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Abstract

Recent studies have shown that episodic reinforcement learning (RL) is not more
difficult than contextual bandits, even with a long planning horizon and unknown
state transitions. However, these results are limited to either tabular Markov
decision processes (MDPs) or computationally inefficient algorithms for linear
mixture MDPs. In this paper, we propose the first computationally efficient horizon-
free algorithm for linear mixture MDPs, which achieves the optimal Õ(d

√
K+ d2)

regret up to logarithmic factors. Our algorithm adapts a weighted least square
estimator for the unknown transitional dynamic, where the weight is both variance-
aware and uncertainty-aware. When applying our weighted least square estimator

to heterogeneous linear bandits, we can obtain an Õ(d
√∑K

k=1 σ
2
k + d) regret in

the first K rounds, where d is the dimension of the context and σ2
k is the variance of

the reward in the k-th round. This also improves upon the best-known algorithms
in this setting when σ2

k’s are known.

1 Introduction

How to design efficient algorithms is a central problem for reinforcement learning (RL). Here,
the efficiency includes both statistical efficiency, which requires the RL algorithm enjoy a low
regret/polynomial sample complexity for finding the near-optimal policy, and computational efficiency,
which expects the RL algorithm have polynomial running time. When restricting to episodic RL with
total reward upper bounded by 11, a longstanding question is whether episodic RL is statistically and
computationally more difficult than contextual bandits (Jiang and Agarwal, 2018), since episodic
RL can be seen as an extension of contextual bandits to have a long planning horizon and unknown
state transition. For tabular RL, this questions has been fully resolved by a line of works (Wang et al.,
2020; Zhang et al., 2021b; Li et al., 2022; Zhang et al., 2022), which propose various horizon-free
algorithms. Here we say an algorithm is horizon-free if its regret/sample complexity has at most a
polylogarithmic dependence on the planning horizon H . In particular, (Zhang et al., 2021b) proposed
the first computationally efficient algorithm for tabular RL whose regret enjoys a polylogarithmic
dependence on the planning horizon, and (Zhang et al., 2022) further removed the polylogarithmic
dependence on the planning horizon.

For RL with function approximation to deal with large state space, Zhang et al. (2021c); Kim et al.
(2021) have made some progress towards horizon-free RL for a class of MDPs called linear mixture
MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a), whose transition dynamic can be
represented as a linear combination of d basic transition models. More specifically, Zhang et al.

1See Assumption 3.1 for a detailed description.
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(2021c) proposed a VARLin algorithm for linear mixture MDPs with an Õ(d4.5
√
K + d9) regret for

the first K episodes, and Kim et al. (2021) proposed a VARLin2 algorithm with an improved regret
Õ(d
√
K + d2). However, neither algorithm is computationally efficient, because both of them need

to work with nonconvex confidence sets and do not provide a polynomial-time algorithm to solve the
maximization problem over these sets.

So the following question remains open:

Can we design computationally efficient horizon-free RL algorithms when function approximation is
employed?

In this paper, we answer the above question affirmatively for linear function approximation by
proposing the first computationally efficient horizon-free RL algorithm for linear mixture MDPs. Our
contributions are summarized as follows.

• As a warm-up, we consider the heterogeneous linear bandits where the variances of rewards in
each round are different. Such a setting can be regarded as a special case of linear mixture MDPs.
We propose a computationally efficient algorithm WeightedOFUL+ and prove that in the first

K-rounds, the regret of WeightedOFUL+ is Õ(d
√∑K

k=1 σ
2
k + dR+ d), where σ2

k is the variance
of the reward in the k-th round and R is the magnitude of the reward noise. Our regret is variance-
aware, i.e., it only depends on the summation of variances and does not have a

√
K term. This

directly improves the Õ(d
√∑K

k=1 σ
2
k +
√
dK + d) regret achieved by Zhou et al. (2021a).

• For linear mixture MDPs, when the total reward for each episode is upper bounded by 1, we propose
a HF-UCRL-VTR+ algorithm and show that it has an Õ(d

√
K+d2) regret for the first K episodes,

where d is the number of basis transition dynamic. Our HF-UCRL-VTR+ is computationally
efficient, horizon-free and near-optimal, as it matches the regret lower bound proved in our paper
up to logarithmic factors. Our regret is strictly better than the regret attained in previous works
(Zhou et al., 2021a; Zhang et al., 2021c; Kim et al., 2021).

• At the core of both WeightedOFUL+ and HF-UCRL-VTR+ is a carefully designed weighted linear
regression estimator, whose weight is both variance-aware and uncertainty-aware, in contrast to
previous weighted linear regression estimator that is only variance-aware (Zhou et al., 2021a). For
linear mixture MDPs, we further propose a HOME that constructs the variance-uncertainty-aware
weights for high-order moments of the value function, which is pivotal to obtain a horizon-free
regret for linear mixture MDPs.

For a better comparison between our results and previous results, we summarize these results in Table
1. It is evident that our results improve upon all previous results in the respective settings2.

Notation. We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}, by [n] the
set {0, . . . , n− 1}. For a vector x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote
by ∥x∥2 the vector’s Euclidean norm and define ∥x∥Σ =

√
x⊤Σx. For x,y ∈ Rd, let x⊙ y be the

Hadamard (componentwise) product of x and y. For two positive sequences {an} and {bn} with
n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that
an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use
1{·} to denote the indicator function. For a, b ∈ R satisfying a ≤ b, we use [x][a,b] to denote the
truncation function x · 1{a ≤ x ≤ b}+ a · 1{x < a}+ b · 1{x > b}.

2 Related work

In this section, we will review prior works that are most relevant to ours.

2The only exception is that for heterogeneous linear bandits, our algorithm needs to know the noise variance,
while Zhang et al. (2021c); Kim et al. (2021) do not. But their algorithms are computationally inefficient. We
plan to extend our algorithm to deal with unknown variance in the future work.
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Table 1: Comparisons of regrets for linear bandits and linear mixture MDPs.

