
Supplementary Materials for “A Mean-Field Game Approach to
Cloud Resource Management with Function Approximation”

A Technical Lemmas

Lemma 2. (Persistence of excitation, Lemma 2 of [13]). For any λ > 0, the entropy-regularized
natural actor-critic update with averaging satisfies

∥θt∥2 ≤ R/λ,∀t ≥ 0, and pmin = inf
t≥0

min
(s,a)∈S×A

πt(a|s) ≥
exp(−2R/λ)

|A| > 0.

Proof. We prove the first statement by induction. The statement holds for t = 0 due to our initializa-
tion θ0 = 0. Expanding the recursive policy update rule

θt+1 = (1− ηtλ)θt + ηtŵt = (1− ηtλ)θt + ηtλ ·
ŵt
λ
.

Applying the triangle inequality,

∥θt+1∥2 ≤ (1− ηtλ) ∥θt∥2 + ηtλ ∥ŵt/λ∥2 ≤ R/λ,
where the last step holds because of the induction hypothesis, the fact that our gradient estimation
step guarantees ∥ŵt∥2 ≤ R, and that 0 < ηtλ < 1. Invoking the induction completes the proof of
∥θt∥2 ≤ R/λ,∀t ≥ 0.

Further, using the condition that ∥ϕs,a∥2 ≤ 1, the Cauchy-Schwarz inequality implies that
∣∣θ⊤t ϕs,a∣∣ ≤

R/λ,∀(s, a) ∈ S ×A. Under softmax parameterization,

pmin = inf
t≥0

min
(s,a)∈S×A

πt(a|s) ≥
exp(−R/λ)
|A| exp(R/λ) =

exp(−2R/λ)
|A| > 0.

This completes the proof of the lemma.

Lemma 3. Let Qmax = 1+γλ log |A|
1−γ . For any mean-field state µ, the optimal policy π⋆,λµ with respect

to the MDP induced by µ satisfies that

π⋆,λµ (a|s) ≥ 1

|A| exp(Qmax/λ)
,∀(s, a) ∈ S ×A.

Proof. It has been shown [46] that the optimal policy π⋆,λµ can be expressed as a Boltzmann distribu-
tion of the form

π⋆,λµ (a|s) ∝ exp

(
Q⋆,λµ (s, a)

λ

)
,

where Q⋆,λµ (s, a) is the optimal soft Q-function. From the definition of Qπ,λµ and the facts that
r(s, a, µ) ∈ [0, 1] and H(p) ≤ log |A| for any distribution p over A, we can easily see that
Q⋆,λµ (s, a) ≤ Qmax = 1+γλ log |A|

1−γ . Therefore, for any (s, a) ∈ S ×A,

π⋆,λµ (a|s) = exp
(
Q⋆,λµ (s, a)/λ

)
∑
b∈A exp

(
Q⋆,λµ (s, b)/λ

) ≥ 1∑
b∈A exp (Qmax/λ)

=
1

|A| exp(Qmax/λ)
.

Lemma 4. (Lemma 3 of [78]). For any x, y, z ∈ A, if x(a) ≥ α1, y(a) ≥ α1, and z(a) ≥ α2,∀a ∈
A, then

KL(x∥z)− KL(y∥z) ≤
(
1 + log

1

min {α1, α2}

)
· ∥x− y∥1.

17

Lemma 5. Under the same conditions as Lemma 8, it holds that
σπt+1 ≤ Ed⋆t [KL(π⋆t ∥πt+1)] + (1 + C1) · κd0 ∥µt+1 − µt∥1 ,

where κ = 2 log |A|
1−γ + 1+2R(1−γ)

λ(1−γ) .

Proof. From the definition of σπt+1,

σπt+1 = Ed⋆t+1

[
KL(π⋆t+1∥πt+1)

]
≤Ed⋆t+1

[KL(π⋆t ∥πt+1)] +
∣∣∣Ed⋆t+1

[
KL(π⋆t+1∥πt+1)− KL(π⋆t ∥πt+1)

]∣∣∣
=Ed⋆t [KL(π⋆t ∥πt+1)] + (Ed⋆t+1

− Ed⋆t) [KL(π⋆t ∥πt+1)] +
∣∣∣Ed⋆t+1

[
KL(π⋆t+1∥πt+1)− KL(π⋆t ∥πt+1)

]∣∣∣
(4)

In the following, we upper bound each term in (4) separately. We first define pmin
def
=

inft≥0 min(s,a)∈S×A πt(a|s), and apply the persistence of excitation condition from Lemma 2 to
obtain that pmin ≥ exp(−2R/λ)

|A| > 0. To upper bound the second term in (4), we first show that for
any s ∈ S,

KL(π⋆t (·|s)∥πt+1(·|s)) =
∑
a∈A

π⋆t (a|s) log
π⋆t (a|s)
πt+1(a|s)

≤
∑
a∈A

π⋆t (a|s) log
1

pmin
≤ log |A|+ 2R/λ.

If we define KLmax
def
= log |A|+ 2R/λ, we will have that

(Ed⋆t+1
− Ed⋆t) [KL(π⋆t ∥πt+1)] =Es∼d⋆

[
d⋆t+1(s)− d⋆t (s)

d⋆(s)
· KL(π⋆t ∥πt+1)

]
≤KLmax · Es∼d⋆

[∣∣d⋆t+1(s)− d⋆t (s)
∣∣

d⋆(s)

]
≤KLmax · d0 ∥µt+1 − µt∥1 , (5)

where the last step follows from Assumption 1. This gives an upper bound of the second term.

