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Abstract

State space models (SSM) have recently been shown to be very effective as a deep learning layer as
a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version
to show this potential was the S4 model, which is particularly effective on tasks involving long-range
dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable
mathematical mechanism for modeling long dependencies, it introduces a custom representation and
algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS
showed that restricting the state matrix to be fully diagonal can still preserve the performance of the
original model when using a specific initialization based on approximating S4’s matrix. This work seeks
to systematically understand how to parameterize and initialize such diagonal state space models. While
it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that
the initialization is critical for performance. We explain why DSS works mathematically, by showing
that the diagonal restriction of S4’s matrix surprisingly recovers the same kernel in the limit of infinite
state dimension. We also systematically describe various design choices in parameterizing and computing
diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final
model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code
and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and
medical time-series domains, and averaging 85% on the Long Range Arena benchmark.

1 Introduction

A core class of models in modern deep learning are sequence models, which are parameterized mappings
operating on arbitrary sequences of inputs. Recent approaches based on state space models (SSMs) have
outperformed traditional deep sequence models such as recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and Transformers, in both computational efficiency and modeling ability. In
particular, the S4 model displayed strong results on a range of sequence modeling tasks, especially on long
sequences [9]. Its ability to model long-range dependencies arises from being defined with a particular state
matrix called the “HiPPO matrix” [6], which allows S4 to be viewed as a convolutional model that decomposes
an input onto an orthogonal system of smooth basis functions[1].

However, beyond its theoretical interpretation, actually computing S4 as a deep learning model requires a
sophisticated algorithm with many linear algebraic techniques that are difficult to understand and implement.
These techniques were necessitated by parameterizing its state matrix as a diagonal plus low-rank (DPLR)
matrix, which is necessary to capture HiPPO matrices. A natural question is whether simplifications of this
parameterization and algorithm are possible. In particular, removing the low-rank term would result in a
diagonal state space model (DSSM) that is dramatically simpler to implement and understand.

Although it is known that almost all SSMs have an equivalent diagonal form—and therefore (complex)
DSSMs are fully expressive algebraically—they may not represent all SSMs numerically, and finding a good
initialization is critical. Gu et al. [9] showed that it is difficult to find a performant diagonal SSM, and that
many alternative parameterizations of the state matrix – including by random diagonal matrices – are much
less effective empirically, which motivated the necessity of the more complicated HiPPO matrix. However,
recently Gupta [10] made the empirical observation that a variant of S4 using a particular diagonal matrix
is nearly as effective as the original S4 method. This matrix is based on the original HiPPO matrix and is
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Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

defined by simply chopping off the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less efficient than S4. Additionally, DSS and S4 differ in several auxiliary aspects of parameterizing
SSMs that can conflate performance effects, making it more difficult to isolate the core effects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the efficacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically effective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more efficient than
the DSS. Outside of the core state matrix, we categorize different representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow different ways of
parameterizing SSMs to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using different initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on most settings, with near state-of-the-art results on image, audio, and medical time
series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).
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2 Background

Continuous State Spaces Models S4 investigated state space models (1) that are parameterized maps
on signals u(t) 7→ y(t). These SSMs are linear time-invariant systems that can be represented either as a
linear ODE (equation (1)) or convolution (equation (2)).

x′(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

K(t) = CetAB

y(t) = (K ∗ u)(t)
(2)

Here the parameters are the state matrix A ∈ CN×N and other matrices B ∈ CN×1,C ∈ C1×N . In the case
of DSSMs where A is diagonal, and we will overload notation so that An,Bn,Cn denotes the entries of the
parameters.

An intuitive way to view the convolution kernel (2) is to interpret it as a linear combination (controlled by
C) of basis kernels Kn(t) (controlled by A,B)

K(t) =

N−1∑
n=0

CnKn(t) Kn(t) := e>n e
tAB (3)

We denote this basis as KA,B(t) = etAB if necessary to disambiguate; note that it is a vector of N functions.
In the case of DSSMs, each function Kn(t) is just etAnBn.

S4: Structured State Spaces As a deep learning model, SSMs have many elegant properties with
concrete empirical and computational benefits [8]. For example, the convolutional form (2) can be converted
into a temporal recurrence that is substantially faster for autoregressive applications [5].

However, making SSMs effective required overcoming two key challenges: choosing appropriate values for the
matrices, and computing the kernel (2) efficiently.

First, Gu et al. [8] showed that naive instantiations of the SSM do not perform well, and instead relied on a
particular (real-valued) matrix A called the HiPPO-LegS matrix (4).1 These matrices were derived so that
the basis kernels Kn(t) have closed-form formulas Ln(e−t), where Ln(t) are normalized Legendre polynomials.
Consequently, the SSM has a mathematical interpretation of decomposing the input signal u(t) onto a set of
infinitely-long basis functions that are orthogonal respect to an exponentially-decaying measure, giving it
long-range modeling abilities [1].

Second, S4 introduced a particular parameterization that decomposed this A matrix into the sum of a normal
and rank-1 matrix (5), which can be unitarily conjugated into a (complex) diagonal plus rank-1 matrix.
Leveraging this structured form, they then introduced a sophisticated algorithm for efficiently computing
the convolution kernel (2) for state matrices that are diagonal plus low-rank (DPLR).

Ank = −


(2n+ 1)

1
2 (2k + 1)

1
2 n > k

n+ 1 n = k

0 n < k

Bn = (2n+ 1)
1
2 Pn = (n+ 1/2)

1
2

(HiPPO-LegS matrix used in S4)

(4)

A
(N)
nk = −


(n+ 1

2
)1/2(k + 1

2
)1/2 n > k

1
2

n = k

(n+ 1
2
)1/2(k + 1

2
)1/2 n < k

A = A(N) − PP>, A(D) := eig(A(N))

(Normal / diagonal plus low-rank form)

(5)

DSS: Diagonal State Spaces S4 was originally motivated by searching for a diagonal state matrix, which
would be even more structured and result in very simple computation of the SSM. However, the HiPPO-LegS
matrix cannot be stably transformed into diagonal form [9, Lemma 3.2], and they were unable to find any
diagonal matrices that worked well, resulting in the DPLR formulation.

1HiPPO also specifies formulas for B, but the state matrix A is more important. There are many other HiPPO instantiations
besides LegS, but HiPPO-LegS is the main one that S4 uses and the term “HiPPO matrix” without the suffix refers to this one.
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Gupta [10] made the surprising empirical observation that simply removing the low-rank portion of the DPLR
form of the HiPPO-LegS matrix results in a diagonal matrix that performs comparably to the original S4
method. More precisely, their initialization is the diagonal matrix A(D), the diagonalization of A(N) in (5).
They termed A(N) the skew-HiPPO matrix, which we will also call the normal-HiPPO matrix. To be more
specific and disambiguate these variants, we will also call A(N) the HiPPO-LegS-N or HiPPO-N matrix and
A(D) the HiPPO-LegS-D or HiPPO-D matrix.

