
A Another Solution to Tasks II and I

This section introduces an alternative method for solving tasks II and I. The proposed method is
simpler and more intuitive than KCE and KCD, but does not have the same theoretical guarantees.
Still, its empirical performance in the datasets we investigated is better than directly applying existing
methods. We present it here as a candidate alternative for solving tasks I and II.

A.1 Another Solution to Task II

We start by fitting one function f̂ using all the data {(xt, yt), t = 1, 2, · · · , n}. For simplicity, we
restrict our attention to Nadaraya-Watson estimator (3). When the null is true, all observations are
i.i.d. samples from the same distribution. Under some mild conditions, we expect f̂ to be close to
the truth, and thus the residual yt � f̂(xt) distribution should be close to F 0

✏ . However, when the
alternative is true, one might expect that the fitted function f̂ is a mix of f0 and f1, and thus the
residual ✏̂t = yt � f̂(xt) will exhibit some relevant pattern. This intuition is demonstrated in the
left two panels of Figure 3, where we plot the residuals ✏̂t against t and observe that before change
point (⌧⇤ = 500), ✏̂t’s roughly follow the same distribution, while after change point, ✏̂t’s follow a
different distribution. This observation is confirmed by the following theorem; we denote F� to be
the probability distribution such that f1(X)� f0(X) ⇠ F� with X ⇠ FX .
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Figure 3: Plot of residuals ✏̂t = yt� f̂(xt) against t, where f̂ is the Nadaraya-Watson estimator fitted
using all the observations {(xt, yt), t = 1, 2, · · · , n}. In all three panels we have FX = N(0, 1),
f0(x) = x, n = 1000, ⇢⇤ = 0.5, F 0

✏ = F 1
✏ = N(0, 1). In the left panel f1(x) = x2, in the middle

f1(x) = cos(x), and in the right f1(x) = 10x.

Theorem A.1 (Pointwise asymptotic distribution of ✏̂t). Under the same assumptions as in Theorem

5.1, we have

(1) Under the null, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢1], as n ! 1,

✏̂t
d
�! F 0

✏ .

(2) Under the alternative, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢⇤], as n ! 1,

✏̂t
d
�! (⇢⇤ � 1)Z + ✏, where Z ⇠ F�, ✏ ⇠ F 0

✏ .

And for any t = dn⇢e with ⇢ 2 (⇢⇤, ⇢1], as n ! 1,

✏̂t
d
�! ⇢⇤Z + ✏0, where Z ⇠ F�, ✏0 ⇠ F 1

✏ .

Proof. See Section D.3.

Theorem A.1 shows that asymptotically, the residuals are distributed as (⇢⇤ � 1)Z + ✏ before change
point, and ⇢⇤Z + ✏0 after change point. The implication is that if (unfortunately)

(⇢⇤ � 1)Z + ✏ ⇠ ⇢⇤Z + ✏0, (15)
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the distribution of residual ✏̂t’s will be identical across t, and we do not expect any pattern among the
residual ✏̂t’s (see the right panel in Figure 3). In this case, it would be impossible to solve the change
point problem merely based on the residuals. One example where Equation (15) holds is

F 0
✏ = F 1

✏ , ⇢⇤ = 1/2, Z ⇠ �Z, i.e., F� is a symmetric distribution.

When Equation (15) does not hold, roughly speaking, the univariate sequence {✏̂t}Tt=1 will exhibit an
abrupt change point at ⌧⇤ in terms of the distribution of ✏̂t’s. This immediately suggests the potential
applicability of existing literature on univariate, abrupt change point problems. Performance of the
final estimator inevitably depends on the subsequent procedure that is used. Here we provide an
analysis where a simple CUSUM procedure [35] is applied, i.e., the estimator used for detection is

D✏ = max
dn⇢0etdn⇢1e

t(n� t)

n
T✏(t), where T✏(t) =

 
1

t

tX

i=1

✏̂i �
1

n� t

nX

i=t+1

✏̂i

!2

. (16)

The estimator for change point is defined as

⌧̂ = argmax
dn⇢0etdn⇢1e

t(n� t)

n
T✏(t), (17)

where (⇢0, ⇢1) satisfies 0 < ⇢0  ⇢⇤  ⇢1 < 1 and is set a priori to avoid arbitrarily small intervals
near the boundary. Denote n0 = dn⇢0e, n1 = dn⇢1e. The complete procedure for solving Task II
using this estimator is called KCE (Residual Kernel-based change point analysis for Conditional
Expectations) and is summarized in Algorithm 3.