We proceed to upper bound the third term in (4). Let τ = 1
|A| exp

(
− 1+γλ log |A|

λ(1−γ)

)
. From Lemma 3,

we know that
π⋆t (a|s) ≥ τ, and π⋆t+1(a|s) ≥ τ,∀(s, a) ∈ S ×A.

Since both πt(a|s) and π⋆t (a|s) are lower bounded, we can apply the Lipschitzness of KL-divergence
(Lemma 4) and obtain∣∣∣Ed⋆t+1

[
KL(π⋆t+1∥πt+1)− KL(π⋆t ∥πt+1)

]∣∣∣
≤
(
1 + log

1

min{τ, pmin}

)
Es∼d⋆t+1

[∥∥π⋆t (·|s)− π⋆t+1(·|s)
∥∥
1

]
≤κEs∼d⋆

[
d⋆t+1(s)

d⋆(s)
·
∥∥π⋆t (·|s)− π⋆t+1(·|s)

∥∥
1

]
≤κC1D(π⋆t , π

⋆
t+1)

=κC1D(Γλ1 (µt),Γ
λ
1 (µt+1))

≤κC1d0 ∥µt − µt+1∥1 , (6)
where the third inequality is by Assumption 2, the last step is due to Assumption 1, and

κ
def
=
2 log |A|
1− γ +

1 + 2R(1− γ)
λ(1− γ)

≥1 + max

{
log |A|+ 1 + γλ log |A|

λ(1− γ) , log |A|+ 2R/λ

}
≥1 + log

1

min{τ, pmin}
.

This gives an upper bound of the third term in (4). Combining (4), (5), and (6) completes the proof of
the lemma.

18

Lemma 6. Under Assumption 3, it holds for any mean-field states µ, µ′ that∥∥Λλ(µ)− Λλ (µ′)
∥∥
1
≤ (d1d2 + d3) ∥µ− µ′∥1 .

In particular, Λλ is a contraction if d1d2 + d3 < 1.

Proof. By the definition of the composite operator,∥∥Λλ(µ)− Λλ (µ′)
∥∥
1
=
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ

′) , µ′)∥∥
1

≤
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ

′) , µ
)∥∥

1
+
∥∥Γ2

(
Γλ1 (µ

′) , µ
)
− Γ2

(
Γλ1 (µ

′) , µ′)∥∥
1

≤ d2D
(
Γλ1 (µ),Γ

λ
1 (µ

′)
)
+ d3 ∥µ− µ′∥1

≤ (d1d2 + d3) ∥µ− µ′∥1 ,
where the second inequality uses the Lipschitzness of Γ2, and the last inequality is due to the
Lipschitzness of Γλ1 .

Lemma 7. (Lemma 8 of [78]). Suppose that Assumptions 2 and 3 hold with d̄ = 1− d1d2 − d3 > 0,
we then have

∥µt+1 − µ⋆∥1 ≤ (1− βtd̄) ∥µt − µ⋆∥1 + d2C2βt
√
σπt ,∀t ≥ 0.

Proof. For notational convenience, define σµt
def
= ∥µt − µ⋆∥1. Since Algorithm 1 updates the mean-

field state µt in the same way as [78], our σµt also exhibits the same recursive behavior as characterized
in Lemma 8 of [78], and we reproduce the proof here for completeness. Using the update rule of the
mean-field state in Algorithm 1,

∥µt+1 − µ⋆∥1
= ∥(1− βt)µt + βtΓ2(πt, µt)− µ⋆∥1
=
∥∥(1− βt) (µt − µ⋆) + βt

(
Γ2

(
Γλ1 (µt) , µt

)
− µ⋆

)
− βt

(
Γ2

(
Γλ1 (µt) , µt

)
− Γ2 (πt, µt)

)∥∥
1

≤(1− βt) ∥µt − µ⋆∥1 + βt
∥∥Γ2(Γ

λ
1 (µt), µt)− Γ2(Γ

λ
1 (µ

⋆), µ⋆)
∥∥
1

+ βt
∥∥Γ2(Γ

λ
1 (µt), µt)− Γ2(πt, µt)

∥∥
1
,

≤(1− βtd̄) ∥µt − µ⋆∥1 + βtd2D(π⋆t , πt), (7)

where the first inequality uses the fact that Γ2(Γ
λ
1 (µ

⋆), µ⋆) = µ⋆, the second inequality follows from
the Lipschitzness of the operators Λλ (Lemma 6) and Γ2. To further upper bound the second term on
the RHS of (7), we recall the definition that

D(π⋆t , πt) =Es∼d⋆ [∥π⋆t (·|s)− πt(·|s)∥1]

=Es∼d⋆t

[
d⋆(s)

d⋆t (s)
· ∥π⋆t (·|s)− πt(·|s)∥1

]

≤
(
Es∼d⋆t

[∣∣∣∣d⋆(s)d⋆t (s)

∣∣∣∣2
]
· Es∼d⋆t

[
∥π⋆t (·|s)− πt(·|s)∥21

]) 1
2

≤C2

√
Es∼d⋆t [KL(π⋆t (·|s))∥πt(·|s)], (8)

where the last step follows from Assumption 2 and Pinsker’s inequality. Plugging (8) back to (7)
completes the proof.

