
Appendix
The appendix is organized as follows:

• In Sec. A1, we provide the complete proof of Claim 4.
• In Sec. A2, we provide an additional ablation study and qualitative experimental results.
• In Sec. A3, we provide an overview of the attached code and showcase the ease of incorpo-

rating LPS into a deep-net to achieve a shift-invariance/equivariance network. Unit tests and
end-to-end tests empirically validating the theory are also provided.

• In Sec. A4, we provide additional experimental details, e.g., model architecture, number of
trainable parameters, hyperparameters and baseline implementations.

A1 Proof of Claim 4
Claim 4. If pθ is shift-permutation equivariant, as defined in Eq. (11), then LPU ◦ LPD is
shift-equivariant.

Proof. Let x be a feature map, x̂ , TNx its shifted version, and k? = argmaxk∈{0,1} pθ(k = k|x).
By definition, u , LPU ◦ LPD(x) can be seen as masking out the components beside k? from x:

Poly(u)j =
{

Poly(x)j , j = k?

0, otherwise.
(28)

Let û , LPU ◦ LPD(x̂) and k̂? = argmaxk∈{0,1} pθ(k = k|x̂) then

Poly(û)j =

{
Poly(x̂)j , j = k̂?

0, otherwise.
(29)

Using Lemma 1 on x̂, when j = 0

Poly(û)j =

{
Poly(x)π(j), π(j) = k̂?

0, otherwise.
(30)

As pθ is shift-permutation equivariant, therefore k̂? = π(k?). Substituting into Eq. (30),

Poly(û)j =
{

Poly(x)π(j), π(j) = π(k?)

0, otherwise.
(31)

Similarly, when j = 1 and let M = bN/2c

TMPoly(û)j =
{
TMPoly(x)π(j), π(j) = π(k?)

0, otherwise.
(32)

Finally, combining Eq. (31) and Eq. (32) then using Lemma 1 on û,

TNu = LPU ◦ LPD(TNx), (33)

which proves the claim.

A2 Additional Experimental Results

Ablation Study on Gumbel Softmax. We further analyze the effect of sampling with Gumbel-
Softmax during training. We compare LPS (ResNet-18) results using a 3-tap antialiasing filter (Tri-3)
and trained using a Gumbel-Softmax, against its alternative version trained using a standard Softmax
without sampling. The remaining training attributes, including the τ annealing schedule, remain
unaltered. Tab. A1 compares both scenarios. While perfect circular shift consistency is obtained by
design in both cases, the top-1 classification accuracy of the model trained without sampling (93.22%)

15

Table A1. Ablation study on the effect of Gumbel-softmax sampling.
Method Anti-Alias Sampling Acc. ↑ C-Cons. ↑

LPS (Softmax) Tri-3 7 93.22± 0.13 100± 0.0
LPS (Gumbel-softmax) Tri-3 3 94.8± 0.14 100± 0.0

is significantly lower than our proposed training approach (94.8%). By incorporating stochasticity,
the model performance improves.

LPS Filter Visualization. We provide visualizations of the convolution weights. Fig. A1 shows a
subset of the convolutional kernels used to select polyphase components at each layer of a ResNet-50
(LPS).

Figure A1. Convolutional weights learned by LPD layers at different ResNet-50 (ImageNet) pooling levels.

Qualitative Results for Semantic Segmentation. In Fig. A2 to Fig. A4, we provide a sampling of
output masks on PASCAL VOC that were predicted by DDAC and our proposed LPS on linearly
shifted inputs. Identical random shifts were applied for both DDAC and LPS. We observe that LPS
predicts smoother object contours and maintains a better consistency across shifts when compared
to DDAC. Regions where our shift consistency property showed significantly different results in
comparison to baseline are highlighted by a red circle.

16

Input

DDAC on Input

DDAC on Shifted Input

LPS on Input

LPS on Shifted Input

Figure A2. Qualitative comparison on PASCAL VOC ResNet-101 with DeepLabV3 architecture. Regions where
our proposed network showed significant improvements under linear shifts are highlighted with a red circle.