In addition to this initialization, they proposed a method for computing diagonal state spaces. Beyond these
two core differences, several aspects of their parameterization differ from S4’s.

In Sections 3 and 4, we systematically study the components of DSS: We categorize different ways to
parameterize and compute the diagonal state space, and explain the theoretical interpretion of this particular
diagonal A matrix.

Because there are several different concrete matrices with different naming conventions, this table summarizes
these special matrices and ways to refer to them.

Matrix Full Name Alternate Names

A HiPPO-LegS HiPPO matrix, LegS matrix

A(N) HiPPO-LegS-N HiPPO-N, skew-HiPPO, normal-HiPPO

A(D) HiPPO-LegS-D HiPPO-D, diagonal-HiPPO

3 Parameterizing Diagonal State Spaces

We describe various choices for the computation and parameterization of diagonal state spaces. Our
categorization of these choices leads to simple variants of the core method. Both DSS and our proposed S4D
can be described using a combination of these factors (Section 3.4).

3.1 Discretization

The true continuous-time SSM computes y(t) = (K ∗ u)(t) =
∫∞
0

CesABu(t− s) ds.
In discrete time, we view an input sequence u0, u1, . . . as uniformly-spaced samples from an underlying function
u(t) and must approximate this integral. Standard methods for doing so that preserve the convolutional
structure of the model exist. The first step is to discretize the parameters. Two simple choices that have
been used in prior work include

(Bilinear) A = (I −∆/2A)−1(I + ∆/2A) (ZOH) A = exp(∆A)

B = (I −∆/2A)−1 ·∆B B = (∆A)−1(exp(∆ ·A)− I) ·∆B.

With these methods, the discrete-time SSM output is just

y = u ∗K where K = (CB,CAB, . . . ,CA
L−1

B). (6)

These integration rules have both been used in prior works (e.g. LMU and DSS use ZOH [10, 23] while S4
and its predecessors use bilinear [6, 8, 9]).

In Section 5, we show that there is little empirical difference between them. However, we note that there
is a curious phenomenon where the bilinear transform actually perfectly smooths out the kernel used in
DSS to match the S4 kernel (Section 4 Fig. 2d). We additionally note that numerical integration is a rich
and well-studied topic and more stable methods of approximating the convolutional integral may exist. For
example, it is well-known that simple rules like the Trapezoid rule [15] can dramatically reduce numerical
integration error when the function has bounded second derivative.
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3.2 Convolution Kernel

The main computational difficulty of the original S4 model is computing the convolution kernel K. This is
extremely slow for general state matrices A, and S4 introduced a complicated algorithm for DPLR state
matrices. When A is diagonal, the computation is nearly trivial. Note that

K` =

N−1∑
n=0

CnA
`

nBn =⇒ K = (B
> ◦C) · VL(A) where VL(A)n,` = A

`

n (7)

where ◦ is Hadamard product, · is matrix multiplication, and V is known as a Vandermonde matrix.
Unpacking this a little more, we can write K as the following matrix-vector multiplication.

K =
[
B0C0 . . . BN−1CN−1

]


1 A0 A
2

0 . . . A
L−1
0

1 A1 A
2

1 . . . A
L−1
1

...
...

...
. . .

...

1 AN−1 A
2

N−1 . . . A
L−1
N−1


Time and Space Complexity The naive way to compute (7) is by materializing the Vandermonde matrix
VL(A) and performing a matrix multiplication, which requires O(NL) time and space.

However, Vandermonde matrices are well-studied and theoretically the multiplication can be computed in
Õ(N + L) operations and O(N + L) space. In fact, Vandermonde matrices are closely related to Cauchy
matrices, which are the computational core of S4’s DPLR algorithm, and have identical complexity [14].

Proposition 1. The time and space complexity of computing the kernel of diagonal SSMs is equal to that of
computing DPLR SSMs.

We note that on modern parallelizable hardware such as GPUs, a simple fast algorithm is to compute (7)
with naive summation (using O(NL) operations), but without materializing the Vandermonde matrix (using
O(N + L) space). Just as with S4, this may require implementing a custom kernel in some modern deep
learning frameworks such as PyTorch to achieve the space savings.

3.3 Parameterization

The next question is how to represent the parameters A,B,C.

Parameterization of A. Note that the kernel K(t) = CetAB blows up to ∞ as t → ∞ if A has any
eigenvalues with positive real part. Goel et al. [5] found that this is a serious constraint that affects the
stability of the model, especially when using the SSM as an autoregressive generative model. They propose
to force the real part of A to be negative, also known as the left-half plane condition in classical controls,
by parameterizing the real part inside an exponential function A = − exp(ARe) + i ·AIm.

We note that instead of exp, any activation function can be used as long as its range is bounded on one side,
such as ReLU, softplus, etc. The original DSS does not constrain the real part of A, which is sufficient for
simple tasks involving fixed-length sequences, but could become unstable in other settings.

Parameterization of B,C. Another choice in the parameterization is how to represent B and C. Note
that the computation of the final discrete convolution kernel K depends only on the elementwise product
B ◦C (equation (7)). Therefore DSS chose to parameterize this product directly, which they call W , instead
of B and C individually.

However, we observe that this is equivalent to keeping independent B and C, and simply freezing B = 1
while training C. Therefore, just as S4 has separate parameters A, B, and C and uses a fixed initialization
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for A and B, S4D also proposes separate A,B, and C and uses fixed initializations for A (discussed in
Section 4) and B (set to 1). Then the difference between S4D and DSS is simply that DSS does not train B.
In our ablations, we show that training B gives a minor but consistent improvement in performance.

As described in [1], S4 initializes C randomly with standard deviation 1 (in contrast to standard deep learning

initializations, which scale with the dimension e.g. N−
1
2 ), which is variance-preserving for S4’s (A,B) as

a consequence of the HiPPO theory. Because it turns out that the diagonal approximation to HiPPO has
similar theoretical properties, we retain this initialization in the diagonal case.

3.4 S4D: the Diagonal Version of S4

A key component of our exposition is disentangling the various choices possible in representing and computing
state space models. With this categorization, different choices can be mixed and matched to define variants of
the core method. Table 1 compares S4, DSS, and S4D, which have a core structure and kernel computation,
but have various choices of other aspects of the parameterization.

Table 1: (Parameterization choices for Structured SSMs.) Aside from the core structure of A and the
computation of its convolution kernel, SSMs have several design choices which are consolidated in S4D.