B Proofs for Section 4

B.1 Proof for Lemma 1

Proof. First, notice that for any fixed (s, a) ∈ S ×A, the log-linear policy log πθ(a|s) is a 1-smooth
function in θ:

∥∇θ log πθ(a|s)−∇θ log πθ′(a|s)∥2 ≤ ∥θ − θ′∥2 ,∀θ, θ′ ∈ Rd.

19

A standard result for an L-smooth function f on Rn is that (e.g., Lemma 3.4 of [11])

f(y) ≥ f(x) +∇f(x)⊤(y − x)− L

2
∥y − x∥22 ,∀x, y ∈ Rn.

We hence obtain that

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))]− Es∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]

≤Es∼d⋆t

[∑
a∈A

π⋆t (a|s) (log πt(a|s)− log πt+1(a|s))
]

≤− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)

]
+
η2t
2
∥gt∥22

=− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
− ηtEd⋆t ◦π⋆

t

[
qπt,λ
µ (s, a)

]
+
η2t
2
∥gt∥22 .

The performance difference lemma in the regularized case (e.g., Lemma 5 of [13]) implies that for
any two policies π and π′, we have that

V π,λµ (ρ)−V π′,λ
µ (ρ) =

1

1− γEs∼dπµ,a∼π(·|s)
[
qπ

′,λ
µ (s, a)− V π′,λ

µ (s)
]
− λ

1− γEs∼dπµ [KL(π(·|s)∥π′(·|s))] .

By letting µ = µt, π
′ = πt and π = π⋆t , we further have that

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))]− Es∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]
≤− ηtEs∼d⋆t ,a∼π⋆

t (·|s)
[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
− ηt(1− γ)

(
V
π⋆
t ,λ

µt (ρ)− V πt,λ
µt

(ρ)
)

− ηtλEs∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]− ηtEs∼d⋆t
[
V πt,λ
µt

(s)
]
+
η2t
2
∥gt∥22

≤− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
− ηtλEs∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]

− ηtEs∼d⋆t
[
V πt,λ
µt

(s)
]
+
η2t
2
∥gt∥22 ,

where the last step uses the fact that π⋆t is the optimal (regularized) policy with respect to µt, and
thus V π

⋆
t ,λ

µt (ρ) ≥ V πt,λ
µt

(ρ). Rearranging the terms completes the proof.

B.2 Recursive Relationship of KL(π⋆t ∥πt)

We define σπt
def
= Es∼d⋆t [KL(π⋆t (·|s))∥πt(·|s)] =

∑
s∈S d

⋆
t (s)

∑
a∈A π

⋆
t (a|s) log π⋆

t (a|s)
πt(a|s) as a mea-

sure of distance between πt and π⋆t . Built upon Assumptions 1 and 2 and the policy improvement
lemma, our next result characterizes the recursive relationship of σπt in terms of the approximation
and statistical errors as well as the evolution of the mean-field. Such a recursion is critical to establish
the convergence of the policy.

Lemma 8. Under Assumptions 1 and 2, it holds that for every iteration t ≥ 0 of Algorithm 1:

σπt+1 ≤ (1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal + 2η2tR

2 + (1 + C1) · κd0 ∥µt+1 − µt∥1 ,

where κ = 2 log |A|
1−γ + 1+2R(1−γ)

λ(1−γ) , and pmin ≥ exp(−2R/λ)
|A| .

Proof. From Lemma 1, we know that

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))] ≤(1− ηtλ)σπt − ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]

− ηtEs∼d⋆t [V πt,λ
µt

(s)] +
1

2
η2t ∥gt∥22 .

In order to show the recursive relationship between σπt and σπt+1, we first need to establish the
relationship between σπt+1 and Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))], which is shown in Lemma 5 of

20

Appendix A. By applying the result of Lemma 5, we obtain that
σπt+1 ≤(1− ηtλ)σπt −ηtEs∼d⋆t ,a∼π⋆

t (·|s)
[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]︸ ︷︷ ︸

1

−ηtEs∼d⋆t [V πt,λ
µt

(s)]︸ ︷︷ ︸
2

+
1

2
η2t ∥gt∥22 + (1 + C1) · κd0 ∥µt+1 − µt∥1 . (9)

In the following, we upper bound each term on the RHS separately. With the compatible function
approximation condition, we have that (see, e.g., [68])

∇θ log πθ(a|s) = ϕs,a −
∑
a′∈A

πθ(a
′|s)ϕs,a′ .

We can hence rewrite 1 as

1 =− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −

∑
a′∈A

πθ(a
′|s)ϕ⊤s,a′gt − qπt,λ

µ (s, a)

)

=− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −

∑
a′∈A

πθ(a
′|s)ϕ⊤s,a′gt −Qπt,λ

µ (s, a) + λθ⊤t ϕs,a

)
+ ληt

∑
s,a

d⋆t (s)π
⋆
t (a|s)

∑
a′∈A

πt(a
′|s)θ⊤t ϕs,a′ ,

where in the last step we used the fact that qπt,λ
µ (s, a) = Qπt,λ

µ (s, a)−λ log πt(a|s) and the expression
of log πt(a|s). Similarly, by using the relation that

V π,λµ (s) = Ea∼π(·|s)[Qπ,λµ (s, a)− λ log π(a|s)],
we can also rewrite 2 as

2 =− ηt
∑
s,a

d⋆t (s)πt(a|s)
(
Qπt,λ
µt

(s, a)− λ log πt(a|s)
)

=− ηt
∑
s,a

d⋆t (s)πt(a|s)
(
Qπt,λ
µt

(s, a)− λθ⊤t ϕs,a
)
− ληt

∑
s,a

d⋆t (s)πt(a|s)
∑
a′∈A

πt(a
′|s)θ⊤t ϕs,a′ .

