CovType) Newsgroups
Source Pace and Barry [1997] FICO [2018] Blackard and Dean [1999] Lang [1995]

Instances 20,640 10,459 581,012 18,828
Features 8 23 54 146,016
Classes - 2 7 20

Feature Type Numeric Mixed Mixed TF-IDF

• Gradient Boosted Trees (XGBoost): We use the library xgboost. This baseline is mainly to
compare accuracy, as the number of trees required are typically large and are hence uninterpretable.

• Explainable Boosting Machines (EBMs) [Lou et al., 2013]: EBMs use millions of shallow bagged
trees operating on each feature at a time. Note that this approach is not scalable to datasets with
many features or multi-class problems. We report scores on the datasets where we successfully
trained EBMs without sophisticated engineering, using the interpretml library [Nori et al., 2019].

• Neural Additive Models (NAMs) [Agarwal et al., 2021]: These models are neural network
extensions of prior EBMs. Note that this method also does not scale to some datasets.

Training Setup. SPAM is implemented by learning L1/L2-regularized variants by minibatch SGD
implemented in PyTorch. For regression tasks, we measure the root mean squared error (RMSE).
For binary classification, we report the area under the ROC (AUROC), for multi-class classification,
we report the top-1 accuracy (Acc@1), and finally, for object detection, we report mean Average
Precision (mAP). We tune hyperparameters via random sampling approach over a grid. Note that for
all experiments, both NAM and SPAM-NEURAL have identical MLP structures to ensure identical
approximation power. For definitions of metrics and hyperparameter ranges, see Appendix Section C.

4.1 Measuring Benchmark Performance

We select tasks to explore a variety of settings from regression to multi-class classification, and also
explore different dataset scales, from a few hundred samples and tens of features to 100K-scale
datasets (both in the number of samples and data dimensionality), while ensuring that the features are
interpretable. Our datasets are summarized in Table 2. Please see Appendix Section C.1 for details.
For all datasets with no defined train-val-test split, we use a fixed random sample of 70% of the data
for training, 10% for validation and 20% for testing. For the 20 Newsgroups dataset, we split the
pre-defined training split 7:1 for training and validation, respectively.

In an effort to scale interpretable approaches beyond tabular datasets, we consider benchmark
problems using the “Independent Concept Bottleneck” framework of Koh et al. [2020] for image

6

1 2 3 4
0.40

0.45

0.50

AF
Fu
UD
Fy

(A1) AFF. vs 2UdeU, L1Dt

63A0-LLneDU
63A0-1euUDO

1 2 3 4 5 6
DegUee

0.6

0.7

0.8

0.9

1.0

AF
Fu
UD
Fy

(A2) AFF. vs 2UdeU, CRv7ySe

63A0-LLneDU
63A0-1euUDO

500 750 1000 1250 15000.40

0.43

0.45

0.48

0.50

AF
Fu
UD
Fy

(B1) AFF. vs 5DnNs, L1Dt

63A0 (2UdeU 2)
63A0 (2UdeU 3)

102 103
CuPuODtLve 5DnN U

0.82

0.84

0.86

AF
Fu
UD
Fy

(B2) AFF. vs 5DnNs, 1ewsgURuSs

63A0 (2UdeU 2)
63A0 (2UdeU 3)

0.00 0.02 0.04 0.06 0.08 0.10
)UDFtLRn RI 3DLUwLse ,nteUDFtLRns

0.74

0.75

0.76

0.77

AF
Fu
UD
Fy

(C) AFF. vs 6SDUsLty, C8B-200

Figure 1: Ablation of Accuracy with: (A1, A2) Degree k; (B1, B2) Rank r; (C) L1 Sparsity.

classification and object detection. We use a convolutional neural network (CNN) backbone ResNet-
50 [He et al., 2016] that is trained to predict interpretable concepts (e.g., parts of object) from
images. After training the backbone, we extract predicted concepts for all inputs, and learn an
interpretable classifier head from these concepts. In experiments, the backbone remains identical
for all comparisons, and we only compare the head classifiers (see Appendix Section C.3 for more
details). We select three datasets for evaluation in the concept bottleneck setting:

1. Caltech-UCSD Birds (CUB-200) [Wah et al., 2011]: This is a fine-grained visual categorization
dataset where one has to classify between 200 species of birds. The interpretable concepts are
278 binary bird attributes, e.g., the shape of the beak, the color of the wings, etc. The dataset has
5,994 training and 5,794 validation images. See Appendix Section C.3.1 for more details.

