
A Derivation of variational inference1

The posterior distribution of the latent variable is p(z|G) = p(G|z)p(z)
p(G) , where p(G) is in-2

tractable. Hence we approximate it via qϕ(z|G) by minimizing KL(qϕ(z|G)||p(z|G)) =3

−
∫
qϕ(z|G) log p(G|z)p(z)

qϕ(z|G) dz + log p(G). Since G is given, then minimizing KL(qϕ(z|G)||p(z|G))4

is equivalent to maximizing the evidence lower bound (ELBO):
∫
qϕ(z|G) log p(G|z)p(z)

qϕ(z|G) dz =5

Eqϕ(z|G)[log p(G|z)] − KL(qϕ(z|G)||p(z)). If we suppose z = (zj , zg), then maximizing the6

ELBO can be formulated into maximizing the objective of VAE as in Eq. (4).7

B Proof of Theorem 18

Proof. We assume that the periodic graph is simulated from two latent factors as G =Sim(Fl, Fg),9

where Fl is the factor that is related to the local information, such as the structure of the repeating10

pattern and how repeating patterns are linked to each other. Fg is defined as the factor of the global11

information, including how many repeating patterns the graph contains and their spatial arrangements.12

The goal is to prove that zl captures and only captures the information of Fl, and zg captures and13

only captures the information of Fg. Thus, based on the information theory, we need to prove14

I(zl, Fl) = H(Fl), I(zl, Fg) = 0, I(zg, Fg) = H(Fg), and I(zg, Fl) = 0. Here I(a, b) refers to the15

mutual information between a and b, and H(∗) refers to the information entropy of an element.16

Based on the reconstruction error, after the model is well optimized, we can have all the latent variables17

to reconstruct the whole graph G. We also have zl ⊥ zg and Fl ⊥ Fg consider that the zl and zg18

are disentangled. Thus we have I(zl, Fl) + I(zg, Fl) = H(Fl) and I(zl, Fg) + I(zg, Fg) = H(Fg).19

Then we combine them to get20

I(zl, Fl) + I(zl, Fg) + I(zg, Fl) + I(zg, Fg) = H(Fl) +H(Fg). (1)

(1) First, we prove that I(zl, Fg) = 0. Suppose we have two graphs (G1, G2) with the same repeat21

pattern (i.e.Fl,1 = Fl,2 and different global information (i.e.Fg,1 ̸= Fg,2). Regarding the latent22

variables, We have I(zl,1, Fl,1)+ I(zl,1, Fg,1) = H(zl,1) and I(zl,2, Fl,2)+ I(zl,2, Fg,2) = H(zl,2).23

Based on the condition (i.e.subject to) of the loss function, we enforce zl,1 = zl,2. Thus, we have24

I(zl,1, Fl,1) + I(zl,1, Fg,1) = I(zl,2, Fl,2) + I(zl,2, Fg,2). (2)

Since Fl,1 = Fl,2, we have I(zl,1, Fl,1) = I(zl,2, Fl,2). Then we should have I(zl,1, Fg,1) =25

I(zl,2, Fg,2). However, since Fg,1 ̸= Fg,2, the only situation to meet the requirement is26

I(zl,1, Fg,1) = I(zl,2, Fg,2) = 0. Thus, to generalize, for any graph, we have I(zl, Fg) = 0.27

(2) Second, we prove that I(zg, Fg) = H(Fg). Based on the conclusion that I(zl, Fg) = 0 from last28

step, and the conclusion from the second paragraph that I(zl, Fg) + I(zg, Fg) = H(Fg), we can get29

I(zg, Fg) = H(Fg).30

(3)Third, we prove that I(zg, Fl) = 0. We can rewrite the loss function as:31

max
θ,ϕ

I(zl, G) + I(zg, G) (3)

I(G, zl) ≤ I1
I(G, zg) ≤ I2

The detail of this derivation is provided in the work proposed by [2]. When I2 is defined as32

I2 ≤ H(Fg), we can have I(G, zg) ≤ H(Fg). Since G =Sim(Fl, Fg), it can be written as33

I(zg, Fl) + I(zg, Fg) ≤ H(Fg). (4)

From the second step, we already have I(zg, Fg) = H(Fg). Thus, we have I(zg, Fl) = 0.34

(4) Forth, we prove I(zl, Fl) = H(Fl). Based on the conclusion from the first three steps, we have35

I(zl, Fg) = 0, I(zg, Fg) = H(Fg), and I(zg, Fl) = 0. When we combine these three three equations36

with Eq.(1), we can have I(zl, Fl) = H(Fl).37

Given the above four steps, we have finally proved the four equations I(zl, Fl) = H(Fl), I(zl, Fg) =38

0, I(zg, Fg) = H(Fg), and I(zg, Fl) = 0, which indicate that the latent vector zl capture and only39

capture local patterns and the latent vector zg capture and only capture global patterns.40
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Table 1: Overview of datasets in experiments (|G| is the total number periodic graphs in the dataset; |V|avg is
the average graphs size of the dataset; |E|avg is the average edges of the graph in the dataset; |U| is the types of
basic units in the dataset; |U |avg is the average size of basic units in the dataset)

Property QMOF MeshSeg Synthetic
|G| 3,780 300 46,500

|V|avg 151.42 662.13 71.09
|E|avg 1004.13 1747.24 107.34
|U| 14 1 3

|U |avg 18.93 3 4.33

Table 2: Implementation details of PGD-VAE. GIN represents the layer of Graph Isomorphism
Network; ReLU represents the Rectified Linear Unit activation function; FC is the fully connected
layer; Sigmoid is the sigmoid activation function.

