
Supplement to “JAWS: Auditing Predictive
Uncertainty Under Covariate Shift”

Drew Prinster
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21211
drew@cs.jhu.edu

Anqi Liu
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21211
aliu@cs.jhu.edu

Suchi Saria
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21211
ssaria@cs.jhu.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A Supplementary background details

A.1 Error assessment motivation: Concrete example

The error-assessment approach to predictor auditing may be more actionable than the interval-
generation approach in safety-critical or high-stakes decision-making situations where there is a
clearly defined margin of error that is considered safe or acceptable. One example is chemical or
radiation therapy dose prediction for cancer treatment, where administering the correct dosage within
5%�10% is safety-critical. Machine learning is being increasingly employed in cancer chemotherapy
and radiotherapy for purposes including dose optimization [Feng et al., 2018, Huynh et al., 2020].
Dose errors are one of the most common types of errors in chemotherapy and radiotherapy, occurring
when a patient is given a substantially higher or lower than optimal amount of chemical or radiation
treatment [Weingart et al., 2018, Van Herk, 2004]. An overdose of either chemotherapeutics or
radiation can be harmful or even lethal to a patient, whereas underdose can result in a reduced
anticancer effect [Gurney, 2002]. A dose error is generally defined as a percentage deviation, between
an administered dose and the truly optimal dose that should have been administered, beyond some
error tolerance: 5% or 10% are commonly used deviation thresholds for defining errors [Cohen et al.,
1996, Van Herk, 2004]. Accordingly, the probability that the optimal dosage level lies within say 10%
of the predicted dosage level may be of greater interest to a provider and their patient than identifying
a predictive interval with some predetermined coverage probability (which would provide no error
assurance whenever the predictive interval extends beyond the safe threshold, say of ±10%).

A.2 Supplementary background on covariate shift

Covariate shift is a type of dataset shift where the Y |X distribution is the same between training and
test data but the marginal X distributions are allowed to change [Sugiyama et al., 2007, Shimodaira,
2000]. This is a strong but common assumption for many dataset shift problems. Covariate shift
is also closed related to data missingness and sample selection bias [Bickel et al., 2009]. The most
prevalent method for correcting the shift is by applying likelihood ratio or “importance” weights
[Sugiyama et al., 2007, Shimodaira, 2000]. Density ratio estimation is then a key subproblem of
covariate shift correction [Sugiyama et al., 2012]. Other methods dealing with covariate shift include
matching the (kernel) representation between the two distributions [Gretton et al., 2009, Yu and
Szepesvári, 2012, Zhang et al., 2013, Zhao et al., 2021] and robust optimization [Liu and Ziebart,
2014, Chen et al., 2016, Duchi et al., 2019, Rezaei et al., 2021].

A.3 Supplementary comparison to Barber et al. [2022]

In the Section 2.3 of the main paper we contrast our JAW method to the results in Barber et al.
[2022] regarding the nonexchangeable jackknife+. We emphasize that Barber et al. [2022] uses fixed
weights and compensates for unknown violations of exchangeability at the expense of a coverage gap,
whereas JAW uses data-dependent likelihood ratio weights and assumes covariate shift but does not
suffer from a coverage gap. Additionally, it is also important to take note of and contrast our work
with an extension of the framework in Barber et al. [2022] to data-dependent weights that the authors
briefly discuss in their Section 5.3, subsection titled “Fixed versus data-dependent weights” (though
this extension is not a primary focus of their work). In short, this extension from Barber et al. [2022]
does not generalize to JAW beyond giving a trivial coverage guarantee.

In particular, Barber et al. [2022] do not propose a likelihood-ratio weighting of the jackknife+, but if
one were to define the weights in their nonexchangeable jackknife+ as data-dependent, likelihood
ratio weights like in our JAW method, then the extension discussed in Section 5.3 of Barber et al.
[2022] would in general suffer a coverage gap that could approach 1 under covariate shift. That is,
under covariate shift assumptions and with wi = w(Xi) representing the likelihood ratio for datapoint
i, the conditional total variation distance between the original ordered data Z = (Z1, ..., Zn+1) and
the swapped data Zi = (Z1, ..., Zi�1, Zn+1, Zi+1, ..., Zn) can generally approach 1 for nontrivial
covariate shift, i.e., dTV (Z,Zi|w1, ..., wn, t1, ..., tn+1) ! 1. This is because under the covariate
shift the training data {Z1, ..., Zn} and test point Zn+1 are not exchangeable (they are weighted
exchangeable), meaning that the unweighted data distributions Z and Zi may have arbitrarily large
total variation distance. The result would then be the trivial coverage guarantee (i.e., only guaranteeing
coverage probability � 0).

15

A.4 Supplemnetary background on influence functions

In this work we implement the algorithm proposed by Giordano et al. [2019a] to compute higher-order
influence functions (IFs), so we refer to Giordano et al. [2019a] for more comprehensive details and
theory. However, in this supplementary section we provide additional details on basic IFs theory and
our use of IFs for the convenience of the interested reader.

For a weight vector variable ! 2 Rn and a fixed instance of the variable ! = !̃ representing a
specific reweighting of the data, let us denote bµ!̃ as the refitted model and ✓̂(!̃) as the refitted model
parameters that would be obtained by retraining the model with data weights !̃. With our notation
in this section we maintain some similarity to the notation in Giordano et al. [2019a], but we use
the Greek character ! rather than w to disambiguate the IF data weights ! from the likelihood-ratio
weights w introduced in Section 2.3. For the leave-one-out weight vectors that are of primary interest
for approximating the jackknife+ and related methods with influence functions, for ease of notation
we say that !̃ = �i denotes the all ones vector except with zero in the i-th component so that bµ�i still
denotes the leave-one-out retrained model, and we denote the corresponding leave-one-out parameters
as ✓̂�i = ✓̂(�i).

For any specific weights !̃, influence functions assume that ✓̂(!̃) is a local minimum of the objective
function, and thus that ✓̂(!̃) is the solution to the following system of equations, where G is the
gradient of the objective function with respect to the model parameters:

✓̂(!̃) := ✓ such that G(✓, !̃) :=
1

n

⇣
g0(✓) +

nX

i=1

!̃igi(✓)
⌘
= 0, (17)

where gi(✓) is the gradient of the objective function for datapoint i and g0(✓) is a prior or regularization
term. For the predictor bµ = bµ1n trained on the full, original dataset, we have !̃ = 1n and can thus
denote the model parameters for bµ as ✓̂ = ✓̂(1n). For a resampling-based uncertainty quantification
method like the jackknife+ (or bootstrap, cross validation, or other jackknife methods), retraining the
model for each new reweighting of the training data can sometimes be computationally burdensome
or prohibitive. In these cases, we can instead estimate ✓̂(!) using influence functions to compute a
Taylor series expansion in ! centered at 1n (or more specifically a Von Mises expansion, see Fernholz
[2012]). A first-order influence function—which we will denote as �1

!
✓̂(1n) for consistency with

notation in Giordano et al. [2019a]—refers to the first-order directional derivative of the parameters
✓̂(!) with respect to the weights !:

�1
!
✓̂(1n) =

nX

i=1

@✓̂(!)

@!i

����
!=1n

�!i, (18)

where �! = ! � 1n is the direction of change in weights relative to the original weights 1n. The
first-order influence function �1

!
✓̂(1n) thus enables a first-order Taylor series approximatinon of ✓̂(!),

given by

✓̂IF-1(!) := ✓̂(1n) + �1
!
✓̂(1n). (19)

Computing the influence function �1
!
✓̂(1n) requires differentiation through the chain rule because

✓̂(!) is only implicitly a function of ! through estimating equation (17). The first-order Taylor series
approximation of ✓̂(!) given in (19) can then be rewritten as

✓̂IF-1(!) := ✓̂(1n)� Ĥ(✓̂)�1G(✓̂)(w � 1n). (20)

where Ĥ(✓̂) = Ĥ(✓̂(1n), 1n) and G(✓̂) = G(✓̂(1n), 1n) are the Hessian and the gradient of the
objective function.