2. iNaturalist “Birds” [Van Horn et al., 2018, 2021]: iNaturalist can be thought of as a larger version
of the previous dataset. We only select the “Birds” super-category of samples, which has 414,000
training and 14,860 validation instances across 1,486 classes. Since the iNaturalist dataset does
not contain dense part and attribute annotations, we use the predicted concepts from the CUB-200
backbone model extracted on all samples.

3. Common Objects Dataset (CO114, Proprietary): Here we consider, for the first time, a concept
bottleneck model for object detection. We construct a dataset involving common household objects
(e.g., bed, saucer, tables, etc.) with their bounding box annotations. For each bounding box, we
collect 2,618 interpretable annotations (e.g., parts, color, etc.). The dataset has 2,645,488 training
and 58,525 validation samples across 115 classes with 2,618 interpretable concepts. We report the
mean Average Precision (mAP) metric. For more details please refer to Appendix Section C.3.2.

Our results are summarized in Table 1. There are four main takeaways from the results. First, observe
that both SPAM-LINEAR and SPAM-NEURAL comfortably outperform their prior interpretable
counterparts on all datasets (e.g., Order 2 SPAM-LINEAR outperforms all linear methods – even the
full rank pairwise model), and SPAM-NEURAL comfortably outperforms all non-linear baselines.
Next, observe that in all datasets but CoverType, second degree interactions suffice to match or even
outperform DNN performance. We will discuss CoverType in detail in the next paragraph. Thirdly,
observe that SPAM models are as scalable as the black-box approaches, whereas prior work (e.g.,
NAM and EBMs) are not. In the case of NAM, we were unable to scale due to the sheer number of
parameters required to model large datasets, e.g., Newsgroups (⇡900M parameters), and for EBMs,
the training time and memory requirement increased dramatically for large datasets. Furthermore,
EB2Ms do not even support multi-class problems. Finally, observe that for many problems, we do not
require non-linear feature transformations once we model feature interactions: e.g., iNat and CUB.

CoverType Dataset. XGBoost and DNNs perform substantially better on CoverType compared to
linear or neural SPAM. On analysis, we found that existing SPAM models underfit on CoverType, and
hence we increased the total parameters for SPAM-NEURAL via subnets, identical to NAMs [Agarwal
et al., 2021], where each feature is mapped to s non-linear features (as opposed to 1 originally). With
s = 8 subnets, the performance of SPAM-NEURAL (order 3) improves to 0.9405. In comparison,
NAMs with 8 subnets provides a lower accuracy of 0.7551.

4.2 Ablation Studies

Rank and Degree of Interactions. By Proposition 2, it is natural to expect the approximation
quality to increase with the degree k and rank r, i.e., as we introduce more higher-order interactions

7

Table 3: Throughput benchmarking (higher is faster).

Method CH FICO CovType News
Throughput (images / second)

NAM [Agarwal et al., 2021] 5⇥ 105 1.2⇥ 105 8⇥ 104 23
NAM (Order 2) 1.1⇥ 104 6⇥ 103 3⇥ 103 -
LinearSPAM (Order 2) 6.1⇥ 107 6.7⇥ 107 6.1⇥ 107 2.6⇥ 106

NeuralSPAM (Order 2) 1.7⇥ 105 7.9⇥ 103 4.1⇥ 103 -
LinearSPAM (Order 3) 3.2⇥ 107 3.7⇥ 107 3.9⇥ 107 1.8⇥ 105

