
A Overview and proof techniques

In this section, we present an overview of the ideas that go into the proofs of our main theorems
Theorem 3.1 and Theorem 3.2. To do this, we develop a general meta-theorem that will enable us
to show SoS lower bounds for a general class of “noisy” problems and simply invoke it for PCA.
We take this approach because we expect this meta-theorem to be applicable to other problems of
interest.

To show SoS lower bounds, we have to exhibit a feasible SoS solution, i.e. a pseudo-expectation
operator Ẽ, for our program that satisfy the constraints. A natural starting point for us is to apply the
technique of pseudo-calibration [19] to construct a candidate SoS solution and then argue that it’s
feasible. We will cover this technique formally in Appendix B but the basic idea is as follows.

Pseudo-calibration Consider a problem where we are trying to extract a structure (such as a
sparse principal component in the case of Sparse PCA) from an input distribution (henceforth called
the random distribution in this context). Then, pseudo-calibration proposes that we construct a
“maximum entropy” planted distribution of inputs which has the given structure. Using this, we can
construct candidate pseudo-expectation values Ẽ so that as far as low degree polynomials (of the
input) are concerned, Ẽ for the random distribution mimics the behavior of the given structure for the
planted distribution. This gives a candidate SoS solution.

Therefore, the first step is to construct a suitable planted distribution. For the problems of Sparse
and Tensor PCA, we use the most natural distributions where we take a completely random input and
“plant” the desired structure. We describe this formally next and state the results that we show in this
appendix, from which our main theorems immediately follow as corollaries.

Random and planted distributions Instate the notations of Theorem 3.1 and Theorem 3.2. For
the Wishart model of Sparse PCA, we use the following distributions.

- Random distribution ⌫: v1, . . . , vm are sampled from N (0, Id) and we take S to be the
m⇥ d matrix with rows v1, . . . , vm.

- Planted distribution µ: Sample u from {� 1p
k
, 0, 1p

k
}d where the values are chosen with

probabilites k
2d , 1�

k
d ,

k
2d respectively. Then sample v1, . . . , vm as follows. For each i 2 [m],

with probability � = d�⇥("), sample vi from N (0, Id +�uuT ) and with probability 1��,
sample vi from N (0, Id). Finally, take S to be the m⇥ d matrix with rows v1, . . . , vm.

In Appendix E, we compute the SoS solution obtained by pseudo-calibration. We prove the
following theorem.
Theorem A.1. There exists a constant C > 0 such that for all sufficiently small constants " > 0, if
m  d1�"

�2 ,m  k2�"

�2 , and there exists a constant A such that 0 < A < 1
4 , d4A  k  d1�A", and

p
�p
k
 d�A", then with high probability, the SoS solution given by pseudo-calibration for degree dC"

Sum-of-Squares is feasible.

For Tensor PCA, we use the following distributions. Let k � 2 be an integer.

- Random distribution ⌫: Sample A from N (0, I[n]k).

- Planted distribution µ: Let �,� = n�⇥(") > 0. Sample u from {� 1p
�n

, 0, 1p
�n

}n where
the values are taken with probabilites �

2 , 1 � �, �
2 respectively. Then sample B from

N (0, I[n]k). Set A = B + �u⌦k.

In Appendix D, we apply pseudo-calibration and we prove the following theorem.
Theorem A.2. Let k � 2 be an integer. There exists a constant C > 0 such that for all sufficiently
small constants " > 0, if �  n

k

4�", then with high probability, the SoS solution given by pseudo-
calibration for degree nC" Sum-of-Squares is feasible.

We remark that in the planted distribution, we resample the coordinates with probability 1��.
This resampling and the conditions involving the constant A in Theorem A.1 are needed for technical
reasons, see Remark J.5 and Remark K.8.
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The two distributions discussed for each problem might remind the reader of hypothesis testing.
Indeed, pseudo-calibration harnesses the intuition that it’s hard for efficient algorithms to solve the
natural hypothesis testing analogue where we have to distinguish between an alternative and a null
hypothesis. We now present an overview of the proof techniques.

A.1 Proof techniques

To show feasibility, it will be convenient to work with the notion of a moment matrix for a given
pseudo-expectation operator.
Definition A.3 (Moment Matrix of Ẽ). Given degree d pseudo-expectation values Ẽ, define the
associated moment matrix ⇤ to be a matrix with rows and columns indexed by monomials p and q
such that the entry corresponding to row p and column q is

⇤[p, q] := Ẽ [pq] .

It is easy to verify that Item 3 in Definition 2.1 equivalent to ⇤ ⌫ 0, which is in fact why SoS
relaxations can be solved via semidefinite programming.

To show feasibility of our constructed SoS solution, we develop a general meta-theorem to show
that ⇤ is PSD. The other constraints follow easily from pseudo-calibration (see Appendix B). To
show PSDness of ⇤, we construct certain coefficient matrices from ⇤ and give conditions on these
coefficient matrices which are sufficient to guarantee that ⇤ is PSD with high probability. We now
give an informal sketch of our main techniques. Some of these ideas are a generalization of the
techniques used to prove the SoS lower bound for planted clique [19] but apart from generalizing their
work, we needed to develop various other analysis techniques necessary to handle Gaussian inputs.
Importantly, the notion of coefficient matrices are conceptually new and turn out to be essential for
us.