Algorithm 3 RKCE.

input: observations {(xt, yt), t = 1, 2, · · · , n}, significance level ↵, parameters n0, n1.
output: estimated change point location ⌧̂ . . ⌧̂ = n implies no significant change point.
computation:

fit function f̂ using all observations.
calculate residuals ✏̂t = yt � f̂(xt), t = 1, 2, · · · , n.

detection & localization:
Calculate D✏ using Equation (16).
if D✏ > c where c is the threshold (determined by permutations or bootstrap):

return ⌧̂ using Equation (17).
else:

return ⌧̂ = n.

We note that when using Algorithm 3, we are essentially using the method in [33] with Euclidean
distances, and we are investigating changes in E[✏̂t] only. With Theorem A.1, this implies that as long
as

E[f0(X)] = E[f1(X)], i.e., EY1 = EY2 = · · ·EYn,

Algorithm 3 will fail. It is interesting to compare Algorithm 3 against two baseline methods:

• DY , which uses for detection

DY = max
n0tn1

t(n� t)

n
TY (t), where

TY (t) =

 
1

t

tX

i=1

yi �
1

n� t

nX

i=t+1

yi

!2

,

and for localization
⌧̂ = argmaxn0tn1

t(n� t)

n
TY (t).

Notice DY also looks at changes in EYt only, but without the extra burden of doing any
function fitting. It is intriguing to understand when (and why) Algorithm 3 might be better
than this baseline method. It turns out that Algorithm 3 and this baseline method have the
same signal strength, yet differ in terms of noise level. As long as

Cov(f0(X), f1(X)) � 0,
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Algorithm 3 filters out noise in raw yt’s, and thus will be more powerful and accurate.
Intuitively, this is because when f0(X) and f1(X) are positively correlated, fitting a function
f̂ helps remove their “common” part and focus on their difference, which is kept in ✏̂t. When
f0(X) and f1(X) are negatively correlated, depending on the correlation coefficient and
change point location ⇢⇤, it might be either Algorithm 3 or this baseline method that work
better.

• DXY , which uses for detection

DXY = max
n0tn1

t(n� t)

n
TXY (t), where

TXY (t) =

�����
1

t

tX

i=1

zi �
1

n� t

nX

i=t+1

zi

�����

2

2

,

with zt = (x0

t, yt)
0 and we assume X ⇢ Rp. For localization, we use

⌧̂ = argmaxn0tn1

t(n� t)

n
TXY (t).

The difference to DY is that DXY treats (xt, yt) as a whole. So DXY searches for changes
in both EYt and EXt, and we expect the signal strength to be the same as D✏. However,
what differs (again) is the noise level. We expect DXY to be more variable than D✏, which
implies that the localization error of DXY might be larger than that of D✏.

Empirical studies support our intuition for the comparison between D✏, DXY , DY . Moreover, in
empirical studies, we find that the seemingly simple Algorithm 3 is surprisingly powerful and accurate
for many settings. However, as discussed, there are cases where it fails. So in general we recommend
using KCE instead of RKCE for solving task II.

A.2 Another Solution to Task I

Notice that the residual-based statistic T✏(t) defined in (16) can be equivalently written as

T✏(t) =

 
1

t

tX

i=1

(yi � f̂(xi))�
1

n� t

nX

i=t+1

(yi � f̂(xi))

!2

.