Method Structure Kernel Computation Discretization Constraint <(A) Trainable B Initialization of A

S4 DPLR Cauchy Bilinear exp Yes HiPPO
DSS diagonal softmax ZOH id (none) No HiPPO-D
S4D diagonal Vandermonde either exp / ReLU optional various

Comparison to S4 and DSS. We will define the base version of S4D to match the parameterization of
S4 (i.e. bilinear discretization, <(A) parameterized with exp, trainable B, and HiPPO-D initialization),
but many other variants are possible. Note that unlike DSS, the output of S4D would be exactly the same
as masking out the low-rank component of S4’s DPLR representation. Thus comparing S4D vs. S4 is a
comparison of diagonal vs. DPLR representations of A while controlling all other factors. In our empirical
study in Section 5, we systematically ablate the effects of each of these components.

We elaborate more on the comparisons between S4, DSS, and S4D below.

Kernel computation. The original S4 work briefly considered the diagonal case as motivation [9, Section
3.1], and explicitly mentioned the connection to Vandermonde products and the computational complexity
of diagonal SSMs. However, their focus was the more complex DPLR representation because it is difficult
to find a performant diagonal state matrix. Compared to S4, we fleshed out details of the Vandermonde
connection and its computational complexity, which matches that of S4.

On the other hand, DSS empirically found an effective diagonal state matrix, but introduced a more
complicated method based on a complex softmax for computing it. Compared to S4D, this softmax
essentially normalizes by the row-sums of the Vandermonde matrix, so we also refer to this distinction as
“softmax normalization”. This makes the kernel more complicated than necessary, and has a few concrete
drawbacks. First, the row-normalization effectively makes the model dependent on a particular sequence
length L, and special logic is required to handle different sequence lengths. Second, it does not expose the
optimal computational complexity of the method, and the original version of DSS in fact uses O(N) more
memory than S4 and S4D do.2

Discretization. S4D disentangles the discretization method from the kernel computation (equation (7)),
so that any discretization can be used, whereas previous methods required a specific discretization. For

2An early version of DSS claimed that it did not require a custom kernel while S4 does, but this is because of its extra memory
usage. The PyTorch implementation of S4 has an optional custom CUDA kernel primarily to save this factor of N in space.
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example, DSS requires the zero-order hold (ZOH) discretization because the exp term in the ZOH formula
lends itself to be computed with a softmax. On the other hand, when A is not diagonal, ZOH involves
a matrix exponential which can be slower to compute, so S4 uses the bilinear discretization which can be
computed efficiently for DPLR matrices.

Eigenvalue constraint. All methods can enforce any constraint on the eigenvalues of A. While DSS found
that letting them be unconstrained has slightly better performance, our experiments find that the difference
is negligible and we recommend contraining negative real part of A as is standard practice in control systems.
This ensures stability even in unbounded autoregressive settings.

The full model. The entire S4D method is very straightforward to implement, requiring just a few lines
of code each for the parameterization and initialization, kernel computation, and full forward pass (Listing 1).
This minimal model maps an input sequence of length L to an output of the same length; given multiple
input channels, independent S4D layers are broadcast over them. Other details such as the initialization of ∆
are the same as in S4 and DSS.

Listing 1 Full Numpy example of the parameterization and computation of a 1-dimensional S4D-Lin model

def parameters(N, dt_min=1e-3, dt_max=1e-1):

# Initialization

log_dt = np.random.rand() * (np.log(dt_max)-np.log(dt_min)) + np.log(dt_min) # Geometrically uniform timescale

A = -0.5 + 1j * np.pi * np.arange(N) # S4D-Lin initialization

B = np.ones(N)

C = np.random.randn(N) + 1j * np.random.randn(N) # Variance preserving initialization

return log_dt, np.log(-A.real), A.imag, B, C

def kernel(L, log_dt, log_A_real, A_imag, B, C):

# Discretization (e.g. bilinear transform)

dt, A = np.exp(log_dt), -np.exp(log_a_real) + 1j * a_imag

dA, dB = (1+dt*A/2) / (1-dt*A/2), dt*B / (1-dt*A/2)

# Computation (Vandermonde matrix multiplication - can be optimized)

return (B*C) @ (dA[:, None] ** np.arange(L))

def forward(u, parameters):

L = u.shape[-1]

K = kernel(L, *parameters)

K_f, u_f = np.fft.fft(K, n=2*L), np.fft.fft(input, n=2*L) # Convolve y = u * K using FFT

return np.fft.ifft(K_f*u_f, n=2*L)[..., :L]

Finally, note that different combinations of parameterization choices can lead to slightly different implemen-
tations of the kernel; Fig. 1 illustrates the S4D kernel with ZOH discretization which can be simplified even
further.

4 Initialization of Diagonal State Matrices

The critical question remains: which diagonal state matrices A are actually effective? We comment on the
limitations of DSSMs, and then provide three instantiations of S4D that perform well empirically.

Expressivity and Limitations of Diagonal SSMs. We first present a simplified view on the expressivity
of DSSMs mentioned by [10]. First, it is well-known that almost all matrices diagonalize over the complex
plane. Therefore it is critical to use complex-valued matrices in order to use DSSMs.

Proposition 2. The set D ⊂ CN×N of diagonalizable matrices is dense in CN×N , and has full measure (i.e.
its complement has measure 0).
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It is also well known that the state space (A,B,C) is exactly equivalent to (i.e. expresses the same map
u 7→ y) the state space (V −1AV ,V −1B,CV ), known in the SSM literature as a state space transformation.
Therefore Proposition 2 says that (almost) all SSMs are equivalent to a DSSM.

However, we emphasize that Proposition 2 is about expressivity which does not guarantee strong performance
of a trained model after optimization. For example, Gu et al. [9] and Gupta [10] show that when A is
parameterized as a dense real matrix or diagonal complex matrix, which are both fully expressive, it performs
much worse than S4 if randomly initialized.

Second, Proposition 2 does not take into account numerical representations of data, which was the original
reason S4 required a low-rank correction term instead of a pure diagonalization. In Section 5.2, we also show
that two different initializations with the same spectrum (i.e., are equivalent to the same diagonal A) can
have very different performance.

S4D-LegS. The HiPPO-LegS matrix has DPLR representation A(D) −PP>, and Gupta [10] showed that
simply approximating it with A(D) works quite well (5). Our first result is providing a clean mathematical
interpretation of this method. Theorem 3 shows a surprising fact that does not hold in general for DPLR
matrices (Appendix A.1), and arises out of the special structure of this particular matrix.

Theorem 3. Let A = A(N) − PP> and B be the HiPPO-LegS matrices, and KA,B(t) be its basis (Fig. 1).
As the state size N →∞, the SSM basis KA(N),B/2(t) limits to KA,B(t) (Fig. 2).

(Note that these are unitarily equivalent to A(D), which preserves the stability and timescale [1] of the system.)