17

Input

DDAC on Input

DDAC on Shifted Input

LPS on Input

LPS on Shifted Input

Figure A3. Qualitative comparison on PASCAL VOC ResNet-101 with DeepLabV3 architecture. Regions where
our proposed network showed significant improvements under linear shifts are highlighted with a red circle.

18

Input

DDAC on Input

DDAC on Shifted Input

LPS on Input

LPS on Shifted Input

Figure A4. Qualitative comparison on PASCAL VOC ResNet-101 with DeepLabV3 architecture. Regions where
our proposed network showed significant improvements under linear shifts are highlighted with a red circle.

A3 Additional Implementation Details

We have attached code to reproduce the reported experiments. We will publicly release the code and
the model checkpoints upon acceptance.

A3.1 LPS Implementation Overview

To effectively conduct experiments, we utilize the research framework PytorchLighting [14] to
avoid boilerplate and code redundancies. For documenting our experiments, we use Neptune [33]
to log experimental details and outputs to ensure reproducibility. We implement the described LPS
layers in Pytorch [34]. For these layers, we have written unit tests and end-to-end tests verifying the

19

shift-invariant/equivariant properties numerically. Overall, the attached code-base is organized as
follows:

learn_poly_sampling
demo # Ipython notebook illustrating layer usage.
learn_poly_sampling

callbacks
clargs
configs
data
eval.py
eval_segmentation.py
layers # LPS layers' implementation
Makefile # Runs tests
models # Classifier and DeepLabV3+ implementation
README.md
requirements.txt
tests # Test cases for the models
train.py
train_segmentation.py
utils

Makefile
README.md

Please refer to README.md for installation and experimentation instructions.

A3.2 LPD Usage Illustration

We illustrate how to incorporate the learnable polyphase downsampling (LPD) layer into a simple
classifier. The network architecture consists of a single convolution layer, followed by LPD, a global
pooling and finally a fully connected layer. We numerically verify that this model is shift-invariant.
As our downsampling layer is implemented as a nn.Module, it can be easily incorporated into any
existing deep-net implemented in Pytorch.

Define Model
class SimpleClassifier(nn.Module):

def __init__(self, num_classes=3,padding_mode='circular'):
Conv. Layer
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1,

padding_mode=padding_mode)
Learnable Polyphase Downsampling Layer
self.lpd = set_pool(partial(

PolyphaseInvariantDown2D,
component_selection=LPS,
get_logits=get_logits_model('LPSLogitLayers'),
pass_extras=False
),p_ch=32,h_ch=32)

Global Pooling + Classifier
self.avgpool=nn.AdaptiveAvgPool2d((1,1))
self.fc=nn.Linear(32, num_classes)

def forward(self,x):
x = self.conv1(x)
x = self.lpd(x) # Just like any layer.
x = torch.flatten(self.avgpool(x),1)
return self.fc(x)

Construct Model
torch.manual_seed(0)
model = SimpleClassifier().cuda().eval().double()

20

Load Image
img = torch.from_numpy(np.array(Image.open('butterfly.png'))).permute(2,0,1)
img = img.unsqueeze(0).cuda().double()
Check is circular shift invariant
y_orig = model(img).detach().cpu()
img_roll = torch.roll(img,shifts=(1, 1), dims=(-1, -2))
y_roll = model(img_roll).detach().cpu()
print("y_orig : %s " % y_orig)
print("y_roll : %s " % y_roll)
assert(torch.allclose(y_orig,y_roll)) # Check shift invariant
print("Norm(y_orig-y_roll): %e " % torch.norm(y_orig-y_roll))

Out:

y _ o r i g : t e n s o r ([[−2 2 . 0 6 8 1 , −36.2678 , 2 0 . 5 9 2 8]] ,
d t y p e = t o r c h . f l o a t 6 4)
y _ r o l l : t e n s o r ([[−2 2 . 0 6 8 1 , −36.2678 , 2 0 . 5 9 2 8]] ,
d t y p e = t o r c h . f l o a t 6 4)
Norm (y_or ig−y _ r o l l) : 0 .000000 e +00