Shapes and graph matrices We start by describing shapes and graph matrices, which were
originally introduced by [19, 86] (also used in the planted clique SoS lower bound [19]) and later
generalized in [1] (which we use here). They will be covenient for our analysis.

Shapes ↵ are graphs that contain extra information about the vertices. Corresponding to each
shape ↵, there is a matrix-valued function M↵ (i.e. a matrix whose entries depend on the input)
that we call a graph matrix. Graph matrices are analogous to a Fourier basis, but for matrix-valued
functions that exhibit a certain kind of symmetry. In our setting, ⇤ will be such a matrix-valued
function, so we can decompose ⇤ as a linear combination of graph matrices ⇤ =

P
shapes ↵ �↵M↵.

Shapes and graph matrices have several properties which make them very useful to work with.
First, kM↵k can be bounded with high probability in terms of simple combinatorial properties of the
shape ↵. Second, if two shapes ↵ and � match up in a certain way, we can combine them to form a
larger shape ↵ � �. We call this operation shape composition. Third, each shape ↵ has a canonical
decomposition into three shapes, the left, middle and right parts of ↵, which we call �, ⌧ , and �0T .
For this canonical decomposition, we have that ↵ = � � ⌧ � �0T and M↵ ⇡ M�M⌧M�0T . This
decomposition is crucial for our analysis.

A general framework for SoS lower bounds We now sketch our strategy.

1. Decompose the moment matrix ⇤ as a linear combination ⇤ =
P

shapes ↵ �↵M↵ of graph
matrices M↵.

2. For each shape ↵, decompose ↵ into a left part �, a middle part ⌧ , and a right part �0T .
3. Based on the coefficients �↵ and the decompositions of the shapes ↵ into left, middle, and

right parts, construct coefficient matrices HIdU
and H⌧ .

4. Based on the coefficient matrices HIdU
and H⌧ , obtain an approximate PSD decomposition

of ⇤.
5. Show that the error terms (which we call intersection terms) can be bounded by the approxi-

mate PSD decomposition of ⇤.

The strategy is similar to the work of [19] who showed SoS lower bounds for the planted clique
problem but they do it in an ad-hoc manner, without defining or using coefficient matrices. As we
will see, this abstraction makes the meta-theorem versatile.
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We show that this analysis will succeed by distilling it as three conditions on the coefficient
matrices. We have attempted to keep our meta-theorem general enough so that it can be used in other
SoS lower bounds. The rough blueprint to use our theorem to prove SoS lower bounds is as follows.

1. Construct a candidate moment matrix ⇤.

2. Decompose the moment matrix ⇤ as a linear combination ⇤ =
P

shapes ↵ �↵M↵ of graph
matrices M↵ (akin to Fourier decomposition) and find the corresponding coefficient matrices.

3. Verify the required conditions on the coefficient matrices.

A.1.1 A sketch of the intuition behind the conditions

We now motivate and sketch the conditions we present in our meta-theorem.

Giving an approximate PSD factorization As discussed above, we decompose the moment matrix
⇤ as a linear combination ⇤ =

P
shapes ↵ �↵M↵ of graph matrices M↵. We then decompose each ↵

into left, middle, and right parts �, ⌧ , and �0T . We now have that

⇤ =
X

↵=��⌧��0T

���⌧��0TM��⌧��0T

We first consider the terms
P

�,�0 ����0TM���0T ⇡
P

�,�0 ����0TM�M�0T where ⌧ corre-
sponds to an identity matrix and can be ignored (which are called trivial shapes).

If there existed real numbers v� for all left shapes � such that ����0T = v�v�0 , then we would
have X

�,�0

����0TM�M�0T =
X

�,�0

v�v�0M�M�0T = (
X

�

v�M�)(
X

�

v�M�)
T ⌫ 0

which shows that the contribution from these terms is positive semidefinite. In fact, this turns out to
be the case for the planted clique analysis. However, this may not hold in general. To handle this, we
note that the existence of v� can be relaxed as follows: Let H be the matrix with rows and columns
indexed by left shapes � such that H(�,�0) = ����0T . Up to scaling, H will be one of our coefficient
matrices. If H is positive semidefinite then the contribution from these terms will also be positive
semidefinite. In fact, this will be the PSD mass condition of our main theorem, see Theorem C.37.

Handling terms with a non-trivial middle part Unfortunately, we also have terms
���⌧��0TM��⌧��0T where ⌧ is non-trivial. Our strategy will be to charge these terms to other
terms. For the sake of simplicity, we will describe how to handle one term. A starting point is the
following inequality. For a left shape �, a middle shape ⌧ , a right shape �0T , and real numbers a, b,

(aM� � bM�0M⌧T )(aM� � bM�0M⌧T )T ⌫ 0

which rearranges to

ab(M�M⌧M�0T + (M�M⌧M�0T )T ) � a2M�M�T + b2M�0M⌧TM⌧M�0T

� a2M�M�T + b2 kM⌧k2 M�0M�0T

If �2
��⌧��0T kM⌧k2  ����T ��0��0T , then we can choose a, b such that a2 

����T , b2 kM⌧k2  ��0��0T and ab = ���⌧��0T . This will approximately imply

���⌧��0T (M��⌧��0T +MT
��⌧��0T ) � ����TM���T + ��0��0TM�0��0T

which will give us a way to charge terms with a nontrivial middle part against terms with a trivial
middle part.