Similarly, higher-order Taylor series approximations of ✓̂(!) can be obtained using higher order
influence functions �k

!
✓̂(1n), where the K-th order Taylor series is given by

✓̂IF-K(!) := ✓̂(1n) +
KX

k=1

1

k!
�k
!
✓̂(1n). (21)

16

Computing ✓̂IF-K(!) requires several assumptions. See Giordano et al. [2019a] for a formal list, but
informally we assume that ✓̂(1n) is the solution to G(✓̂(1n), 1n) = 0, that G(✓, 1n) is K + 1 times
continuously differentiable, that the hessian H(✓̂) is strongly positive definite (meaning that the
objective function is strongly convex in the neighborhood of the local solution), and the norm of the
derivative dk

✓
G(✓, 1n) has a finite upper bound for 1 k K + 1. In this work, we implement the

recursive procedure based on forward-mode automatic differentiation to achieve memory-efficient
computation of higher-order directional derivatives Maclaurin et al. [2015] as described in Giordano
et al. [2019a].

While Alaa and Van Der Schaar [2020] propose a higher-order IF approximation of the jackknife+,
their method assumes exchangeable (e.g., IID) train and test data and offer experiments with only
first and second order IF approximations to the jackknife+. Our proposed JAWA sequence extends
the IF approximation of the jackknife+ proposed by Alaa and Van Der Schaar [2020] to the setting of
covariate shift, and we demonstrate the benefits of this extension on a variety of datasets and orders
of influence function approximation.

B Supplementary theoretical results

B.1 JAW with general weighted exchangeability

In this work, we define the JAW prediction interval (8) using likelihood-ratio weights to address
covariate shift as in (2) due to the prevalence and applicability of the covariate shift assumption.
However, it is also natural to define a more general version of JAW for other instances of weighted
exchangeable data (analogously to how Tibshirani et al. [2019] covers covariate shift as a special
case of weighted conformal prediction).

That is, denoting {Z1, ..., Zn+1} = {(X1, Y1), ..., (Xn+1, Yn+1)}, from Tibshirani et al. [2019] we
can define

pw
i
(z1, ..., zn+1) =

P
�:�(n+1)=i

Q
n+1
j=1 wj(z�(j))

P
�

Q
n+1
j=1 wj(z�(j))

, (22)

which simplifies to the normalized likelihood ratio weights defined in (3) as a special case when
w1 = ... = wn and wn+1 = w = d ePX

dPX

, as shown in the proof for Corollary 1 in Tibshirani et al.
[2019]. A more general version of the JAW prediction interval for general weighted exchangeability
with weight functions w1:n+1 = {w1, ..., wn+1} can then be defined as

bCgeneral JAW
n,↵,w1:n+1

(Xn+1) =
h
Q↵

�
pw
i
(Z1, ..., Zn+1) · �bµ�i(Xn+1)�RLOO

i

+ pw
n+1(Z1, ..., Zn+1)��1

,

Q1�↵

�
pw
i
(Z1, ..., Zn+1) · �bµ�i(Xn+1)+RLOO

i

+ pw
n+1(Z1, ..., Zn+1)�1

 i
,

(23)

where RLOO

i
=
��bµ�i(Xi)�Yi

��, with the pw
i
(Z1, ..., Zn+1) defined as in (22), and where Q� denotes

the level � quantile function.

The JAW coverage proof technique in Appendix C.1 yields the following result after substituting in
the general normalized weights pw

i
(Z1, ..., Zn+1) defined in (22) for the normalized likelihood ratio

weights pw
i
(Xn+1) and replacing mentions of “covariate shift” with “weighted exchangeability”:

Theorem S1. Assume that Zi = (Xi, Yi) 2 Rd ⇥ R, i 2 {1, ..., n+ 1} are weighted exchangeable
with weight functions w1, ..., wn+1. For ↵ 2 (0, 1), the generalized JAW prediction interval in (23)
satisfies

P
�
Yn+1 2 bCgeneral JAW

n,↵,w1:n+1
(Xn+1)

� 1� 2↵ (S1)

B.2 Error assessment assuming exchangeable data

While in Section 3.3 of the main paper we present a general approach to repurposing predictive
interval-generating methods with validity under covariate shift to the error assessment task, here
we present the analogous results under the exchangeable data assumption. The results in this

17

Figure 6: Illustration of terms involved in computing ↵audit
E

when errors are defined by the event
|Yn+1 � bµ(Xn+1)| > ⌧ . The interval E = [bµ(Xn+1) � ⌧, bµ(Xn+1) + ⌧] is shown in violet, the
values {V L

i
} in blue, the values {V U

i
} in red, and the interval bCaudit

n,↵
(Xn+1) in green. Each vertical

line at a location Vi on the real line represents a point mass �Vi
with height 1

n+1 .

section directly apply to common predictive interval-generating methods including split conformal,
jackknife+, and cross-validation+.

The setup is the same as in the main paper Section 3.3, where we first define

E =
�
y 2 R : ⌧� bS(Xn+1, y) ⌧+

. (24)

However, unlike the covariate shift setting, we instead assume exchangeable data and access to a
predictive inference method with valid predictive intervals of the form

bCaudit
n,↵

(Xn+1) =
�
y : bQ�

↵
{ 1
n+1�V L

i

} bS(Xn+1, y) bQ+
1�↵

{ 1
n+1�V U

i

}

(25)

Recall that we use Q�
↵
{ 1
n+1�V L

i

} to denote the level ↵ quantile of the empirical distributionP
n

i
[1
n+1�V L

i

] + ��1 and Q+
1�↵

{ 1
n+1�V U

i

} to denote the level 1 � ↵ quantile of the empirical
distribution

P
n

i
[1
n+1�V U

i

] + �1. (Analogous to as stated in Section 3.3, (25) gives the jack-
knife+ interval (5) by setting bS(x, y) = y � bµ(x), V L

i
= bµ�i(Xn+1) � bµ(Xn+1) � RLOO

i
, and

V U

i
= bµ�i(Xn+1)� bµ(Xn+1) +RLOO

i
. And, (25) gives the prediction interval for split conformal

prediction for absolute value residual scores when bS(x, y) = |y� bµ(x)|, and for all calibration data i
we let V U

i
= |Yi � bµ(Xi)| and V L

i
= 0.) Then, define ↵audit

E
as

↵audit
E

= min
⇣n

↵0 : ⌧� bQ�
↵0{ 1

n+1�V L

i

} , bQ+
1�↵0{ 1

n+1�V U

i

} ⌧+
o⌘

. (26)

We can then estimate the probability of bµ(Xn+1) not resulting in an error as in (12) as:

bp{Yn+1 2 E} =

⇢
1� ↵audit

E
if ↵audit

E
exists

0 otherwise.
(27)

While the target coverage for bCaudit
n,↵E

(Xn+1) is used in (15), the following theorem gives the worst-
case error assessment guarantee for exchangeable data (proof in Appendix C.4).
Theorem S2. If a predictive inference method that generates predictive sets of the form (25) has
coverage guarantee P{Yn+1 2 bCaudit

n,↵
(Xn+1)} � 1� c1↵� c2 assuming exchangeable data, where

c1, c2 2 R, define E as in (24) and ↵w-audit
E

as in (26). Then,

P{Yn+1 2 E} �
(
1� c1↵audit

E
� c2 if ↵audit

E
exists and ↵audit

E
< 1�c2

c1

0 otherwise
. (28)

B.3 JAW-E error assessment guarantee

We now state the error assessment guarantee for JAW-E as Corollary 1, which follows directly from
Theorem 3. First, recall that we assume a predictive inference that has valid coverage under covariate
shift and can be written in the form of (13), which we restate here:

bCw-audit
n,↵

(Xn+1) =
�
y 2 R : bQ�

↵
{pw

i
(Xn+1)�V L

i

} bS(Xn+1, y) bQ+
1�↵

{pw
i
(Xn+1)�V U

i

}

(29)

18

To obtain the JAW predictive interval from (29), we define the test point score function2 as bS(x, y) =
y � bµ(x), and for all i 2 {1, ..., n} we let V L

i
= bµ�i(Xn+1) � bµ(Xn+1) � RLOO

i
and V U

i
=

bµ�i(Xn+1)� bµ(Xn+1) +RLOO

i
:

bCw-audit
n,↵

(Xn+1) =
�
y 2 R : bQ�

↵
{pw

i
(Xn+1)�bµ�i(Xn+1)�bµ(Xn+1)�RLOO

i

} y � bµ(Xn+1)

 bQ+
1�↵

{pw
i
(Xn+1)�bµ�i(Xn+1)�bµ(Xn+1)+RLOO

i

}

=
�
y 2 R : bQ�

↵
{pw

i
(Xn+1)�bµ�i(Xn+1)�RLOO

i

} y

 bQ+
1�↵

{pw
i
(Xn+1)�bµ�i(Xn+1)+RLOO

i

}

= bCJAW
n,↵

(Xn+1) (30)

Then, let us define ↵JAW

E
as:

↵JAW

E
= min

 n
↵0 : ⌧� Q�

↵0{pwi (Xn+1)�bµ�i(Xn+1)�RLOO

i

},

Q+
1�↵0{pwi (Xn+1)�bµ�i(Xn+1)+RLOO

i

} ⌧+
o!