Plugging the Nadaraya-Watson estimator (3) into the above expression, expanding the squared form
and re-organizing it, we obtain

T✏(t) =
1

t2

tX

i,j=1

w(t, i, xi)w(t, j, xj)yiyj +
1

(n� t)2

nX

i,j=t+1

w(t, i, xi)w(t, j, xj)yiyj

�
2

t(n� t)

tX

i=1

nX

j=t+1

w(t, i, xi)w(t, j, xj)yiyj (18)

where we denote for simplicity kX
�
h�1
X d(xi, xj)

�
= kX(i, j), and

w(t, i, xi) =

8
<

:

1/(n�t)
Pn

j=t+1 kX(i,j)

(1/n)
Pn

j=1 kX(i,j) , if i  t,
(1/t)

Pt
j=1 kX(i,j)

(1/n)
Pn

j=1 kX(i,j) , if i > t.
(19)

By replacing the inner product yiyj by kernels kY (yi, yj), it is easy to generalize Equation (18) to

T✏(t) =
1

t2

tX

i,j=1

w(t, i, xi)w(t, j, xj)kY (yi, yj) +
1

(n� t)2

nX

i,j=t+1

w(t, i, xi)w(t, j, xj)kY (yi, yj)

�
2

t(n� t)

tX

i=1

nX

j=t+1

w(t, i, xi)w(t, j, xj)kY (yi, yj), (20)
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where w(t, i, xi) is defined in Equation (19). Using (20), we can solve task I and the complete
procedure is summarized in Algorithm 4. By choosing kY as universal kernels, analogous to Task
II which is essentially looking for changes over EY , under appropriate conditions, Algorithm 3
will be analyzing changes in the whole distribution of Y . For instance, if choosing Gaussian kernel
kY (y, y0) = exp{�(y � y0)2/h2

Y } for Y = R and some fixed bandwidth h > 0, we are looking at
changes in any of {EY l, l = 1, 2, · · · }, which, under appropriate conditions, is equivalent to changes
in distribution of Y . Algorithm (4) is named RKCD (Residual Kernel-based change point analysis
for Conditional Distributions).

Algorithm 4 RKCD.

input: observations {(xt, yt), t = 1, 2, · · · , n}, significance level ↵, parameters n0, n1.
output: estimated change point location ⌧̂ . . ⌧̂ = n implies no significant change point.
pre-compute:
1. KX = [kX(h�1

X d(xi, xj))]ni,j=1 2 Rn⇥n, KY = [kY (yi, yj)]ni,j=1 2 Rn⇥n.
2. A 2 Rn⇥n where Aij =

Pi
l=1

Pj
m=1[KX ]lm.

for t = n0, n0 + 1, · · · , n1 do

calculate w 2 Rn with

wi =

(
n

n�t
Bin�Bit

Bin
, if i  t,

n
t

Bit
Bin

, if i > t.

calculate Q 2 Rn⇥n with Qij = wiwj [KY ]ij .
calculate T✏ =

1
t2
Pt

i,j=1 Qij +
1

(n�t)2
Pn

i,j=t+1 Qij �
2

t(n�t)

Pt
i=1

Pn
j=t+1 Qij .

end for

detection: obtain p-value for maxn0tn1 [t(n� t)/n]T✏ using permutations or bootstrap.
localization: if p-value < ↵, estimate ⌧̂ = argmaxn0tn1 [t(n� t)/n]T✏; else, estimate ⌧̂ = n.

B More Related Work

This section discusses the relationship between this work and the literature on kernel embeddings
of conditional distributions [36, 41]. Recall that Remark 5.4 established the connection between �
defined in (13) and the maximal conditional mean discrepancy (MCMD) in [36]. A by-product of
this work is that, similarly to the derivation of (12), we can obtain a new estimate for the MCMD.

Denote F 0
Y |X=x, F

1
Y |X=x two probability distributions whose MCMD we aim to estimate. Let

xi, yi, i = 1, 2, · · · ,m be a sample drawn from F 0
Y |X=x and x0

i, y
0

i, i = 1, 2, · · · , n from F 1
Y |X=x.

Then we can estimate the squared MCMD between F 0
Y |X=x, F

1
Y |X=x as

mX

i,j=1

w0(i)w0(j)kY (yi, yj) +
nX

i,j=1

w1(i)w1(j)kY (y
0

i, y
0

j)� 2
mX

i=1

nX

j=1

w0(i)w1(j)kY (yi, y
0

j),

(21)
where 8

><

>:

w0(i) =
kX(h�1

X d(xi,x))
Pm

r=1 kX(h�1
X d(xr,x))

,

w1(i) =
kX(h�1

X d(x0
i,x))Pn

r=1 kX(h�1
X d(x0

r,x))
.