A3.3 LPU Usage Illustration

We now illustrate how to incorporate the learnable polyphase upsampling (LPU) layer into a simple
encoder-decoder architecture. The network archticture consists of a convolution layer, followed by
LPD, another convolution layer, followed by LPU. We numerically verify that this architecture is
circular shift-equivariant.

class SimpleUNet(nn.Module):
def __init__(self, num_classes=3,padding_mode='circular'):

Conv. Layer
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1,

padding_mode=padding_mode)
Learnable Polyphase Downsampling Layer
self.lpd = set_pool(partial(

PolyphaseInvariantDown2D,
component_selection=LPS,
get_logits=get_logits_model('LPSLogitLayers'),
pass_extras=False
),p_ch=32,h_ch=32)

Conv. Layer
self.conv2 = nn.Conv2d(32, 32, 3, padding=1,

padding_mode=padding_mode)
Learnable Polyphase Upsampling Layer
antialias_layer = get_antialias(antialias_mode='LowPassFilter',

antialias_size=3,
antialias_padding='same',
antialias_padding_mode='circular',
antialias_group=1)

self.lpu = set_unpool(partial(
PolyphaseInvariantUp2D,
component_selection=LPS_u,
antialias_layer=antialias_layer), p_ch=32)

def forward(self,x):
x = self.conv1(x)
x, prob = self.lpd(x,ret_prob=True) # Just like any layer.
x = self.conv2(x)

21

x = self.lpu(x,prob=prob) # Just like any layer.
return x

Construct Model
torch.manual_seed(0)
model = SimpleUNet().cuda().eval().double()
Load Image
img = torch.from_numpy(np.array(Image.open('butterfly.png'))).permute(2,0,1)
img = img.unsqueeze(0).cuda().double()
Check is circular shift equivariant
y_orig = model(img).detach().cpu()
img_roll = torch.roll(img,shifts=(1, 1), dims=(-1, -2))
y_roll = model(img_roll).detach().cpu()
Roll back to check equality
y_roll_s = torch.roll(y_roll, shifts=(-1,-1), dims=(-1, -2))
print("Norm(y_orig-y_roll_s): %e " % torch.norm(y_orig-y_roll_s))
assert torch.allclose(y_orig, y_roll_s)

Out:

Norm (y_or ig−y _ r o l l _ s) : 0 .000000 e +00

A4 Additional Experimental Details

A4.1 LPS Architecture

As described in Sec. 4.2, LPS selects optimal polyphase components via a mapping fθ that is shift-
permutation equivariant. Given a feature map x ∈ RC×N1×N2 , let its polyphase decomposition of
order 2 be denoted as {xk}3k=0,xk ∈ RC×bN1/2c×bN2/2c. fθ is then parameterized as a two-layer
CNN followed by global average pooling. See Tab. A2 and Tab. A3 for the LPD layer (LPD) and the
logits model architecture details.

Table A2. Learnable polyphase downsampling (LPD) model. After computing the polyphase components and
their logits, the component selection step keeps the phase with the largest logit value.

Layer Kernel
Size Bias Stride Pad Input

Size
Output

Size
Input

Channels
Output

Channels

1 Polyphase decomposition − − 2 − N1 ×N2 4× bN1/2c × bN2/2c C C
2 Logits model − − − − 4× bN1/2c × bN2/2c 4 C 1
3 Component selection − − − − 4× bN1/2c × bN2/2c, 4 bN1/2c × bN2/2c C C

Table A3. Polyphase logits model for a single polyphase component fθ : RC×bN1/2c×bN2/2c 7→ R.