We define S4D-LegS to be the S4D method for this choice of diagonal A = A(D). Theorem 3 explains the
empirical results in [10] whereby this system performed quite close to S4, but was usually slightly worse. This
is because DSS is a variant of S4D-LegS, which by Theorem 3 is a noisy approximation to S4-LegS. Fig. 2
illustrates this result, and also shows a curious phenomenon involving different discretization rules that is
open for future work.

S4D-Inv. To further simplify S4D-LegS, we analyze the structure of A(D) = diag〈A〉 in more detail. The
real part is easy to understand, which follows from the analysis in [9]:

Proposition 4. <(A) = − 1
21

Let the imaginary part be sorted, i.e. =(A)n is the n-th largest (positive) imaginary component. We
empirically deduced the following conjecture for the asymptotics of the imaginary part.

Conjecture 5. As N → ∞, =(A)0 → 1
πN

2 + c where c ≈ 0.5236 is a constant. For a fixed N , the other
eigenvalues satisfy an inverse scaling in n: =(A)n = Θ(n−1).

Fig. 3 empirically supports this conjecture. Based on Conjecture 5, we propose the initialization S4D-Inv to
use the following inverse-law diagonal matrix which closely approximates S4D-LegS.

(S4D-Inv) An = −1

2
+ i

N

π

(
N

2n+ 1
− 1

)
(8) (S4D-Lin) An = −1

2
+ iπn (9)

S4D-Lin. While S4D-Inv can be seen as an approximation to the original S4-LegS, we propose an even
simpler scaling law for the imaginary parts that can be seen as an approximation of S4-FouT ([0]), where
the imaginary parts are simply the Fourier series frequencies (i.e. matches the diagonal part of the DPLR
form of S4-FouT). Fig. 1 (Right) illustrates the S4D-Lin basis etAB, which are simply damped Fourier basis
functions.

General Diagonal SSM Basis Functions. The empirical study in Section 5 performs many ablations of
different diagonal initializations, showing that many natural variants of the proposed methods do not perform
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(a) S4-LegS (original S4 kernel) (b) S4D-LegS (N = 256)

(c) S4D-LegS (N = 1024, ZOH) (d) S4D-LegS (N = 1024, Bilinear)

Figure 2: (Visualization of Theorem 3). (a) The particular (A,B) matrix chosen in S4 results in smooth basis
functions etAB with a closed form formula in terms of Legendre polynomials. By the HiPPO theory, convolving against
these functions has a mathematical interpretation as orthogonalizing against an exponentially-decaying measure. (b,
c) By special properties of this state matrix, removing the low-rank term of its NPLR representation produces the
same basis functions as N →∞, explaining the empirical effectiveness of DSS. (c) Curiously, the bilinear transform
instead of ZOH smooths out the kernel to exactly match S4-LegS as N grows.

as well. The overall guiding principles for the diagonal state matrix A are twofold, which can be seen from
the closed form of the basis functions Kn(t) = etAnBn (Eq. (3)).

First, the real part of An controls the decay rate of the function. An = − 1
2 is a good default that bounds

the basis functions by the envelope e−
t
2 , giving a constant timescale (Fig. 1 (Right)).

Second, the imaginary part of An controls the oscillating frequencies of the basis function. Critically, these
need to be spread out, which explains why random initializations of A do not perform well. The S4D-Inv
and S4D-Lin use simple asymptotics for these imaginary components that provide interpretable methods. We
believe that alternative initializations that have different mathematical interpretations may exist, which is an
interesting question for future work.

5 Experiments

Our experimental study shows that S4D has strong performance in a wide variety of domains and tasks,
including the well-studied Long Range Arena (LRA) benchmark where the best S4D variant is competitive
with S4 on all tasks and significantly outperforms all non-SSM baselines.
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Figure 3: (S4D eigenvalues.) All S4D methods have eigenvalues
− 1

2
+ λni. S4D-LegS theoretically approximates dynamics of the

original (non-diagonal) S4 (Blue), and has eigenvalues following
an inverse law λn ∝ n−1 (Orange). The precise law is important:
other scaling laws with the same range, including an inverse law
with different constant (Purple) and a quadratic law (Red), perform
empirically worse (Section 5.2). A very different linear law based
on Fourier frequencies also performs well (Green).

We begin with controlled ablations of the various representations of diagonal state space models.

• In Section 5.1, we compare the different methods of parameterizing and computing a diagonal state
space model (Section 3).

• In Section 5.2, we compare our proposed initializations of the critical A matrix and perform several abla-
tions showing that simple variants can substantially degrade performance, underscoring the importance
of choosing A carefully (Section 4).

• In Section 5.3, we compare our proposed S4D methods against the original S4 method (and the variants
proposed in [1]).

Methodology and Datasets. In order to study the effects of different S4 and S4D variants in a controlled
setting, we propose the following protocol. We focus on three datasets covering a varied range of data
modalities (image pixels, biosignal time series, audio waveforms), sequence lengths (1K, 4K, 16K), and tasks
(classification and regression with bidirectional and causal models).

• Sequential CIFAR (sCIFAR). CIFAR-10 images are flattened into a sequence of length 1024, and a
bidirectional sequence model is used to perform 10-way classification.

• BIDMC Vital Signs. EKG and PPG signals of length 4000 are used to predict respiratory rate (RR),
heart rate (HR), and blood oxygen saturation (SpO2). We focus on SpO2 in this study.

• Speech Commands (SC).3 A 1-second raw audio waveform comprising 16000 samples is used for 35-way
spoken word classification. We use an autoregressive (AR) model to vary the setting; this causal setting
more closely imitates autoregressive speech generation, where SSMs have shown recent promise [5].

We fix a simple architecture and training protocol that works generically. The architecture has 4 layers and
hidden dimension H = 128, resulting in ∼ 100K parameters. All results are averaged over multiple seeds
(full protocol and results including std. reported in Appendix B).

5.1 Parameterization, Computation, Discretization

Given the same diagonal SSM matrices A,B, there are many variants of how to parameterize the matrices
and compute the SSM kernel described in Section 3. We ablate the different choices described in Table 1.
Results are in Table 2, and show that:

(i) Computing the model with a softmax instead of Vandermonde product does not make much difference

(ii) Training B is consistently slightly better

(iii) Different discretizations (Section 3.1) do not make a noticeable difference

(iv) Unrestricting the real part of A (Section 3.3) may be slightly better
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Trainable B Method sCIFAR SC (AR) BIDMC (SpO2)

No Softmax 85.04 89.80 0.1299

No Vandermonde 84.78 89.62 0.1355

Yes Softmax 85.37 90.06 0.1170

Yes Vandermonde 85.37 90.34 0.1274

Discretization Real part of A sCIFAR SC (AR) BIDMC (SpO2)

Bilinear exp 85.20 89.52 0.1193

ReLU 85.06 90.22 0.1172

- 85.35 90.58 0.1102

ZOH exp 85.02 89.93 0.1303

ReLU 84.98 90.03 0.1232

- 85.15 90.19 0.1289

Table 2: Ablations of different parameterizations of diagonal SSMs using S4D-Inv. (Left) trainability and computation;
(Right) discretization and parameterization.