(22)

Comparing (21) with the empirical estimator proposed in [36], we notice that (21) has the following
advantages: (i) it is computationally cheaper, with a O((m+ n)2) time complexity rather than the
O((m + n)3) for the estimator in [36]; (ii) it directly estimates MCMD and does not involve any
surrogate loss as in [36], which could bring additional errors.

The conditional maximum mean discrepancy (CMMD) ([41]) is another measure for the discrepancy
between two conditional distributions. However, as discussed in [36], CMMD often either does not
exist or is not an exact measure of discrepancy at the population level.

We also note that MCMD and CMMD can both be viewed as generalizations of the MMD [17] which
is designed for testing the difference of two unconditional distributions.
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C Additional Theoretical Results

This section presents theory related to Task II, i.e, Y ⇢ R,X ⇢ Rp, E[yt | xt] changes, and �̃t is
defined in Equation (6). First, let us discuss some notations and assumptions.
Assumption 6. The set X is a bounded subset of Rq

.

Assumption 7. The kernel kX
�
h�1
X d(x, x0)

�
= K

⇣
x�x0

hX

⌘
where K : Rq

! [0,1) is a multivari-

ate uth-order kernel function with

|K(x)|  c2 < 1,

Z

Rq

|K(x)| dx < 1,

Z

Rq

|x|u |K(x)| dx < 1.

Assumption 8. For some s > 2, E[|Y |
s] < 1. Covariate X has marginal density p(x) such that

0 < c0  inf
x2X

p(x)  sup
x2X

p(x)  c1 < 1,

and

sup
x2X

E [|Y |
s
| X = x] p(x)  c2 < 1.

Assumption 9. The second derivatives of p(x) and f0(x)p(x), f1(x)p(x) are uniformly continuous

and bounded. The uth derivative of p(x) is uniformly continuous.

Assumption 10. The bandwidth satisfies
logn
nhq

X
= o(1) and hX = o(1).

Denote p
�! as convergence in probability. We have the following theorem:

Theorem C.1. Suppose Assumptions 6, 7, 8, 9, 10 hold. Then the following hold:

(1) Under the null, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢1], as n ! 1,

�̃t
p
�! 0.

(2) Under the alternative, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢⇤) \ (⇢⇤, ⇢1],

�̃t
p
�! �(⇢)EX⇠FX [f0(X)� f1(X)]2,

where �(·) defined in Equation (14).

Proof. See Appendix D.1.

Remark C.1. Theorem C.1 shows that the sequence {�̃t, t = 1, 2, · · · , n} satisfies the properties

shown in Figure 1 (i.e., flat across all t’s under the null, and large around t = ⌧⇤ under the

alternative). Morevoer, it is interesting to compare Theorem C.1 against Theorem A.1. One difference

is that, if using Algorithm 3, performance of RKCE depends crucially on

E[f0(X)� f1(X)].

This quantity can be zero, even if a change actually occurs. And in this case, RKCE will fail. In

contrast, performance of KCE depends on

E[(f0(X)� f1(X))2],

which should always be nonzero as long as f0, f1 are continuous, and differ in at least one point in

the support of X .

Proposition 2. When the null is true, let c1(hX) > 0 be some constant that depends on the bandwidth

hX of f̂ . Under appropriate choice of hX , there exists positive constant c2(x) depending on x such

that for any fixed x > 0, as n ! 1,

p
nc1(hX)

⇣
f̂(x)� f0(x)

⌘
d
�! N(0, c2(x)).

Remark C.2. Proposition 2 has been demonstrated under some mild assumptions in nonparametric

literature. See, for example [45] for the case where X ⇢ R, [5] for X ⇢ Rp
, and [3] for general X ’s.

The assumptions are standard so we will not include them here for brevity. We give an example where

X ⇢ Rq
. Then under conditions in Theorem 6.2.1 of [5], Proposition 2 holds with c1(hX) =

p
hq
X ,

and

c2(x) =
[R(kX)]qVar(Y | X)

p(x)
, with R(kX) =

Z
[kX(u)]2du.
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D Technical Proofs

This section contains the proof to Theorem C.1, Theorem 5.1, and Theorem A.1.