While we could try to apply this inequality term by term, it is not strong enough to give us our
results. Instead, we generalize this inequality to work with the entire set of shapes �,�0 for a fixed ⌧ .
This will lead us to the middle shape bounds condition.
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Handing intersection terms There’s one technicality in the above calculations. Whenever we
decompose ↵ into left, middle, and right parts �, ⌧ , and �0T , M�M⌧M�0T is only approximately
equal to M↵ = M��⌧��0T . All the other error terms have to be carefully handled in our analysis. We
call these terms intersection terms.

We exploit the fact that these intersection terms themselves are graph matrices. Therefore, we
recursively decompose them into �2 � ⌧2 � �0T

2 and apply the previous ideas. To do this methodically,
we employ several ideas such as the notion of intersection patterns and the generalized intersection
tradeoff lemma (see Appendix G). Properly handling the intersection terms is one of the most
technically intensive parts of our work. This analysis leads us to the intersection term bounds
condition.

A.2 Organization of the appendix

The remainder of this appendix is organized as follows. In Appendix B, we describe pseudo-
calibration in more detail. In Appendix C, we present the qualitative statement of the main theorem.
In Appendix D and Appendix E, we qualitatively verify the conditions for tensor PCA, and sparse
PCA respectively. In Appendix F, we introduce more formal definitions and state a quantitative
version of the main theorem, with the proof following in the next few appendices. In Appendix J and
Appendix K, we complete the proofs of our applications and in particular, we obtain the quantative
tradeoffs we desire.

B Pseudo-calibration

Psuedo-calibration is a heuristic introduced by [19] to construct candidate pseudo-expectation values
on instances of an optimization problem in order to exhibit SoS integrality gaps. It does this almost
mechanically by considering a planted distribution supported on instances of the problem with large
objective value and uses this planted distribution as a guide to construct the pseudo-expectation
values. This has been successful for various high-degree SoS lower bounds in the literature, e.g.,
Sherrington-Kirkpatrick [45, 87], Planted Clique [19], Max-k-CSPs [71, 103], Max-Cut [87], etc. A
variant was used in the problem of Independent set [64].

For our applications, psuedocalibration is used to obtain a candidate pseudoexpectation operator
Ẽ. from the random vs planted problem. This will be the starting point for all our applications. Here,
we do not attempt to motivate and describe it in great detail. Instead, we will briefly describe the
heuristic, the intuition behind it and show an example of how to use it. A detailed treatment can be
found in [19].

Let ⌫ denote the random distribution and µ denote the planted distribution. Let v denote the
input and x denote the variables for our SoS relaxation. The main idea is that, for an input v sampled
from ⌫ and any polynomial f(x) of degree at most the SoS degree, pseudo-calibration proposes
that for any low-degree test g(v), the correlation of Ẽ[f ] should match in the planted and random
distributions. That is,

E
v⇠⌫

[Ẽ[f(x)]g(v)] = E
(x,v)⇠µ

[f(x)g(v)]

Here, the notation (x, v) ⇠ µ means that in the planted distribution µ, the input is v and x
denotes the planted structure in that instance. For example, in Sparse PCA, x would be the sparse
principal component. If there are multiple, pick an arbitrary one.

Let F denote the Fourier basis of polynomials for the input v. By choosing different basis
functions from F as choices for g such that the degree is at most n" (hence the term low-degree
test), we get all lower order Fourier coefficients for Ẽ[f(x)] when considered as a function of v.
Furthermore, the higher order coefficients are set to be 0 so that the candidate pseudoexpectation
operator can be written as

Ẽf(x) =
X

g2F
deg(g)n"

E
v⇠⌫

[Ẽ[f(x)]g(v)]g(v) =
X

g2F
deg(g)n"

E
(x,v)⇠µ

[[f(x)]g(v)]g(v)

The coefficients E(x,v)⇠µ[[f(x)]g(v)] can be explicitly computed in many settings, which there-
fore gives an explicit pseudoexpectation operator Ẽ.
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One intuition for pseudo-calibration is as follows. The planted distribution is usually chosen to
be a maximum entropy distribution which still has the planted structure. This exploits our intuition
that random instances are hard for SoS, such as the Gaussian distribution for Tensor PCA. By
conditioning on the lower order moments matching such a planted distribution, pseudo-calibration
can be interpreted as sort of interpolating between the random and planted distributions by only
looking at lower order Fourier characters. This intuition has proven to be successful, since pseudo-
calibration been successfully exploited to construct SoS lower bounds for a wide variety of dense as
well as sparse problems.

An advantage of pseudo-calibration is that this construction automatically satisfies some nice
properties that the pseudoexpectation Ẽ should satisfy. It’s linear in v by construction. For all
polynomial equalities of the form f(x) = 0 that is satisfied in the planted distribution, it’s true that
Ẽ[f(x)] = 0. For other polynomial equalities of the form f(x, v) = 0 that are satisfied in the planted
distribution, the equality Ẽ[f(x, v)] = 0 is approximately satisfied. In most cases, Ẽ can be mildly
adjusted to satisfy these exactly.

In our applications, we have Ẽ[1] = 1± o(1) due to the bounds on the signal-to-noise ratio (this
is where the actual bounds kick in!). Once we have this, we simply set our final pseudoexpectation
operator to be Ẽ0 defined as Ẽ0

[f(x)] = Ẽ[f(x)]/Ẽ[1].

