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Abstract

State space models (SSM) have recently been shown to be very effective as a deep
learning layer as a promising alternative to sequence models such as RNNs, CNNs,
or Transformers. The first version to show this potential was the S4 model, which
is particularly effective on tasks involving long-range dependencies by using a
prescribed state matrix called the HiPPO matrix. While this has an interpretable
mathematical mechanism for modeling long dependencies, it introduces a custom
representation and algorithm that can be difficult to implement. On the other hand,
a recent variant of S4 called DSS showed that restricting the state matrix to be
fully diagonal can still preserve the performance of the original model when using
a specific initialization based on approximating S4’s matrix. This work seeks
to systematically understand how to parameterize and initialize such diagonal
state space models. While it follows from classical results that almost all SSMs
have an equivalent diagonal form, we show that the initialization is critical for
performance. We explain why DSS works mathematically, by showing that the
diagonal restriction of S4’s matrix surprisingly recovers the same kernel in the
limit of infinite state dimension. We also systematically describe various design
choices in parameterizing and computing diagonal SSMs, and perform a controlled
empirical study ablating the effects of these choices. Our final model S4D is a
simple diagonal version of S4 whose kernel computation requires just 2 lines of
code and performs comparably to S4 in almost all settings, with state-of-the-art
results for image, audio, and medical time-series domains, and averaging 85% on
the Long Range Arena benchmark.

1 Introduction

A core class of models in modern deep learning are sequence models, which are parameterized
mappings operating on arbitrary sequences of inputs. Recent approaches based on state space models
(SSMs) have outperformed traditional deep sequence models such as recurrent neural networks
(RNNs), convolutional neural networks (CNNs), and Transformers, in both computational efficiency
and modeling ability. In particular, the S4 model displayed strong results on a range of sequence
modeling tasks, especially on long sequences [9]. Its ability to model long-range dependencies arises
from being defined with a particular state matrix called the “HiPPO matrix” [6], which allows S4 to
be viewed as a convolutional model that decomposes an input onto an orthogonal system of smooth
basis functions[10].

However, beyond its theoretical interpretation, actually computing S4 as a deep learning model
requires a sophisticated algorithm with many linear algebraic techniques that are difficult to understand
and implement. These techniques were necessitated by parameterizing its state matrix as a diagonal
plus low-rank (DPLR) matrix, which is necessary to capture HiPPO matrices. A natural question is

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The
diagonal structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional
model, S4D has a simple interpretable convolution kernel which can be implemented in two lines of code. Colors
denote independent 1-D SSMs; purple denotes trainable parameters.

whether simplifications of this parameterization and algorithm are possible. In particular, removing
the low-rank term would result in a diagonal state space model (diagonal SSM) that is dramatically
simpler to implement and understand.

Although it is known that almost all SSMs have an equivalent diagonal form—and therefore (complex)
diagonal SSMs are fully expressive algebraically—they may not represent all SSMs numerically, and
finding a good initialization is critical. Gu et al. [9] showed that it is difficult to find a performant
diagonal SSM, and that many alternative parameterizations of the state matrix – including by random
diagonal matrices – are much less effective empirically, which motivated the necessity of the more
complicated HiPPO matrix. However, recently Gupta [11] made the empirical observation that a
variant of S4 using a particular diagonal matrix is nearly as effective as the original S4 method. This
matrix is based on the original HiPPO matrix and is defined by simply chopping off the low-rank
term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying
deep state space models, and consolidating models such as S4 and DSS to understand and improve
them. First, the strongest version of DSS computes the SSM with a complex-valued softmax that
complicates the algorithm, and is actually less efficient than S4. Additionally, DSS and S4 differ in
several auxiliary aspects of parameterizing SSMs that can conflate performance effects, making it
more difficult to isolate the core effects of diagonal versus DPLR state matrices. Most importantly,
DSS relies on initializing the state matrix to a particular approximation of S4’s HiPPO matrix. While
S4’s matrix has a mathematical interpretation for addressing long-range dependencies, the efficacy of
the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the
S4D method, a diagonal SSM which combines the best of S4’s computation and parameterization
and DSS’s initialization, resulting in a method that is extremely simple, theoretically princpled, and
empirically effective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR
matrices, which is based on Vandermonde matrix multiplication and is even simpler and more
efficient than the DSS. Outside of the core state matrix, we categorize different representations of
the other components of SSMs, introducing flexible design choices that capture both S4 and DSS
and allow different SSM parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal ap-
proximation of the original HiPPO matrix surprisingly produces the same dynamics as S4 when
the state size goes to infinity. We propose even simpler variants of diagonal SSMs using different
initializations of the state matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and
sequence lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best
S4D methods are competitive with S4 on almost all settings, with near state-of-the-art results on
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image, audio, and medical time series benchmarks, and achieving 85% on the Long Range Arena
benchmark (Section 5).