These ablations show that for a fixed initialization (A,B), different aspects of parameterizing SSMs make
little difference overall. This justifies the parameterization and algorithm S4D uses (Section 3.4), which
preserves the choices of the original S4 model and is simpler than DSS. For the remaining of the experiments
in Section 5.2 and Section 5.3, we fix the S4D parameterization and algorithm described in Section 3. Note
that this computes exactly the same kernel as the original S4 algorithm when the low-rank portion is set to 0,
allowing controlled comparisons of the critical state matrix A for the remainder of this section.

5.2 S4D Initialization Ablations

The original S4 model proposed a specific formula for the A matrix, and the first diagonal version [10] used a
specific matrix based on it. Our new proposed variants S4D-Inv and S4D-Lin also define precise formulas for
the initialization of the A matrix (8). This raises the question of whether the initialization of the A still
needs to be so precise, despite the large simplifications from the original version. We perform several natural
ablations on these initializations, showing that even simple variations of the precise formula can degrade
performance.

Imaginary part scaling factor. The scaling rules for the imaginary parts of S4D-Inv and S4D-Lin are
simple polynomial laws, but how is the constant factor chosen and how important is it? These constants
are based on approximations to HiPPO methods (e.g. Conjecture 5). Note that the range of imaginary

components for S4D-Inv and S4D-Lin are quite different (Fig. 3); the largest imaginary part is N2

π for S4D-Inv
and πN for S4D-Lin.

We consider scaling all imaginary parts by a constant factor of 0.01 or 100.0 to investigate whether the
constant matters. Note that this preserves the overall shape of the basis functions (Fig. 1) and simply
changes the frequencies, and it is not obvious that this should degrade performance. However, both changes
substantially reduce the performance of both S4D methods in all settings.

Randomly initialized imaginary part. Next, we consider choosing the imaginary parts randomly. For
S4D-Inv, we keep the real parts equal to − 1

2 and set each imaginary component to

An = −1

2
+ i

N

π

(
N

2u+ 1
− 1

)
u ∼ N · U [0, 1] (10)

Note that when u is equally spaced in [0, 1] instead of uniformly random, this exactly recovers S4D-Inv (8),
so this is a sensible random approximation to it.

Similarly, we consider a variant of S4D-Lin

An = −1

2
+ iπuN u ∼ N · U [0, 1] (11)

that is equal to equation (9) when u is equally spaced instead of random.

3We note that a line of prior work including S4 [9, 12, 16] all used a smaller 10-class subset of SC, so our results on the full
dataset are not directly comparable.
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Table 3a (Random Imag) shows that this small change causes minor degradation in performance. We
additionally note that the randomly initialized imaginary ablation can be interpreted as follows. Fig. 3
shows the asymptotics of the imaginary parts of SSM matrices, where the imaginary parts of the eigenvalues
correspond to y-values corresponding to uniformly spaced nodes on the x-axis. This ablation then replaces
the uniform spacing on the x-axis with uniformly random x values.

Randomly initialized real part. We considering initializing the real part of each eigenvalue as −U [0, 1]
instead of fixing them to − 1

2 . Table 3a(Left, Random Real) shows that this also causes minor but consistent
degradation in performance on the ablation datasets. Finally, we also consider randomizing both real and
imaginary parts, which degrades performance even further.

Table 3: (Initialization and Trainability ablations)

Ablation sCIFAR SC (uni) BIDMC (SpO2)

S4D-Lin 85.12 90.66 0.13 Ablation sCIFAR SC (AR) BIDMC

  Scale 0.01 -7.27 -1.92 0.04 S4D-Lin 85.12 90.66 0.128
  Scale 100 -7.91 -4.04 0.08   Scale 0.01 -7.27 -1.92 +0.040
  Random Imag -0.42 -3.08 0.00   Scale 100 -7.91 -4.04 +0.077
  Random Real -0.73 -0.87 0.01   Random Imag -0.42 -3.08 -0.001
  Random Both -1.28 -5.88 0.01   Random Real -0.73 -0.87 +0.011
S4D-Inv 84.79 90.27 0.11   Random Both -1.28 -5.88 +0.007

  Scale 0.01 -5.03 -0.08 0.03
  Scale 100 -7.77 -52.31 0.03 S4D-Inv 84.79 90.27 0.114
  Random Imag -0.29 -0.52 0.01   Scale 0.01 -5.03 -0.08 +0.028
  Random Real 0.12 -2.18 0.03   Scale 100 -7.77 -52.31 +0.034
  Random Both -1.55 -0.55 0.02   Random Imag -0.29 -0.52 +0.010
S4D-Inv2 -2.62 -39.84 0.01   Random Real 0.12 -2.18 +0.032
S4D-Quad -1.83 -0.62 0.02   Random Both -1.55 -0.55 +0.024
S4D-Random -6.32 -1.95 0.03 S4D-Inv2 -2.62 -39.84 +0.005
S4D-Real -5.45 -10.17 0.07 S4D-Quad -1.83 -0.62 +0.024

S4D-Random -6.32 -1.95 +0.034
S4D-Real -5.45 -10.17 +0.066

(a) Ablations of the initialization of the diagonal
A matrix in S4D. Very simple changes that largely
preserve the structure of the diagonal eigenvalues
all degrade performance.

sCIFAR SC (uni) BIDMC (SpO2)
Val (first) Val (best) Val (first) Val (best) Val (best) sCIFAR SC (AR) BIDMC

S4-LegS 53.63 86.19 33.87 85.33 0.1049 Frozen (A, B) Acc (first) Acc (best) Acc (first) Acc (best) RMSE (best)

S4-LegT 54.76 86.30 8.77 57.35 0.1106 S4-LegS 53.63 86.19 33.87 85.33 0.1049

Frozen
(A, B)

S4-FouT 55.28 86.05 9.27 69.57 0.1072 S4-LegT 54.76 86.30 8.77 57.35 0.1106

S4-LegS+FouT 54.38 86.53 34.06 83.37 0.0887 S4-FouT 55.28 86.05 9.27 69.57 0.1072

S4D-LegS 50.87 84.81 22.76 77.18 0.0960 S4-LegS+FouT 54.38 86.53 34.06 83.37 0.0887

S4D-Inv 53.19 84.40 18.49 76.53 0.0995 S4D-LegS 50.87 84.81 22.76 77.18 0.0960

S4D-Lin 51.75 84.96 19.09 75.58 0.0935 S4D-Inv 53.19 84.40 18.49 76.53 0.0995

S4D-Lin 51.75 84.96 19.09 75.58 0.0935

S4-LegS 54.23 86.29 62.19 90.68 0.1033 Trainable (A, B)