Since the value of
∑
a′∈A πt(a

′|s)θ⊤t ϕs,a′ is independent of a, we have that∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

∑
a′∈A

πt(a
′|s)θ⊤t ϕs,a′ = 0.

We can hence combine the expressions of 1 and 2 , and deduce that

1 + 2 =− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −

∑
a′∈A

πθ(a
′|s)ϕ⊤s,a′gt −Qπt,λ

µt
(s, a) + λθ⊤t ϕs,a

)
− ηt

∑
s,a

d⋆t (s)πt(a|s)
(
Qπt,λ
µt

(s, a)− λθ⊤t ϕs,a
)

=− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −Qπt,λ

µt
(s, a) + λθ⊤t ϕs,a

)
+ ηt

∑
s,a,a′

d⋆t (s)π
⋆
t (a|s)πθ(a′|s)ϕ⊤s,a′gt

− ηt
∑
s,a

d⋆t (s)πt(a|s)
(
−ϕ⊤s,agt +Qπt,λ

µt
(s, a)− λθ⊤t ϕs,a

)
− ηt

∑
s,a

d⋆t (s)πt(a|s)ϕ⊤s,agt

=− ηt
∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ϕ⊤s,agt −Qπt,λ

µt
(s, a) + λθ⊤t ϕs,a

)
,

where the last step holds because∑
s,a

d⋆t (s)π
⋆
t (a|s)

∑
a′

πt(a
′|s)ϕ⊤s,a′gt −

∑
s,a

d⋆t (s)πt(a|s)ϕ⊤s,agt

=
∑
s

d⋆t (s)

(∑
a

π⋆t (a|s)− 1

)∑
a′

πt(a
′|s)ϕ⊤s,a′gt

=0.

21

Using the update rule that gt = ŵt − λθt, we further have

1 + 2 =− ηt
∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ϕ⊤s,aŵt −Qπt,λ

µt
(s, a)

)
=− ηt

∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ϕ⊤s,aŵt − Ea′∼πt(·|s)

[
ϕ⊤s,a′ŵt −Qπt,λ

µt
(s, a′)

]
−Qπt,λ

µt
(s, a)

)
=− ηt

∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
, (10)

where the second step uses the fact that∑
a

(π⋆t (a|s)− πt(a|s))Ea′∼πt(·|s)
[
ϕ⊤s,a′ŵt −Qπt,λ

µt
(s, a′)

]
= 0,

and the third step is again due to ∇ log πt(a|s) = ϕs,a −
∑
a′∈A πt(a

′|s)ϕs,a′ and the definition of
Aπt,λ
µt

(s, a). We define

Lt(w)
def
= Es∼dπt

µt ,a∼πt(·|s)

[(
w⊤∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)2]
,

and L̂t(w)
def
= Es∼dπt

µt ,a∼πt(·|s)

[(
w⊤∇ log πt(a|s)− Âλt (s, a)

)2]
,

where recall that Âλt (s, a) = Q̂λt (s, a)−Ea∼πt(·|s)[Q̂
λ
t (s, a

′)] is an estimate ofAπt,λ
µt

(s, a) calculated
using the policy evaluation oracle. From Jensen’s inequality,

−
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
≤
∑
s,a

dπt
µt
(s)πt(a|s)

√(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt (s, a)
)2
· d

⋆
t (s)

dπt
µt(s)

· π
⋆
t (a|s)
πt(a|s)

≤ C3

pmin

√
Lt(ŵt), (11)

where the last step uses Assumption 2 and the definition of Lt(w). Recall that the policy evaluation
oracle satisfies

E
[(
q̂λt (s, a)− qπt,λ

µt
(s, a)

)2] ≤ εcritic,∀(s, a) ∈ S ×A,

which immediately implies that

E
[(
Âλt (s, a)−Aπt,λ

µt
(s, a)

)2]
≤ εcritic,∀(s, a) ∈ S ×A.

Let w⋆t = argminw∈Rd Lt(w). From the simple fact that (x+ y)2 ≤ 2x2 + 2y2, we have

L̂t(w
⋆
t) =Es∼dπt

µt ,a∼πt(·|s)

[(
(w⋆t)

⊤∇ log πt(a|s)−Aπt,λ
µt

(s, a) +Aπt,λ
µt

(s, a)− Âλt (s, a)
)2]

≤2Lt(w⋆t) + 2εcritic.

A similar argument shows that

Lt(ŵt) ≤ 2L̂t(ŵt) + 2εcritic.

Further, the gradient estimation oracle (3) guarantees that L̂t(ŵt) −minw L̂t(w) ≤ εactor, and we
hence obtain

Lt(ŵt) ≤2L̂t(ŵt) + 2εcritic ≤ 2min
w
L̂t(w) + 2εactor + 2εcritic

≤2L̂t(w⋆t) + 2εactor + 2εcritic ≤ 4Lt(w
⋆
t) + 2εactor + 6εcritic

≤4εapprox + 2εactor + 6εcritic,

22

where the last step follows from the definition of εapprox. Plugging the above inequality back to (11),
and using the fact that εtotal = εapprox + εactor + εcritic, we obtain that

−
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
≤ 3C3

pmin

√
εtotal. (12)

Similarly, we can also get∑
s,a

d⋆t (s)πt(a|s)
(
w⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
≤ 3C3

√
εtotal. (13)

Substituting (10), (12), and (13) back to (9), we obtain that

σπt+1 ≤(1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal +

1

2
η2t ∥gt∥22 + (1 + C1) · κd0 ∥µt+1 − µt∥1

≤(1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal + 2η2tR

2 + (1 + C1) · κd0 ∥µt+1 − µt∥1 ,

where the second step holds because ∥gt∥2 ≤ ∥wt∥2 + λ ∥θt∥2 ≤ 2R due to Lemma 2..