2 Background

Continuous State Spaces Models S4 investigated state space models (1) that are parameterized
maps on signals u(t) 7→ y(t). These SSMs are linear time-invariant systems that can be represented
either as a linear ODE (equation (1)) or convolution (equation (2)).

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

K(t) = CetAB

y(t) = (K ∗ u)(t)
(2)

Here the parameters are the state matrix A ∈ CN×N and other matrices B ∈ CN×1,C ∈ C1×N . In
the case of diagonal SSMs, A is diagonal and we will overload notation so that An,Bn,Cn denotes
the entries of the parameters.

An intuitive way to view the convolution kernel (2) is to interpret it as a linear combination (controlled
by C) of basis kernels Kn(t) (controlled by A,B)

K(t) =

N−1∑
n=0

CnKn(t) Kn(t) := e⊤n e
tAB (3)

We denote this basis as K(t) = KA,B(t) = etAB if necessary to disambiguate; note that it is a
vector of N functions. In the case of diagonal SSMs, each function Kn(t) is just etAnBn.

S4: Structured State Spaces As a deep learning model, SSMs have many elegant properties with
concrete empirical and computational benefits [8]. For example, the convolutional form (2) can be
converted into a temporal recurrence that is substantially faster for autoregressive applications [5].

However, making SSMs effective required overcoming two key challenges: choosing appropriate
values for the matrices, and computing the kernel (2) efficiently.

First, Gu et al. [8] showed that naive instantiations of the SSM do not perform well, and instead
relied on a particular (real-valued) matrix A called the HiPPO-LegS matrix (4).1 These matrices
were derived so that the basis kernels Kn(t) have closed-form formulas Ln(e

−t), where Ln(t) are
normalized Legendre polynomials. Consequently, the SSM has a mathematical interpretation of
decomposing the input signal u(t) onto a set of infinitely-long basis functions that are orthogonal
respect to an exponentially-decaying measure, giving it long-range modeling abilities [10].

Second, S4 introduced a particular parameterization that decomposed this A matrix into the sum of a
normal and rank-1 matrix (5), which can be unitarily conjugated into a (complex) diagonal plus rank-1
matrix. Leveraging this structured form, they then introduced a sophisticated algorithm for efficiently
computing the convolution kernel (2) for state matrices that are diagonal plus low-rank (DPLR).

Ank = −


(2n+ 1)

1
2 (2k + 1)

1
2 n > k

n+ 1 n = k

0 n < k

Bn = (2n+ 1)
1
2 Pn = (n+ 1/2)

1
2

(HiPPO-LegS matrix used in S4)

(4)

A
(N)
nk = −


(n+ 1

2
)1/2(k + 1

2
)1/2 n > k

1
2

n = k

(n+ 1
2
)1/2(k + 1

2
)1/2 n < k

A = A(N) − PP⊤, A(D) := eig(A(N))

(Normal / diagonal plus low-rank form)
(5)

DSS: Diagonal State Spaces S4 was originally motivated by searching for a diagonal state matrix,
which would be even more structured and result in very simple computation of the SSM. However,
the HiPPO-LegS matrix cannot be stably transformed into diagonal form [9, Lemma 3.2], and they
were unable to find any diagonal matrices that performed well, resulting in the DPLR formulation.

Gupta [11] made the surprising empirical observation that simply removing the low-rank portion
of the DPLR form of the HiPPO-LegS matrix results in a diagonal matrix that performs comparably

1HiPPO also specifies formulas for B, but the state matrix A is more important. There are many other
HiPPO instantiations besides LegS, but HiPPO-LegS is the main one that S4 uses and the term “HiPPO matrix”
without the suffix refers to this one.
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to the original S4 method. More precisely, their initialization is the diagonal matrix A(D), or the
diagonalization of A(N) in (5). They termed A(N) the skew-HiPPO matrix, which we will also call
the normal-HiPPO matrix. To be more specific and disambiguate these variants, we may also call
A(N) the HiPPO-LegS-N or HiPPO-N matrix and A(D) the HiPPO-LegS-D or HiPPO-D matrix.

In addition to this initialization, they proposed a method for computing a diagonal SSM kernel.
Beyond these two core differences, several other aspects of their parameterization differ from S4’s.

In Sections 3 and 4, we systematically study the components of DSS: we categorize different ways to
parameterize and compute the diagonal state space, and explain the theoretical interpretion of this
particular diagonal A matrix.