NeuralSPAM (Order 3) 1.1⇥ 105 5.3⇥ 103 2.6⇥ 103 -
MLP 1.3⇥ 107 1.3⇥ 107 1.3⇥ 107 2.2⇥ 105

between features. We ablate the degree k on the tabular benchmark CoverType and concept bottleneck
benchmark iNaturalist (Birds), as summarized in Figure 1A. We observe, as expected, that increasing
the degree k leads to moderate improvements beyond k � 3, but with diminishing returns. Similarly,
we examine the effect of the cumulative rank r on performance on the Newsgroups and iNaturalist
(Birds) datasets (Figure 1B); we observe that performance is sufficiently insensitive to r, and plateaus
after a while. We imagine that as r increases, model complexity will dominate and performance will
likely begin to decrease, matching the full-rank performance at r = O(d2) for pairwise models.

Sparsity in Higher-Order Relationships. A requirement for interpretability is to ensure that the
learned models can be explained with a few interpretable concepts. Since the number of higher-order
combinations increases with k, we examine sparsity to limit the number of active feature assignments.
We penalize the objective in Equation 2 with a regularization term that inhibits dense feature selection.
If U = {{uli}rli=1}kl=1 denotes all the basis vectors in matrix form, we add the penalty R(✓) , kUk1.
This ensures that every basis u only captures limited interactions between features, and hence the
overall complexity of the model is limited. We examine accuracy as a function of the fraction of
non-zero pairwise interactions for a degree 2, rank 800 SPAM on CUB-200 in Figure 1C, and find
that only 6% of the possible interactions suffice to obtain competitive performance.

Examining Assumption 1 (Spectral Decay). The spectral decay assumption presented in Assump-
tion 1 is crucial to obtain reasonable generalization bounds (Theorem 1). To test this assumption, we
examine the spectra of a SPAM-LINEAR (Order 2) model for all 200 of CUB-200 classes. These are
depicted in Figure 2A. Furthermore, we fit an exponential model on the decay itself, and obtain (in
line with Assumption 1) � = 3, C1 = 0.54 and C2 = 0.006, all in accordance with the assumption.

4.3 Additional Experiments

4.3.1 Comparisons on Common Benchmarks

In addition to the 7 datasets we considered earlier, we evaluate on 9 further benchmark datasets
commonly used in the interpretability literature. We evaluate on the MIMIC2, Credit and COMPAS
datasets as presented in Agarwal et al. [2021], and the Click, Epsilon, Higgs, Microsoft, Yahoo and
Year datasets from Chang et al. [2021]. The result of this is summarized in Table 4. We observe that
SPAM models are competitive with prior work, and outperforming prior work on a number of tasks
(the best interpretable model is in bold).

4.3.2 Runtime Evaluation

We provide a comparison of SPAM runtimes on 4 different datasets to establish their scalability. We
consider the California Housing (CH, Pace and Barry [1997], 8 features), FICO HELOC (FICO, FICO
[2018], 23 features), CoverType (CovType, Blackard and Dean [1999], 54 features) and 20 News-
groups (News, Lang [1995], 146,016 features), and evaluate the throughput of the optimal Linear
and Neural SPAM models against Neural Additive Models (NAM, Agarwal et al. [2021]) and MLPs.
Table 3 describes the throughput, where we observe that Linear SPAM is more efficient than MLPs,
and NeuralSPAM is orders of magnitude faster than NAM, which does not scale to higher orders.

8

Table 4: Comparison against state-of-the-art interpretable neural networks on additional benchmarks.