B.1 Tensor PCA

We will now pseudo-calibrate with respect to the pair of random and planted distributions described
for Tensor PCA (Appendix A, Random and planted distributions). Let the Hermite polynomials be
h0(x) = 1, h1(x) = x, h2(x) = x2 � 1, . . .. For a 2 N[n]k and variables Ae for e 2 [n]k, define
ha(A) :=

Q
e2[n]k he(Ae). We will work with this Hermite basis, which is a standard basis for

Gaussian inputs (which is what we consider here). Define the slack parameter to be � = n�C�" for
a constant C� > 0.

Lemma B.1. Let I 2 Nn, a 2 N[n]k . For i 2 [n], let di =
P

i2e2[n]k ae. Let c be the number of i
such that Ii + di is nonzero. Then, if Ii + di are all even, we have

E
µ
[uIha(A)] = �c

✓
1p
�n

◆|I| Y

e2[n]k

 
�

(�n)
k

2

!ae

Else, Eµ[uIha(v)] = 0.

Proof. When A ⇠ µ, for all e 2 [n]k, we have Ae = Be + �
Q

ik uei . where Be ⇠ N (0, 1). Let’s
analyze when the required expectation is nonzero. We can first condition on u and use the fact that
for a fixed t, Eg⇠N (0,1)[hk(g + t)] = tk to obtain

E
(ui,we)⇠µ

[uIha(A)] = E
(ui)⇠µ

[uI
Y

e2[n]k

(�
Y

ik

uei)
ae ] = E

(ui)⇠µ
[
Y

i2[n]

uIi+di

i ]
Y

e2[n]k

�ae

Observe that this is nonzero precisely when all Ii + di are even, in which case

E
(ui)⇠µ

[
Y

i2[n]

uIi+di

i ] = �c

✓
1p
�n

◆P
in

Ii+di

= �c

✓
1p
�n

◆|I| Y

e2[n]k

 
1

(�n)
k

2

!ae

where we used the fact that
P

e2[n]k ae = k
P

i2[n] di. This completes the proof.

B.2 Sparse PCA

We will pseudo-calibrate with respect to the random and planted distributions for Sparse PCA (Ap-
pendix A , Random and planted distributions). We will again work with the Hermite basis of polyno-
mials. For a 2 Nm⇥d and variables vi,j for i 2 [m], j 2 [n], define ha(v) :=

Q
i2[m],j2[n] hai,j

(vi,j).

For a nonnegative integer t, define t!! = (2t)!
t!2t = 1⇥ 3⇥ . . .⇥ t if t is odd and 0 otherwise. Define

the slack parameter to be � = d�C�" for a constant C� > 0.
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Lemma B.2. . Let I 2 Nd, a 2 Nm⇥d. For i 2 [m], let ei =
P

j2[d] aij and for j 2 [d], let
fj = Ij +

P
i2[m] aij . Let c1 (resp. c2) be the number of i (resp. j) such that ei > 0 (resp. fj > 0).

Then, if ei, fj are all even, we have

E
µ
[uIha(v)] =

✓
1p
k

◆|I|✓k

d

◆c2

�c1
Y

i2[m]

(ei � 1)!!
Y

i,j

p
�
aij

p
k
aij

Else, Eµ[uIha(v)] = 0.

Proof. v1, . . . , vm ⇠ µ can be written as vi = gi+
p
�biliu where gi ⇠ N (0, Id), li ⇠ N (0, 1), bi 2

{0, 1} where bi = 1 with probability �. Let’s analyze when the required expectation is nonzero. We
can first condition on bi, li, u and use the fact that for a fixed t, Eg⇠N (0,1)[hk(g + t)] = tk to obtain

E
(u,li,bi,gi)⇠µ

[uIha(v)] = E
(u,li,bi)⇠µ

[uI
Y

i,j

(
p
�biliuj)

aij ] = E
(u,li,bi)⇠µ

[
Y

i2[m]

(bili)
ei
Y

j2[d]

u
fj
j ]
Y

i,j

p
�
aij

For this to be nonzero, the set of c1 indices i such that ei > 0, should not have been resampled
otherwise bi = 0, each of which happens independently with probability �. And the set of c2 indices
j such that fj > 0 should have been such that uj is nonzero, each of which happens independently
with probability k

d . Since li, uj are have zero expectation in ⌫, we need ei, fj to be even. The
expectation then becomes

�c1

✓
k

d

◆c2

E
(u,li)⇠µ

[
Y

i2[m]

leii
Y

j2[d]

u
fj
j ]
Y

i,j

p
�
aij

=

✓
1p
k

◆|I|✓k

d

◆c2

�c1
Y

i2[m]

(ei�1)!!
Y

i,j

p
�
aij

p
k
aij

The last equality follows because, for each j such that uj is nonzero, we have ut
j = ( 1p

k
)t and

Eg⇠N (0,1)[g
t] = (t� 1)!! if t is even.

C Informal Description of our main theorem

In this section, we informally describe our general theorem for proving sum of squares lower bounds
on planted problems. Our goal for this section is to qualitatively state the conditions under which we
can show that the moment matrix ⇤ is PSD with high probability (see Theorem C.37). For simplicity,
in this section we restrict ourselves to the setting where the input is {�1, 1}(

n

2) (e.g. a random graph
on n vertices).

C.1 Fourier analysis for matrix-valued functions: ribbons, shapes, and graph matrices

For our approach, we need the definitions of ribbons, shapes, and graph matrices from [1].