. (31)

Corollary 1. Assume data under covariate shift from (2) where P̃X is absolutely continuous with
respect to PX . Define E as in (12) and ↵JAW

E
as in (31). Then,

P{Yn+1 2 E} �
⇢
1� 2↵JAW

E
if ↵JAW

E
exists and ↵JAW

E
< 1

2

0 otherwise
(32)

B.4 JAWA-E error assessment guarantee

Lastly for our theoretical results, we state the error assessment guarantee for JAWA-E as Corollary 2.
Whereas Corollary 1 holds for finite samples, Corollary 2 holds in the limit either of the number of
samples or in the order of the influence function approximation.

First, define

↵JAWA-K
E

= min

 n
↵0 : ⌧� Q�

↵0{pwi (Xn+1)�bµIF-K
�i

(Xn+1)�R
IF-K,LOO

i

} ,

Q+
1�↵0{pwi (Xn+1)�bµIF-K

�i
(Xn+1)+R

IF-K,LOO

i

} ⌧+
o!

. (33)

Corollary 2. Let Assumptions 1 - 4 and either Condition 2 or Condition 4 from Giordano et al.
[2019a] hold uniformly for all n. Assume data under covariate shift from (2) where P̃X is absolutely
continuous with respect to PX . Define E as in (12) and ↵JAWA-K

E
as in (33). Then,

Then, as either n ! 1 or as K ! 1, we have

P{Yn+1 2 E} �
⇢
1� 2↵JAWA-K

E
if ↵JAWA-K

E
exists and ↵JAWA-K

E
< 1

2

0 otherwise
(34)

2Note that the test point score function bS(x, y) = y�bµ(x) that we use to obtain an alternative definition of the
JAW interval in (30) (and could analogously be used to define the jackknife+) has nuanced differences from the
score functions used in weighted standard conformal prediction methods (as well as in their unweighted variants).
As mentioned in the main paper, (29) yields the weighted split conformal prediction interval for absolute value
residual scores when bS(x, y) = |y � bµ(x)|, and for all holdout calibration data i we let V U

i = |Yi � bµ(Xi)|
and V L

i = 0—so, we observe that for weighted split conformal prediction V U

i = bS(Xi, Yi) for all calibration
data i, and thus bS can be understood as a “nonconformity score” as in standard conformal prediction. However,
for JAW (and the jackknife+) there is a less clear correspondence between bS(x, y) = y � bµ(x) and {V U

i } (or
{V L

i }). We thus choose to define bS as a test point score function in an effort to simultaneously maintain greater
clarity on its meaning from a user’s perspective, maintain intuitive connections to standard conformal prediction
methods, and also avoid suggesting that {V U

i } and {V L

i } are directly defined from bS in the case of JAW and
the jackknife+. It is also worth noting that there may be some score functions for which the jackknife+ and JAW
are not defined, in which case the corresponding error assessment methods would not be defined.

19

C Proofs for theoretical results

C.1 Proof of Theorem 1

Proof. We use (a) - (d) to denote four setup steps, and we use 1-3 to denote the main steps in the
proof. Our first two initial setup steps (a) and (b) are identical to the corresponding setup steps in the
proof for Theorem 1 in Barber et al. [2021]:

(a) First, we suppose the hypothetical case where in addition to the training data
{(X1, Y1), ..., (Xn, Yn)}, we also have access to the test point (Xn+1, Yn+1). For each pair
of indices i, j 2 {1, ..., n+1} with i 6= j, we define µ̃�(i,j) as the regression function fitted
on the training and test data except with the points i and j removed. (We follow the notation
in Barber et al. [2021] where µ̃ rather than bµ reminds us that the former is fit on a subset of
data 1, ..., n+ 1 that may contain the test point n+ 1.) We note that µ̃�(i,j) = µ̃�(j,i) for
any i 6= j, and µ̃�(i,n+1) = bµ�i for any i = 1, ..., n.

(b) We also define the same matrix of residuals in Barber et al. [2021], R 2 R(n+1)⇥(n+1), with
entries

Rij =

⇢
+1 i = j,
|Yi � µ̃�(i,j)(Xi)| i 6= j

such that the off-diagonal entries Rij represent the residual for the ith datapoint where both
i and j are not seen by the regression fitting.

At this point we begin to introduce some changes to the proof in Barber et al. [2021]:

(c) We define a weighted comparison matrix that we call Aw 2 R(n+1)⇥(n+1). First, define A as
the unweighted comparison matrix in Barber et al. [2021] with entries Aij = {Rij > Rji}
(indicators for the event that, when i and j are excluded from the regression fitting, i has
larger residual than j), and define W as the diagonal matrix with Wii = pw

i
(Xn+1). Then,

define Aw = WAW , so that Aw has entries Aw

ij
= pw

i
(Xn+1) · pwj (Xn+1) · {Rij > Rji}.

For any i, j 2 {1, ..., n+1}, note that Aw

ij
> 0 implies Aw

ji
= 0 for any i, j 2 {1, ..., n+1}.

(Moreover, note that in the absence of covariate shift, pw
i
(Xn+1) = pw

j
(Xn+1) =

1
n+1 for

all i, j 2 {1, ..., n+ 1} and the weighted comparison matrix Aw becomes equivalent up to
a normalization constant to the unweighted comparison matrix A described in Barber et al.
[2021], i.e., with exchangeable data Aw = A/(n+ 1)2.)

(d) Next, as in Barber et al. [2021] we are interested in identifying points that have unusually
large residuals and are thus hard to predict. Barber et al. [2021] defined such points with
unusually large residuals as points i where {Rij > Rji} for a sufficiently large fraction
of other points j. However, in the covariate shift setting, we need to account for the fact
that the informativeness of the comparison {Rij > Rji} depends on the likelihood of j
in the test distribution relative to the training distribution: If w(Xj) > w(Xj0) for some
points j, j0 2 {1, ..., n+ 1}\i, j 6= j0, then the comparison {Rij > Rji} should contain
more information about how difficult i is to predict than the comparison {Rij0 > Rj0i}.
In particular, we are interested in identifying points i where {Rij > Rji} for a sufficiently
large total normalized weight of other points j. With this motivation, we here define the set
of “strange” points S(Aw) ✓ {1, ..., n+ 1} in the following two equivalent ways that each
serve a different illustrative purpose:

S(Aw) =
n
i 2 {1, ..., n+ 1} : w(Xi) > 0,

n+1X

j=1

⇣
pw
j
(Xn+1) · {Rij > Rji}

⌘
� 1� ↵

o

=
n
i 2 {1, ..., n+ 1} : w(Xi) > 0,

P
n+1
j=1 Aw

ij

pw
i
(Xn+1)

� 1� ↵
o

The first definition represents our intuition of S(Aw) as a set of “strange” points, which
we have described (where {Rij > Rji} for a sufficiently large total normalized weight
of other points j). That is, in the first definition it is relatively straightforward to see

20

how S(Aw) ✓ {1, ..., n + 1} is the set of points i 2 {1, ..., n + 1} such that for all the
points j 2 {1, ..., n+ 1}, j 6= i where Rij > Rji, that the sum of the normalized weights
pw
j
(Xn+1) of all such points j is sufficiently large (at least 1 � ↵). On the other hand,

the second definition represents how the set of strange points can be computed from the
weighted comparison matrix Aw, where

P
n+1
j=1 Aw

ij
/pw

i
(Xn+1) is the row sum of the ith

row in Aw divided by the common factor of the ith row, pw
i
(Xn+1). (In the absence of

covariate shift when w(Xk) = 1 for all k 2 {1, ..., n+ 1}, these definitions are equivalent
to the set of strange points in the jackknife+ coverage proof in Barber et al. [2021].)

The following main steps in our proof take the following structure similar to as in Barber et al. [2021],
but generalizing each step to covariate shift:

• Step 1: Establish deterministically that
P

i2S(Aw) p
w

i
(Xn+1) 2↵. That is, for any

comparison matrix Aw, it is impossible to have the total normalized weight of all the strange
points exceed 2↵.