Method MIMIC2
(AUC)

Credit
(AUC)

COMPAS
(AUC)

Click
(ERR)

Epsilon
(ERR)

Higgs
(ERR)

Microsoft
(MSE)

Yahoo
(MSE)

Year
(MSE)

NAM [Agarwal et al., 2021] 0.8539 0.9766 0.7368 0.3447 0.1079 0.2972 0.5824 0.6093 85.25
NODE-GAM [Chang et al., 2021] 0.8320 0.9810 0.7420 0.3342 0.1040 0.2970 0.5821 0.6101 85.09
LinearSPAM (Order 2) 0.8514 0.9836 0.7426 0.3791 0.1011 0.2881 0.5710 0.5923 81.30
NeuralSPAM (Order 2) 0.8664 0.9850 0.7411 0.3348 0.1020 0.2750 0.5671 0.5869 79.99
XGBoost 0.8430 0.9780 0.7440 0.3334 0.1112 0.2328 0.5544 0.5420 78.53

Table 5: Feature importances for interpretable models used in human subject evaulations.
Model Importances for input x = {x1, ..., xd}

Linear / post-hoc Linear wi · xi, i 2 {1, ..., d}
SPAM (Linear, Order 2) u1i · xi, i 2 {1, ..., d} and

�Pr2
l=1 �2lu2liu2lj

�
·pxi · xj , i, j 2 [d]

5 Human Subject Evaluations

Experiment Methodology. We now evaluate how well explanations from SPAM fare
in a practical setting with non-interpretable benchmarks such as black-box models equipped with
post-hoc explanations. Our objective is to mimic a practical setting, where the model user must
decide between a fully-interpretable model vs. a black-box classifier with post-hoc explainability.
Our experiment design is a Prediction Task [Hoffman et al., 2018, Muramatsu and Pratt, 2001], where
the objective for the users is to guess what the model predicted given an explanation. The motivation
of such a design is to ascertain both the faithfulness and interpretability of the model explanations.

Computing Explanations. We first compute the feature importances for any class c, as the contribu-
tion of any specific feature in the logit for class c (for binary classification or regression, there is only
one class). For the Logisitc Regression model, we simply use the contribution of each feature to the
prediction. For SPAM-Linear (Order 2), we still use each feature’s contribution, but features now
can be unary (xi) or pairwise (xi and xj). As black-box post-hoc baselines, we consider DNNs with
LIME [Ribeiro et al., 2016] and KernelSHAP [Lundberg and Lee, 2017] to generate post-hoc linear
explanations. See Table 5 for the formulation of importance for the models we use in experiments.

Experiment Design We conduct a separate experiment for each model M with explanations of
length E by selecting E most important features. Each such experiment runs in two phases -
training and testing. In the training phase, participants are shown 8 images of birds and their
corresponding explanations to develop their mental model. Four of these images have been pre-
dicted as class A by the model, and the remaining are predicted as class B. They then move
on to the testing phase, where they are successively shown the explanations for 5 unseen im-
ages (which the model could have predicted as either A or B), and the users must answer
“given the explanation, which class (of A or B) did the model predict?”. If they desire, the users
can move back to the training phase at any time to revise model explanations. We do not show the
corresponding images in the test phase, as we want the user feedback to rely solely on the faithfulness
of explanations. We measure the mean user accuracy on predicting model decisions. For more details
on the interface, please see Appendix Section D.1. For each experiment, we follow an independent-
subjects design, and gathered a total of 150 participants per experiment. Each task (corresponding
to one model-explanation pair) lasted 3 minutes. The participants were compensated with $0.75
USD ($15/hour), and all experiments were run on Amazon Mechanical Turk (AMT, Buhrmester et al.
[2016]) with a total cost of $3000. To remove poorly performing participants, we only select those
that get the first decision correct, and compute the mean user accuracy using the remaining 4 images.

Study #1: Comparing Black-Box and Transparent Explanations. We compare different inter-
pretable models with a fixed explanation length of E = 7. Our objective is to assess the interpretability
of pairwise interactions compared to black-box and linear explanations, and to re-answer whether it
was even necessary to have fully-interpretable models compared to black-box models with post-hoc
explanations. We used samples from the 5 pairs of classes, that is A and B), from CUB-200 dataset
(see Section D.1 for images). The results from this experiment are summarized in Figure 2B. Observe
that with SPAM, the mean user accuracy (mUA) is substantially higher (0.71) compared to both
linear (0.67) and post-hoc LIME (0.65). We would like to remark that even for E = 7, SPAM has an