Layer Kernel
Size Bias Stride Pad Input

Size
Output

Size
Input

Channels
Output

Channels

1 Conv2d + ReLU 3× 3 3 1 1 bN1/2c × bN2/2c bN1/2c × bN2/2c C Chid

2 Conv2d 3× 3 3 1 1 bN1/2c × bN2/2c bN1/2c × bN2/2c Chid Chid

3a Flatten − − − − bN1/2c × bN2/2c ChidbN1/2cbN2/2c Chid 1
3b Global average pooling − − − − ChidbN1/2cbN2/2c 1 1 1

Hidden Layer. In practice, we have the freedom of choosing the number of channels in the hidden
layer, denoted as Chid. For our classification results, Chid is equivalent to the number of channels
of the input tensor. The only exception of this rule corresponds to the LPS ResNet-101 (adaptive
antialias filter) case reported in Tab. 3. A top-1 classification accuracy of 78.8% plus a standard shift
consistency of 92.4% is achieved by reducing the number of hidden channels w.r.t. the input at each
pooling layer. Please see Tab. A4 for the number of input and hidden channels for each LPS layer
used in our ResNet-101 experiments.

22

Table A4. ResNet-101: Number of channels at each LPS-D layer.

Layer Conv 1 Maxpool Layer 2
Downsample

Layer 3
Downsample

Layer 4
Downsample

Input Channels C 64 64 128 256 1024

Hidden Channels Chid 8 8 16 32 72

Table A5. LPS-based ResNet-50 architecture for ImageNet.

Layer Kernel
Size Bias Stride Pad Input

Size
Output

Size
Hidden

Channels
Input

Channels
Output

Channels

1a Conv2d + BN + ReLU 7× 7 7 1 3 224× 224 224× 224 − 3 64
1b LPD − − 2 − 224× 224 112× 112 − 64 64

2a Zero pad − − − − 112× 112 113× 113 − 64 64
2b Max filter 2× 2 − 1 0 113× 113 112× 112 − 64 64
2c LPD − − − − 112× 112 56× 56 64 64 64

Block 1

3a Res. layer − − 1 − 56× 56 56× 56 64 64 256
3b Res. layer − − 1 − 56× 56 56× 56 64 256 256
3c Res. layer − − 1 − 56× 56 56× 56 64 256 256

Block 2

4a Res. layer (LPD) − − 2 − 56× 56 28× 28 128 256 512
4b Res. layer − − 1 − 28× 28 28× 28 128 512 512
4c Res. layer − − 1 − 28× 28 28× 28 128 512 512
4d Res. layer − − 1 − 28× 28 28× 28 128 512 512

Block 3

5a Res. layer (LPD) − − 2 − 28× 28 14× 14 256 512 1024
5b Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5c Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5d Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5e Res. layer − − 1 − 14× 14 14× 14 256 1024 1024
5f Res. layer − − 1 − 14× 14 14× 14 256 1024 1024

Block 4

6a Res. layer (LPD) − − 2 − 14× 14 7× 7 512 1024 2048
6b Res. layer − − 1 − 7× 7 7× 7 512 2048 2048
6c Res. layer − − 1 − 7× 7 7× 7 512 2048 2048

7 Global average pool − − − − 7× 7 1× 1 − 2048 2048
8 Flatten − − − − 1× 1 2048 − 2048 1
9 Fully connected − 3 − − 2048 1000 − 1 1

Input Dimensionality. Under a mini-batch training setting, the polyphase decomposition of an
input corresponds to a five-dimensional tensor. Let this be denoted as X ∈ RB×P×C×b

N1
2 c×b

N2
2 c,

where B corresponds to the total number of feature maps in the batch and P = 4 to the number of
polyphase components (assuming a downscaling factor of 2). To efficiently obtain a logit for each
component, independently of its relative position in the tensor, we reshape it by combining the batch
and polyphase component dimensions.

This alternative representation corresponds to X̂ ∈ R4B×C×bN1
2 c×b

N2
2 c, and allows for each

polyphase component to be processed independently of the rest. In practice, our CNN-based logits
model receives X̂ as input and generates a set of 4B logits, one for each polyphase component, in a
single forward pass.

Overall Architecture. Tab. A5 and Tab. A6 provide a general description of the ResNet-based
architecture that incorporates LPD as pooling layer and its custom residual layer, respectively. In
contrast to the original ResNet model, each pooling or downsampling step is replaced by our learn-
based layer. For illustration purposes, we focus on the ResNet-50 model.