• Step 2: Using the fact that the datapoints are weighted exchangeable, show that the probabil-
ity that the test point n+ 1 is strange (i.e., n+ 1 2 S(Aw)) is thus bounded by 2↵.

• Step 3: Lastly, verify that the JAW interval can only fail to cover the test label value Yn+1 if
n+ 1 is a strange point.

Step 1: Bounding the total normalized weight of the strange points. This proof step follows and
generalizes the corresponding proof step for Theorem 1 in Barber et al. [2021], which relies on
Landau’s theorem for tournaments [Landau, 1953]. For each pair of points i and j where i 6= j, let
us say that i “wins” its game against point j if Aw

ij
> 0, that is if both i and j have nonzero density

in the test distribution and if there is a higher residual on point i than on point j for the regression
model µ̃�(i,j). We say that i loses its game with j otherwise.

However, whereas Barber et al. [2021] derive a bound on the number of strange points from a bound
on the number of pairs of strange points, we instead derive a bound on the total normalized weight
of the strange points from a bound on the sum of the product of normalized weights for two strange
points in a pair. As we will see, this idea generalizes the idea of counting pairs of points to account
for continuous weights on the points: If all points have uniform unnormalized weight of 1, then, after
adjusting for a normalizing constant in our construction, the product of unnormalized weights of
points in a pair is 1 for all pairs and our construction reduces to bounding the number of distinct pairs
of strange points.

Observe that, by the definition of a strange point, the points that each strange point i 2 S(Aw) wins
against must have total normalized weight greater than or equal to (1� ↵), and thus the points that
each strange point i 2 S(Aw) loses to can only have total normalized weight at most ↵� pw

i
(Xn+1)

(our definition does not allow i to lose to itself). That is:

Total normalized weight
of points that i loses to =

n+1X

j=1

⇣
pw
j
(Xn+1) · {Rij Rji}

⌘
 ↵� pw

i
(Xn+1)

This inequality will help us obtain an upper bound on the sum of the product of normalized weights
between strange points in a pair. To aid with intuition, it may be helpful to think about a correspon-
dance between a product of two weights and the area of a rectangle with side lengths equal to each
weight value. Suppose that for each strange point i 2 S(Aw) we construct a rectangle Li with width
equal point i’s normalized weight, pw

i
(Xn+1), and length equal to the largest total normalized weight

that the points that i loses to could have, ↵� pw
i
(Xn+1). In addition, suppose that we also construct

a second rectangle L0
i

for each strange point i 2 S(Aw) with width equal to pw
i
(Xn+1)—note that

L0
i

has the same width as Li—but with length equal to half the total normalized weight of all of the
strange points other than i, that is, 1

2

P
j2S(Aw)\i pw

j
(Xn+1).

We now take a moment to describe the meaning of the total area of the set of rectangles {Li} in a
way that we will soon make use of: The total area of {Li} is an upper bound on the sum of products

21

of normalized weights for all points in a pair where one point is a strange point and the other point is
a point that the strange point loses to. To see this, note that by construction the area of any rectangle
Li is the product of point i’s normalized weight (i.e., pw

i
(Xn+1)) with an upper bound on the total

normalized weight that the points i loses to could have (i.e., ↵� pw
i
(Xn+1)). Thus, the area of Li

is by construction an upper bound on the product of point i’s normalized weight (i.e., pw
i
(Xn+1))

with the total normalized weight of the points that i actually loses to. To state with more precise
notation that we will use again later, for each point j that i actually loses to, let us construct a
rectangle Lij with width pw

i
(Xn+1) and length pw

j
(Xn+1). Then, for all these points j, we can

arrange the rectangles {Lij} so that they are contained within Li and so that Lij and L0
ij

have zero
overlapping area for all j 6= j0: that is, by this construction

P
j:i loses to j

Area(Lij) Area(Li). So,
it is equivalent to describe the area of Li as an upper bound on the sum, over all points j that i loses
to, of the product of i’s normalized weight with j’s normalized weight; and thus by extension, the
total area of {Li} is as we described earlier.

On the other hand, the total area of the set of rectangles {L0
i
} is the sum of the product of the

normalized weights of two strange points in a pair over all pairs of strange points, where the factor of
1
2 avoids double counting the pairs of strange points. To see this, note that for every pair of strange
points {i, j} there is a distinct subrectangle—call it L0

ij
—that is contained in L0

i
, such that L0

ij
has

width pw
i
(Xn+1) and length 1

2p
w

j
(Xn+1) (where we also assume that for any j 6= j0, Lij and L0

ij

overlapping area of zero). Moreover, for this pair of strange points {i, j} there is also an analogous
subrectangle L0

ji
with width pw

j
(Xn+1) and length 1

2p
w

i
(Xn+1) contained in L0

j
. Thus, the combined

area of L0
ji

and L0
ij

is Area(L0
ij
) + Area(L0

ji
) = pw

i
(Xn+1) · pwj (Xn+1), and the total area of the

set of rectangles {L0
i
} is as described. (Furthermore, note that when the unnormalized weights are

all equal to 1 as in Barber et al. [2021], the area of {L0
i
}—adjusted by a normalization constant—is

equivalent to the total number of pairs of strange points s(s�1)/2, where s = |S(Aw)| is the number
of strange points.)

Now, observe that any pair of two strange points is also a pair of points where one point is
strange and the other is a point that the strange point loses to, so the set of pairs of points in-
cluded in the construction of {L0

i
} is a subset of the set of pairs of points for which the area of

{Li} is the upper bound previously described. To be more precise, let {i, j} be a pair of strange
points, where (without loss of generality) let us say i loses to j. Then, for the L0

ij
and L0

ji
as

described before, there exists a distinct Lij such that Area(L0
ij
) + Area(L0

ji
) = Area(Lij). More

generally, we see that the total area of all the subrectangles {L0
ij
} is bounded by the total area

of the subrectangles {Lij}, that is
P

i,j2S(Aw), i 6=j
Area(L0

ij
) =

P
i,j2S(Aw), i 6=j

Area(Lij) P
i2S(Aw), i loses to j

Area(Lij). Moreover, by construction
P

i,j2S(Aw), i 6=j
Area(L0

ij
) =P

i2S(Aw) Area(L0
i
) and

P
i2S(Aw), i loses to j

Area(Lij)
P

i2S(Aw) Area(Li). Therefore, the area
of the set of rectangles {L0

i
} is less than or equal to the area of rectangles {Li}, which we can write

as follows:

X

i2S(Aw)

Area(L0
i
)

X

i2S(Aw)

Area(Li)

X

i2S(Aw)

⇣
pw
i
(Xn+1) ·

1

2

X

j2S(Aw)\i

pw
j
(Xn+1)

⌘

X

i2S(Aw)

⇣
pw
i
(Xn+1) ·

�
↵� pw

i
(Xn+1)

�⌘

(C.1.1)

Recall that we defined pw
i
(Xn+1) = w(Xi)/

P
n+1
k=1 w(Xk) 8 i 2 {1, ..., n+ 1}, so in the uniform

weighted case where w(Xi) = 1 8 i 2 {1, ..., n+ 1} then
P

n+1
k=1 w(Xk) = n+ 1, and multiplying

both sides of the inequality above by (n+ 1)2 yields the analogous inequality in Barber et al. [2021]
that bounds the number of pairs of points.

22

We now proceed to solve for an upper bound on
P

i2S(Aw) p
w

i
(Xn+1), the total normalized weight

of strange points:
1
2

X

i2S(Aw)

⇣
pwi (Xn+1) ·

X

j2S(Aw)\i

pwj (Xn+1)
⌘

X

i2S(Aw)

⇣
pwi (Xn+1) ·

�
↵� pwi (Xn+1)

�⌘

1
2

X

i,j2S(Aw), i 6=j

pwi (Xn+1)p
w

j (Xn+1) ↵
X

i2S(Aw)

pwi (Xn+1) �
X

i2S(Aw)

pwi (Xn+1)
2

1
2

X

i2S(Aw)

pwi (Xn+1)
2 +

X

i,j2S(Aw)

pwi (Xn+1)p
w

j (Xn+1)

!
 ↵

X

i2S(Aw)

pwi (Xn+1)

1
2

X

i2S(Aw)

pwi (Xn+1)
2 +

X

i2S(Aw)

⇣
pwi (Xn+1) ·

X

j2S(Aw)

pwj (Xn+1)
⌘!

 ↵
X

i2S(Aw)

pwi (Xn+1)

1
2

X

i2S(Aw)

pwi (Xn+1)
2 +

⇣ X

i2S(Aw)

pwi (Xn+1)
⌘2
!