3 Parameterizing Diagonal State Spaces

We describe various choices for the computation and parameterization of diagonal state spaces. Our
categorization of these choices leads to simple variants of the core method. Both DSS and our
proposed S4D can be described using a combination of these factors (Section 3.4).

3.1 Discretization

The true continuous-time SSM can be represented as a continuous convolution y(t) = (K ∗ u)(t) =∫∞
0

CesABu(t− s) ds.

In discrete time, we view an input sequence u0, u1, . . . as uniformly-spaced samples from an underly-
ing function u(t) and must approximate this integral. Standard methods for doing so that preserve the
convolutional structure of the model exist. The first step is to discretize the parameters. Two simple
choices that have been used in prior work include

(Bilinear) A = (I −∆/2A)−1(I +∆/2A) (ZOH) A = exp(∆A)

B = (I −∆/2A)−1 ·∆B B = (∆A)−1(exp(∆ ·A)− I) ·∆B.

With these methods, the discrete-time SSM output is just

y = u ∗K where K = (CB,CAB, . . . ,CA
L−1

B). (6)

These integration rules have both been used in prior works (e.g. LMU and DSS use ZOH [26, 11]
while S4 and its predecessors use bilinear [6, 8, 9]).

In Section 5, we show that there is little empirical difference between them. However, we note that
there is a curious phenomenon where the bilinear transform actually perfectly smooths out the kernel
used in DSS to match the S4 kernel (Section 4 Fig. 2d). We additionally note that numerical integration
is a rich and well-studied topic and more stable methods of approximating the convolutional integral
may exist. For example, it is well-known that simple rules like the Trapezoid rule [18] can dramatically
reduce numerical integration error when the function has bounded second derivative.

3.2 Convolution Kernel

The main computational difficulty of the original S4 model is computing the convolution kernel K.
This is extremely slow for general state matrices A, and S4 introduced a complicated algorithm for
DPLR state matrices. When A is diagonal, the computation is nearly trivial. By (6),

Kℓ =

N−1∑
n=0

CnA
ℓ

nBn =⇒ K = (B
⊤ ◦C) · VL(A) where VL(A)n,ℓ = A

ℓ

n (7)

where ◦ is Hadamard product, · is matrix multiplication, and V is known as a Vandermonde matrix.

Time and Space Complexity The naive way to compute (7) is by materializing the Vandermonde
matrix VL(A) and performing a matrix multiplication, which requires O(NL) time and space.

However, Vandermonde matrices are well-studied and theoretically the multiplication can be com-
puted in Õ(N + L) operations and O(N + L) space. In fact, Vandermonde matrices are closely
related to Cauchy matrices, which are the computational core of S4’s DPLR algorithm, and have
identical complexity [17].
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Proposition 1. The time and space complexity of computing the kernel of diagonal SSMs is equal to
that of computing DPLR SSMs.

We note that on modern parallelizable hardware such as GPUs, a simple fast algorithm is to compute
(7) with naive summation (using O(NL) operations), but without materializing the Vandermonde
matrix (using O(N + L) space). Just as with S4, this may require implementing a custom kernel in
some modern deep learning frameworks such as PyTorch to achieve the space savings.

3.3 Parameterization

Parameterization of A. Note that the kernel K(t) = CetAB blows up to ∞ as t → ∞ if A has
any eigenvalues with positive real part. Goel et al. [5] found that this is a serious constraint that
affects the stability of the model, especially when using the SSM autoregressively. They propose
to force the real part of A to be negative, also known as the left-half plane condition in classical
controls, by parameterizing the real part inside an exponential function A = − exp(ARe) + i ·AIm.

We note that instead of exp, any activation function can be used as long as its range is bounded on
one side, such as ReLU, softplus, etc. The original DSS does not constrain the real part of A, which
is sufficient for simple tasks involving fixed-length sequences, but could become unstable in other
settings.

Parameterization of B,C. Another choice in the parameterization is how to represent B and
C. Note that the computation of the final discrete convolution kernel K depends only on the
elementwise product B ◦ C (equation (7)). Therefore DSS chose to parameterize this product
directly, which they call W , instead of B and C individually.

However, we observe that this is equivalent to keeping independent B and C, and simply freezing
B = 1 while training C. Therefore, just as S4 has separate parameters A, B, and C and uses a fixed
initialization for A and B, S4D also proposes separate A,B, and C and uses fixed initializations for
A (discussed in Section 4) and B (set to 1). Then the difference between S4D and DSS is simply
that DSS does not train B. In our ablations, we show that training B gives a minor but consistent
improvement in performance.