23

Table A6. Example of an LPS-based residual layer. Architecture corresponds to the first residual layer of
ResNet-50 block 2 (4a in Tab. A5). The main and shortcut branches receive the input feature map of dimensions
N1 × N2. The LPD layer in the shortcut branch also receives the logits precomputed on the main branch of
dimensions 4 to consistently select the same component.

Layer Kernel
Size Bias Stride Pad Input

Size
Output

Size
Input

Channels
Output

Channels

Main branch

1a Conv2d + BN + ReLU 1× 1 7 1 0 N1 ×N2 N1 ×N2 256 128
1b Conv2d + BN + ReLU 3× 3 7 1 1 N1 ×N2 N1 ×N2 128 128
1c LPD − − 2 − N1 ×N2 bN1/2c × bN2/2c, 4 128 128
1d Conv2d + BN 1× 1 7 1 0 bN1/2c × bN2/2c bN1/2c × bN2/2c 128 512

Shortcut branch

2a LPD (pre-computed) − − 2 − N1 ×N2, 4 bN1/2c × bN2/2c 256 256
2b Conv2d + BN 1× 1 7 1 0 bN1/2c × bN2/2c bN1/2c × bN2/2c 256 512

3 Sum + ReLU − − − − bN1/2c × bN2/2c, bN1/2c × bN2/2c bN1/2c × bN2/2c 512 512

A4.2 Baseline Implementations

A4.2.1 Image Classification

In this section, we provide additional implementation details and differences from the three main
classification baselines, Lowpass Filtering (LPF) [56], Adaptive Polyphase Sampling (APS) [5] and
Adaptive Lowpass Filtering (DDAC) [57].

Lowpass Filtering (LPF). LPF classification accuracy and shift consistency values included in
Tab. 1, Tab. 2 and Tab. 3 correspond to those reported by LPF and APS manuscripts. Experimental
results for standard shift consistency were taken from the LPF official repository, while experimental
results analyzing circular shift consistency correspond to those reported by APS. It is important to
note that, while LPF training setup for standard shift consistency uses rescaled random cropping
as part of its preprocessing, our experiments on circular shift consistency follow APS settings and
discard it. Please refer to Sec. A4.4 for details regarding data preprocessing.

Adaptive Polyphase Sampling (APS). As with LPF, APS’s accuracy and consistency values via
no antialiasing or lowpass filtering included in Sec. 5 are obtained from their official manuscript. APS
results via adaptive filtering, denoted in Tab. 1 and Tab. 2 were obtained by replacing our learnable
polyphase selection criteria by APS `2 energy-based selection and incorporated the adaptive filtering
to it.

Adaptive Lowpass Filtering (DDAC). We compare the accuracy and shift consistency of our
proposed pooling method against that of DDAC under both circular and standard shifts. For the
circular shift case, reported for CIFAR-10 and ImageNet in Tab. 1 and Tab. 2, respectively, we replace
the LPS selection criteria by keeping always the even polyphase components (k? = 0), followed by a
learnable low-pass filter with the exact same specifications as the one provided in the official DDAC
code base. For consistency purposes, DDAC experiments analyzing circular shift consistency follow
the same data preprocessing used in APS experiments. More precisely, no rescaled random cropping
is applied for data augmentation.

For the standard shift case, we compare against the best performing DDAC model, ResNet-101,
without any changes. Tab. 3 includes its reported top-1 classification accuracy and shift consistency.
For the sake of clarity, we also include the results obtained by training the model from scratch using
their official code base and hyperparameters.

A4.2.2 Semantic Segmentation

In the paper, we directly compared to the reported values in DDAC [57]. Unfortunately, the authors
did not released their evaluation code and did not provide a clear description of the metric. We were
not able to exactly reproduce their reported mASSC. For a fair comparison, we evaluate DDAC’s
released checkpoint using our mASSC implementation. We will make our implementation publicly
available.

24

A4.3 Comparison against Classifiers with More Trainable Parameters.