Notations. Denote p
�! as convergence in probability. For a set of random variables Xn and a

corresponding set of constants an, denote Xn = op(an) when Xn/an converges to zero in probability.
Recall the notion of almost complete convergence introduced in [14]. Following their notation, we
write Xn = oa.co.(an) if 8✏ > 0,

P
n2N P (|Xn/an| > ✏) < 1, and write Xn = Oa.co.(an) if 9✏ > 0

such that
P

n2N P (|Xn/an| > ✏0) < 1. We also write Xn
a.co.
���! 0 when Xn = oa.co.(1).

D.1 Proof to Theorem C.1

Proof. Note that the null case can be viewed as a special case of the alternative with � = 0. Thus,
we will focus on proof under the alternative. We will only present the proof for ⇢ < ⇢⇤. The proof
for ⇢ > ⇢⇤ is similar.

Recall that for any fixed ⇢ 2 [⇢0, ⇢1] and t = dT⇢e, �̃t is defined as

�̃t =
1

n

nX

i=1

[f̂�(t, xi)� f̂+(t, xi)]
2.

Denote
gt(xi) = f̂�(t, xi)� f̂+(t, xi)�

1� ⇢⇤

1� ⇢
f⇤(xi),

where f⇤ = f0 � f1. Then we have

�̃t =
1

n

nX

i=1


gt(xi) +

1� ⇢⇤

1� ⇢
f⇤(xi)

�2

=
1

n

nX

i=1

[gt(xi)]
2 +

1

n

nX

i=1


1� ⇢⇤

1� ⇢
f⇤(xi)

�2
+ 2

1� ⇢⇤

1� ⇢

1

n

nX

i=1

gt(xi)f
⇤(xi). (23)

Notice that from Lemma D.1,

1

n

nX

i=1

[gt(xi)]
2
 kgtk

2
1

p
�! 0. (24)

From the Law of Large Numbers,

1

n

nX

i=1


1� ⇢⇤

1� ⇢
f⇤(xi)

�2
p
�!

✓
1� ⇢⇤

1� ⇢

◆2

�. (25)

And from the uniform boundedness of f⇤ (from Assumption 6, 9) and (24), we have

1

n

nX

i=1

gt(xi)f
⇤(xi)  kgtk1kf⇤

k1
p
�! 0. (26)

Plugging (24), (25), (26) into (23), we have

�̃t
p
�!

✓
1� ⇢⇤

1� ⇢

◆2

�.

Lemma D.1. Suppose Assumptions 6, 7, 8, 9, 10 hold. Then under the alternative, for any t = dn⇢e
with ⇢ 2 [⇢0, ⇢⇤), we have

���f̂�(·, t)� f0(·)
���
1

p
�! 0,

����f̂+(·, t)�
1� ⇢

1� ⇢⇤
f0(·)�

⇢� ⇢⇤

1� ⇢⇤
f1(·)

����
1

p
�! 0.

For any t = dn⇢e with ⇢ 2 (⇢⇤, ⇢1], we have
����f̂�(·, t)�

⇢⇤

⇢
f0(·)�

✓
1�

⇢⇤

⇢

◆
f1(·)

����
1

p
�! 0,

���f̂+(·, t)� f1(·)
���
1

p
�! 0.
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Proof. For brevity we only prove the uniform consistency for f̂�(t, ·) when t = dn⇢e with ⇢ 2

(⇢⇤, ⇢1]. The other results can be proved similarly. Denote

f⇤(·) =
⇢⇤

⇢
f0(·)�

✓
1�

⇢⇤

⇢

◆
f1(·).