ComputationallyAlgorithm Regret Assumption Efficient?

OFUL
(Abbasi-Yadkori et al., 2011)

Õ(d
√
K) - Yes

WeightedOFUL
(Zhou et al., 2021a) Õ(d

√∑K
k=1 σ

2
k +
√
dK + d) Known variance Yes

VOFUL
(Zhang et al., 2021c) Õ(d4.5

√∑K
k=1 σ

2
k + d5) Unknown variance No

VOFUL2
(Kim et al., 2021) Õ(d1.5

√∑K
k=1 σ

2
k + d2) Unknown variance No

WeightedOFUL+

(Theorem 4.1) Õ(d
√∑K

k=1 σ
2
k + d) Known variance Yes

UCRL-VTR Homogeneous,
(Jia et al., 2020; Ayoub et al., 2020)

Õ(d
√
H3K) ∑

h rh ≤ H
Yes

UCRL-VTR+ Õ(
√
d2H3 + dH4

√
K Inhomogeneous,

(Zhou et al., 2021a) +d2H3 + d3H2)
∑

h rh ≤ H
Yes

VARLin Homogeneous,
(Zhang et al., 2021c) Õ(d4.5

√
K + d9) ∑

h rh ≤ 1
No

VARLin2 Homogeneous,
(Kim et al., 2021) Õ(d

√
K + d2) ∑

h rh ≤ 1
No

HF-UCRL-VTR+ Homogeneous,
(Theorem 5.1) Õ(d

√
K + d2) ∑

h rh ≤ 1
Yes

Lower bound
(Theorem 5.3) Ω(d

√
K) - -

Heterogeneous linear bandits. Linear bandits have been studied for a long time. Most of existing
works focus on the homogeneous linear bandits where the noise distributions at different round are
identical (Auer, 2002; Chu et al., 2011; Li et al., 2010; Dani et al., 2008; Abbasi-Yadkori et al.,
2011; Li et al., 2019a,b). Recently, a series of works focus on the heterogeneous linear bandits
where the noise distribution changes over time. Lattimore et al. (2015) assumed that the noise
distribution is Bernoulli and proposed an algorithm with an Õ(d

√
K) regret. Kirschner and Krause

(2018) assumed that the noise at k-th round is σ2
k-sub-Gaussian, and they proposed a weighted ridge

regression-based algorithm with an Õ(d
√∑K

k=1 σ
2
k) regret. A recent line of works assume the

variance of the noise at k-th round is bounded by σ2
k. Under this assumption, Zhang et al. (2021c)

proposed a VOFUL algorithm with an Õ(d4.5
√∑K

k=1 σ
2
k + d5) regret. Kim et al. (2021) proposed

a VOFUL2 algorithm with an Õ(d1.5
√∑K

k=1 σ
2
k + d2) regret. Both VOFUL and VOFUL2 do not

need to know the variance information. However, they are computationally inefficient since they
need to work with nonconvex confidence sets defined by a series of second-order constraints, and do
not propose a polynomial-time algorithm to solve the maximization problem over these sets. With
the variance information, Zhou et al. (2021a) proposed a computationally efficient WeightedOFUL

with an Õ(d
√∑K

k=1 σ
2
k +
√
dK + d) regret. Our work is under the same assumptions as Zhou et al.

(2021a) and improves the regret for linear bandits.

Horizon-free tabular RL. RL is widely believed to be harder than contextual bandits problem due to
its long planning horizon and the unknown state transitions. For tabular RL, under the assumption
that the total reward obtained by any policy is upper bounded by 1, Jiang and Agarwal (2018)
conjectured that any algorithm to find an ϵ-optimal policy needs to have a polynomial dependence
on the planning horizon H in the sample complexity. Such a conjecture was firstly refuted by Wang
et al. (2020) by proposing a horizon-free algorithm with an Õ(|S|5|A|4ϵ−2polylog(H)) sample
complexity that depends on H polylogarithmically, where ϵ is the target sub-optimality of the policy,
S is the state space andA is the action space. Zhang et al. (2021b) proposed a near-optimal algorithm
with an improved regret O((

√
|S||A|K + |S|2|A|)polylog(H)) and sample complexity. Similar
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regret/sample complexity guarantees with a polylogarithmic H dependence have also been established
under different RL settings (Zhang et al., 2020; Ren et al., 2021; Tarbouriech et al., 2021). Recently
Li et al. (2022); Zhang et al. (2022) further proposed algorithms with H-independent regret/sample
complexity guarantees. However, all the above works are limited to tabular RL. Our work proposes
an algorithm with a regret bound that depends on H polylogarithmically for linear mixture MDPs,
which extends these horizon-free tabular RL algorithms.

RL with linear function approximation. Recent years have witnessed a trend on RL with linear
function approximation (e.g., Jiang et al., 2017; Dann et al., 2018; Yang and Wang, 2019a; Jin et al.,
2020; Wang et al., 2019; Du et al., 2019; Sun et al., 2019; Zanette et al., 2020a,b; Weisz et al., 2020;
Yang and Wang, 2019b; Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b). All
these works assume that the MDP enjoys some linear representation and propose different statistical
and computational complexities which depend on the dimension of the linear representation. Among
these assumptions, our work falls into the category of linear mixture MDP which assumes that the
transition dynamic can be represented as a linear combination of several basis transition probability
functions (Yang and Wang, 2019b; Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021b). Previous algorithms for linear mixture MDPs either suffer from a polynomial dependence
on the episode horizon H (Yang and Wang, 2019b; Modi et al., 2020; Jia et al., 2020; Ayoub et al.,
2020; Zhou et al., 2021b; Cai et al., 2019; He et al., 2021; Zhou et al., 2021a) or do not have a
computationally efficient implementation (Zhang et al., 2021c; Kim et al., 2021). Our work achieves
the best of both worlds for the first time.