To show the performance improvement attained by our LPD approach is not simply an effect of
introducing more trainable parameters, we compared our ResNet-101 + LPD model (44, 751, 034
parameters) against the larger ResNet-152 model (60, 192, 808 parameters). Both models were trained
on ImageNet using the same augmentation and optimizer configuration. Under such settings, ResNet-
152 achieves 78.3% top-1 classification accuracy and 90.9% shift consistency, while our ResNet-101
+ LPD model obtains 78.8% top-1 accuracy and 92.4% shift-consistency. Despite having 25% less
trainable parameters, our model attains 0.5% higher accuracy and 1.5% higher shift-consistency.

A4.4 Hyperparameters and Tuning Procedure

A4.4.1 Image Classification

Learn Rate and Optimization Parameters. Following the standard ImageNet setup, the initial
learn rate value corresponds to 0.1 and follows a multi-step schedule, decaying every 30 epochs
by a factor of 0.1. Our models are trained via stochastic gradient descent with 0.9 momentum. A
weight decay of factor 10−4 is imposed to all model trainable weights except those of the LPS layers.
Empirically, this has shown a substantial consistency improvement, avoiding cases where polyphase
logits have very similar values and other numerical precision issues. Additionally, for our experiments
on ResNet-101 and ResNet-50 with adaptive antialiasing filters, following DDAC settings, a learning
rate warmup of five epochs is applied.

Data Preprocessing and Split. Tab. A7 describes the data preprocessing used in our CIFAR-10
experiments. No shifts or resizing augmentations are applied to highlight the fact that perfect circular
shift invariance/equivariance is achieved by design and not induced during training.

Table A7. CIFAR-10 data preprocessing.
Split Train Set Test Set

Preprocessing (i) Random horizontal flipping
(ii) Normalization (i) Normalization

For ImageNet experiments evaluating circular shift consistency, we follow APS’s preprocessing
settings. Tab. A8 describes its data preprocessing. For ImageNet experiments evaluating standard
shift consistency, we follow DDAC settings. Tab. A9 describes its data preprocessing.

Table A8. ImageNet data preprocessing for circular shift consistency evaluation.
Split Train Set Test Set

Preprocessing

(i) Resizing to 256× 256
(ii) Center cropping to 224× 224
(iii) Random horizontal flipping

(iv) Normalization

(i) Resizing to 256× 256
(ii) Center cropping to 224× 224

(iii) Normalization

Table A9. ImageNet data preprocessing for standard shift consistency evaluation.
Split Train Set Test Set

Preprocessing

(i) Resizing to 256× 256
(ii) Resized random cropping to 224× 224

(iii) Random horizontal flipping
(iv) Normalization

(i) Resizing to 256× 256
(ii) Center cropping to 224× 224

(iii) Normalization

Computational Settings. Classification experiments on CIFAR-10 are trained on a single NVIDIA
Titan V using a batch size of 256 for 250 epochs. Classification experiments on ImageNet are trained
in distributed data parallel mode on four NVIDIA A6000 GPUs using a batch size of 64 for 90
epochs.

25

Polyphase Selection for Circular Shift Consistency. For circular shift consistency on both
CIFAR-10 and ImageNet, the polyphase component selection depends on the model state. Dur-
ing training, each LPS layer samples from a Gumbel-softmax distribution. This leads to a convex
combination of polyphase components that improves the backpropagation process. Following the
original Gumbel-Softmax formulation, we use an annealing factor to slowly converge to a one-hot
vector along epochs. Considering 250 and 90 training epochs for CIFAR-10 and ImageNet exper-
iments, respectively, the annealing factor τ ∈ R+ gradually decays to improve the gradient flow
during the error backpropagation step. A step decay approach is used for CIFAR-10 experiments,
while a multistep linear decay is used for ImageNet experiments.

During testing, optimal polyphase components correspond to those with the largest logit values
(hard-selection), which leads to a classifier with perfect circular shift consistency by design.

Polyphase Selection for Standard Shift Consistency. For standard shift consistency evaluation
on ImageNet, we adopt a fine-tuning procedure to balance the shift consistency and classification
accuracy obtained by our models. Recall that our model guarantees perfect consistency under circular
shifts, which leaves open the posibility of applying more refined training to improve the performance
under standard shifts.