C.1.1 Ribbons

Ribbons lift the usual Fourier basis for functions {f : {±1}(
n

2) ! R} to matrix-valued functions.
Definition C.1 (Simplified ribbons – see Definition F.22). Let n 2 N. A ribbon R is a tuple
(ER, AR, BR) where ER ✓

�[n]
2

�
and AR, BR are tuples of elements in [n]. R thus specifies:

1. A Fourier character �ER
.

2. Row and column indices AR and BR.

We think of R as a graph with vertices

V (R) = { endpoints of (i, j) 2 ER } [AR [BR

and edges E(R) = ER, where AR, BR are distinguished tuples of vertices.
Definition C.2 (Matrix-valued function for a ribbon R). Given a ribbon R, we define the matrix
valued function MR : {±1}(

n

2) ! R
n!

(n�|AR|)!⇥
n!

(n�|BR|)! to have entries MR(AR, BR) = �ER
and

MR(A0, B0) = 0 whenever A0 6= AR or B0 6= BR.

23



The following proposition captures the main property of the matrix-valued functions MR – they
are an orthonormal basis. We leave the proof to the reader.
Proposition C.3. The matrix-valued functions MR form an orthonormal basis for the vector space
of matrix valued functions with respect to the inner product

hM,M 0i = E
G⇠{±1}(

n

2)

⇥
Tr
�
M(G)(M 0(G))>

�⇤
.

We don’t directly utilize this proposition in our work but this gives insight on to the structure
of the matrix valued functions we define and motivates the definition of graph matrices, that we use
extensively.
Example C.4. In Fig. 2, consider the ribbon R as shown. We have AR = (1, 3), BR = (4), V (R) =
{1, 2, 3, 4}, ER = {{1, 2}, {3, 2}, {2, 4}}. The Fourier character is �ER

= �1,2�3,2�2,4. And
finally, MR is a matrix with rows and columns indexed by tuples of length |AR| = 2 and |BR| = 1
respectively, with exactly one nonzero entry MR((1, 3), (4)) = �ER

. Succinctly,

MR =

column (4)
#0

B@

1

CA
0

... 0
row (1, 3) ! . . . . . . .�1,2�3,2�2,4 . . . . . . . . .

0
... 0

Figure 2: Example of a ribbon and a shape

C.1.2 Shapes and Graph Matrices

As described above, ribbons are an orthonormal basis for matrix-valued functions. However, we will
need an orthogonal basis for the subset of those functions which are symmetric with respect to the
action of Sn. For this, we use graph matrices, which are described by shapes. The idea is that each
ribbon R has a shape ↵ which is obtained by replacing the vertices of R with unspecified indices. Up
to scaling, the graph matrix M↵ is the average of M⇡(R) over all permutations ⇡ 2 Sn.
Definition C.5 (Simplified shapes – see Definition F.34). Informally, a shape ↵ is just a ribbon R
where the vertices are specified by variables rather than having specific values in [n]. More precisely,
a shape ↵ = (V (↵), E(↵), U↵, V↵) is a graph on vertices V (↵), with

1. Edges E(↵) ✓
�V (↵)

2

�

2. Distinguished tuples of vertices U↵ = (u1, u2, . . . ) and V↵ = (v1, v2, . . . ), where ui, vi 2
V (↵).

(Note that V (↵) and V↵ are not the same object!)

Definition C.6 (Shape transposes). Given a shape ↵, we define ↵> to be the shape ↵ with U↵ and V↵

swapped i.e. U�> = V� and V�> = U�. Note that M↵> = M>
↵ , where M>

↵ is the usual transpose
of the matrix-valued function M↵.
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Definition C.7 (Graph matrices). Let ↵ be a shape. The graph matrix M↵ : {±1}(
n

2) !
R

n!
(n�|U↵|)!⇥

n!
(n�|V↵|)! is defined to be the matrix-valued function with A,B-th entry

M↵(A,B) =
X

R s.t. AR=A,BR=B
9':V (↵)![n]:

' is injective,'(↵)=R

�ER

In other words, M↵ =
P

R MR where the sum is over ribbons R which can be obtained by assigning
each vertex in V (↵) a label from [n].
Example C.8. In Fig. 2, consider the shape ↵ as shown. We have U↵ = (u1, u2), V↵ = (v1), V (↵) =
{u1, u2, v1, w1} and E(↵) = {{u1, w1}, {u2, w1}, {w1, v1}}. M↵ is a matrix with rows and
columns indexed by tuples of length |U↵| = 2 and |V↵| = 1 respectively. The nonzero entries
will have rows and columns indexed by (a1, a2) and b1 respectively for all distinct a1, a2, b1, with
the corresponding entry being M↵((a1, a2), (b1)) =

P
c12[n]\{a1,a2,b1} �a1,c1�a2,c1 ,�c1,b1 . Here,

the injective map ' maps u1, u2, w1, v1 to a1, a2, c1, b1 respectively and we sum over all such maps.
Succinctly,

M↵ =

column (b1)
#0

B@

1

CA

...
row (a1, a2) ! . . . . . . .P

c12[n]\{a1,a2,b1} �a1,c1�a2,c1�c1,b1
. . . . . . . . .

...

Remark C.9. The fact that we are summing over all "free" vertices in V (↵) \ (U↵ [ V↵) is how we
are incorporating symmetry into the definition of these graph matrices.