 ↵
X

i2S(Aw)

pwi (Xn+1)

P
i2S(Aw) p

w

i (Xn+1)
2

P
i2S(Aw) p

w

i
(Xn+1)

+
⇣ X

i2S(Aw)

pwi (Xn+1)
⌘
 2↵

X

i2S(Aw)

pwi (Xn+1) 2↵�
P

i2S(Aw) p
w

i (Xn+1)
2

P
i2S(Aw) p

w

i
(Xn+1)

where because 0 pw
i
(Xn+1) 1 8 i = 1, ..., n+1 and pw

i
(Xn+1) > 0 for some i 2 {1, ..., n+1},

we have 0 pw
i
(Xn+1)2 pw

i
(Xn+1) 8 i = 1, ..., n + 1 and thus 0

P
i2S(Aw) p

w

i
(Xn+1)

2

P
i2S(Aw) p

w

i
(Xn+1)

 1,
and we have

X

i2S(Aw)

pw
i
(Xn+1) 2↵ (35)

as desired.

Step 2: Weighted exchangeability of the datapoints. We now leverage the weighted exchangeability
of the data to show that, since the total weight of the strange points is at most 2↵, that a test point has
at most 2↵ probability of being strange. We organize this step into the following pieces:

� Step 2.1: Argue that Aw d
= P⇡AwP>

⇡
for any (n+ 1)⇥ (n+ 1) permutation matrix P⇡ .

� Step 2.2: Argue that P{n+ 1 2 S(Aw)} = P{j 2 S(Aw)} for all j 2 {1, ..., n+ 1}.

� Step 2.3: Use the fact that the total weight of the strange points is at most 2↵ (from Step 1)
to show that P{n+ 1 2 S(Aw)} 2↵.

Beginning with Step 2.1, observe that with W denoting the diagonal matrix with Wii = pw
i
(Xn+1),

WA has entries (WA)ij = pw
i
(Xn+1) · {Rij > Rji} (equivalent to A with each ith row weighted

by pw
i
(Xn+1)); that AW has entries (AW)ij = pw

j
(Xn+1) · {Rij > Rji} (equivalent to A with

each jth column weighted by pw
j
(Xn+1)); and recall that Aw = WAW . For a permutation ⇡

of {1, ..., n + 1}, let P⇡ denote the corresponding permutation matrix—that is, ⇡(i0) = i ()
P⇡(i0, i) = 1, which corresponds to the ith row in A becoming the i0th row in P⇡A. With d

= denoting
equality in distribution, we will argue that P⇡WA

d
= WA and AWP>

⇡

d
= AW , which together

implies P⇡AwP>
⇡

d
= Aw.

To show P⇡WA
d
= WA, we draw on and adapt ideas from the proof for Lemma 3 in Tibshirani

et al. [2019]. For simplicity we assume that the pairs (Rij , Rji) are distinct almost surely (the
result holds in the general case as well, but the notation is more cumbersome). Using condensed
notation for the data as {Z1, ..., Zn+1} = {(X1, Y1), ..., (Xn+1, Yn+1)}, denote by Ez the event
that {Z1, ..., Zn+1} = {z1, ..., zn+1}, and let f denote the density function of the joint sample
Z1, ..., Zn+1. Note that P⇡WA—which results from permuting the rows of WA—does not change

23

the column membership of any entry in WA. In particular, P⇡WA has entries (P⇡WA)ij =

(WA)⇡(i)j , so to show P⇡WA
d
= WA it is sufficient to show that each jth column in P⇡WA is

equivalent in distribution to the corresponding jth column in WA. To do so, we begin by conditioning
on Ez and then inspecting the probability of the joint event Rn+1,j = rij , Rj,n+1 = rji for each
i 2 {1, ..., n+ 1} in each jth column, which occurs when Zn+1 = zi:

P{Rn+1,j = rij , Rj,n+1 = rji | Ez} = P{Zn+1 = zi | Ez}

=

P
⇡:⇡(n+1)=i

f(z⇡(1), ..., z⇡(n+1))P
⇡
f(z⇡(1), ..., z⇡(n+1))

,

where the second line above follows by the same reasoning as in the proof for Lemma 3 in Tibshirani
et al. [2019]. Then, recalling that data from covariate shift (2) are weighted exchangeable with weight
functions w1 = ... = wn = 1 and wn+1 = w = d ePX

dPX

, this becomes

P{Rn+1,j = ri,j , Rj,n+1 = rj,i | Ez} =

P
⇡:⇡(n+1)=i

w(x⇡(n+1))g(z⇡(1), ..., z⇡(n+1))P
⇡
w(x⇡(n+1))g(z⇡(1), ..., z⇡(n+1))

=

P
⇡:⇡(n+1)=i

w(x⇡(n+1))g(z1, ..., zn+1)P
⇡
w(x⇡(n+1))g(z1, ..., zn+1)

=

P
⇡:⇡(n+1)=i

w(x⇡(n+1))P
⇡
w(x⇡(n+1))

=
w(xi)P

n+1
k=1 w(xk)

= pw
i
(xn+1),

which can be written as

(Rn+1,j , Rj,n+1) | Ez ⇠
n+1X

i=1

pw
i
(xn+1)�(rij ,rji).

Due to the conditioning on Ez , this is equivalent to

(Rn+1,j , Rj,n+1) | Ez ⇠
n+1X

i=1

pw
i
(Xn+1)�(Rij ,Rji),

and since this statement holds for any {Z1, ..., Zn+1} = {z1, ..., zn+1}, marginalization yields

(Rn+1,j , Rj,n+1) ⇠
n+1X

i=1

pw
i
(Xn+1)�(Rij ,Rji).

More generally, substituting in the index i0 for n+ 1 in the argument above yields

(Ri0,j , Rj,i0) ⇠
n+1X

i=1

pw
i
(Xn+1)�(Rij ,Rji). (36)

Statement (36) tells us that within each jth column, draws of (Ri0,j , Rj,i0) from this discrete distri-
bution resemble the analogous draw (Rn+1,j , Rj,n+1) for the test point. That is, the distribution of
(Ri0,j , Rj,i0) in (36) is irrespective of the index i0 and so these draws “look exchangeable”, and the
distribution of an arbitrary jth column of WA does not depend on the ordering of its elements. Thus,
P⇡WA

d
= WA and by a similar argument AWP>

⇡

d
= AW , which together implies P⇡AwP>

⇡

d
= Aw

for any (n+ 1)⇥ (n+ 1) permutation matrix P⇡ , the desired result for Step 2.1.

Because P⇡AwP>
⇡

d
= Aw from Step 2.1, this implies P{j 2 S(P⇡AwP>

⇡
)} = P{j 2 S(Aw)}.

Now, let P⇡ denote a specific permutation matrix that maps n+1 to j, that is where P⇡(j, n+1) = 1.
Then, deterministically, n+ 1 2 S(Aw) () j 2 S(⇧Aw⇧>), so we have

24

P{n+ 1 2 S(Aw)} = P{j 2 S(P⇡A
wP>

⇡
)} = P{j 2 S(Aw)}

for all j = 1, ..., n+ 1. That is, an arbitrary training point j is equally likely to be strange as the test
point n+ 1, which concludes Step 2.2.

Then, we begin Step 2.3 by multiplying by pw
j
(Xn+1) to obtain

pw
j
(Xn+1) · P{n+ 1 2 S(Aw)} = pw

j
(Xn+1) · P{j 2 S(Aw)}

And summing over j, we have

n+1X

j=1

pw
j
(Xn+1) · P{n+ 1 2 S(Aw)} =

n+1X

j=1

pw
j
(Xn+1) · P{j 2 S(Aw)}

P{n+ 1 2 S(Aw)} ·
n+1X

j=1

pw
j
(Xn+1) =

n+1X

j=1

pw
j
(Xn+1) · P{j 2 S(Aw)}

P{n+ 1 2 S(Aw)} =
n+1X

j=1

pw
j
(Xn+1) · P{j 2 S(Aw)}

= E
 X

j2S(Aw)

pw
j
(Xn+1)

�

 2↵

where the last line follows from Step 1.