3.4 S4D: the Diagonal Version of S4

A key component of our exposition is disentangling the various choices possible in representing and
computing state space models. With this categorization, different choices can be mixed and matched
to define variants of the core method. Table 1 compares S4, DSS, and S4D, which have a core
structure and kernel computation, but have various choices of other aspects of the parameterization.

Table 1: (Parameterization choices for Structured SSMs.) Aside from the core structure of A and the
computation of its convolution kernel, SSMs have several design choices which are consolidated in S4D.
Method Structure Kernel Computation Discretization Constraint ℜ(A) Trainable B Initialization of A

S4 DPLR Cauchy Bilinear exp Yes HiPPO
DSS diagonal softmax ZOH id (none) No HiPPO-D
S4D diagonal Vandermonde either exp / ReLU optional various

4 Initialization of Diagonal State Matrices

The critical question remains: which diagonal state matrices A are actually effective? We comment
on the limitations of diagonal SSMs, and then provide three instantiations of S4D that perform well
empirically.

Expressivity and Limitations of Diagonal SSMs. We first present a simplified view on the ex-
pressivity of diagonal SSMs mentioned by [11]. First, it is well-known that almost all matrices
diagonalize over the complex plane. Therefore it is critical to use complex-valued matrices in order
to use diagonal SSMs.

Proposition 2. The set D ⊂ CN×N of diagonalizable matrices is dense in CN×N , and has full
measure (i.e. its complement has measure 0).
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It is also well known that the state space (A,B,C) is exactly equivalent to (i.e. expresses the same
map u 7→ y) the state space (V −1AV ,V −1B,CV ), known in the SSM literature as a state space
transformation. Therefore Proposition 2 says that (almost) all SSMs are equivalent to a diagonal
SSM.

However, we emphasize that Proposition 2 is about expressivity which does not guarantee strong
performance of a trained model after optimization. For example, Gu et al. [9] and Gupta [11] show
that parameterizing A as a dense real matrix or diagonal complex matrix, which are both fully
expressive classes, performs poorly if randomly initialized.

Second, Proposition 2 does not take into account numerical representations of data, which was the
original reason S4 required a low-rank correction term instead of a pure diagonalization [9, Lemma
3.2]. In Section 5.2, we also show that two different initializations with the same spectrum (i.e., are
equivalent to the same diagonal A) can have very different performance.

S4D-LegS. The HiPPO-LegS matrix has DPLR representation A(D)−PP⊤, and Gupta [11] showed
that simply approximating it with A(D) works quite well (5). Our first result is providing a clean math-
ematical interpretation of this method. Theorem 3 shows a surprising fact that does not hold in general
for DPLR matrices (Appendix A.1), and arises out of the special structure of this particular matrix.

Theorem 3. Let A = A(N) −PP⊤ and B be the HiPPO-LegS matrices, and KA,B(t) be its basis.
As the state size N → ∞, the SSM basis KA(N),B/2(t) limits to KA,B(t) (Fig. 2).

Note that A(N) is then unitarily equivalent to A(D), which preserves the stability and timescale [10]
of the system.

We define S4D-LegS to be the S4D method for this choice of diagonal A = A(D). Theorem 3
explains the empirical results in [11] whereby this system performed quite close to S4, but was
usually slightly worse. This is because DSS is a variant of S4D-LegS, which by Theorem 3 is a
noisy approximation to S4-LegS. Fig. 2 illustrates this result, and also shows a curious phenomenon
involving different discretization rules that is open for future work.

S4D-Inv. To further simplify S4D-LegS, we analyze the structure of A(D) = diag⟨A⟩ in more
detail. The real part is easy to understand, which follows from the analysis in [9]: ℜ(A) = − 1

21.
Let the imaginary part be sorted, i.e. ℑ(A)n is the n-th largest (positive) imaginary component. We
empirically deduced the following conjecture for the asymptotics of the imaginary part.

Conjecture 4. As N → ∞, ℑ(A)0 → 1
πN

2 + c where c ≈ 0.5236 is a constant. For a fixed N , the
other eigenvalues satisfy an inverse scaling in n: ℑ(A)n = Θ(n−1).

Fig. 3 empirically supports this conjecture. Based on Conjecture 4, we propose the initialization
S4D-Inv to use the following inverse-law diagonal matrix which closely approximates S4D-LegS.

(S4D-Inv) An = −1

2
+ i

N

π

(
N

2n+ 1
− 1

)
(8) (S4D-Lin) An = −1

2
+ iπn (9)

S4D-Lin. While S4D-Inv can be seen as an approximation to the original S4-LegS, we propose an
even simpler scaling law for the imaginary parts that can be seen as an approximation of S4-FouT
([10]), where the imaginary parts are simply the Fourier series frequencies (i.e. matches the diagonal
part of the DPLR form of S4-FouT). Fig. 1 (Right) illustrates the S4D-Lin basis etAB, which are
simply damped Fourier basis functions.