3 Preliminaries

3.1 Heterogeneous linear bandits

We consider the same heterogeneous linear bandits as studied in Zhou et al. (2021a). Let {Dk}∞k=1
be decision sets that are fixed. At each round k, the agent selects an action ak ∈ Dk satisfying
∥ak∥2 ≤ A, then receives a reward rk provided by the environment. Specifically, rk is generated by
rk = ⟨θ∗,ak⟩+ ϵk, where θ∗ ∈ Rd is an unknown vector, and ϵk is a random noise satisfying

∀k, |ϵk| ≤ R, E[ϵk|a1:k, ϵ1:k−1] = 0, E[ϵ2k|a1:k, ϵ1:k−1] ≤ σ2
k,

where σk is an upper bound of the variance of the noise ϵk that are observable to the agent. We
assume that σk is (a1:k, ϵ1:k−1)-measurable. The agent aims to minimize the pseudo-regret defined
as follows:

Regret(K) =

K∑
k=1

[⟨a∗k,θ∗⟩ − ⟨ak,θ∗⟩], where a∗k = argmax
a∈Dk

⟨a,θ∗⟩.

3.2 Episodic reinforcement learning

We also study RL with linear function approximation for episodic linear mixture MDPs. We introduce
the necessary definitions of MDPs here. The reader can refer to Puterman (2014) for more details.

Episodic MDP. We denote a homogeneous, episodic MDP by a tuple M = M(S,A, H, r,P), where
S is the state space andA is the action space, H is the length of the episode, r : S ×A → [0, 1] is the
deterministic reward function, and P is the transition probability function. For the sake of simplicity,
we restrict ourselves to countable state space and finite action space. A policy π = {πh}Hh=1 is a
collection of H functions, where each of them maps a state s to an action a.

Value function and regret. For (s, a) ∈ S ×A, we define the action-value function Qπ
h(s, a) and

(state) value function V π
h (s) as follows:

Qπ
h(s, a) = E

[ H∑
h′=h

r(sh′ , ah′)

∣∣∣∣sh = s, ah = a, sh′ ∼ P(·|sh′−1, ah′−1), ah′ = πh′(sh′)

]
,

V π
h (s) = Qπ

h(s, πh(s)), V
π
H+1(s) = 0.

The optimal value function V ∗
h (·) and the optimal action-value function Q∗

h(·, ·) are defined by
V ∗
h (s) = supπ V

π
h (s) and Q∗

h(s, a) = supπ Q
π
h(s, a), respectively. For any function V : S → R,
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we introduce the following shorthands to denote the conditional variance of V at P(·|s, a):

[PV ](s, a) = Es′∼P(·|s,a)V (s′), [VV ](s, a) = [PV 2](s, a)− ([PV ](s, a))2,

where V 2 stands for the function whose value at s is V 2(s). Using this notation, the Bellman
equations for policy π and the Bellman optimality equation can be written as

Qπ
h(s, a) = r(s, a) + [PV π

h+1](s, a), Q
∗
h(s, a) = r(s, a) + [PV ∗

h+1](s, a).

The goal is to minimize the K-episode regret defined as follows:

Regret(K) =

K∑
k=1

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]
.

In this paper, we focus on proving high probability bounds on the regret Regret(K).

In this work we make the following assumptions. The first assumption assumes that for any policy,
the accumulated reward of an episode is upper bounded by 1, which has been considered in previous
works (Krishnamurthy et al., 2016; Jiang and Agarwal, 2018). The accumulated reward assumption
ensures that the only factor that can affect the final statistical complexity is the planning difficulty
brought by the episode length, rather than the scale of the reward.
Assumption 3.1 (Bounded total reward). For any policy π, let {sh, ah}Hh=1 be any states and actions
satisfying ah = πh(sh) and sh+1 ∼ P(·|sh, ah). Then we have 0 ≤

∑H
h=1 r(sh, ah) ≤ 1.

Next assumption assumes that the transition dynamic enjoys a linearized representation w.r.t. some
feature mapping. We define the linear mixture MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021b) as follows.
Assumption 3.2 (Linear mixture MDP). M is an episodic B-bounded linear mixture MDP, such that
there exists a vector θ∗ ∈ Rd and ϕ(·|·, ·) such that P(s′|s, a) = ⟨ϕ(s′|s, a),θ∗⟩ for any state-action-
next-state triplet (s, a, s′) ∈ S × A × S. Meanwhile, ∥θ∗∥2 ≤ B and for any bounded function
V : S → [0, 1] and any tuple (s, a) ∈ S ×A, we have

∥ϕV (s, a)∥2 ≤ 1,where ϕV (s, a) =
∑
s′∈S

ϕ(s′|s, a)V (s′).

Lastly, for any V : S → [0, 1], ϕV can be calculated efficiently within O time.
Remark 3.3. A key property of linear mixture MDP is that for any function V : S → R and any
state-action pair (s, a), the conditional expectation of V over P(·|s, a) is a linear function of θ∗, i.e.,
[PV ](s, a) = ⟨ϕV (s, a),θ

∗⟩. Meanwhile, the conditional variance of V over P(·|s, a) is a quadratic
function of θ∗, i.e., [VV ](s, a) = ⟨ϕV 2(s, a),θ∗⟩ − [⟨ϕV (s, a),θ

∗⟩]2.

Remark 3.4. For a general class of ϕ, ϕV (s, a) : S × A → Rd can be computed efficiently
for any (s, a) ∈ S × A if V : S → R can be computed efficiently. For instance, ϕ(s′|s, a) =

es′,s,a ∈ R|S|2|A| and ϕ(s′|s, a) = ψ(s′)⊙ ξ(s, a), where ψ, ξ are two sub feature functions. More
discussions are referred to Zhou et al. (2021a).