B.3 Proof for Theorem 1

Proof. First, we know from Lemma 8 that

σπt+1 ≤ (1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal + 2η2tR

2 + (1 + C1) · κd0 ∥µt+1 − µt∥1 , (14)

where κ = 2 log |A|
1−γ + 1+2R(1−γ)

λ(1−γ) , and pmin ≥ exp(−2R/λ)
|A| . Using the mean-field state update rule

that µt+1 = (1− βt)µt + βtΓ2(πt, µt), we have that

∥µt+1 − µt∥1 = βt ∥µt − Γ2(πt, µt)∥1 ≤ 2βt.

Substituting the above equation back to (14) and rearranging,

σt ≤
1

ηtλ
(σt − σt+1) +

3C3

λ
(1 +

1

pmin
)
√
εtotal +

2ηtR
2

λ
+

2(1 + C1) · κd0βt
ηtλ

Let ηt = η = O(T−2/5)/λ, βt = β = O(T−4/5). Summing over t = 0, 1, . . . , T − 1 leads to

1

T

T−1∑
t=0

σπt ≤
σ0
Tηλ

+
3C3

λ
(1 +

1

pmin
)
√
εtotal +

2ηR2

λ
+

2(1 + C1) · κd0β
ηλ

≤Õ
(

1

λ2T 2/5
+
|A| exp (1/λ)

λ

√
εtotal

)
. (15)

We can then apply the Cauchy-Schwarz inequality and Pinsker’s inequality to obtain that

1

T

T−1∑
t=0

D(πt, π
⋆
t) =Eτ [D(πτ , π

⋆
τ)]

=EτEs∼d⋆τ

[
d⋆(s)

d⋆τ (s)
· ∥π⋆τ (·|s)− πτ (·|s)∥1

]

≤

√√√√EτEs∼d⋆t

[∣∣∣∣d⋆d⋆τ
∣∣∣∣2
]
· EτEs∼d⋆τ

[
∥π⋆τ (·|s)− πτ (·|s)∥21

]
≤C2

√
EτEs∼d⋆t [2KL (π⋆τ (·|s)∥πτ (·|s))]

≤Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ

 ,

23

where the last step follows from (15). This characterizes the convergence of the policy πt. In
the following, we follow a similar analysis as in [78] and analyze the convergence behavior of the
mean-field state µt. From Lemma 7, we know that

∥µt+1 − µ⋆∥1 ≤ (1− βtd̄) ∥µt − µ⋆∥1 + d2C2βt
√
σπt ,∀t ≥ 0.

Rearranging and using the definition that σµt = ∥µt − µ⋆∥1, we have

σµt ≤
1

βtd̄
(σµt − σµt+1) +

d2C2

d̄

√
σπt .

With βt = β = O(T−4/5), we sum over t = 0, 1, . . . , T − 1 and obtain

1

T

T−1∑
t=0

σµt ≤
1

Tβd̄
(σµ0 − σµT) +

d2C2

T d̄

T−1∑
t=0

√
σπt

≤ σµ0
Tβd̄

+
d2C2

d̄

√√√√ 1

T

T−1∑
t=0

σπt

≤Õ
(

1

T 1/5
+

√
1

λ2T 2/5
+
|A| exp (1/λ)

λ

√
εtotal

)
(16)

≤Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ

 , (17)

where the second step uses the Cauchy-Schwarz inequality, and the third step follows from (15).
Finally, using the triangle inequality,

D(πt, π
⋆) ≤D(πt, π

⋆
t) +D(π⋆t , π

⋆)

=D(πt, π
⋆
t) +D(Γλ1 (µt),Γ

λ
1 (µ

⋆))

≤D(πt, π
⋆
t) + d1 ∥µt − µ⋆∥1 , (18)

where the last step holds due to Assumption 3. Combining (14), (15), and (17),

D

(
π⋆,

1

T

T−1∑
t=0

πt

)
+

∥∥∥∥∥µ⋆ − 1

T

T−1∑
t=0

µt

∥∥∥∥∥
1

≤ 1

T

T−1∑
t=0

D (π⋆, πt) +
1

T

T−1∑
t=0

∥µ⋆ − µt∥1

≤ 1

T

T−1∑
t=0

(D (πt, π
⋆
t) + d1 ∥µt − µ⋆∥1) +

1

T

T−1∑
t=0

∥µ⋆ − µt∥1

≤Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ

 .

This completes the proof of the theorem.

C Instantiation of the Oracles

Section 3 assumes access to two black-box oracles that can return relatively accurate evaluations of a
policy and estimations of the policy gradient. In this appendix, following the sample-based approach
in [13], we discuss possible ways that the two oracles can be instantiated using standard techniques.