5 Experiments

Our experimental study shows that S4D has strong performance in a wide variety of domains and
tasks, including the well-studied Long Range Arena (LRA) benchmark where the best S4D variant is
competitive with S4 on all tasks and significantly outperforms all non-SSM baselines.

We begin with controlled ablations of the various representations of diagonal state space models. Sec-
tions 5.1 and 5.2 ablate the proposed methods for parameterizing, computing, and initializing diagonal
SSMs from Sections 3 and 4. Section 5.3 show full results of larger models on standard benchmarks,

Methodology and Datasets. In order to study the effects of different S4 and S4D variants in a
controlled setting, we propose the following protocol. We focus on three datasets covering a varied
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(a) S4-LegS (original S4
kernel)

(b) S4D-LegS (N = 256,
ZOH)

(c) S4D-LegS (N = 1024,
ZOH)

(d) S4D-LegS (N = 1024,
Bilinear)

Figure 2: (Visualization of Theorem 3). (a) The particular (A,B) matrix chosen in S4 results in smooth basis
functions etAB with a closed form formula in terms of Legendre polynomials. By the HiPPO theory, convolving
against these functions has a mathematical interpretation as orthogonalizing against an exponentially-decaying
measure. (b, c) By special properties of this state matrix, removing the low-rank term of its NPLR representation
produces the same basis functions as N → ∞, explaining the empirical effectiveness of DSS. (c) Curiously, the
bilinear transform instead of ZOH smooths out the kernel to exactly match S4-LegS as N grows.

Figure 3: (S4D eigenvalues.) All S4D methods have eigenval-
ues − 1

2
+λni. S4D-LegS theoretically approximates dynamics

of the original (non-diagonal) S4 (Blue), and has eigenvalues
following an inverse law λn ∝ n−1 (Orange). The precise law
is important: other scaling laws with the same range, including
an inverse law with different constant (Purple) and a quadratic
law (Red), perform empirically worse (Section 5.2). A very
different linear law based on Fourier frequencies also performs
well (Green).

range of data modalities (image pixels, biosignal time series, audio waveforms), sequence lengths
(1K, 4K, 16K), and tasks (classification and regression with bidirectional and causal models).

• Sequential CIFAR (sCIFAR). CIFAR-10 images are flattened into a sequence of length 1024, and
a bidirectional sequence model is used to perform 10-way classification.

• BIDMC Vital Signs. EKG and PPG signals of length 4000 are used to predict respiratory rate
(RR), heart rate (HR), and blood oxygen saturation (SpO2). We focus on SpO2 in this study.

• Speech Commands (SC).2 A 1-second raw audio waveform comprising 16000 samples is used for
35-way spoken word classification. We use an autoregressive (AR) model to vary the setting; this
causal setting more closely imitates autoregressive speech generation, where SSMs have shown
recent promise [5].

We fix a simple architecture and training protocol that works generically. The architecture has 4
layers and hidden dimension H = 128, resulting in ∼ 100K parameters. All results are averaged
over multiple seeds (full protocol and results including std. reported in Appendix B).

5.1 Parameterization, Computation, Discretization

Given the same diagonal SSM matrices A,B, there are many variants of how to parameterize
the matrices and compute the SSM kernel described in Section 3. We ablate the different choices
described in Table 1. Results are in Table 2, and show that:

(i) Computing the model with a softmax instead of Vandermonde product does not make much
difference

(ii) Training B is consistently slightly better
(iii) Different discretizations (Section 3.1) do not make a noticeable difference
(iv) Unrestricting the real part of A (Section 3.3) may be slightly better

These ablations show that for a fixed initialization (A,B), different aspects of parameterizing SSMs
make little difference overall. This justifies the parameterization and algorithm S4D uses (Section 3.4),
which preserves the choices of the original S4 model and is simpler than DSS. For the remaining

2We note that a line of prior work including S4 [14, 19, 9] all used a smaller 10-class subset of SC, so our
results on the full dataset are not directly comparable.
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Trainable B Method sCIFAR SC (AR) BIDMC (SpO2)

No Softmax 85.04 89.80 0.1299

No Vandermonde 84.78 89.62 0.1355

Yes Softmax 85.37 90.06 0.1170

Yes Vandermonde 85.37 90.34 0.1274

Discretization Real part of A sCIFAR SC (AR) BIDMC (SpO2)