9

0 50 100 150 200
IndHx L

0.0

0.2

0.4

0.6

0.8

|͏
L|

(A) 6SHFtUDl DHFDy
(xSonHntLDl)Lt

2 5 7 10
LHngtK oI (xSlDnDtLon

0.4

0.5

0.6

0.7

0.8

0.9

P
HD
n
8V
HU
 A
FF
uU
DF
y

(C) 9DUyLng (xSlDnDtLon LHngtK
LI0(-5. 6PA0-LLnHDU

LLnHDU LI0(6HAP 6PA00.4

0.5

0.6

0.7

0.8

P
HD
n
8V
HU
 A
FF
uU
DF
y

(B) CoPSDULng IntHUSUHtDElH ASSUoDFKHV

Figure 2: (A) Spectral Decay on CUB-200; Human Subject Evaluation results for (B) Comparing
Black-box and glass-box explanations, and (C) LIME vs. SPAM with different explanation lengths.

average of 3.1 pairwise terms in each explanation, and therefore the higher-order terms are substantial.
A one-sided t-test [Freund and Simon, 1967] provides a significance (p�value) of 2.29⇥ 10�4 and a
test statistic of 3.52 for the SPAM mUA being higher than LIME, and correspondingly for Linear, we
get a significance (p�value) of 0.03801 and a test statistic of 1.666. Hence SPAM’s improvements in
interpretability are statistically significant over both linear and post-hoc approaches.

Study #2: Varying Explanation Length. One can argue that the increased interpretability of
polynomial approaches is due to the fact that each higher-order “term” involves multiple features (e.g.,
pairwise involves two features), and hence the increased mean user accuracy (mUA) is due to the larger
number of features shown (either individually or as pairs). We examine this hypothesis by varying the
explanation length E for both SPAM-Linear (Order 2) and LIME, which consequently increases the
number of terms seen for both approaches. We observe in Figure 2C that regardless of explanation
method, mUA is maximum at E = 7, and introducing more terms decreases interpretability.

6 Discussion and Conclusion
We presented a simple and scalable approach for modeling higher-order interactions in interpretable
machine learning. Our approach alleviates several of the concerns with existing algorithms and
focuses on presenting a viable alternative for practical, large-scale machine learning systems. In
addition to offline experimental guarantees, we demonstrate by an extensive user study that these
models are indeed more interpretable in practice, and therefore can readily substitute post-hoc
interpretability without any loss in performance. Moreover, to the best of our knowledge, our work
provides the first incremental analysis of interpretability and performance: we show how progressively
increasing the model complexity (with higher order interactions) brings better performance while
compromising interpretability in practice, and the “sweet spot” appears to rest at pairwise interactions.

We have several follow-up directions. First, given that our model provides precise guarantees
on generalization, it is a feasible starting point to understanding tradeoffs between privacy and
explainability from a rigorous perspective. Next, one can consider utilizing SPAM to understand
failure modes and spurious correlations directly. Furthermore, SPAM-esque decompositions can
also be useful in other domains beyond interpretability, e.g., language and vision, where modeling
higher-order interactions is challenging due to the curse of dimensionality.

References
R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. E. Hinton. Neural

additive models: Interpretable machine learning with neural nets. Advances in Neural Information
Processing Systems, 34, 2021.

S. O. Arık and T. Pfister. Tabnet: Attentive interpretable tabular learning. In AAAI, volume 35, pages
6679–6687, 2021.

A. Asuncion and D. Newman. Uci machine learning repository, 2007.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10
(7):e0130140, 2015.

10

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

B. Bercu, B. Delyon, and E. Rio. Concentration inequalities for sums and martingales. Springer,
2015.

J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and electronics in
agriculture, 24(3):131–151, 1999.

J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas. Symmetric tensor decomposition. Linear
Algebra and its Applications, 433(11-12):1851–1872, 2010.

M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical turk: A new source of
inexpensive, yet high-quality data? 2016.