4 Computationally efficient variance-aware linear bandits

In this section, we propose our algorithm WeightedOFUL+ in Algorithm 1 for the heterogeneous
linear bandits introduced in Section 3.1. WeightedOFUL+ adopts the weighted ridge regression
estimator used by WeightedOFUL (Zhou et al., 2021a), but uses a refined weight. It first computes a
weighted estimate of θ∗, denoted by θ̂k, based on previous contexts and rewards, where the weights
σ̄k are computed by the noise variance σk. Then WeightedOFUL+ constructs the confidence set
of θ∗, denoted by Ĉk, estimates the reward ⟨a,θ⟩ for θ ∈ Ĉk, and selects the arm that maximizes
the estimated reward optimistically. The selection rule of ak is identical to selecting the best arm
w.r.t. to their upper confidence bound, i.e., ak ← argmaxa∈Dk

⟨a, θ̂k⟩+ β̂k∥a∥Σ̂−1
k

(Li et al., 2010).

WeightedOFUL+ constructs σ̄2
k as the maximization of the variance, a constant, and the uncertainty

∥ak∥Σ̂−1
k

, as defined in (4.1). Note that Zhou et al. (2021a) proposed a variance-aware weight
σ̄k = max{σk, α} for heterogeneous linear bandits. The additional uncertainty term in our weight
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Algorithm 1 WeightedOFUL+

Require: Regularization parameter λ > 0, and B, an upper bound on the ℓ2-norm of θ∗, confidence
radius β̂k, variance parameters α, γ

1: Σ̂1 ← λI, b̂1 ← 0, θ̂1 ← 0, β̂1 =
√
λB

2: for k = 1, . . . ,K do
3: Let Ĉk ← {θ : ∥Σ̂1/2

k (θ − θ̂k)∥2 ≤ β̂k}, observe Dk

4: Set (ak,θk)← argmaxa∈Dk,θ∈Ĉk
⟨a,θ⟩

5: Observe (rk, σk), set σ̄k as

σ̄k ← max{σk, α, γ∥ak∥1/2Σ̂−1
k

} (4.1)

6: Σ̂k+1 ← Σ̂k + aka
⊤
k /σ̄

2
k, b̂k+1 ← b̂k + rkak/σ̄

2
k, θ̂k+1 ← Σ̂−1

k+1b̂k+1

7: end for

enables us to build a tighter confidence set Ĉk since the uncertainty of arms can be leveraged by a
tighter Bernstein-type concentration inequality (See Section 4.1 for more details). Meanwhile, we
notice that He et al. (2022) proposed a pure uncertainty-aware weight σ̄k = max{α, γ∥ak∥1/2Σ̂−1

k

} to

deal with the corruption in contextual linear bandits, which serves a different purpose compared to
our setting (there is no corruption in our bandit model).

The following theorem gives the regret bound of WeightedOFUL+.
Theorem 4.1. Let 0 < δ < 1. Suppose that for all k ≥ 1 and all a ∈ Dk, ⟨a,θ∗⟩ ∈ [−1, 1],
∥θ∗∥2 ≤ B and {β̂k}k≥1 are set to

β̂k = 12
√
d log(1 + kA2/(α2dλ)) log(32(log(γ2/α) + 1)k2/δ)

+ 30 log(32(log(γ2/α) + 1)k2/δ)R/γ2 +
√
λB. (4.2)

Then with probability at least 1− δ, the regret of WeightedOFUL+ is bounded by

Regret(K) ≤ 4dι+ 4dγ2β̂Kι+ 4β̂K

√∑K
k=1σ

2
k +Kα2

√
dι, (4.3)

where ι = log(1 +KA2/(dλα2)). Moreover, setting α = 1/
√
K, γ = R1/2/d1/4 and λ = d/B2

yields a high probability regret Regret(K) = Õ(d
√∑K

k=1 σ
2
k + dR+ d).

Remark 4.2. Treating R as a constant, the regret of WeightedOFUL+ becomes Õ(d
√∑K

k=1 σ
2
k+d).

It strictly outperforms the Õ(d
√∑K

k=1 σ
2
k +
√
dK + d) regret achieved in Zhou et al. (2021a).

Compared with the Õ(d4.5
√∑K

k=1 σ
2
k + d5) regret by VOFUL (Zhang et al., 2021c) and the

Õ(d1.5
√∑K

k=1 σ
2
k + d2) regret by VOFUL2 (Kim et al., 2021), the regret of WeightedOFUL+

has a better dependence on d, and WeightedOFUL+ is computationally efficient. It is worth noting
that both VOFUL and VOFUL2 do not need to know the variance σ2

k while our algorithm does.

Whether there exists an algorithm that can achieve the Õ(d
√∑K

k=1 σ
2
k +
√
dK + d) regret without

knowing the variance information remains an open problem.

4.1 Proof sketch

We give a proof sketch of Theorem 4.1 along with two key lemmas that are pivotal to obtain the
improved regret. To begin with, we first show that θ∗ belongs to confidence balls centering at θ̂k
with radius β̂k. This can be proved by the following lemma, which is an improved version of the
Bernstein-type self-normalized martingale inequality proposed by Zhou et al. (2021a).
Lemma 4.3. Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic process such that xk ∈ Rd

is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0, µ∗ ∈ Rd. For k ≥ 1, let
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yk = ⟨µ∗,xk⟩+ ηk and suppose that ηk,xk also satisfy

E[ηk|Gk] = 0, E[η2k|Gk] ≤ σ2, |ηk| ≤ R, ∥xk∥2 ≤ L. (4.4)

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = 12
√

σ2d log(1 + kL2/(dλ)) log(32(log(R/ϵ) + 1)k2/δ)

+ 24 log(32(log(R/ϵ) + 1)k2/δ) max
1≤i≤k

{|ηi|min{1, ∥xi∥Z−1
i−1

}}+ 6 log(32(log(R/ϵ) + 1)k2/δ)ϵ.

Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥
Z−1

k

≤ βk, ∥µk − µ∗∥Zk
≤ βk +

√
λ∥µ∗∥2,

Note that θ̂k can be regarded as µk−1 in Lemma 4.3 with ϵ = R/γ2, xk = ak/σ̄k, yk = rk/σ̄k,
ηk = ϵk/σ̄k, Zk = Σ̂k+1 and µ∗ = θ∗. With the help of the weight σ̄k, the variance of ηk is
upper bounded by 1 (since σ̄k ≥ σk) and |ηk|min{1, ∥xk∥Z−1

k
} ≤ |ϵk|∥ak∥Σ̂−1

k
/σ̄2

k ≤ R/γ2 (since

σ̄2
k ≥ γ2∥ak∥Σ̂−1

k
). Therefore, by Lemma 4.3, w.h.p. θ∗ ∈ Ĉk. Following the standard procedure to

bound the regret of the optimistic algorithm (Abbasi-Yadkori et al., 2011), we have

Regret(K) =

K∑
k=1

⟨a∗
k − ak,θ

∗⟩ ≤ 2

K∑
k=1

min{1, β̂k∥ak∥Σ̂−1
k

}. (4.5)

Next lemma gives an upper bound of (4.5).

Lemma 4.4. Let {σk, β̂k}k≥1 be a sequence of non-negative numbers, α, γ > 0, {ak}k≥1 ⊂ Rd

and ∥ak∥2 ≤ A. Let {σ̄k}k≥1 and {Σ̂k}k≥1 be (recursively) defined as follows: Σ̂1 = λI,

∀k ≥ 1, σ̄k = max{σk, α, γ∥ak∥1/2Σ̂−1
k

}, Σ̂k+1 = Σ̂k + aka
⊤
k /σ̄

2
k.

Let ι = log(1 +KA2/(dλα2)). Then we have

K∑
k=1

min
{
1, β̂k∥ak∥Σ̂−1

k

}
≤ 2dι+ 2 max

k∈[K]
β̂kγ

2dι+ 2
√
dι

√√√√ K∑
k=1

β̂2
k(σ

2
k + α2).

By Lemma 4.4, the regret of WeightedOFUL+ can be bounded by

Regret(K) = Õ
(
d+

√
dβ̂K

(√∑K
k=1σ

2
k +Kα2 +

√
dγ2)) (4.6)

with β̂K = Õ(
√
d+R/γ2 +

√
λB), which finishes the proof.

Here we compare the regret of WeightedOFUL+ and the regret of WeightedOFUL (Zhou et al.,
2021a) (which chooses the weight σ̄k = max{σk, α}) to see where the improvement comes from. In
particular, Zhou et al. (2021a) proved the regret of WeightedOFUL as follows

Regret(K) = Õ
(
d+

√
dβ̂α

K

√∑K
k=1σ

2
k +Kα2

)
(4.7)

with β̂α
K = Õ(

√
d + R/α +

√
λB). At the first glance, both (4.6) and (4.7) have a

√
Kα2 term.

However, thanks to the design of σ̄k and Lemma 4.3, the
√
Kα2 term in (4.6) can be shaved by

choosing a small enough α, while this term in (4.7) cannot be shaved due to the existence of a R/α

term in β̂α
K .

5 Computationally efficient horizon-free RL for linear mixture MDPs

In this section, we propose a horizon-free RL algorithm HF-UCRL-VTR+ in Algorithm 2. We leave
the discussion of the computational complexity of HF-UCRL-VTR+ to Appendix B.

HF-UCRL-VTR+ follows the value targeted regression (VTR) framework proposed by Jia et al.
(2020); Ayoub et al. (2020) to learn the linear mixture MDP. In detail, following the observation in
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Algorithm 2 HF-UCRL-VTR+

Require: Regularization parameter λ, an upper bound B of the ℓ2-norm of θ∗, confidence radius
{β̂k}k≥1, level M , variance parameters α, γ, [M ] = {0, . . . ,M − 1}

1: For m ∈ [M ], set θ̂1,m ← 0, Σ̃0,H+1,m ← λI, b̃0,H+1,m ← 0. Set V1,H+1(·)← 0
2: for k = 1, . . . ,K do
3: for h = H, . . . , 1 do
4: Set Qk,h(·, ·)←

[
r(·, ·) +

〈
θ̂k,0,ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥∥Σ̂−1/2
k,0 ϕVk,h+1

(·, ·)
∥∥∥
2

]
[0,1]

5: Set πk
h(·)← argmaxa∈A Qk,h(·, a)

6: Set Vk,h(·)← maxa∈A Qk,h(·, a)
7: end for
8: Receive sk1 . For m ∈ [M ], set Σ̃k,1,m ← Σ̃k−1,H+1,m

9: for h = 1, . . . ,H do
10: Take action akh ← πk

h(s
k
h), receive skh+1 ∼ P(·|skh, akh).

11: For m ∈ [M ], denote ϕk,h,m = ϕV 2m

k,h+1
(skh, a

k
h).

12: Set {σ̄k,h,m}m∈[M ]
←Algorithm 3({ϕk,h,m, θ̂k,m, Σ̃k,h,m, Σ̂k,m}m∈[M ]

, β̂k, α, γ)

13: For m ∈ [M ], set Σ̃k,h+1,m ← Σ̃k,h,m + ϕk,h,mϕ
⊤
k,h,m/σ̄2

k,h,m

14: For m ∈ [M ], set b̃k,h+1,m ← b̃k,h,m + ϕk,h,mV 2m

k,h+1(s
k
h+1)/σ̄

2
k,h,m

15: end for
16: For m ∈ [M ], set Σ̂k+1,m ← Σ̃k,H+1,m, b̂k+1,m ← b̃k,H+1,m, θ̂k+1,m ← Σ̂−1

k+1,mb̂k+1,m

17: end for

Remark 3.3, VTR estimates θ∗ by solving a regression problem over predictors/contexts ϕk,h,0 =

ϕVk,h+1
(skh, a

k
h) and responses Vk,h+1(s

k
h+1). Specifically, HF-UCRL-VTR+ takes the estimate θ̂k,0

as the solution to the following weighted regression problem:

θ̂k,0 = argmin
θ∈Rd

λ∥θ∥22 +
∑k−1

j=1

∑H
h=1

[〈
ϕj,h,0,θ

〉
− Vj,h+1(s

j
h+1)

]2
/σ̄2

j,h,0, (5.1)

where σ̄j,h,0 is the upper bound of the conditional variance [VVk,h+1](s
k
h, a

k
h). Such a weighted

regression scheme has been adapted by UCRL-VTR+ in Zhou et al. (2021a). With θ̂k,0,
HF-UCRL-VTR+ then constructs the optimistic estimates Qk,h (resp. Vk,h) of the optimal value
functions Q∗

h (resp. V ∗
h ) and takes actions optimistically. Note that θ̂k,0 is updated at the end of

each episode. We highlight several improved algorithm designs of HF-UCRL-VTR+ compared to
UCRL-VTR+ as follows.