We start with the policy evaluation oracle, which provides an εcritic-accurate estimate q̂ of the shifted
Q-function qπ given a policy π. One viable approach is to instantiate such a critic oracle using
temporal difference (TD) learning with linear function approximation [10, 71], a simple and widely
used iterative method for policy evaluation. Specifically, we consider the case where the shifted
Q-function is approximated as qπ(s, a) = ψ⊤ϕs,a, where ϕs,a ∈ Rd is the d-dimensional feature
vector, and ψ ∈ Rd is the parameter vector to be optimized. The optimal ψ should minimize the
mean-squared projected Bellman error. A formal description of the projected TD(0) algorithm is

24

Algorithm 2: Projected Temporal Difference Learning with Linear Function Approximation
1 Input: Policy π to be evaluated;
2 Initialize ψ0 ← 0;
3 for iteration k ← 0 to K − 1 do
4 Execute policy π to collect sample (sk, ak, rk, sk+1, ak+1);
5 ψ̃k+1 ← ψk + αk

(
rk − λ log π(ak|sk) + γψ⊤

k ϕsk+1,ak+1
− ψ⊤

k ϕsk,ak
)
ϕsk,ak ;

6 ψk+1 ← argminψ∈Rd,∥ψ∥2≤B ∥ψ − ψ̃k+1∥22;

7 Output: q̂(s, a) = 1
K

∑K−1
k=0 ϕ⊤s,aψk.

Algorithm 3: Stochastic Gradient Descent for Gradient Estimation
1 Input: Shifted Q-function estimates q̂ from Algorithm 2;
2 Initialize w̄0 ← 0;
3 for iteration k ← 0 to K − 1 do
4 Sample sk ∼ dπ and ak ∼ π(·|sk) using a sampler;

5 w̄k+1 ← w̄k − 2ᾱk

(
w̄⊤
k ∇ log π(ak|sk)− Â(sk, ak)

)
∇ log π(ak|sk);

6 w̄k+1 ← argminw∈Rd:∥w∥2≤R ∥w − w̄k+1∥22;

7 Output: ŵ = 1
K

∑K−1
k=0 w̄k.

presented in Algorithm 2. It starts with an initial ψ0 parameter. At each iteration k, it executes
the given policy π, and observe a sample Ok = (sk, ak, rk, sk+1, ak+1) of the current state and
action, the current reward, and the next state and action. The algorithm then takes a step in the
direction along the negative gradient of the squared Bellman error induced by the sample Ok. In the
entropy-regularized case, it can be shown [13] that the negative gradient is expressed as

gk =
(
rk − λ log π(ak|sk) + γψ⊤ϕsk+1,ak+1

− ψ⊤ϕsk,ak
)
ϕsk,ak .

The algorithm further projects the parameter ψ back to a Euclidean ball of radius B to ensure that the
gradient norms are uniformly bounded over time. Finally, Algorithm 2 outputs an estimate of the
shifted Q-function using the averaged iterate of the parameter.

Under proper assumptions (realizability and uniform mixing of the induced Markov chain, see [10]
for an extensive discussion), the finite-time convergence of projected TD learning with linear function
approximation is characterized in the following proposition.
Proposition 1. (Theorem 3 of [10]). Under certain regularity assumptions, Algorithm 2 with a
decaying step size αk = 1

ω(k+1)(1−γ) ensures that

E
[
∥q̂ − qπ∥2dπ×π

]
≤ Õ

(
τmix(αK)

K(1− γ)2ω

)
,

where τmix(ε) is the ε-mixing time of the induced Markov chain, and ω is the smallest eigenvalue of
the steady-state feature covariance matrix

∑
s,a d

π(s)π(a|s)ϕs,aϕ⊤s,a.

Therefore, in order to obtain an εcritic-accurate estimate of the shifted Q-function in expectation, it
suffices to run Algorithm 2 for Õ(1/ε2critic) iterations.

Next, we instantiate the gradient estimation oracle in Algorithm 1, which provides an εactor-accurate
estimate ŵ of the gradient w, given a policy π and an estimated value function Â. Since (3) solves
a standard convex optimization problem, we can simply use a stochastic gradient descent (SGD)
method for the actor update, which is formally described in Algorithm 3. Specifically, we first
initialize the gradient estimate as w̄0 = 0. At each iteration k, Algorithm 3 takes a step along the
opposite direction of the gradient of loss function. The gradient is given by

ḡk = 2
(
w̄⊤
k ∇ log π(ak|sk)− Â(sk, ak)

)
∇ log π(ak|sk),

where (sk, ak) is drawn from the distribution dπ × π (for simplicity of notations dropped the
dependence on the population distribution) using a sampler (e.g., [2]), and Â is calculated from q̂

25

provided by the critic. The algorithm finally averages w̄k over the iterations as the output. A standard
result shows that Algorithm 3 with a learning step size of ᾱk = R

Qmax

√
K

finds the optimum at a rate

of O(1/
√
K), where recall that Qmax = 1+γλ log |A|

1−γ :

Proposition 2. (Combining Theorem 14.8 and Lemma 14.9 of [62]). Let f : Rd → R be a convex
function, and let x⋆ = argminx∈Rd:∥x∥2≤R f(x). Assume that the gradient norm at each step is
bounded by ρ > 0 with probability 1. Suppose the (projected) stochastic gradient descent algorithm
is run for K iterations with the learning step size ᾱk = R

ρ
√
K

. Then,

E

[
f

(
1

K

K∑
k=1

xk

)]
− f (x∗) ≤ Bρ√

K
.

The above result immediately implies that, in order to obtain an εactor-accurate gradient estimation in
expectation, it suffices to run Algorithm 3 for O(1/ε2actor) iterations.