With this in mind, instead of switching to a hard-selection, we relax the annealing factor during the last
28 training epochs, replacing the gumbel-softmax sampling by a standard softmax (soft-association)
for both training and testing.

Tab. A10 includes the details of the Gumbel-softmax annealing schedule for both circular and standard
shift consistency experiments.

Table A10. Gumbel-softmax annealing schedule for image classification.

Consistency
Evaluation

CIFAR-10 ImageNet
Circular Shift Circular Shift Standard Shift

Method Step Decay Multirate Linear Decay Multirate Linear Decay

τ
Schedule

Initial value: τ=1
Decay step: 10 epochs

Decay factor: 0.85
Minumum value: τ = 0.025

Epoch 1/90: τ = 1
Epoch 62/90: τ = 0.5

Epoch 82/90: τ = 0.05
Epoch 90/90: τ = 0.01

Epoch 1/90: τ = 1
Epoch 62/90: τ = 0.5

Epoch 90/90: τ = 0.25

A4.4.2 Semantic Segmentation

Unpooling Component Selection. During training, for both standard and circular shift consistency
evaluation, feature maps obtained from the backbone are unpooled (upsampled and shifted) by
LPU layers. The shift applied to each feature map, intended to place them back into their original
indices, depends on the logit probabilities computed by the backbone. Since these are obtained from
a Gumbel-softmax distribution during training, instead of placing the upsampled feature map at
a single position, LPU layers generate an upscaled representation composed by all four possible
positions (assuming an upscaling factor of 2), each weighted by its corresponding probability. In
other words, LPU soft-unpools the input feature map to all four possible positions, weights them by
their probabilities and adds them together to obtain the output feature map.

For our ImageNet experiments we modify the annealing schedule used for image classification and
tailor it to the segmentation model and its 125 training epochs. First, we linearly increase the annealing
factor from the last value used during the backbone training process (recall that the backbone was
trained using its own Gumbel-softmax annealing schedule) to 0.5. Then, we gradually decay it to
improve the gradient flow during backpropagation.

During testing, LPU layers receive logits from the backbone. Then, feature maps are unpooled
according to the polyphase component with the largest logit value (hard-selection), allowing the
segmentation model to become shift-equivariant by design.

Tab. A11 includes the details of the Gumbel-softmax annealing schedule used in our semantic
segmentation experiments for both circular and standard shift consistency evaluation.

26

Table A11. Gumbel-softmax annealing schedule for image segmentation on ImageNet. ∗ Initial τbackbone values
correspond to the final values used during our ResNet-18 and ResNet-101 backbone training.

Consistency
Evaluation

ResNet-18 ResNet-101
Circular Shift Circular and Standard Shift

Method Multirate Linear Decay Multirate Linear Decay

τ
Schedule

Epoch 1/125: τ = τbackbone
∗

Epoch 60/125: τ = 0.5
Epoch 82/125: τ = 0.15
Epoch 90/125: τ = 0.01

Epoch 1/125: τ = τbackbone
∗

Epoch 10/125: τ = 0.5
Epoch 80/125: τ = 0.3

Epoch 100/125: τ = 0.125
Epoch 125/125: τ = 0.01

27

	Introduction
	Related Work
	Preliminaries
	Approach
	Learnable Polyphase Downsampling
	Practical LPD Design
	Learnable Polyphase Upsampling (LPU)

	Experiments
	Image Classification (Circular Shift)
	Image Classification (Standard Shift)
	Trainable Parameters and Inference Time
	Semantic Segmentation (Circular Shift)
	Semantic Segmentation (Standard Shift)

	Conclusion
	Proof of Claim 4
	Additional Experimental Results
	Additional Implementation Details
	LPS Implementation Overview
	LPD Usage Illustration
	LPU Usage Illustration

	Additional Experimental Details
	LPS Architecture
	Baseline Implementations
	Image Classification
	Semantic Segmentation

	Comparison against Classifiers with More Trainable Parameters.
	Hyperparameters and Tuning Procedure
	Image Classification
	Semantic Segmentation