Improved weighted linear regression estimator. HF-UCRL-VTR+ sets σ̄j,h,0 similar to the
weight used in WeightedOFUL+. Assuming that the conditional variance [VVk,h+1](s

k
h, a

k
h) can be

computed for any value function V and state action pair (s, a), then the weight can be set as

σ̄2
k,h,0 = max{[VVk,h+1](s

k
h, a

k
h), α

2, γ2∥Σ̃−1/2
k,h,0ϕk,h,0∥2},

where Σ̃k,h,0 is the weighted sample covariance matrix of ϕk,h,0 up to k-th episode and h-th stage.
However, the true variance is not accessible since P(·|s, a) is unknown. Therefore, HF-UCRL-VTR+

replaces [VVk,h+1](s
k
h, a

k
h) with its estimate [V̄k,0Vk,h+1](s

k
h, a

k
h) and an error bound Ek,h,0 satisfy-

ing [V̄k,0Vk,h+1](s
k
h, a

k
h)+Ek,h,0 ≥ [VVk,h+1](s

k
h, a

k
h) with high probability. Thanks to the fact that

[VVk,h+1](s
k
h, a

k
h) is a quadratic function of θ∗ as illustrated in Remark 3.3, [V̄k,0Vk,h+1](s

k
h, a

k
h)

can be estimated as follows:

[V̄k,0Vk,h+1](s
k
h, a

k
h) =

[〈
ϕk,h,1, θ̂k,1

〉]
[0,1]
−

[〈
ϕk,h,0, θ̂k,0

〉]2
[0,1]

, (5.2)

where θ̂k,1 is the solution to some regression problem over predictors/contexts ϕk,h,1 =
ϕV 2

k,h+1
(skh, a

k
h) and responses V 2

k,h+1(s
k
h+1).

Higher-order moment regression. To obtain a better estimate, it is natural to set θ̂k,1 as the solution
to the weighted regression problem on ϕk,h,1 and V 2

k,h+1(s
k
h+1) with weight σ̄k,h,1. Here σ̄k,h,1 is

8



Algorithm 3 High-order moment estimator (HOME)

Require: Features {ϕk,h,m}m∈[M ]
, vector estimators {θ̂k,m}m∈[M ]

, covariance matrix

{Σ̃k,h,m, Σ̂k,m}m∈[M ]
, confidence radius β̂k, α, γ

1: for m = 0, . . . ,M − 2 do
2: Set [V̄k,mV 2m

k,h+1](s
k
h, a

k
h)←

[〈
ϕk,h,m+1, θ̂k,m+1

〉]
[0,1]
−

[〈
ϕk,h,m, θ̂k,m

〉]2
[0,1]

3: Set Ek,h,m ← min
{
1, 2β̂k

∥∥Σ̂−1/2
k,m ϕk,h,m

∥∥
2

}
+min

{
1, β̂k

∥∥Σ̂−1/2
k,m+1ϕk,h,m+1

∥∥
2

}
4: Set σ̄2

k,h,m ← max
{
[V̄k,mV 2m

k,h+1](s
k
h, a

k
h) + Ek,h,m, α2, γ2

∥∥Σ̃−1/2
k,h,mϕk,h,m

∥∥
2

}
5: end for
6: Set σ̄2

k,h,M−1 ← max
{
1, α2, γ2

∥∥∥Σ̃−1/2
k,h,M−1ϕk,h,M−1

∥∥∥
2

}
Ensure: {σ̄k,h,m}m∈[M ]

constructed in a similar way to σ̄k,h,0, which relies on the conditional variance of [VV 2
k,h+1](s

k
h, a

k
h).

By repeating this process, we recursively estimate the conditional 2m-th moment of Vk,h+1 by its
variance, which is the conditional 2m+1-th moment of Vk,h+1. It is worth noting that the idea of
high-order recursive estimation has been used in Li et al. (2020) and later in Zhang et al. (2021b,c) to
achieve horizon-free regret/sample complexity guarantees. Similar recursive analysis also appeared
in Lattimore and Hutter (2012).

The estimated conditional moment [V̄k,mV 2m

k,h+1](s
k
h, a

k
h) relies on θ̂k,m+1 and θ̂k,m, and

⟨ϕk,h,m+1, θ̂k,m+1⟩ serves as the estimate of the higher-moment [VV 2m+1

k,h+1](s
k
h, a

k
h). The detailed

constructions for the high-order moment estimator are summarized in Algorithm 3.

We provide the regret bound for HF-UCRL-VTR+ here.

Theorem 5.1. Set M = log(3KH)/ log 2. For any δ > 0, set {β̂k}k≥1 as

β̂k = 12
√

d log(1 + kH/(α2dλ)) log(32(log(γ2/α) + 1)k2H2/δ)

+ 30 log(32(log(γ2/α) + 1)k2H2/δ)/γ2 +
√
λB, (5.3)

then with probability at least 1− (2M + 1)δ, the regret of Algorithm 2 is bounded by

Regret(K) ≤ 12(8dι+ 8β̂Kγ2dι+ 4β̂K

√
dι
√
Mdι/2 +KHα2 +

√
Mdιζ + ζ)

+ 864max{8β̂2
Kdι, ζ}+Mdι/2 +

[√
2 log(1/δ) + 32max{2β̂K

√
2dι,

√
ζ}

]√
K,

where ι = log(1 + KH/(dλα2)), ζ = 4 log(4 log(KH)/δ). Moreover, setting α =√
d/(KH), γ = 1/d1/4 and λ = d/B2 yields a high-probability regret Regret(K) = Õ(d

√
K+d2).