Bilinear exp 85.20 89.52 0.1193

ReLU 85.06 90.22 0.1172

- 85.35 90.58 0.1102

ZOH exp 85.02 89.93 0.1303

ReLU 84.98 90.03 0.1232

- 85.15 90.19 0.1289

Table 2: Ablations of different parameterizations of diagonal SSMs using S4D-Inv. (Left) trainability and
computation; (Right) discretization and parameterization.

of the experiments in Section 5.2 and Section 5.3, we fix the S4D parameterization and algorithm
described in Section 3. Note that this computes exactly the same kernel as the original S4 algorithm
when the low-rank portion is set to 0, allowing controlled comparisons of the critical state matrix A
for the remainder of this section.

5.2 S4D Initialization Ablations

The original S4 model proposed a specific formula for the A matrix, and the first diagonal version
[11] used a specific matrix based on it. Our new proposed variants S4D-Inv and S4D-Lin also define
precise formulas for the initialization of the A matrix (8). This raises the question of whether the
initialization of the A still needs to be so precise, despite the large simplifications from the original
version. We perform several natural ablations on these initializations, showing that even simple
variations of the precise formula can degrade performance.

Imaginary part scaling factor. The scaling rules for the imaginary parts of S4D-Inv and S4D-Lin
are simple polynomial laws, but how is the constant factor chosen and how important is it? These
constants are based on approximations to HiPPO methods (e.g. Conjecture 4). Note that the range of
imaginary components for S4D-Inv and S4D-Lin are quite different (Fig. 3); the largest imaginary
part is N2

π for S4D-Inv and πN for S4D-Lin.

We consider scaling all imaginary parts by a constant factor of 0.01 or 100.0 to investigate whether
the constant matters. Note that this preserves the overall shape of the basis functions (Fig. 1, dashed
lines) and simply changes the frequencies, and it is not obvious that this should degrade performance.
However, both changes substantially reduce the performance of S4D in all settings.

Randomly initialized imaginary part. Next, we consider choosing the imaginary parts ran-
domly. For S4D-Inv, we keep the real parts equal to − 1

2 and set each imaginary component to
An = − 1

2 +iNπ ( N
2u+1 −1) for u ∼ N ·U [0, 1]. Note that when u is equally spaced in [0, 1] instead of

uniformly random, this exactly recovers S4D-Inv (8), so this is a sensible random approximation to it.

Similarly, we consider a variant of S4D-Lin that replaces the n in (9) with N · U [0, 1].
Table 3a (Random Imag) shows that this small change causes minor degradation in performance.
We additionally note that the randomly initialized imaginary ablation can be interpreted as follows.
Fig. 3 shows the asymptotics of the imaginary parts of SSM matrices, where the imaginary parts of
the eigenvalues correspond to y-values corresponding to uniformly spaced nodes on the x-axis. This
ablation then replaces the uniform spacing on the x-axis with uniformly random x values.

Randomly initialized real part.
We considering initializing the real part of each eigenvalue as −U [0, 1] instead of fixing them to
− 1

2 . Table 3a(Left, Random Real) shows that this also causes minor but consistent degradation in
performance on the ablation datasets. Finally, we also consider randomizing both real and imaginary
parts, which degrades performance even further.

Ablation: Other S4D matrices.
Other simple variants of initializations show that it is not just the range of the eigenvalues but the
actual distribution that is important (Fig. 3). Both S4D-Inv2 and S4D-Quad have real part − 1

2 and
imaginary part satisfying the same maximum value as Conjecture 4. The S4D-Inv2 initialization uses
the same formula as S4D-Inv, but replaces a 2n+ 1 in the denominator with n+ 1. The S4D-Quad
initialization uses a polynomial law with power 2 instead of −1 (S4D-Inv) or 1 (S4D-Lin).

We include two additional methods here that are not based on the proposed S4D-Inv or S4D-Lin
methods. First, S4D-Rand uses a randomly initialized diagonal A, and validates that it performs
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Table 3: (Initialization and Trainability ablations)
Ablation sCIFAR SC (uni) BIDMC (SpO2)

S4D-Lin 85.12 90.66 0.13 Ablation sCIFAR SC (AR) BIDMC

  Scale 0.01 -7.27 -1.92 0.04 S4D-Lin 85.12 90.66 0.128
  Scale 100 -7.91 -4.04 0.08   Scale 0.01 -7.27 -1.92 +0.040
  Random Imag -0.42 -3.08 0.00   Scale 100 -7.91 -4.04 +0.077
  Random Real -0.73 -0.87 0.01   Random Imag -0.42 -3.08 -0.001
  Random Both -1.28 -5.88 0.01   Random Real -0.73 -0.87 +0.011
S4D-Inv 84.79 90.27 0.11   Random Both -1.28 -5.88 +0.007