S4-LegT 55.16 86.12 55.86 90.42 0.1146 S4-LegS 54.23 86.29 62.19 90.68 0.1033

Trainable
(A, B)

S4-FouT 55.89 85.93 60.56 90.83 0.1136 S4-LegT 55.16 86.12 55.86 90.42 0.1146

S4-LegS+FouT 55.00 86.18 61.76 91.01 0.0970 S4-FouT 55.89 85.93 60.56 90.83 0.1136

S4D-LegS 50.41 85.64 47.54 88.47 0.1148 S4-LegS+FouT 55.00 86.18 61.76 91.01 0.0970

S4D-Inv 53.42 84.59 45.73 89.69 0.1132 S4D-LegS 50.41 85.64 47.54 88.47 0.1148

S4D-Lin 52.23 85.75 47.68 89.56 0.1032 S4D-Inv 53.42 84.59 45.73 89.69 0.1132

S4D-Lin 52.23 85.75 47.68 89.56 0.1032

(b) Results for all S4 and S4D methods on the ablation datasets, when the A
and B matrices are either frozen (Top) or trained (Bottom). Diagonal state
matrices are highly competitive with full DPLR versions, achieving strong
results on all datasets.

Ablation: Other S4D matrices. Other simple variants of initializations show that it is not just the
range of the eigenvalues but the actual distribution that is important (Fig. 3). Both S4D-Inv2 and S4D-Quad
have real part − 1

2 and imaginary part satisfying the same maximum value as Conjecture 5. The S4D-Inv2
initialization uses the same formula as S4D-Inv, but replaces a 2n + 1 in the denominator with n + 1.
The S4D-Quad initialization uses a polynomial law with power 2 instead of −1 (S4D-Inv) or 1 (S4D-Lin).

(S4D-Inv2) An = −1

2
+ i

N

π

(
N

n+ 1
− 1

)
(12) (S4D-Quad) An =

1

π
(1 + 2n)2 (13)

We include two additional methods here that are not based on the proposed S4D-Inv or S4D-Lin methods.
First, S4D-Rand uses a randomly initialized diagonal A, and validates that it performs poorly, in line with
earlier findings [9, 10]. Second, S4D-Real uses a particular real initialization with An = −(n+ 1). This is the
exact same spectrum as the original S4(-LegS) method, which validates that it is not just the diagonalization
that matters, highlighting the limitations of Proposition 2.
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Table 4: (Ablation datasets: Full results with larger models.) For Speech Commands, we show both an autoregressive
model as in the ablations, and an unconstrained bidirectional model.

Model sCIFAR SC BIDMC

Test AR Bi. HR RR SpO2

S4-LegS 91.80 (0.43) 93.60 (0.13) 96.08 (0.15) 0.332 (0.013) 0.247 (0.062) 0.090 (0.006)
S4-FouT 91.22 (0.25) 91.78 (0.10) 95.42 (0.20) 0.339 (0.020) 0.301 (0.030) 0.068 (0.003)

S4D-LegS 89.92 (1.69) 93.57 (0.09) 95.97 (0.14) 0.367 (0.001) 0.248 (0.036) 0.102 (0.001)
S4D-Inv 90.69 (0.06) 93.40 (0.67) 96.18 (0.27) 0.373 (0.024) 0.254 (0.022) 0.110 (0.001)
S4D-Lin 90.42 (0.03) 93.37 (0.05) 96.25 (0.03) 0.379 (0.006) 0.226 (0.008) 0.114 (0.003)

Table 5: (Long Range Arena) Accuracy on full suite of LRA tasks. Hyperparameters in Appendix B.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

S4-LegS 59.60 (0.07) 86.82 (0.13) 90.90 (0.15) 88.65 (0.23) 94.20 (0.25) 96.35 86.09
S4-FouT 57.88 (1.90) 86.34 (0.31) 89.66 (0.88) 89.07 (0.19) 94.46 (0.24) 7 77.90

S4D-LegS 60.47 (0.34) 86.18 (0.43) 89.46 (0.14) 88.19 (0.26) 93.06 (1.24) 91.95 84.89
S4D-Inv 60.18 (0.35) 87.34 (0.20) 91.09 (0.01) 87.83 (0.37) 93.78 (0.25) 92.80 85.50
S4D-Lin 60.52 (0.51) 86.97 (0.23) 90.96 (0.09) 87.93 (0.34) 93.96 (0.60) 7 78.39

S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66

5.3 Full Comparisons of S4D and S4 Methods

Trainable A,B matrices. Table 3b shows the performance of all S4D and S4 variants [1] on the ablations
datasets. We observe several interesting phenomena:

(i) Freezing the matrices performs comparably to training them on sCIFAR and BIDMC, but is substantially
worse on SC. We hypothesize that this results from ∆ being poorly initialized for SC, so that at
initialization models do not have context over the entire sequence, and training A and B helps adjust
for this. As further evidence, the finite window methods S4-LegT and S4-FouT (defined in [1]) have the
most limited context and suffer the most when A is frozen.

(ii) The full DPLR versions are often slightly better than the diagonal version throughout the entire training
curve. We report the validation accuration after 1 epoch of training on sCIFAR and SC to illustrate
this phenomenon.

Large models on ablation datasets. Finally, we relax the strict requirements on model size and
regularization for the ablation datasets, and show the performance of S4 and S4D variants on the test sets
with a larger model (architecture and training details in Appendix B) when the model size and regularization
is simply increased (Table 4). We note that results for each dataset are better than the original S4 model,
which was already state-of-the-art on these datasets [8, 9].

Long Range Arena. We use the same hyperparameter setting for the state-of-the-art S4 model in [0] on
the Long Range Arena benchmark for testing long dependencies in sequence models. S4D variants are highly
competitive on all datasets except Path-X, and outperform the S4 variants on several of them. On Path-X
using this hyperparameter setting with bidirectional models, only S4D-Inv, our simpler approximation to the
original S4-LegS model, achieves above random chance, and has an average of 85% on the full LRA suite,
more than 30 points better than the original Transformer [21].
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Table 6: (S4D Path-X Ablations.) Ablating parameterization choices for models with less than 200K parameters.

S4D Identity <(Λ) ReLU <(Λ) ZOH disc. Frozen B ZOH + softmax DSS

92.12 (0.34) 92.32 (0.16) 92.29 (0.20) 92.09 (0.08) 91.66 (0.62) 90.92 (0.34) 89.72 (0.33)

Final parameterization ablations on Path-X. Finally, we return to the parameterization choices
presented in Section 3 and ablated in Section 5.1, and ablate them once more on the difficult Path-X dataset.
We use small models of between 150K and 200K parameters (differing only depending on whether B is
trained). We fix the S4D-LegS initialization (i.e., the diagonal HiPPO initialization (5)).