D Simulations Setup

In Subsection 5.1, we adopt two classic mean-field game tasks from the literature, including an SIS
epidemics model [16, 38], and a linear-quadratic MFG [49, 38, 12, 45]. Simulations are done in an
episodic setting. In our implementation, we use the collected empirical trajectory to estimate the
policy gradient and the Fisher information matrix (instead of formally calculating the state visitation
distribution), which turns out to serve as accurate estimates of the true values. The mean-field states
are not directly observed by the learning agent, but instead only influence the environment implicitly
as a parameter of the transition and reward functions.

SIS Epidemics Model. The SIS task describes a toy mean-field game model for epidemics. In our
simulations, we consider the same setting as has been proposed in [16]. This task has two states:
susceptible (S) and infected (I). At each time step, each agent may choose between two actions:
social distancing (D) or going out (U). A susceptible agent will not get infected if it practices social
distancing, i.e., P (st+1 = I | st = S, at = D,µt) = 0. When a susceptible agent chooses to
go out, it has a higher probability of becoming infected if a larger proportion of the population
is infected. Specifically, the state transition is given by P (st+1 = I | St = S,At = U, µt) =
0.92 · µt(I), where µt(I) denotes the ratio of the population that is infected at time step t. An
infected agent has a constant probability of recovery at each step, regardless of its choice of action,
i.e., P (st+1 = S | St = I, At = U, µt) = P (st+1 = S | St = I, At = D,µt) = 0.3. For
each individual agent, both practicing social distancing and being in the infected state have an
associated cost, regardless of the rest of the population. Specifically, the reward function is given
by r(s, a, µ) = −1{s = I} − 0.5 · 1{a = D}, where 1{·} is the indicator function. It is worth
remarking that even though this task has only two states, the transitions are also influenced by
the population distribution, which is a real-valued quantity that makes this task significantly more
challenging than a simple tabular MDP.

Linear-Quadratic MFG. The second task we consider is a 1D linear-quadratic mean-field game. We
adopt the same discrete setting as has been utilized in [49, 38], which is in turn an approximation
of the classic linear-quadratic MFG formulations [12, 45]. For each individual agent, the transition
function of this task is given by:

st+1 = st + at∆t + σεt
√
∆t,

where ∆t is the time duration, and εt is the i.i.d noise taking values from {−3, . . . , 3} approximately
following a normal distribution N (0, 1). Let µ̄t denote the empirical average of the population states
at time step t. The reward function for each agent is then specified as:

r(st, at, µt) =

(
−1

2
|at|2 + qat(µ̄t − st)−

κ

2
|µ̄t − st|2

)
∆t.

Intuitively, this reward function incentivizes agents to track and stay close to the mean state of the
population (despite the random drift εt), but discourages agents from taking large-magnitude actions.
We set the parameters as ∆t = 1, σ = 1, q = 0.01, κ = 0.5, and |S| = 25. We do not consider
terminal costs in our simulations.

26

Exploitability. We utilize the standard notion of exploitability [84, 49, 16] to measure the sub-
optimality of the algorithm. Specifically, the exploitability of a policy π is defined as

E(π) = max
π⋆

V π
⋆,λ

µπ
(ρ)− V π,λµπ

(ρ),

where µπ is the mean-field distribution generated by following the policy π, and recall that ρ is the
initial state distribution. Intuitively, a higher degree of exploitability suggests that an individual agent
can be much better off by deviating from the given policy. On the other hand, an exploitability of 0
suggests that the policy π and its induced mean-field distribution constitute a Nash equilibrium of the
mean-field game.

Hyperparameter Configuration. In the task of SIS, we set βt = 0.01 for NAC, and ηt = 0.05 for
both NAC and DL-NAC. This corroborates our theoretical findings in Algorithm 1 that the policy
should evolve at a faster rate than the mean-field estimate. The learning rate of the critic is set to 0.001
for both algorithms. In the task of LQ, we choose βt = 0.05 for NAC, and ηt = 0.1, and a critic
learning rate of 0.001 for both NAC and DL-NAC. We use dynamic programming and the model
information to calculate the exploitabilities of the policies exactly, but our algorithms do not have
access to these values as they reveal information about the underlying environment. All simulation
results are averaged over 10 runs.

“Zigzags” for Fixed-Point Iterations. The “zigzag” fluctuations of DL-NAC in Figures 1 and 2 are
due to the fact that double-loop methods update the mean-field abruptly: In each “segment” of the
zigzag plot, DL-NAC fixes the population distribution and learns an approximately optimal policy
with respect to it. At the end of the segment, DL-NAC abruptly updates the mean-field estimate
by applying one step of the mean-field dynamics operator Γ2 under the learned policy. Such an
abrupt change in the environment dynamics nullifies the policies learned from the past, and the
algorithm needs to learn a new policy from scratch. This accounts for the sharp spikes in the plots of
DL-NAC. Similar patterns have also been observed in the literature [16] for other fixed-point iteration
methods. Our online method hence enjoys a more smooth learning behavior than standard fixed-point
iteration. It is also worth remarking that the seemingly converging behavior of DL-NAC on each
zigzag segment does not imply its convergence to NE, because DL-NAC fixes the mean-field estimate
for each segment and does not let it get closer to the equilibrium mean-field state. In fact, even if we
run each segment of DL-NAC for a sufficiently long time, there will still be a non-zero exploitability
gap due to the inherent error of the mean-field estimate.