  Scale 0.01 -5.03 -0.08 0.03
  Scale 100 -7.77 -52.31 0.03 S4D-Inv 84.79 90.27 0.114
  Random Imag -0.29 -0.52 0.01   Scale 0.01 -5.03 -0.08 +0.028
  Random Real 0.12 -2.18 0.03   Scale 100 -7.77 -52.31 +0.034
  Random Both -1.55 -0.55 0.02   Random Imag -0.29 -0.52 +0.010
S4D-Inv2 -2.62 -39.84 0.01   Random Real 0.12 -2.18 +0.032
S4D-Quad -1.83 -0.62 0.02   Random Both -1.55 -0.55 +0.024
S4D-Random -6.32 -1.95 0.03 S4D-Inv2 -2.62 -39.84 +0.005
S4D-Real -5.45 -10.17 0.07 S4D-Quad -1.83 -0.62 +0.024

S4D-Random -6.32 -1.95 +0.034
S4D-Real -5.45 -10.17 +0.066

(a) Ablations of the initialization of the diag-
onal A matrix in S4D. Very simple changes
that largely preserve the structure of the diag-
onal eigenvalues all degrade performance.

sCIFAR SC (uni) BIDMC (SpO2)
Val (first) Val (best) Val (first) Val (best) Val (best) sCIFAR SC (AR) BIDMC

S4-LegS 53.63 86.19 33.87 85.33 0.1049 Frozen (A, B) Acc (first) Acc (best) Acc (first) Acc (best) RMSE (best)

S4-LegT 54.76 86.30 8.77 57.35 0.1106 S4-LegS 53.63 86.19 33.87 85.33 0.1049

Frozen
(A, B)

S4-FouT 55.28 86.05 9.27 69.57 0.1072 S4-LegT 54.76 86.30 8.77 57.35 0.1106

S4-LegS+FouT 54.38 86.53 34.06 83.37 0.0887 S4-FouT 55.28 86.05 9.27 69.57 0.1072

S4D-LegS 50.87 84.81 22.76 77.18 0.0960 S4-LegS+FouT 54.38 86.53 34.06 83.37 0.0887

S4D-Inv 53.19 84.40 18.49 76.53 0.0995 S4D-LegS 50.87 84.81 22.76 77.18 0.0960

S4D-Lin 51.75 84.96 19.09 75.58 0.0935 S4D-Inv 53.19 84.40 18.49 76.53 0.0995

S4D-Lin 51.75 84.96 19.09 75.58 0.0935

S4-LegS 54.23 86.29 62.19 90.68 0.1033 Trainable (A, B)

S4-LegT 55.16 86.12 55.86 90.42 0.1146 S4-LegS 54.23 86.29 62.19 90.68 0.1033

Trainable
(A, B)

S4-FouT 55.89 85.93 60.56 90.83 0.1136 S4-LegT 55.16 86.12 55.86 90.42 0.1146

S4-LegS+FouT 55.00 86.18 61.76 91.01 0.0970 S4-FouT 55.89 85.93 60.56 90.83 0.1136

S4D-LegS 50.41 85.64 47.54 88.47 0.1148 S4-LegS+FouT 55.00 86.18 61.76 91.01 0.0970

S4D-Inv 53.42 84.59 45.73 89.69 0.1132 S4D-LegS 50.41 85.64 47.54 88.47 0.1148

S4D-Lin 52.23 85.75 47.68 89.56 0.1032 S4D-Inv 53.42 84.59 45.73 89.69 0.1132

S4D-Lin 52.23 85.75 47.68 89.56 0.1032

(b) Results for all S4 and S4D methods on the ablation datasets,
when the A and B matrices are either frozen (Top) or trained
(Bottom). Diagonal state matrices are highly competitive with full
DPLR versions, achieving strong results on all datasets.

poorly, in line with earlier findings [9, 11]. Second, S4D-Real uses a particular real initialization with
An = −(n+ 1). This is the exact same spectrum as the original S4(-LegS) method, which validates
that it is not just the diagonalization that matters, highlighting the limitations of Proposition 2.

5.3 Full Comparisons of S4D and S4 Methods

Trainable A,B matrices.
Table 3b shows the performance of all S4D and S4 variants [10] on the ablations datasets. We observe
several interesting phenomena:

(i) Freezing the matrices performs comparably to training them on sCIFAR and BIDMC, but is
substantially worse on SC. We hypothesize that this results from ∆ being poorly initialized
for SC, so that at initialization models do not have context over the entire sequence, and
training A and B helps adjust for this. As further evidence, the finite window methods
S4-LegT and S4-FouT (defined in [10]) have the most limited context and suffer the most
when A is frozen.