D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. Machine learning interpretability: A survey on
methods and metrics. Electronics, 8(8):832, 2019.

S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M. Srivastava,
A. Preece, S. Julier, R. M. Rao, et al. Interpretability of deep learning models: A survey of results.
In 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed,
scalable computing & communications, cloud & big data computing, Internet of people and smart
city innovation (smartworld/SCALCOM/UIC/ATC/CBDcom/IOP/SCI), pages 1–6. IEEE, 2017.

C.-H. Chang, R. Caruana, and A. Goldenberg. Node-gam: Neural generalized additive model for
interpretable deep learning. arXiv preprint arXiv:2106.01613, 2021.

C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This looks like that: deep learning for
interpretable image recognition. Advances in neural information processing systems, 32, 2019.

G. Chrysos, S. Moschoglou, Y. Panagakis, and S. Zafeiriou. Polygan: High-order polynomial
generators. arXiv preprint arXiv:1908.06571, 2019.

G. G. Chrysos, S. Moschoglou, G. Bouritsas, Y. Panagakis, J. Deng, and S. Zafeiriou. P-nets: Deep
polynomial neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7325–7335, 2020.

C. K. Chui and X. Li. Realization of neural networks with one hidden layer. In Multivariate
approximation: From CAGD to wavelets, pages 77–89. World Scientific, 1993.

M. Du, N. Liu, and X. Hu. Techniques for interpretable machine learning. Communications of the
ACM, 63(1):68–77, 2019.

FICO. Fico community explainable machine learning challenge, 2018. URL https://community.
fico.com/s/explainable-machine-learning-challenge?tabset-3158a=2.

J. E. Freund and G. A. Simon. Modern elementary statistics, volume 256. Prentice-Hall Englewood
Cliffs, NJ, 1967.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189–1232, 2001.

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The annals of applied
statistics, 2(3):916–954, 2008.

A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pages 3681–3688, 2019a.

A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim. Towards automatic concept-based explanations.
Advances in Neural Information Processing Systems, 32, 2019b.

T. J. Hastie and R. J. Tibshirani. Generalized additive models. Routledge, 2017.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman. Metrics for explainable ai: Challenges and

prospects. arXiv preprint arXiv:1812.04608, 2018.
A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE transactions on Systems, Man, and

Cybernetics, (4):364–378, 1971.

11

https://community.fico.com/s/explainable-machine-learning-challenge?tabset-3158a=2
https://community.fico.com/s/explainable-machine-learning-challenge?tabset-3158a=2

P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang. Concept bottleneck
models. In International Conference on Machine Learning, pages 5338–5348. PMLR, 2020.

H. Lakkaraju and O. Bastani. " how do i fool you?" manipulating user trust via misleading black
box explanations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages
79–85, 2020.

K. Lang. Newsweeder: Learning to filter netnews. In Machine Learning Proceedings 1995, pages
331–339. Elsevier, 1995.

T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki. The dangers of post-hoc
interpretability: Unjustified counterfactual explanations. arXiv preprint arXiv:1907.09294, 2019.

Z. C. Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability
is both important and slippery. Queue, 16(3):31–57, 2018.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate intelligible models with pairwise interactions.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 623–631, 2013.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

A. Madsen, S. Reddy, and S. Chandar. Post-hoc interpretability for neural nlp: A survey. arXiv
preprint arXiv:2108.04840, 2021.

P. Massart. Some applications of concentration inequalities to statistics. In Annales de la Faculté des
sciences de Toulouse: Mathématiques, volume 9, pages 245–303, 2000.

A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bordes, D. Parikh, and J. Weston. Parlai: A
dialog research software platform. arXiv preprint arXiv:1705.06476, 2017.

J. Muramatsu and W. Pratt. Transparent queries: investigation users’ mental models of search
engines. In Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 217–224, 2001.

J. Nie. Generating polynomials and symmetric tensor decompositions. Foundations of Computational
Mathematics, 17(2):423–465, 2017a.