Step 3: Connection to JAW: We would now like to connect our strange point result from Step 2 to
coverage of the JAW prediction interval. Following the approach of Barber et al. [2021], suppose that
Yn+1 62 bCJAW

n,↵
(Xn+1). Then, either

Yn+1 > Q+
1�↵

�
pw
i
(Xn+1)�bµ�i(Xn+1)+RLOO

i

=)
nX

i=1

pw
i
(Xn+1) ·

�
Yn+1 > bµ�i(Xn+1) +RLOO

i

� 1� ↵

or otherwise
Yn+1 < Q�

↵

�
pw
i
(Xn+1)�bµ�i(Xn+1)+RLOO

i

=)
nX

i=1

pw
i
(Xn+1) ·

�
Yn+1 < bµ�i(Xn+1)�RLOO

i

� 1� ↵

And we can write the union of these two events as

1� ↵
nX

i=1

pw
i
(Xn+1) ·

�
Yn+1 62 bµ�i(Xn+1)±RLOO

i

=
nX

i=1

pw
i
(Xn+1) ·

���Yi � bµ�i(Xi)
�� <

��Yn+1 � bµ�i(Xn+1)
��

=
n+1X

i=1

pw
i
(Xn+1) ·

�
Ri,n+1 < Rn+1,i

from which we see that n+ 1 2 S(Aw)—that is, n+ 1 is a strange point. This result together with
the result from Step 2 gives us

P
�
Yn+1 62 bCJAW

n,↵
(Xn+1)

 P

�
n+ 1 2 S(Aw)

 2↵

) P
�
Yn+1 2 bCJAW

n,↵
(Xn+1)

� 1� 2↵

25

C.2 Proof of Theorem 2

Proof. First, assume that Assumptions 1 - 4 and Condition 2 from Giordano et al. [2019a] hold
uniformly for all n (where n is the number of training points). Then, Proposition 1 from Giordano
et al. [2019a] establishes that

max
i2[n]

���
���✓̂IF-K

�i
� ✓̂�i

���
���
2
= Op(N

� 1
2 (K+1)) (37)

So, for fixed K:

lim
N!1

max
i2[n]

���
���✓̂IF-K

�i
� ✓̂�i

���
���
2
= Op(N

� 1
2 (K+1)) = 0 (38)

Or, for fixed N :

lim
K!1

max
i2[n]

���
���✓̂IF-K

�i
� ✓̂�i

���
���
2
= Op(N

� 1
2 (K+1)) = 0 (39)

Thus, ✓̂IF-K
�i

! ✓̂�i as either N ! 1 or K ! 1. This implies that bµIF-K
�i

! bµ�i as either
N ! 1 or K ! 1 because the model bµ�i is fully determined by its parameters ✓̂�i. Therefore,
bCJAWA-K
n,↵

(Xn+1) ! bCJAW
n,↵

(Xn+1) in the limit of N or K, and thus by Theorem 1, P{Yn+1 2
bCJAWA-K
n,↵

(Xn+1)} � 1� 2↵ as N ! 1 or K ! 1.

Now, separately assume that Assumptions 1 - 4 and Condition 4 from Giordano et al. [2019a] hold
uniformly for all n. Then, Proposition 3 from Giordano et al. [2019a] gives that

max
i2[n]

���
���✓̂IF-K

�i
� ✓̂�i

���
���
2
= O(N�(K+1)) (40)

The rest follows from a similar argument as when we assumed Condition 2.

C.3 Proof of Theorem 3

Proof. Recall that we define E as

E =
�
y 2 R : ⌧� bS(Xn+1, y) ⌧+

, (41)

that we assume access to a predictive inference method with prediction sets given by

bCw-audit
n,↵

(Xn+1) =
�
y 2 R : bQ�

↵
{pw

i
(Xn+1)�V L

i

} bS(Xn+1, y) bQ+
1�↵

{pw
i
(Xn+1)�V U

i

}

(42)

and moreover that we define ↵w-audit
E

as

↵w-audit
E

= min
⇣n

↵0 : ⌧� bQ�
↵0{pwi (Xn+1)�V L

i

} , bQ+
1�↵0{pwi (Xn+1)�V U

i

} ⌧+
o⌘

. (43)

Then, if ↵w-audit
E

exists and ↵w-audit
E

< 1�c2
c1

, then by construction we can combine (43) with the
definition of the prediction set bCw-audit

n,↵E
(Xn+1) to obtain

bCw-audit
n,↵E

(Xn+1) =
n
y : ⌧� bQ�

↵E
{pw

i
(Xn+1)�V L

i

} bS(Xn+1, y)

 bQ+
1�↵E

{pw
i
(Xn+1)�V L

i

} ⌧+
o
, (44)

26

which shows that bCw-audit
n,↵E

(Xn+1) ✓ E. Thus, P{Yn+1 2 E} � P{Yn+1 2 bCw-audit
n,↵E

(Xn+1)}, and by
the coverage guarantee for bCaudit

n,↵E
(Xn+1) it follows that

P{Yn+1 2 E} � P{Yn+1 2 bCw-audit
n,↵E

(Xn+1)} � 1� c1↵
w-audit
E

� c2. (45)

Otherwise, ↵w-audit
E

does not exist or ↵w-audit
E

� 1�c2
c1

=) 1 � c1↵audit
E

� c2 0. Neither of these
cases yield a nontrivial (positive) lower bound for P{Yn+1 2 E}, so for these cases

P{Yn+1 2 E} � P{Yn+1 2 bCaudit
n,↵E

(Xn+1)} � 0. (46)

C.4 Proof of Theorem B.2

Proof. The proof proceeds similarly as the proof for Theorem 3 in Appendix C.3, except replacing
the data-dependent weights pw

i
(Xn+1) with the uniform weights 1

n+1 .

D Additional experimental details and analysis

D.1 Creation of covariate shift

To induce covariate shift, test points were sampled from the set of points not used for training with
exponential tilting weights such that the total number of test points was equal to half the number
of points not used for training. For the relatively lower dimensional airfoil and wine datasets, the
weights took the form w(x) = exp(xT�), while for the relatively higher dimensional datasets the
weights took the form w(x) = exp(xT

PCA�) where xPCA is some PCA-based representation of the
covariates data x.

Figure 7 shows the distribution first and last features in the airfoil dataset before and after the
exponential tilting is applied to induce covariate shift with parameter � = (�1, 0, 0, 0, 1). In our
main experiments, exponential tilting parameters were selected for each dataset so that the associated
covariate shift would result in a similar loss in how informative the training set is regarding the biased
test set, as assess by reduced effective sample size.

Figure 7: Distribution log frequency and log suction features of airfoil dataset before and after
exponential tilting.

Specifically, for a training set size of 200 points for each dataset, the exponential tilting parameters
were selected and tuned so that the estimated effective sample size of the training data was reduced
to approximately 50, averaged across 1000 random train-test splits. For training data X1, ..., Xn

and likelihood ratio w, the effective sample size was estimated using the following commonly-used
heuristic bn = [

P
n

i=1 |w(Xi)|]2/
P

n

i=1 |w(Xi)|2 [Gretton et al., 2009, Reddi et al., 2015, Tibshirani
et al., 2019].

The specific selections of � that resulted in approximately bn = 50 for each dataset are as follows. For
the airfoil dataset, unless otherwise specified the tilting parameter was �airfoil = (�0.85, 0, 0, 0, 0.85),
which induced covariate shift such that points with low values of the first feature and high values
of the last feature were more likely to appear in the test distribution (see Figure 7). The wine
dataset was similarly tilted using the first and last components, with a tilting parameter of �wine =

27

(�0.53, 0, ..., 0, 0.53). The wave dataset is composed of 48 total features, of which the first 32
features are latitude and longitude values, and where the remaining 16 features are absorbed power
values. Accordingly, the first principal component of only the 32 location features was used for tilting
along with the first principal component of only the 16 absorbed power values, with a tilting parameter
of �wave = (�0.0000925, 0.0000925) unless otherwise specified. For the superconductivity dataset,
only the first principal component of all of the data was used for tilting, with tilting parameter
�superconduct = 0.00062. Lastly, for the communities and crime dataset, the first two principal
components of the whole dataset were used with tilting parameter �communities = (�0.825, 0.825).

D.2 Models

For all experiments with JAW and its baselines we used two different regression predictors bµ: random
forests (scikit-learn RandomForestRegressor), and neural networks (scikit-learn MLPRegressor with
LBFGS optimizer, logistic activation, and default parameters otherwise).