The following examples illustrate that simple matrices such as the adjacency matrix of a graph
and the identity matrix are also graph matrices.
Example C.10 (Adjacency matrix). Let ↵ be the shape with two vertices V (↵) = {u1, v1} and a
single edge E(↵) = {{u1, v1}}. The tuples U↵, V↵ are (u1), (v1), respectively. Then M↵ has entries
(M↵)i,j(G) = Gij if i 6= j and (M↵)i,i = 0. If G 2 {±1}(

n

2) is thought of as a graph, then M↵ is
precisely its ±1 adjacency matrix with zeros on the diagonal.
Example C.11 (Identity matrix). If V (↵) = {u} is a singleton, E(↵) = ;, and U↵ = V↵ = (u),
then M↵(G) is identically equal to the n⇥ n identity matrix, independent of G.

For more examples of graph matrices and why they can be a useful tool to work with, see [1].
Remark C.12. As noted in [1], we index graph matrices by tuples rather than sets so that they are
symmetric (as a function of the input) under permutations of [n].

C.2 Factoring Graph Matrices and Decomposing Shapes into Left, Middle, and Right Parts

A crucial idea in our analysis is the idea from [19] of decomposing each shape ↵ into left, middle,
and right parts. This will allow us to give an approximate factorization of each graph matrix M↵.

C.2.1 Leftmost and Rightmost Minimum Vertex Separators and Decomposition of Shapes
into Left, Middle, and Right Parts

For each shape ↵ we will identify three other shapes, which we denote by �, ⌧,�0T and call (for
reasons we will see soon) the left, middle, and right parts of ↵, respectively. The idea is that
M↵ ⇡ M�M⌧M�0T . We obtain �, ⌧ , and �0T by splitting the shape ↵ along the leftmost and
rightmost minimum vertex separators.
Definition C.13 (Vertex Separators). We say that a set of vertices S is a vertex separator of ↵ if every
path from U↵ to V↵ in ↵ (including paths of length 0) intersects S. Note that for any vertex separator
S, U↵ \ V↵ ✓ S.
Definition C.14 (Minimum Vertex Separators). We say that S is a minimum vertex separator of ↵ if
S is a vertex separator of ↵ and for any other vertex separator S0 of ↵, |S|  |S0|.
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Definition C.15 (Leftmost and Rightmost Minimum Vertex Separators).

1. We say that S is the leftmost minimum vertex separator of ↵ if S is a minimum vertex
separator of ↵ and for every other minimum vertex separator S0 of ↵, every path from U↵

to S0 intersects S.

2. We say that T is the rightmost minimum vertex separator of ↵ if T is a minimum vertex
separator of ↵ and for every other minimum vertex separator S0 of ↵, every path from S0 to
V↵ intersects T .

It is not immediately obvious that leftmost and rightmost minimum vertex separators are well-
defined. For the simplified setting we are considering here, this was shown by [19]. We now describe
how to split ↵ into left, middle, and right parts �, ⌧ , and �0T .
Definition C.16 (Decomposition Into Left, Middle, and Right Parts). Let ↵ be a shape and let S and
T be the leftmost and rightmost minimum vertex separators of ↵. Given orderings OS and OT for S
and T , we decompose ↵ into left, middle, and right parts �, ⌧ , and �0T as follows.

1. The left part � of ↵ is the part of ↵ reachable from U↵ without passing through S. It includes
S but excludes all edges which are entirely within S. More formally,

(a) V (�) = {u 2 V (↵) : there is a path P from U↵ to u in ↵ such that (V (P ) \ {u}) \
S = ;}

(b) U� = U↵ and V� = S with the ordering OS

(c) E(�) = {{u, v} 2 E(↵) : u, v 2 V (�), u /2 S or v /2 S}

2. The right part �0T of ↵ is the part of ↵ reachable from V↵ without intersecting T more than
once. It includes T but excludes all edges which are entirely within T . More formally,

(a) V (�0T ) = {u 2 V (↵) : there is a path P from V↵ to u in ↵ such that (V (P )\{u})\
T = ;}

(b) U�0T = T with the ordering OT and V�0T = V↵.
(c) E(�0T ) = {{u, v} 2 E(↵) : u, v 2 V (�0T ), u /2 T or v /2 T}

3. The middle part ⌧ of ↵ is, informally, the part of ↵ between S and T (including S and T
and all edges which are entirely within S or within T ). More formally, let U⌧ = S with the
ordering OS , let V⌧ = T with the ordering OT , and let E(⌧) = E(↵) \ (E(�) [E(�0)) be
all of the edges of E(↵) which do not appear in E(�) or E(�0). Then V (⌧) is all of the
vertices incident to edges in E(⌧) together with S, T .

Remark C.17. Note that the decomposition into left, middle, and right parts depends on the ordering
for the vertices in S and T . As we will discuss later (see Section F.8), we will use all possible
orderings simultaneously and then scale things by an appropriate constant.

Because of the minimality and leftmost/rightmost-ness of the vertex separators S, T used to define
�, ⌧,�0, the shapes �, ⌧,�0 have some special combinatorial structure, which we capture in the
following proposition. We defer the proof until Appendix F where we state a generalized version.

Proposition C.18. �, ⌧ , and �0T have the following properties:

1. V� = S is the unique minimum vertex separator of �.

2. S and T are the leftmost and rightmost minimum vertex separators of ⌧ .

3. T = U�0T is the unique minimum vertex separator of �0T .

Based on this, we define sets of shapes which can appear as left, middle, or right parts.
Definition C.19 (Left, Middle, and Right Parts). Let ↵ be a shape.