E Serverless FaaS Platform Setup

OpenWhisk Cluster Setup. A serverless Function-as-a-Service (FaaS) platform runs functions
in response to invocations (i.e., function requests) from end-users or clients. Since all serverless
platforms have similar master-worker architectures, we choose to use an production-grade open-
source serverless platform, OpenWhisk [22], and deploy a distributed OpenWhisk cluster on IBM
Cloud with 22 VMs in us-south-2. OpenWhisk manages the infrastructure, servers and scaling using
Docker containers. Figure 4 shows the architecture of a distributed OpenWhisk cluster and how RL
agents work with the OpenWhisk cluster to manage resources of each function. The OpenWhisk
cluster that we deploy consists of one master node and 21 worker nodes. The master node runs the
API gateway (labeled as 1), FaaS controller (2), data store (3), and other management modules.
Each of the worker nodes (labeled as 4) runs the function containers. All nodes have 8 cores and
16-32GB RAM, running Ubuntu 20.04 LTS. There is no interference from external jobs. We run
the workload generator [60] and the RL agents from two separate nodes in the same cluster and use
FaaSProfiler [60] to trace requests to measure function latencies.

Serverless Function Workflow. The FaaS controller creates function containers, allocates CPU
and RAM for each function container, and assigns the containers to worker nodes. When end-user
requests arrive via the API gateway, the controller distributes the requests to worker nodes. If the
function code exists on the worker node, the worker node will execute the function after it receives a
request and the execution results are written to the data store; otherwise, the worker node will first
pull function code from the data store before function execution. A container is evicted after an idle
timeout of 10 minutes (the default value set in OpenWhisk).

27

Serverless Workloads. We select diverse function benchmarks from widely used open-source FaaS
benchmark suites [15, 60, 83]4. These benchmarks include web applications (HTML-Gen, Uploader),
machine learning model serving (Sentiment-Analysis,Image-Inference), multimedia appli-
cations (Image-Resize, Compression), scientific functions (Primes, PageRank, Graph-BFT,
Graph-MST), and utility functions (Base64, Markdown2HTML). The basic description of each func-
tion benchmark is listed here:

i. Base64: Encode and decode an input string with the Base64 algorithm.
ii. Primes: Find the list of prime numbers less than 107.

iii. Markdown2HTML: Render a Base64 uploaded text string as HTML.
iv. Sentiment-Analysis: Generate a sentiment analysis score for the input text.
v. Image-Resize: Resize the input Base64-coded image with new sizes.

vi. HTML-Gen: Generate HTML files randomly from templates.
vii. Uploader: Upload a file from a given URL to Cloud storage.

viii. Compression: Compress given images and upload to Cloud storage.
ix. Image-Inference: Image recognition on a given image with a pre-trained ResNet-50 model.
x. Page-Rank: Calculates the Google PageRank for a specified graph.

xi. Graph-BFT: Traverse the given graph with breath-first search.
xii. Graph-MST: Generate the minimum spanning tree given a graph.

These function benchmarks have different runtime behaviors and resource demands in terms of CPU,
memory, and I/O utilization. For example, Image-Resize and Image-Inference are computation-
intensive functions; Base64 and Markdown2HTML are memory-intensive functions; Uploader and
Compression are I/O-bound functions; Page-Rank and Graph-BFT/MST are data-intensive func-
tions (cpu- and memory-intensive). The functions are written in either Python or Java. Function-
latency-based QoS objectives are defined on a per-function basis. In our experiments, we follow the
common practice and use the 99th percentile latency when running in isolation on the serverless
platform with 15% relaxation as the QoS latency. To drive the benchmarks, we sample and replay the
function invocations from Azure function traces [61]5.

NAC Implementation. In the implementation of NAC-Linear and NAC-NN, due to the complexity
of computing the Fisher information matrix in a large-scale environment, we use a standard gradient
descent method with adaptive KL divergence penalty to approximate the policy update step, which
leads to a similar procedure as the Proximal Policy Optimization algorithm [59]. We set the learning
rate for both the actor and the critic networks to 3×10−4. The discount factor is set to 0.99. NAC-NN
has one hidden layer that consists of 64 hidden units. We set the mini-batch size and number of SGD
epochs to be both 5. The reward coefficient α is set to 0.3, which results in the highest reward after
convergence in our sensitivity study.

Comparison Baselines. We compare our approach with a heuristics-based approach ENSURE [67]
and OpenWhisk’s original resource manager. ENSURE allocates R+ c

√
R containers to a function

with function request arrival rate R, scales the resources within a worker node based on a latency
degradation threshold, and scales the number of worker nodes based on a memory capacity threshold.
OpenWhisk sets CPU shares for each container proportional to its requested memory capacity and
tries to place as many containers as possible on the same worker node to maximize the utilization.
We do not include the comparison results with single-agent RL algorithms proposed for resource
management (e.g., FIRM [51], MIRAS [81], and FaaSRank [82]) because these solutions are proposed
under different assumptions from ours and it is hardly possible to make fair comparisons. Specially,
single-agent RL solutions typically assume that the agent is in an isolated environment where there is
only the application that the agent manages, but do not address the competitions for shared resources
in a cluster. In fact, recent works [53, 52] have shown that applying single-agent RL algorithms to the
multi-agent domain leads to severe performance degradation due to the environment’s non-stationarity,
which makes the single-agent solution even worse than the heuristics-based baseline that we choose.

4The benchmark FaaSProfiler uses MIT License; [15] uses BSD 3-Clause License; [83] uses Mulan Permis-
sive Software License.

5The dataset [61] uses the Creative602 Commons Attribution 4.0 International Public License

28