With a slight abuse of notation, we write kX (x, x0) = kX
�
h�1
X d (x, x0)

�
. Notice that

���f̂�(t, ·)� f⇤

���
1

=

�����

Pt
i=1 kX(·, xi)yiPt
i=1 kX(·, xi)

�
⇢⇤

⇢
f0(·)�

✓
1�

⇢⇤

⇢

◆
f1(·)

�����
1

=

�����

P⌧⇤

i=1 kX(·, xi)Pt
i=1 kX(·, xi)

P⌧⇤

i=1 kX(·, xi)yiP⌧⇤

i=1 kX(·, xi)
+

Pt
i=⌧⇤+1 kX(·, xi)
Pt

i=1 kX(·, xi)

Pt
i=⌧⇤+1 kX(·, xi)yi
Pt

i=⌧⇤+1 kX(·, xi)

�
⇢⇤

⇢
f0 �

✓
1�

⇢⇤

⇢

◆
f1

����
1



�����

P⌧⇤

i=1 kX(·, xi)Pt
i=1 kX(·, xi)

P⌧⇤

i=1 kX(·, xi)yiP⌧⇤

i=1 kX(·, xi)
�
⇢⇤

⇢
f0

�����
1

+

�����

Pt
i=⌧⇤+1 kX(·, xi)
Pt

i=1 kX(·, xi)

Pt
i=⌧⇤+1 kX(·, xi)yi
Pt

i=⌧⇤+1 kX(·, xi)
�

✓
1�

⇢⇤

⇢

◆
f1

�����
1

. (27)

We will show that the first term in the above inequality converges in probability to 0. The second
term can be proved similarly. Notice that

�����

P⌧⇤

i=1 kX(·, xi)Pt
i=1 kX(·, xi)

P⌧⇤

i=1 kX(·, xi)yiP⌧⇤

i=1 kX(·, xi)
�
⇢⇤

⇢
f0

�����
1



�����

P⌧⇤

i=1 kX(·, xi)Pt
i=1 kX(·, xi)

 P⌧⇤

i=1 kX(·, xi)yiP⌧⇤

i=1 kX(·, xi)
� f0

!�����
1

+

�����

 P⌧⇤

i=1 kX(·, xi)Pt
i=1 kX(·, xi)
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where (a) follows from the non-negativity of kX (Assumption 7) and the boundedness of f0 (As-
sumption 6 and 9). Thus, if we could prove the two terms in (28) both converge in probability to 0,
the proof is complete.
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� f0
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p
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This is a direct consequene of Theorem 8 in [18] and Assumption 9, 8, 10.

Second let us show �����
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Notice from Assumptions 7, 8, 10 and Theorem 6 in [18], we have
�����

1
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⌧⇤X

i=1
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�����
1

= op(1),

�����
1
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tX
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�����
1

= op(1).

These two equations directly imply Equation (30).

Plugging (29) and (30) into (28), we have
�����
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And similarly, one can show the second term in (27) is also op(1). This concludes
���f̂�(t, ·)� f⇤

���
1

= op(1).

D.2 Proof of Theorem 5.1

In this subsection, for notational brevity, we sometimes write k · kH = k · k and h·, ·iH = h·, ·i.

Proof. Conclusion (1) is a direct consequence of Lemma D.2. Now let us prove conclusion (2).
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(d)
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where (a) follows from Cauchy-Schwarz Inequality, (b) follows from Lemma D.2, (c) follows from
Lemma D.2 and the boundedness of f0, f1 (Assumption 4), (d) follows from Proposition A.2 in [14].
Also from the strong law of large numbers, we have

1

n
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Combining Equation (31) and Equation (32), we get
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Similarly, we can show that for any t = dn⇢e with ⇢ 2 (⇢⇤, ⇢1],
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This completes proof of the desired conclusion.

Lemma D.2. Suppose assumptions 1, 2, 3, 4, 5 hold.

(1) Under the null, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢1],
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(2) Under the alternative, for any t = dn⇢e with ⇢ 2 [⇢0, ⇢1],
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with �(·) defined in Equation (14).
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Under the null, this becomes
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where (a) follows from Lemma 3.2 and 3.3 in [13], and the following results stated in [12]:
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Thus, conclusion (1) holds.

Under the alternative, we prove for any t = dn⇢e with ⇢ 2 (⇢⇤, ⇢1], the following holds
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First let us prove Equation (35), notice that from conclusion (1),
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Thus, we have for any t = dn⇢e with ⇢ 2 (⇢⇤, ⇢1],
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And similarly, we can prove for any t = dn⇢e with ⇢ 2 [⇢0, ⇢⇤),
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D.3 Proof to Theorem A.1

Proof. Notice that (1) is a special case of (2). Thus, we will only show (2).