Remark 5.2. The regret of HF-UCRL-VTR+ is strictly better than that of VOFUL Õ(d4.5
√
K+ d9)

Zhang et al. (2021c), and it matches the regret of VOFUL2 (Kim et al., 2021). More importantly,
HF-UCRL-VTR+ is computationally efficient, while there is no efficient implementation of VO-
FUL/VOFUL2.

Next theorem provides the regret lower bound and suggests that the regret obtained by
HF-UCRL-VTR+ is near-optimal. The lower bound is proved by constructing hard-instances of
linear mixture MDPs following Zhou et al. (2021b,a); Zhang et al. (2021a).
Theorem 5.3. Let B > 1. Then for any algorithm, when K ≥ max{3d2, (d− 1)/(192(B − 1))},
there exists a B-bounded linear mixture MDP satisfying Assumptions 3.1 and 3.2 such that its
expected regret E[Regret(K)] is lower bounded by d

√
K/(16

√
3).

Remark 5.4. When specialized to tabular MDPs where d = |S|2|A|, HF-UCRL-VTR+ yields a
horizon-free regret Õ(|S|2|A|

√
K + |S|4|A|2). Although the regret does not match the near-optimal

result Õ(
√
|S||A|K + |S|2|A|) (Zhang et al., 2021b), it is not surprising since HF-UCRL-VTR+ is

designed for a more general MDP class. We leave the design of algorithms that achieve near-optimal
regret for both linear mixture MDPs and tabular MDPs simultaneously as a future work.

We conduct some numerical experiments to suggest the validity of HF-UCRL-VTR+ in Appendix A.
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6 Conclusion

In this work, we propose a new weighted linear regression estimator that adapts variance-uncertainty-
aware weights, which can be applied to both heterogeneous linear bandits and linear mixture MDPs.

For heterogeneous linear bandits, our WeightedOFUL+ algorithm achieves an Õ(d
√∑K

k=1 σ
2
k + d)

regret in the first K rounds. For linear mixture MDPs, our HF-UCRL-VTR+ algorithm achieves the
near-optimal Õ(d

√
K + d2) regret. Both of our algorithms are computationally efficient and yield

the state-of-the-arts regret results.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their helpful comments. DZ and QG are partially supported by
the National Science Foundation CAREER Award 1906169 and the Sloan Research Fellowship. The
views and conclusions contained in this paper are those of the authors and should not be interpreted
as representing any funding agencies.

References
ABBASI-YADKORI, Y., PÁL, D. and SZEPESVÁRI, C. (2011). Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems.

AUER, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research 3 397–422.

AYOUB, A., JIA, Z., SZEPESVARI, C., WANG, M. and YANG, L. F. (2020). Model-based reinforce-
ment learning with value-targeted regression. arXiv preprint arXiv:2006.01107 .

AZUMA, K. (1967). Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, Second Series 19 357–367.

CAI, Q., YANG, Z., JIN, C. and WANG, Z. (2019). Provably efficient exploration in policy
optimization. arXiv preprint arXiv:1912.05830 .

CHU, W., LI, L., REYZIN, L. and SCHAPIRE, R. (2011). Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics.

DANI, V., HAYES, T. P. and KAKADE, S. M. (2008). Stochastic linear optimization under bandit
feedback. In Conference on Learning Theory.

DANN, C., JIANG, N., KRISHNAMURTHY, A., AGARWAL, A., LANGFORD, J. and SCHAPIRE,
R. E. (2018). On oracle-efficient pac rl with rich observations. In Advances in neural information
processing systems.

DU, S. S., KAKADE, S. M., WANG, R. and YANG, L. F. (2019). Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on Learning
Representations.

DZHAPARIDZE, K. and VAN ZANTEN, J. (2001). On bernstein-type inequalities for martingales.
Stochastic processes and their applications 93 109–117.

FAN, X., GRAMA, I. and LIU, Q. (2017). Martingale inequalities of type dzhaparidze and van zanten.
Statistics 51 1200–1213.

HE, J., ZHOU, D. and GU, Q. (2021). Logarithmic regret for reinforcement learning with linear
function approximation. In International Conference on Machine Learning. PMLR.

HE, J., ZHOU, D., ZHANG, T. and GU, Q. (2022). Nearly optimal algorithms for linear contextual
bandits with adversarial corruptions. arXiv preprint arXiv:2205.06811 .

10



JIA, Z., YANG, L., SZEPESVARI, C. and WANG, M. (2020). Model-based reinforcement learning
with value-targeted regression. In L4DC.

JIANG, N. and AGARWAL, A. (2018). Open problem: The dependence of sample complexity lower
bounds on planning horizon. In Conference On Learning Theory. PMLR.

JIANG, N., KRISHNAMURTHY, A., AGARWAL, A., LANGFORD, J. and SCHAPIRE, R. E. (2017).
Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org.

JIN, C., ALLEN-ZHU, Z., BUBECK, S. and JORDAN, M. I. (2018). Is Q-learning provably efficient?
In Advances in Neural Information Processing Systems.

JIN, C., YANG, Z., WANG, Z. and JORDAN, M. I. (2020). Provably efficient reinforcement learning
with linear function approximation. In Conference on Learning Theory.

KIM, Y., YANG, I. and JUN, K.-S. (2021). Improved regret analysis for variance-adaptive linear
bandits and horizon-free linear mixture mdps. arXiv preprint arXiv:2111.03289 .