We start from the base S4D parameterization based on S4: Bilinear discretization, exp <(A), trainable B,
and no softmax (Table 1). We ablate each of these choices one at a time for the discretization, constraint
on <(A), trainability of B, and normalization. We also consider the combination that defines DSS: ZOH
discretization, identity <(A), frozen B, softmax normalization.

Table 6 shows that the default S4 parameterization choices are a strong baseline. As in Section 5.1, we find
that most of the other choices do not make much difference:

(i) letting <(A) be unconstrained has little benefit, and can theoretically cause instabilities, so we do not
recommend it,

(ii) the bilinear vs. ZOH discretizations make no difference,

(iii) training B helps slightly, for a minor increase in parameter count and no change in speed.

Finally, on this task – unlike the easier ablation datasets in Section 5.1 – the softmax normalization of DSS
actually hurts, and we do not recommend it.

6 Conclusion

State space models based on S4 are a promising family of models for modeling many types of sequential
data, with particular strengths for continuous signals and long-range interactions. These models are a large
departure from conventional sequence models such as RNNs, CNNs, and Transformers, with many new
ideas and moving parts. This work provides a more in-depth exposition for all aspects of working with
S4-style models, from their core structures and kernel computation algorithms, to miscellaneous choices in
their parameterizations, to new theory and methods for their initialization. We systematically analyzed and
ablated each of these components, and provide recommendations for building a state space model that is as
simple as possible, while as theoretically principled and empirically effective as S4. We believe that S4D can
be a strong generic sequence model for a variety of domains, that opens new directions for state space models
theoretically, and is much more practical to understand and implement for practitioners.
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A Method Details

A.1 Proofs

We prove Theorem 3, and then show why this it is a surprising result that is not true in general to low-rank
perturbations of SSMs.

We start with the interpretation of the S4-LegS matrix shown in [1], which corresponds to Fig. 1 (Left).

Theorem 6. Let A,B,P be the matrices defined in equation (4). The SSM kernels Kn(t) = e>n e
tAB have

the closed form formula

Kn(t) = Ln(e−t)e−t

where Ln are the Legendre polynomials shifted and scaled to be orthonormal on the interval [0, 1].

Lemma A.1. The functions Ln(e−t) are a complete orthonormal basis with respect to the measure ω(t) = e−t.

Proof. The polynomials are defined to be orthonormal on [0, 1], i.e.∫ 1

0

Ln(t)Lm(t) dt = δn,m.

By the change of variables t = e−s with dt
ds = −e−s,

−
∫ 0

−∞
Ln(e−s)Lm(e−s)e−s ds = δn,m =

∫ ∞
0

Ln(e−s)Lm(e−s)e−s ds

which shows the orthonormality.

Completeness follows from the fact that polynomials are complete.

Proof of Theorem 3. We start with the standard interpretation of SSMs as convolutional systems. The SSM
x′(t) = Ax(t) + Bu(t) is equivalent to the convolution

xn(t) = (u ∗Kn)(t) =

∫ t

−∞
u(s)Kn(t− s) ds =

∫ ∞
0

u(t− s)Kn(s) ds

for the SSM kernels (equation (3)).

Defining u(t)(s) = u(t− s), we can write this as

xn(t) = 〈u(t),Kn〉ω

where ω(s) = e−s and 〈p(s), q(s)〉ω =
∫∞
0
p(s)q(s)ω(s) ds is the inner product in the Hilbert space of L2

functions with respect to measure ω.

By Theorem 6, the Kn are a complete orthonormal basis in this Hilbert space. There xn(t) represents a
decomposition of the function u(t) with respect to this basis, and can be recovered as a linear combination of
these projections

u(t) =

∞∑
n=0

xn(t)Kn.

Pointwise over the inner times s,

u(t)(s) =

∞∑
n=0

xn(t)Kn(s).
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This implies that

u(t) = u(t)(0) =

∞∑
n=0

xn(t)Kn(0)

=

∞∑
n=0

xn(t)Ln(0) =

∞∑
n=0

xn(t)(2n+ 1)
1
2

= B>x(t)

Intuitively, due to the function reconstruction interpretation of HiPPO [1], we can approximate u(t) using
knowledge in the current state x(t). There in the limit N →∞, the original SSM is equivalent to

x′(t) = Ax(t) + Bu(t)

= Ax(t) +
1

2
Bu(t) +

1

2
Bu(t)

= Ax(t) +
1

2
BB>x(t) +

1

2
Bu(t)

= Ax(t) + PP>x(t) +
1

2
Bu(t)

= ANx(t) +
1

2
Bu(t)

Finally, we remark that this phenomenon where removing the low-rank correction to a DPLR matrix
approximates the original dynamics, is unique to this HiPPO-LegS matrix. We note that if instead of PP>,
a random rank-1 correction is added to the HiPPO-LegS matrix in Theorem 3, the resulting SSM kernels
look completely different and in fact diverge rapidly as the magnitude of P increases (Fig. 4).

(a) σ = 0.3 (b) σ = 0.4 (c) σ = 0.5

Figure 4: Basis kernels for (A + PP>,B) for HiPPO-LegS (A,B) and random i.i.d. Gaussian P with varying std
σ, illustrating that the SSM basis is very sensitive to low-rank perturbations. Note that the normal-HiPPO matrix

A(N) = A+PP> for P with entries of magnitude N
1
2 which is far larger, highlighting how unexpected the theoretical

result Theorem 3 is.

Similarly, Fig. 5a shows a new S4 variant called S4-FouT that is also DPLR [0], but removing the low-rank
component dramatically changes the SSM kernels.

B Experiment Details

Ablation datasets training protocol. The architecture has 4 layers and hidden dimension H = 128,
resulting in around 100K trainable parameters. All results are averaged over 2 or 3 seeds.
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(a) S4-FouT (b) Diagonal approximation to S4-FouT

Figure 5: (a) S4-FouT is a new method that produces truncated Fourier basis functions. This captures sliding Fourier
transforms into a state space. (b) Removing the low-rank term from the FouT matrix (as is the relation between (b)
and (a)) does not approximate S4-FouT. This diagonal state matrix has real part 0 that produces infinite oscillations
and does not perform well empirically.

Table 7: Full results for Table 2 (Left) including standard deviations.

Trainable B Method sCIFAR SC (AR) BIDMC (SpO2)

No Softmax 85.04 (0.22) 89.80 (0.21) 0.1299 (0.0048)
No Vandermonde 84.78 (0.16) 89.62 (0.03) 0.1355 (0.0039)
Yes Softmax 85.37 (0.43) 90.06 (0.11) 0.1170 (0.0039)
Yes Vandermonde 85.37 (0.43) 90.34 (0.18) 0.1274 (0.0020)

All models use learning rate 0.004, 0.01 weight decay, and no other regularization or data augmentation. For
the classification tasks (sCIFAR and SC). we use a cosine scheduler with 1 epoch warmup and decaying to 0.
For the regression task (BIDMC), we use a multistep scheduler following [8, 18].