Similar to the proof of Equation (35), and from Proposition A.4 in [14], one can show that
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Then conclusion (2) follows directly.

D.4 Proof to Proposition 1

Proof. Suppose F 0
Y |X=x0

6= F 1
Y |X=x0

where x0 2 supp(FX). Since kY is a characteristic kernel,
we have f0(x0) 6= f1(x0) and thus, kf0(x0)� f1(x0)kH = c > 0. Since l : x 7! kf0(x)� f1(x)kH
is a continuous function (from Assumption 2), there must exist an open neighborhood Nx0 of x0

such that for any x 2 Nx0 ,
l(x) = kf0(x)� f1(x)kH > c/2.

Notice that
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E Additional Experimental Results

This section contains additional results for power comparison in simulated datasets. As the fixed
design method [31] does not perform well for our random design setting (as shown in Table 1a), it is
omitted for this power comparison. Table 3a shows the results in experiment A, Table 3b experiment
B, and Table 3c experiment C. Note that we make the alternatives more challenging to make power
comparison informative. DY has the lowest power across all methods. The difference between the
power of DXY and KCD (or KCE) has been reduced, when compared with the localization results.
But still, we find DXY to be generally slightly worse than KCD (or KCE).

F Extension to multiple change points setting

This section discusses the generalization of the proposed method to multiple change points setting.
We use a binary segmentation method, as outlined in Algorithm 5. Using this algorithm with
nmin = 50,↵ = 0.1, n0

0 = n0

1 = 5, we sequentially find 3 change points: 2016/6/23, 2016/4/20, and
2016/2/26. The first change point corresponds to the date of Brexit vote, and the third corresponds to
the announcement of Brexit vote. The second change point, however, has no clear association with
any events in UK. Since we treat NIKKEI and NYSE as our covariates, our hypothesis is that this
might have something to do with changes in NYSE around that date (2016/4/20), which marked the
commanding victory of Donald Trump and Hillary Clinton in the New York primaries.

Algorithm 5 Generalization of KCE (or KCD) to multiple change points setting
input: observations {(xt, yt)}nt=1, significance level ↵, parameters n0

0, n
0
1, minimum length nmin.

output: Set of detected change points D̂ = BS(1, n). (⌧̂ = n implies no significant change point)
Function: BS(l, r)

For the subsequence {xl, · · · , xr}, use KCE or KCE (with significance level ↵, n0 = n0
0, and n1 =

r � l � n0
1 + 1) to find the new change point k.

If p-value of k is significant, and k � l, r � k � nmin,
Update D̂  D̂ [ {k}.
Call BS(l, k).
Call BS(k + 1, r).

Return D̂.
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Table 3: Power results summarized over 10 simulations. The best performing method is marked in
bold font.

(a) Experiment A.

v1(x) DY DXY KCE

5x 0.2 1.0 1.0

0.5 cos(x) 0.4 1.0 1.0

0.1x2 0.0 1.0 0.9
0.1|x| 0.0 0.9 1.0

0.1max(0, 1� x) 0.0 1.0 1.0

0.1ex 0.0 0.8 0.9
0.5
x+3 0.2 1.0 1.0

(b) Experiment B.

v1(x) DY DXY KCD

2x 1.0 0.9 1.0

cos(x) 0.2 1.0 1.0

x2 0.9 0.6 1.0

x+ 0.1max(0, 1� x) 0.0 1.0 1.0

x+ 0.1ex 0.1 0.2 0.2

x+ 0.1
x+3 1.0 1.0 1.0

(c) Experiment C.

Y HA DY DXY KCD

Rp � = 0.8 1.0 1.0 1.0

Rp � = 0.6 0.8 1.0 0.9
Rp � = 0.4 0.1 0.4 0.2

Rp⇥p Yij = Xi(Xj)3 1.0 0.7 1.0

Rp⇥p Yij = (Xi)3(Xj)3 0.8 0.5 0.9

Rp⇥p Yij = sin(Xi) sin(Xj) 0.1 0.1 0.2

P � = 0.8 1.0 1.0 1.0

P � = 0.6 0.6 0.8 0.8

P � = 0.4 0.2 0.3 0.3
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