Layer Local-pattern encoder Global-pattern encoder Local decoder Neighborhood decoder Global decoder Assembler
Input A A zl zl zg A(l), A(g), A(n)

Layer1 GIN+ReLU GIN+ReLU FC+ReLU FC+ReLU FC+ReLU -
Layer2 GIN+ReLU GIN+ReLU FC+ReLU FC+ReLU FC+ReLU -
Layer3 GIN+ReLU GIN+ReLU Sigmoid Sigmoid Sigmoid -
Layer4 Node clustering Sum pooling - - Replace diagonal with zero -
Layer5 Concatenate representative node embedding - - - - -
Output zl zg A(l) A(n) A(g) A

C Dataset41

Two real-world datasets and one synthetic dataset were employed to evaluate the performance of42

PGD-VAE and other comparison models.43

QMOF dataset The Quantum MOF (QMOF) is a publicaly available database of computed quantum-44

chemical properties and molecular structures of 21,059 experimentally synthesized metal–organic45

frameworks (MOF) [4]. In total 3,780 MOFs were selected for the experiment. The statistics of the46

QMOF dataset was summarized in Appendix, Table 1.47

MeshSeg dataset The 3D Mesh Segmentation project contains 380 meshes for quantitative analysis48

of how people decompose objects into parts and for comparison of mesh segmentation algorithms [1].49

Meshes in MeshSeg dataset can be formed into graphs of triangle grids. We made 10 replicates for50

each mesh. The statistics of MeshSeg dataset has been summarized in Appendix, Table 1.51

Synthetic dataset The synthetic dataset contains three types of basic units: triangle, grid and hexagon.52

The statistics of the synthetic dataset has been summarized in Table 4. We augmented each basic53

unit to contain more basic units and finally we obtained 15,500 graphs for each local pattern. The54

statistics of synthetic dataset has been summarized in Appendix, Table 1.55

D Implementation details of PGD-VAE56

The implementation details of PGD-VAE are shown in Table 2. All comparison models were57

implemented by their default settings. The assembler has the form of matrix operation following the58

Eq. (3) in the main text and does not have a structure of neural network.59

To solve the permutation invariance issue in graph generation, one can use BFS-based-ordering,60

which is commonly employed by existing works for graph generation such as GraphRNN [5] and61

GRAN [3]. The rooted node can be selected as the node with the largest node degree in the graph.62

Then BFS starts from the rooted node and visits neighbors in a node-degree-descending order. Such a63

BFS-based-ordering works well in terms of stability, which is similar to the situation in GraphRNN64

and GRAN.65

E Case study details66

In our case study, we distinguish atoms by their node degree within the graph of the unit cell (i.e.,67

A(l)). For instance, if the node has the degree of 2 in one unit cell, then it can be designed as an68

inorganic atom carrying a double positive charge (e.g., Cu2+ or Ag2+) connected to the surrounding69

organic atoms via metallic bonding, or a negative organic ion (O2−) connecting with inorganic ions70

(e.g., K+) or other organic atoms (e.g., H+). Three MOFs have been illustrated in Figure 4 of the71
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main article, in which different atoms can be distinguished by the color and size. The figure is72

constructed via the ASE package by replacing the atom number with the degree of the nodes.73

F Evaluating Scalability74

Figure 1: Scalability evaluation by running 10 epochs of PGD-VAE and comparison models.

We conducted experiments to evaluate the time complexity of PGD-VAE and comparison models, as75

shown in Figure 1 of Appendix. In the experiments, we recorded and logarithmized the time (s) to run76

10 epochs on graphs in stratified synthetic dataset according to average graph size with PGD-VAE77

and comparison models. Aligned with the theoretical analysis, GraphVAE consumes the most of78

time compared with other models. Given the synthetic dataset, GRAN spends slightly more time79

than PGD-VAE and VGAE, while PGD-VAE and VGAE are less computational intensive and have80

comparable performance.81

G Generate atom types of QMOF data82

We adapt PGD-VAE to be able to predict atom types of MOFs. Atom types are predicted by a83

prediction function modeled by MLP with the local embedding zl as the input. Since periodic graphs84

contain basic units as repeated patterns, we only need to predict atom types of a basic unit and assign85

them to other basic units. Two generated MOFs that contain two basic units from PGD-VAE are86

show in Figure 2.87

(a) (b)

Figure 2: Generated MOFs from PGD-VAE. (a) MgAl2B5F2O3C; (b) AlNeBSF3O4C7
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