1. We say that ↵ is a left part if V↵ is the unique minimum vertex separator of ↵, all vertices of
↵ are reachable from U↵ without passing through V↵, and E(↵) has no edges which are
entirely contained in V↵.

2. We say that ↵ is a proper middle part if U↵ is the leftmost minimum vertex separator of ↵
and V↵ is the rightmost minimum vertex separator of ↵
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3. We say that ↵ is a right part if U↵ is the unique minimum vertex separator of ↵, all vertices
of ↵ are reachable from V↵ without passing through U↵, and E(↵) has no edges which are
entirely contained in U↵.

Remark C.20. For technical reasons, later on we will need to consider middle parts ⌧ where U⌧ and
V⌧ are not the leftmost and rightmost minimum vertex separators of ⌧ (these ⌧ are called improper
middle parts), which is why we make this distinction here.

The following proposition is also straightforward from the definitions.
Proposition C.21. A shape � is a left part if and only if �T is a right part

C.2.2 Products of Graph Matrices

We now analyze what happens when we take the products of graph matrices. Roughly speaking,
we will have that if ↵ can be decomposed into left, middle, and right parts �, ⌧ , and �0T then
M↵ ⇡ M�M⌧M�0T .

We begin with a concatenation operation on ribbons.
Definition C.22 (Ribbon Concatenation). If R1 and R2 are two ribbons such that V (R1)\V (R2) =
BR1 = AR2 and either R1 or R2 contains no edges entirely within BR1 = AR2 then we define
R1 �R2 to be the ribbon formed by glueing together R1 and R2 along BR1 = AR2 . In other words,

1. V (R1 �R2) = V (R1) [ V (R2)

2. E(R1 �R2) = E(R1) [ E(R2)

3. AR1�R2 = AR1 and BR1�R2 = BR2 .

The following proposition is easy to check.
Proposition C.23. Whenever R1, R2 are ribbons such that R1 �R2 is defined, MR1MR2 = MR1�R2

We have an analogous definition for concatenating shapes:
Definition C.24 (Shape Concatenation). If ↵1 and ↵2 are two shapes such that V (↵1) \ V (↵2) =
V↵1 = U↵2 and either ↵1 or ↵2 contains no edges entirely within V↵1 = U↵2 then we define ↵1 � ↵2

to be the shape formed by glueing together ↵1 and ↵2 along V↵1 = U↵2 . In other words,

1. V (↵1 � ↵2) = V (↵1) [ V (↵2)

2. E(↵1 � ↵2) = E(↵1) [ E(↵2)

3. U↵1�↵2 = U↵1 and V↵1�↵2 = V↵2 .

The next proposition, again easy to check, shows that the shape concatenation operation respects the
left/middle/right part decomposition.

Proposition C.25. If ↵ can be decomposed into left, middle, and right parts �, ⌧,�0T then ↵ =
� � ⌧ � �0T .

We now discuss why M↵ = M��⌧��0T ⇡ M�M⌧M�0T is only an approximation rather than an
equality. Consider the difference M�M⌧M�0T �M��⌧��0T . The graph matrix M��⌧��0T decomposes
(by definition) into a sum over injective maps ' : V (� � ⌧ � �0T ) ! [n]. Also by expanding
definitions, the product M�M⌧M�0T expands into a sum over triples of injective maps ('1,'2,'3),
where '1 : V (�) ! [n],'2 : V (⌧) ! [n],'3 : V (�0) ! [n] where '1 and '2 agree on V� = U⌧

and '2 and '3 agree on V⌧ = U�0T .
If they are combined into one map ' : V (� [ ⌧ [ �0) ! [n], the resulting ' may not be injective

because '1(V (�)),'2(V (⌧)),'3(V (�0T )) may have nontrivial intersection (beyond '1(V�) and
'2(V⌧ )). We call the resulting terms intersection terms and handling them properly is a major part of
the technical analysis.
Remark C.26. Actually, the approximation M↵ = M��⌧��0T ⇡ M�M⌧M�0T is also off by a
multiplicative constant because there is also a subtle issue involving the automorphism groups of
these shapes. For now, we ignore this issue. For details about this issue, see Lemma F.81.
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C.3 Shape Coefficient Matrices

The idea for our analysis is as follows. Given a matrix-valued function ⇤ which is symmetric under
permutations of [n], we write ⇤ =

P
↵ �↵M↵. We then break each shape ↵ up into left, middle, and

right parts �, ⌧ , and �0T .
For this analysis, we use shape coefficient matrices H⌧ whose rows and columns are indexed by

left shapes and whose entries depend on the coefficients �↵. We choose these matrices so that

⇤ =
X

⌧

H⌧ (�,�
0)M��⌧��0T ⇡

X

⌧

H⌧ (�,�
0)M�M⌧M�0T

To set this up, we separate the possible middle parts ⌧ into groups based on the size of U⌧ and whether
or not they are trivial.
Definition C.27. We define Imid to be the set of all possible U⌧ . Here Imid is the set of tuples of
unspecified vertices of the form U = (u1, . . . , uk) where 0  k  d.
Definition C.28. We say that a proper middle shape ⌧ is trivial if E(⌧) = ; and |U⌧ \ V⌧ | = |U⌧ | =
|V⌧ | (i.e. V⌧ is a permutation of U⌧ ).