(ii) The full DPLR versions are often slightly better than the diagonal version throughout the
entire training curve. We report the validation accuracy after 1 epoch of training on sCIFAR
and SC to illustrate this phenomenon. Note that this is not a consequence of having more
parameters (Appendix B).

Large models on ablation datasets.
Finally, we relax the strict requirements on model size and regularization for the ablation datasets,
and show the performance of S4 and S4D variants on the test sets with a larger model (architecture
and training details in Appendix B) when the model size and regularization is simply increased
(Table 4). We note that results for each dataset are better than the original S4 model, which was
already state-of-the-art on these datasets [8, 9].

Long Range Arena.
We use the same hyperparameter setting for the state-of-the-art S4 model in [10] on the Long
Range Arena benchmark for testing long dependencies in sequence models. S4D variants are highly
competitive on all datasets except Path-X, and outperform the S4 variants on several of them. On
Path-X using this hyperparameter setting with bidirectional models, only S4D-Inv, our simpler
approximation to the original S4-LegS model, achieves above random chance, and has an average of
85% on the full LRA suite, more than 30 points better than the original Transformer [24].

9



Table 4: (Ablation datasets: Full results with larger models.) For Speech Commands, we show both an
autoregressive model as in the ablations, and an unconstrained bidirectional model.

MODEL SCIFAR SC BIDMC

TEST AR BI. HR RR SPO2

S4-LegS 91.80 (0.43) 93.60 (0.13) 96.08 (0.15) 0.332 (0.013) 0.247 (0.062) 0.090 (0.006)
S4-FouT 91.22 (0.25) 91.78 (0.10) 95.27 (0.20) 0.339 (0.020) 0.301 (0.030) 0.068 (0.003)

S4D-LegS 89.92 (1.69) 93.57 (0.09) 95.83 (0.14) 0.367 (0.001) 0.248 (0.036) 0.102 (0.001)
S4D-Inv 90.69 (0.06) 93.40 (0.67) 96.18 (0.27) 0.373 (0.024) 0.254 (0.022) 0.110 (0.001)
S4D-Lin 90.42 (0.03) 93.37 (0.05) 96.25 (0.03) 0.379 (0.006) 0.226 (0.008) 0.114 (0.003)

Table 5: (Long Range Arena) Accuracy on full suite of LRA tasks. Hyperparameters in Appendix B.
MODEL LISTOPS TEXT RETRIEVAL IMAGE PATHFINDER PATH-X AVG

S4-LegS 59.60 (0.07) 86.82 (0.13) 90.90 (0.15) 88.65 (0.23) 94.20 (0.25) 96.35 86.09
S4-FouT 57.88 (1.90) 86.34 (0.31) 89.66 (0.88) 89.07 (0.19) 94.46 (0.24) ✗ 77.90

S4D-LegS 60.47 (0.34) 86.18 (0.43) 89.46 (0.14) 88.19 (0.26) 93.06 (1.24) 91.95 84.89
S4D-Inv 60.18 (0.35) 87.34 (0.20) 91.09 (0.01) 87.83 (0.37) 93.78 (0.25) 92.80 85.50
S4D-Lin 60.52 (0.51) 86.97 (0.23) 90.96 (0.09) 87.93 (0.34) 93.96 (0.60) ✗ 78.39

S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
Transformer 36.37 64.27 57.46 42.44 71.40 ✗ 53.66

6 Conclusion

State space models based on S4 are a promising family of models for modeling many types of sequen-
tial data, with particular strengths for continuous signals and long-range interactions. These models
are a large departure from conventional sequence models such as RNNs, CNNs, and Transformers,
with many new ideas and moving parts. This work provides a more in-depth exposition for all aspects
of working with S4-style models, from their core structures and kernel computation algorithms, to
miscellaneous choices in their parameterizations, to new theory and methods for their initialization.
We systematically analyzed and ablated each of these components, and provide recommendations
for building a state space model that is as simple as possible, while as theoretically principled and
empirically effective as S4. We believe that S4D can be a strong generic sequence model for a variety
of domains, that opens new directions for state space models theoretically, and is much more practical
to understand and implement for practitioners.
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with optimal polynomial projections. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[7] Albert Gu, Caglar Gulcehre, Tom Le Paine, Matt Hoffman, and Razvan Pascanu. Improving the
gating mechanism of recurrent neural networks. In The International Conference on Machine
Learning (ICML), 2020.

[8] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
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