J. Nie. Low rank symmetric tensor approximations. SIAM Journal on Matrix Analysis and Applica-
tions, 38(4):1517–1540, 2017b.

A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. Advances in Neural
Information Processing Systems, 27, 2014.

H. Nori, S. Jenkins, P. Koch, and R. Caruana. Interpretml: A unified framework for machine learning
interpretability. arXiv preprint arXiv:1909.09223, 2019.

S.-K. Oh, W. Pedrycz, and B.-J. Park. Polynomial neural networks architecture: analysis and design.
Computers & Electrical Engineering, 29(6):703–725, 2003.

R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):
291–297, 1997.

B. Recht. A simpler approach to matrix completion. Journal of Machine Learning Research, 12(12),
2011.

M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144, 2016.

C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Y. Shin and J. Ghosh. The pi-sigma network: an efficient higher-order neural network for pattern
classification and function approximation. In IJCNN-91-Seattle International Joint Conference on
Neural Networks, volume i, pages 13–18 vol.1, 1991. doi: 10.1109/IJCNN.1991.155142.

A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black box: Learning important
features through propagating activation differences. arXiv preprint arXiv:1605.01713, 2016.

12

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating
activation differences. In International conference on machine learning, pages 3145–3153. PMLR,
2017.

D. Slack, A. Hilgard, S. Singh, and H. Lakkaraju. Reliable post hoc explanations: Modeling
uncertainty in explainability. Advances in Neural Information Processing Systems, 34, 2021.

M. H. Stone. The generalized weierstrass approximation theorem. Mathematics Magazine, 21(5):
237–254, 1948.

M. Tsang, H. Liu, S. Purushotham, P. Murali, and Y. Liu. Neural interaction transparency (nit):
Disentangling learned interactions for improved interpretability. Advances in Neural Information
Processing Systems, 31, 2018.

G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona, and
S. Belongie. The inaturalist species classification and detection dataset. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8769–8778, 2018.

G. Van Horn, E. Cole, S. Beery, K. Wilber, S. Belongie, and O. Mac Aodha. Benchmarking
representation learning for natural world image collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12884–12893, 2021.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
2011.

M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

K. Weierstrass. On the analytical representability of so-called arbitrary functions of a real variable.
Meeting reports of the Royal Prussian Academy of Sciences in Berlin, 2:633–639, 1885.

Z. Yang, C. Jin, Z. Wang, M. Wang, and M. I. Jordan. On function approximation in reinforcement
learning: Optimism in the face of large state spaces. arXiv preprint arXiv:2011.04622, 2020.

R. Zhang, P. Madumal, T. Miller, K. A. Ehinger, and B. I. Rubinstein. Invertible concept-based
explanations for cnn models with non-negative concept activation vectors. arXiv preprint
arXiv:2006.15417, 2020.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See conclusion.
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Appendix
Section A.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix Sec-
tion A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Please see Section 4 and supplementary material.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Please see Sections 5
and 4.

(b) Did you mention the license of the assets? [Yes] See accompanying supplementary
material.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
No new assets except code, see 3(a).

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See supplementary material.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] No participant risks were identified in the
experiment design.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] See Section 5.

14

	Introduction
	Related Work
	Scalable Polynomial Additive Models
	Learning Low-Rank Decompositions of Polynomials
	Improving Polynomials for Learning
	Approximation and Learning-Theoretic Guarantees

	Offline Experiments
	Measuring Benchmark Performance
	Ablation Studies
	Additional Experiments
	Comparisons on Common Benchmarks
	Runtime Evaluation

	Human Subject Evaluations
	Discussion and Conclusion
	Deferred Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Polynomial Decay of Spectrum
	Omitted Results

	Related Work
	Experimental Details
	Tabular Dataset Details
	20 Newsgroups Feature Extraction
	Concept Bottleneck Implementation
	CUB-200 Concept Bottleneck
	Common Objects Dataset Details
	Hyperparameters

	Human Subject Evaluation Details
	CUB-200 Dataset Details
	Experiment Interface