KIRSCHNER, J. and KRAUSE, A. (2018). Information directed sampling and bandits with het-
eroscedastic noise. In Conference On Learning Theory.

KRISHNAMURTHY, A., AGARWAL, A. and LANGFORD, J. (2016). Pac reinforcement learning with
rich observations. Advances in Neural Information Processing Systems 29.

LATTIMORE, T., CRAMMER, K. and SZEPESVÁRI, C. (2015). Linear multi-resource allocation with
semi-bandit feedback. In Advances in Neural Information Processing Systems.

LATTIMORE, T. and HUTTER, M. (2012). PAC bounds for discounted MDPs. In International
Conference on Algorithmic Learning Theory. Springer.

LI, G., WEI, Y., CHI, Y., GU, Y. and CHEN, Y. (2020). Breaking the sample size barrier in
model-based reinforcement learning with a generative model. Advances in neural information
processing systems 33 12861–12872.

LI, L., CHU, W., LANGFORD, J. and SCHAPIRE, R. E. (2010). A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web.

LI, Y., WANG, R. and YANG, L. F. (2022). Settling the horizon-dependence of sample complexity
in reinforcement learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE.

LI, Y., WANG, Y. and ZHOU, Y. (2019a). Nearly minimax-optimal regret for linearly parameterized
bandits. In Conference on Learning Theory.

LI, Y., WANG, Y. and ZHOU, Y. (2019b). Tight regret bounds for infinite-armed linear contextual
bandits. arXiv preprint arXiv:1905.01435 .

MODI, A., JIANG, N., TEWARI, A. and SINGH, S. (2020). Sample complexity of reinforcement
learning using linearly combined model ensembles. In International Conference on Artificial
Intelligence and Statistics. PMLR.

PUTERMAN, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

REN, T., LI, J., DAI, B., DU, S. S. and SANGHAVI, S. (2021). Nearly horizon-free offline
reinforcement learning. Advances in neural information processing systems 34.

STREHL, A. L. and LITTMAN, M. L. (2008). An analysis of model-based interval estimation for
Markov decision processes. Journal of Computer and System Sciences 74 1309–1331.

SUN, W., JIANG, N., KRISHNAMURTHY, A., AGARWAL, A. and LANGFORD, J. (2019). Model-
based RL in contextual decision processes: PAC bounds and exponential improvements over
model-free approaches. In Conference on Learning Theory. PMLR.

11



TARBOURIECH, J., ZHOU, R., DU, S. S., PIROTTA, M., VALKO, M. and LAZARIC, A. (2021).
Stochastic shortest path: Minimax, parameter-free and towards horizon-free regret. Advances in
Neural Information Processing Systems 34.

WANG, R., DU, S. S., YANG, L. F. and KAKADE, S. M. (2020). Is long horizon reinforcement
learning more difficult than short horizon reinforcement learning? arXiv preprint arXiv:2005.00527
.

WANG, Y., WANG, R., DU, S. S. and KRISHNAMURTHY, A. (2019). Optimism in reinforcement
learning with generalized linear function approximation. arXiv preprint arXiv:1912.04136 .

WEISZ, G., AMORTILA, P. and SZEPESVÁRI, C. (2020). Exponential lower bounds for planning in
MDPs with linearly-realizable optimal action-value functions. arXiv preprint arXiv:2010.01374 .

YANG, L. and WANG, M. (2019a). Sample-optimal parametric Q-learning using linearly additive
features. In International Conference on Machine Learning.

YANG, L. F. and WANG, M. (2019b). Reinforcement leaning in feature space: Matrix bandit, kernels,
and regret bound. arXiv preprint arXiv:1905.10389 .

ZANETTE, A., BRANDFONBRENER, D., BRUNSKILL, E., PIROTTA, M. and LAZARIC, A. (2020a).
Frequentist regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics.

ZANETTE, A., LAZARIC, A., KOCHENDERFER, M. and BRUNSKILL, E. (2020b). Learning near
optimal policies with low inherent Bellman error. arXiv preprint arXiv:2003.00153 .

ZHANG, W., ZHOU, D. and GU, Q. (2021a). Reward-free model-based reinforcement learning with
linear function approximation. Advances in Neural Information Processing Systems 34.

ZHANG, Z., DU, S. S. and JI, X. (2020). Nearly minimax optimal reward-free reinforcement
learning. arXiv preprint arXiv:2010.05901 .

ZHANG, Z., JI, X. and DU, S. (2021b). Is reinforcement learning more difficult than bandits? a
near-optimal algorithm escaping the curse of horizon. In Conference on Learning Theory. PMLR.

ZHANG, Z., JI, X. and DU, S. S. (2022). Horizon-free reinforcement learning in polynomial time:
the power of stationary policies. arXiv preprint arXiv:2203.12922 .

ZHANG, Z., YANG, J., JI, X. and DU, S. S. (2021c). Improved variance-aware confidence sets for
linear bandits and linear mixture mdp. Advances in Neural Information Processing Systems 34.

ZHANG, Z., ZHOU, Y. and JI, X. (2021d). Model-free reinforcement learning: from clipped
pseudo-regret to sample complexity. In International Conference on Machine Learning. PMLR.

ZHOU, D., GU, Q. and SZEPESVARI, C. (2021a). Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory. PMLR.

ZHOU, D., HE, J. and GU, Q. (2021b). Provably efficient reinforcement learning for discounted
mdps with feature mapping. In International Conference on Machine Learning. PMLR.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Our paper proposes a computational efficient and
horizon-free RL algorithm for linear mixture MDPs.

(b) Did you describe the limitations of your work? [Yes] See Remark 4.2
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

12



(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tions 3.1 and 3.2.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix D and
E.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Related work
	Preliminaries
	Heterogeneous linear bandits
	Episodic reinforcement learning

	Computationally efficient variance-aware linear bandits
	Proof sketch

	Computationally efficient horizon-free RL for linear mixture MDPs
	Conclusion