For all experiments comparing the coverage and interval width of JAWA to other influence function
approximated baselines, we used a neural network predictor with one hidden layer consisting of
25 hidden units. Covariate and label data were centered and scaled. The neural network was
trained for 2000 epochs with batch sizes of 50 and a learning rate of 0.0001, which generally
resulted in convergence. The objective function for the neural network in JAWA is the negative log
likelihood with a Gaussian prior or L2 regularization term. The L2 regularization was added to satisfy
assumptions for computing IFs described in Giordano et al. [2019a] and due to empirical findings
of first-order IFs for neural networks requiring regularization for reliable results [Basu et al., 2020].
The L2 regularization � parameter was tuned using a grid search prior to all experiments using a
“tuning” validation set of 200 samples that were excluded from both the training and test sets in the
experiments (see Appendix D.8 for more details regarding the L2 regularization tuning).

D.3 Comparison of coverage variance for JAW and weighted split

Table 3: Coverage variance for JAW and weighted split conformal prediction, averaged across 1000
experimental replicates (i.e., statistics are the variance of all of the 1000 mean coverage statistics,
one for each experiment). Lower coverage variances indicate more reliable coverage. The coverage
variance for JAW is lower than that of weighted split conformal prediction in all datasets and predictor
conditions due to JAW avoiding the sample splitting required by weighted split.

Dataset Airfoil Wine Wave Superconduct Communities
Method NN RF NN RF NN RF NN RF NN RF

Weighted split 0.0022 0.0023 0.0019 0.0017 0.0030 0.0029 0.0040 0.0035 0.00194 0.0021
JAW 0.0010 0.0019 0.0013 0.0015 0.0005 0.0014 0.0021 0.0030 0.00189 0.0014

D.4 Additional AUC results

Due to space constraints, in the main paper Figure 5 we only report error assessment AUC results for
the neural network predictor condition. For completeness, in Figure 8 we present error assessment
results for both the neural network predictor (top row) and random forest predictor (bottom row),
which are similar. Moreover, 8 also presents results for several baselines with reduced sample size
to investigate how JAW’s reduced effective sample size inherent to likelihood-ratio weighting may
impact its performance. In particular, with dotted lines Figure 8 also presents the AUROC scores
for jackknife+, CV+, and split conformal with the sample size for their predictive intervals reduced
to 50 (note that only the sample size used to compute the predictive intervals was reduced to 50,
not the sample size used to train bµ), because bn = 50 is approximately the effective sample size of
JAW in these experiments (see Appendix D.1). Relative to the methods with full sample size in
the calculation of their predictive intervals, jackknife+, CV+, and split conformal prediction with
reduced effective sample size have reduced AUROC scores. This suggests that JAW’s AUROC is
also likely negatively impacted by its reduced effective sample size, which could explain why JAW
attains AUROC values comparable to jackknife+ despite holding the advantage over jackknife+ of
coverage validity under covariate shift.

28

(a) Airfoil (b) Wine (c) Wave (d) Superconduct (e) Communities

Figure 8: AUROC values for different tolerance levels ⌧ across the three datasets, averaged across 50
experiment replicates, with neural network (top row) and random forest (bottom row) bµ predictor.
CV+-effSS, jackknife+-effSS, and split-effSS refer to the corresponding methods with sample size
reduced to 50 for the construction of their predictive intervals, as described in Appendix D.4.

D.5 JAW with estimated weights

JAW assumes access to oracle likelihood ratio weights, but that in practice this information is often
not available. In such cases, the likelihood ratios can be estimated through an approach such as
probabilistic classification, moment matching, or minimization of �-divergences (for a review of
likelihood ratio estimation approaches see Sugiyama et al. [2012]). JAW’s coverage performance will
depend on the quality of the likelihood ratio estimates.

The following experiments compare coverage histograms of JAW with oracle likelihood-ratio weights
those of JAW with weights estimated from probabilistic classification. We follow the approach used
in Tibshirani et al. [2019] for estimating the likelihood-ratio weights using logistic regression and
random forest classifiers. Specifically, for training covariate data X1, ..., Xn and test covariate data
Xn+1, ..., Xn+m where Ci = 0 for i = 1, ..., n and Ci = 1 for i = n+ 1, ..., n+m, the conditional
odds ratio P(C = 1|X = x)/P(C = 0|X = x) can be used as an equivalent substitute to the
likelihood ratio weight function w(x) due to the normalization of the weights for use in JAW. Thus,
for an estimate bp(x) ⇡ P(C = 1|X = x) obtained from a classifier such as logistic regression or
random forest, then we can use the following estimated weight function in place of likelihood-ratio
weights:

bw(x) = bp(x)
1� bp(x) . (47)

(a) Airfoil (b) Wine (c) Wave (d) Superconduct (e) Communities

Figure 9: Comparison of JAW coverage under covariate shift with oracle versus estimated likelihood
ratio weights for neural network predictor across all datasets. Blue is oracle weights, green is weights
estimated with logistic regression, and orange is weights estimated with random forest classifier.
Histograms represent 1000 experimental replicates.

29

Figure 9 illustrates the coverage performance of JAW with weights estimated by both logistic
regression and random forest classifiers as described in Section D.2, compared to JAW with oracle
weights. Results are for both neural network and random forest regression predictors across all five
UCI datasets. We observe that the coverage histograms for JAW with both weight estimation methods
are largely directly overlapping with the coverage histogram for JAW with oracle weights. These
results demonstrate the applicability of JAW with estimated weights for predictive inference under
covariate shift when the true likelihood ratio is not known but can be estimated from the data.

D.6 Ablation studies on shift magnitudes

We demonstrate the effect of different magnitudes of covariate shift by comparing the coverage
performance of JAW and the jackknife+ on the airfoil dataset with different magnitudes of the
exponential tilting bias parameter �. Informed by these experiments depicted in Figure 10—where
JAW’s mean coverage remains consistent but the variance in coverage increases with increased
covariate shift magnitude—we performed additional experiments to investigate the potential cause
of JAW’s increased variance. Specifically, we compare histograms of JAW’s coverage at a fixed
covariate shift magnitude to that of jackknife+ without covariate shift but with reduced “effective
sample size”, which is known to be reduced by likelihood ratio weighting. Tibshirani et al. [2019]
made a similar comparison between weighted split conformal prediction under covariate shift and
standard split conformal prediction with reduced effective sample size, and we use the same heuristic
for effective sample size estimation [Gretton et al., 2009, Reddi et al., 2015] (which we also used for
selecting exponential tilting parameter values for each dataset in Figure 3):

bn =
[
P

n

i=1 |w(Xi)|]2P
n

i=1 |w(Xi)|2
=

||w(X1:n)||21
||w(X1:n)||22

.

Effect of different magnitudes of covariate shift As shown in Figure 10, the extent of covariate
shift can be controlled by modifying a parameter in the exponential tilting weights so that weights
are are more or less drastic. When the bias parameter is set to 0 this corresponds to no bias or IID
train and test data. We can see that JAW is robust to different amounts of covariate shift, generating
high coverage even under high level of shift.

Figure 10: JAW performance compared to jackknife+ on the airfoil dataset with random forest bµ
function, under increasing magnitude of covariate shift (different � values), with 200 replicates.

Reduced effective sample size accounts for JAW increase in coverage variance under shift While
JAW’s mean coverage remains relatively consistent under different magnitudes of covariate shift
as seen in Figure 10, we also observe that the variance in coverage is higher for higher levels of
shift. We hypothesized that this increase in variance is due to the high variance issue associated with
important weighting methods that is well known [Reddi et al., 2015, Li et al., 2020] in the literature.
We evaluate this hypothesis with effective sample size experiments reported in Figure 11 that compare
a histogram of JAW’s coverage under covariate shift with the coverage of jackknife+ with IID data but
reduced effective sample size corresponding to the magnitude of covariate shift that JAW is evaluated
on (see Appendices D.1 and D.6 for details). In Figure 11 we see that the coverage histogram for
JAW under covariate shift is nearly directly overlapping with the histogram for jackknife+ coverage
with no shift but reduced effective sample size. This result suggests that the reduction of effective
sample size due to likelihood ratio weighting is largely if not entirely responsible for the increase in
JAW coverage variance for increased shift magnitudes. We leave the variance reduction of our work
to the future work.

30

Figure 11: Comparison of JAW coverage histogram under covariate shift (blue) to jackknife+ coverage
histogram (green) with no covariate shift but reduced effective sample size corresponding to the
magnitude of covariate shift that JAW is evaluated on. Experiments are for both neural network
(left) and random forest (right) predictors on the airfoil dataset, with 1000 experimental replicates.
The largely overlapping histograms suggests that the increase in JAW coverage variance observed in
Figure 10 is largely due to the decrease in effective sample size inherent to likelihood ratio weighting.