Reported results are all best validation accuracy, except for the large models in Table 4.

Full results for parameterization ablations. Table 7 and Table 8 contain the raw results for Table 2
including standard deviations.

Full results for large models on ablations datasets. Table 9 and Table 10 show full results comparing
out proposed methods against the best models from the literature.

Table 8: Full results for Table 2 (Right) including standard deviations.

Discretization Real part sCIFAR SC (AR) BIDMC (SpO2)

Bilinear Exp 85.20 (0.18) 89.52 (0.01) 0.1193 (0.0069)
Bilinear - 85.35 (0.27) 90.58 (0.37) 0.1102 (0.0075)
Bilinear ReLU 85.06 (0.06) 90.22 (0.25) 0.1172 (0.0063)
ZOH Exp 85.02 (0.24) 89.93 (0.07) 0.1303 (0.0014)
ZOH - 85.15 (0.13) 90.19 (0.58) 0.1289 (0.0035)
ZOH ReLU 84.98 (0.72) 90.03 (0.13) 0.1232 (0.0065)
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Table 9: (Sequential CIFAR image
classification.)

Model sCIFAR

S4-LegS 91.80 (0.43)
S4-FouT 91.22 (0.25)
S4-(LegS+FouT) 91.58 (0.17)

S4D-LegS 89.92 (1.69)
S4D-Inv 90.69 (0.06)
S4D-Lin 90.42 (0.03)

Transformer [22] 62.2
FlexConv [17] 80.82
TrellisNet [2] 73.42
LSTM [7, 11] 63.01
r-LSTM [22] 72.2
UR-GRU [7] 74.4
HiPPO-RNN [6] 61.1
LipschitzRNN [4] 64.2

Table 10: (BIDMC Vital signs prediction.) RMSE for predicting respi-
ratory rate (RR), heart rate (HR), and blood oxygen (SpO2).

Model HR RR SpO2

S4-LegS 0.332 (0.013) 0.247 (0.062) 0.090 (0.006)
S4-FouT 0.339 (0.020) 0.301 (0.030) 0.068 (0.003)
S4-(LegS+FouT) 0.344 (0.032) 0.163 (0.008) 0.080 (0.007)

S4D-LegS 0.367 (0.001) 0.248 (0.036) 0.102 (0.001)
S4D-Inv 0.373 (0.024) 0.254 (0.022) 0.110 (0.001)
S4D-Lin 0.379 (0.006) 0.226 (0.008) 0.114 (0.003)

UnICORNN [18] 1.39 1.06 0.869
coRNN [18] 1.81 1.45 -
CKConv 2.05 1.214 1.051
NRDE [13] 2.97 1.49 1.29
LSTM 10.7 2.28 -
Transformer 12.2 2.61 3.02
XGBoost [20] 4.72 1.67 1.52
Random Forest [20] 5.69 1.85 1.74
Ridge Regress. [20] 17.3 3.86 4.16

Long Range Arena. Our Long Range Arena experiments follow the same setup as the original S4 paper
with some differences in model architecture and hyperparameters. The main global differences are as follows:

Bidirectional The original S4 layer is unidirectional or causal, which is an unnecessary constraint for the
classification tasks appearing in LRA. Goel et al. [5] propose a bidirectional version of S4 that simply
concatenates two S4 convolution kernels back-to-back. We use this for all tasks.

GLU feedforward S4 consists of H independent 1-dimensional SSMs, each of which are processed by an
independent S4 SSM mapping (A,B,C,D). These outputs are then mixed with a position-wise linear
layer, i.e. W y for a learned matrix W ∈ RH×H . Instead of this linear mapping, we use a GLU
activation (W1y) ◦ σ(W2y) for W1,W2 ∈ RH×H [3]. These have been empirically found to improve
linear layers of DNNs in general [19].

Cosine scheduler Instead of the plateau scheduler used in [9], we use a cosine annealing learning rate
scheduler for all tasks.

Regularization Almost all tasks used no dropout and 0.05 weight decay.

Architecture Almost all tasks used an architecture with 6 layers, H = 256 hidden units, BatchNorm,
pre-norm placement of the normalization layer.

Exceptions to the above rules are described below. Full hyperparameters are in Table 11.

sCIFAR / LRA Image. This dataset is grayscale sequential CIFAR-10, and the settings for this task
were taken from S4’s hyperparameters on the normal sequential CIFAR-10 task. In particular, this used
LayerNorm instead of BatchNorm, a larger number of hidden features H, post-norm instead of pre-norm,
and minor dropout. We note that the choice of normalization and increased H do not make a significant
difference on final performance, still attaining classification accuracy in the high 80’s. Dropout does seem to
make a difference.

BIDMC. We used a larger state size of N = 256, since we hypothesized that picking up higher frequency
features on this dataset would help. We also used a step scheduler that decayed the LR by 0.5 every 100
epochs, following prior work [8, 18].

20



Table 11: The values of the best hyperparameters found for all datasets; full models on ablation datasets (Top) and
LRA (Bottom). LR is learning rate and WD is weight decay. BN and LN refer to Batch Normalization and Layer
Normalization.

Depth Features H State Size N Norm Pre-norm Dropout LR Batch Size Epochs WD (∆min,∆max)

sCIFAR 6 512 64 LN False 0.1 0.01 50 200 0.05 (0.001, 0.1)
SC 6 128 64 BN True 0 0.01 16 40 0.05 (0.001, 0.1)
BIDMC 6 128 256 LN True 0 0.01 32 500 0.05 (0.001, 0.1)

ListOps 8 128 64 BN False 0 0.01 50 40 0.05 (0.001, 0.1)
Text 6 256 64 BN True 0 0.01 16 32 0.05 (0.001, 0.1)
Retrieval 6 256 64 BN True 0 0.01 64 20 0.05 (0.001, 0.1)
Image 6 512 64 LN False 0.1 0.01 50 200 0.05 (0.001, 0.1)
Pathfinder 6 256 64 BN True 0 0.004 64 200 0.03 (0.001, 0.1)
Path-X 6 256 64 BN True 0 0.0005 32 50 0.05 (0.0001, 0.01)

ListOps. We hypothesized that this task benefits from deeper models, because of the explicit hierarchical
nature of the task, so the architecture used here had 8 layers and H = 128 hidden features. However, results
are very close with much smaller models. We also found that post-norm generalized better than pre-norm,
but results are again close (less than 1% difference).

PathX. As described in Anonymous [1], the initialization range for PathX is decreased from (∆min,∆max) =
(0.001, 0.1) to (∆min,∆max) = (0.0001, 0.01).
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