D.7 Empirical runtime of JAWA compared to JAW

Whereas JAW requires retraining n leave-one-out models, JAWA does not require any retraining,
and thus generally enjoys significantly faster runtime than JAW. In Table 4 we report the empirical
runtime of JAW compared to JAWA for different orders of JAWA’s influence function approximation.
In these experiments, JAWA is orders of magnitude faster than JAWA regardless of whether the
influence function approximation is first, second, or third order (though of course the specific runtime
statistics depend on the model architecture, optimization scheme, or dataset). JAWA’s runtime does
not increase substantially (relative to JAW’s runtime) with increased influence function orders for
K 2 {1, 2, 3}.

Table 4: Example empirical comparison between the runtime for JAW and JAWA-K for different
influence function approximation orders K 2 {1, 2, 3} for the neural network predictor used in the
JAWA experiments (see Appendix D.2), rounded up to the nearest second. This runtime experiment
was performed on an 8-core personal computer with 32 GB of memory.

Method Airfoil Wine Wave Superconduct Communities
JAW 58 min, 39 s 59 min, 18 s 1 hr, 24 min, 24 s 1 hr, 26 min, 53 s 1 hr, 25 min, 42 s

JAWA-1 1 s 2 s 4 s 7 s 8 s
JAWA-2 3 s 4 s 6 s 11 s 14 s
JAWA-3 11 s 12 s 16 s 21 s 23 s

D.8 L2 regularization for JAWA experiments

For the experiments involving JAWA and its baselines, the following L2 regularization tuning
procedure was used for the neural network described in the second paragraph of D.2. The grid
search evaluated the coverage of the first-order influence function approximation of the jackknife+ at
different values of the regularization tuning parameter � 2 {0.5, 1, 2, 4, 8, 16, 32, 64, 96, 128} for 10
train-test splits among all data for a dataset aside from the holdout tuning set. The smallest value
of � in the grid search for which the coverage of the first-order influence function approximation of
the jackknife+ exceeded 0.875 was used. The coverage calibration threshold of 0.875 was selected
because the change in coverage due to increased � appeared to plateau just above or below the
target coverage rate of 0.9 for each dataset, so setting the threshold slightly below 0.9 can help
avoid over-regularizing. See Angelopoulos et al. [2020] for a discussion of calibrating uncertainty
estimation in conformal prediction. This grid search procedure identified a separate � regularization
parameter for each dataset: �air = 1,�win = 8,�wav = 4,�sup = 96,�com = 64. Additionally, we
also added a dampening term to the Hessian (for IFs computation) as in Koh and Liang [2017] so that
the smallest eigenvalue of the Hessian was at least 0.5.

31

(a) Airfoil (b) Wine (c) Wave (d) Superconduct (e) Communities

Figure 12: Grid search plots for tuning the � L2 regularization parameter for influence function
coverage experiments. All experiments are done with 1st, 2nd, and 3rd order influence function
approximations of the jackkinfe+ (denoted in blue, orange, and green lines in the figure). The y-axis
for each plot is the average coverage on the tuning dataset for each L2 regularization parameter
� 2 {0.5, 1, 2, 4, 8, 16, 32, 64, 96, 128}.

D.9 Histogram comparison of jackknife+ and JAW coverage under covariate shift

Figure 13 displays an example histogram comparison of jackknife+ and JAW coverage under covariate
shift for both the neural network and random forest predictors on the airfoil dataset.

Figure 13: Jackknife+ versus JAW coverage under covariate shift for the airfoil dataset, when
� = (�1, 0, 0, 0, 1), for 1000 replicates. JAW maintains the high coverage under covariate shift.

D.10 Cases where jackknife+ may not lose coverage

Although JAW maintains significantly higher coverage than jackknife+ in most conditions, our
results suggest that there are some cases when jackknife+ may not lose coverage despite lacking a
coverage guarantee for covariate shift. For instance, in Figure 3 jackknife+ does lose coverage for
the random forest bµ predictor, but it does not appear to lose coverage below the target level with the
neural network bµ predictor. Figure 14 allows for a closer look at this observation, with the coverage
histograms for JAW and jackknife+ on the superconductivity dataset for both random forest and
neural network bµ predictors. In Figure 14 there does appear to be a slight loss of coverage for the
jackknife+ with neural network bµ predictor, but not as significant of a loss of coverage as with a
random forest bµ.

A stronger example were jackknife+ appears to not lose coverage under covariate shift is the wave
dataset, where JAW and jackknife+ appear to have similar coverage (Figure 3). Figure 15 examines
this observation more closely by comparing JAW and jackknife+ coverage histograms corresponding
to increasing levels of covariate shift. For the wave dataset, jackknife+ does not seem to lose coverage
regardless of the extent of covariate shift.

Though we leave detailed analysis of the conditions that cause jackknife+ to lose coverage or not for
future work, we conjecture that jackknife+ loss of coverage may be related covariate shift that makes
difficult-to-predict datapoints more likely in the test distribution, and conversely that jackknife+ may
not lose coverage when covariate shift does not make difficult-to-predict datapoints more likely in
the test distribution. That is, the covariate shift method we use—exponential tilting—causes rare
training points to be more common in the test distribution based on the � used for tilting, but our
conjecture is that the rarity of a datapoint in the training distribution does not necessarily determine
how difficult that point is to predict. If rare but easy-to-predict datapoints are made more common
due to exponential tilting, then this could explain why jackknife+ does not lose coverage in some
cases as in Figure 15, though this conjecture requires further investigation.

32

Figure 14: Comparison of the histogram of coverage on Superconductor dataset under covariate shift
on the first principal component of the data, with tilting parameter � = 0.6. JAW still achieves high
coverage while jackknife+ loses coverage significantly for the random forest bµ predictor (right). For
the neural network bµ predictor (left), jackknife+ does not substantially lose coverage, while JAW has
marginally higher coverage, illustrating minimal benefit of JAW over jackknife+ in this case. This is
300 replicates of the experiments.

Figure 15: JAW and jackknife+ coverage for different levels of covariate shift levels on the wave
energy converters dataset. Each column corresponds to a different level of shift, with increasing shift
towards the right. The top row compares JAW (green) and jackknife+ (blue) coverage for a given shift
level. The bottom row depicts the first principal component of the data at a given shift level. Neither
jackknife+ nor JAW lose coverage at any tested shift level. This is 100 replicates of the experiments.

E Code and computational details

E.1 Code:

https://github.com/drewprinster/jaws.git

33

https://github.com/drewprinster/jaws.git

E.2 Computational details

Most experiments, aside from the runtime comparison described in Appendix D.7 Table 4 were
performed on an institutional high performance computing cluster (HPC) using 10 CPUs with a total
of 50GB of memory. Some experiments with the superconduct and communities datasets were run
on the HPC with 20 CPUs and a total of 100GB of memory.

34

	Introduction
	Background and related work
	Standard conformal prediction
	Covariate shift
	Conformal prediction under covariate shift and beyond exchangeability
	Jackknife+
	Approximating leave-one-out models with higher-order influence functions
	Error assessment

	Proposed approach and theoretical results
	JAW: Jackknife+ weighted with data-dependent weights
	JAWA: Using higher-order influence functions to approximate JAW without retraining
	Error assessment under covariate shift

	Experiments
	Datasets and creation of covariate shift
	Baselines
	Experimental results
	Interval generation results for JAW: Coverage and interval width
	Interval generation results for JAWA: Coverage and interval width
	Error assessment results for JAW-E: AUC

	Conclusion
	Supplementary background details
	Error assessment motivation: Concrete example
	Supplementary background on covariate shift
	Supplementary comparison to barber2022conformal
	Supplemnetary background on influence functions

	Supplementary theoretical results
	JAW with general weighted exchangeability
	Error assessment assuming exchangeable data
	JAW-E error assessment guarantee
	JAWA-E error assessment guarantee

	Proofs for theoretical results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem B.2

	Additional experimental details and analysis
	Creation of covariate shift
	Models
	Comparison of coverage variance for JAW and weighted split
	Additional AUC results
	JAW with estimated weights
	Ablation studies on shift magnitudes
	Empirical runtime of JAWA compared to JAW
	L2 regularization for JAWA experiments
	Histogram comparison of jackknife+ and JAW coverage under covariate shift
	Cases where jackknife+ may not lose coverage

	Code and computational details
	Code:
	Computational details