For simplicity, the only proper trivial middle parts ⌧ we consider are shapes IdU corresponding
to identity matrices.
Definition C.29. Given a tuple of unspecified vertices U = (u1, . . . , u|U |) We define IdU to be the
shape where V (IdU ) = U , UIdU

= VIdU
= U , and E(IdU ) = ;.

We group all of the proper non-trivial middle parts ⌧ into sets MU based on the size of U⌧ .
Definition C.30. Given a tuple of unspecified vertices U = (u1, . . . , u|U |), we define MU to be the
set of proper non-trivial middle parts ⌧ such that U⌧ and V⌧ have the same size as U . Note that U⌧

and V⌧ may intersect each other arbitrarily.

With these definitions, we can now define our shape coefficient matrices.
Definition C.31. Given U 2 Imid, we define LU to be the set of left shapes � such that |V�| = |U |.
Definition C.32. For each U 2 Imid, we define the shape coefficient matrix HIdU

to be the matrix
indexed by left shapes �,�0 2 LU with entries HIdU

(�,�0) = 1
|U |!����0T

Definition C.33. For each U 2 Imid, for each ⌧ 2 MU , we define the shape coefficient matrix H⌧

to be the matrix indexed by left shapes �,�0 2 LU with entries H⌧ (�,�0) = 1
(|U |!)2���⌧��0T

With these shape coefficient matrices, we have the following decomposition of ⇤ =
P

↵ �↵M↵.

Lemma C.34. ⇤ =
P

U2Imid

P
�,�02LU

HIdU
(�,�0)M���0T +P

U2Imid

P
⌧2MU

P
�,�02LU

H⌧ (�,�0)M��⌧��0T

We defer the proof of this lemma to Lemma F.84.
For technical reasons, we need to define one more operation to handle intersection terms. We

call this operation the ��, � operation.
Definition C.35. Given U, V 2 Imid where |U | > |V |, we define �U,V to be the set of left parts �
such that |U� | = |U | and |V� | = |V |.
Definition C.36. Given U, V 2 Imid where |U | > |V |, a shape coefficient matrix HIdV

, and a
� 2 �U,V , we define the shape coefficient matrix H��,�

IdV
to be the matrix indexed by left shapes

�,�0 2 LU with entries H��,�
IdV

(�,�0) = H(� � �,�0 � �)

C.4 Informal Theorem Statement

We are now ready to state a qualitative version of our main theorem. For the quantitative version of
our main theorem, see Theorem F.101.
Theorem C.37. There exist functions f(⌧) : MU ! R and f(�) : �U,V ! R depending on n and
other parameters such that if ⇤ =

P
↵ �↵M↵ and the following conditions hold:
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1. (PSD mass) For all U 2 Imid, HIdU
⌫ 0

2. (Middle shape bounds) For all U 2 Imid and all ⌧ 2 MU ,


HIdU
f(⌧)H⌧

f(⌧)HT
⌧ HIdU

�
⌫ 0

3. (Intersection term bounds) For all U, V 2 Imid such that |U | > |V | and all � 2 �U,V ,
H��,�

IdV�

� f(�)HIdU�

then with probability at least 1� o(1) over G ⇠ {±1}(
n

2) it holds that ⇤(G) ⌫ 0.

Remark C.38. Condition 1 of Theorem C.37 will follow from condition 2 but we state it explicitly
since it will correspond to the dominating terms of the approximate PSD decomposition.

Remark C.39. As we will demonstrate in the remainder of this paper, the theorem works well when
the coefficients �↵ has some decay for each vertex or edge in the shape. In many settings, this can
be done quite easily by adding noise to the distribution, such as resampling part of the input, or by
lowering the parameters slightly, such as m  nk/4�" instead of m  nk/4.

C.5 An application to planted clique

Before we move on, we present an informal example.

Example C.40. When the pseudo-calibration method is applied to prove an SoS lower bound for the
planted clique problem in n node graphs with clique size k, as in [19], the matrix-valued function
which results is ⇤ =

P
↵ : |V (↵)|t

�
k
n

�|V (↵)|
M↵ where t ⇡ log(n). One may then compute that the

matrices HIdU
and H⌧ are as follows (at least so long as |V (�)|, |V (⌧)|, |V (�0)| ⌧ t; we ignore

this detail for now). For all r 2 [0, d
2 ],

1. For U with |U | = r, HIdU
(�,�0) =

�
k
n

�|V (�)|+|V (�0)|�r

2. For all proper, non-trivial middle shapes ⌧ such that |U⌧ | = |V⌧ | = r,

H⌧ (�,�
0) =

✓
k

n

◆|V (�)|+|V (�0)|+|V (⌧)|�2r

Defining vr to be the vector such that vr(�) =
�
k
n

�|V (�)|� r

2 , we have that

1. For U with |U | = r, HIdU
= v|U |v

T
|U |

2. For all proper, non-trivial middle shapes ⌧ such that |U⌧ | = |V⌧ | = r, H⌧ =
�
k
n

�|V (⌧)|�r
vrvTr

3. For all left parts �, H��,�
IdV�

=
�
k
n

�2|V (�)|�|U� |�|V� |
v|U� |v

T
|U� |

It turns out in this setting that we can take f(⌧) to be Õ(n
|V (⌧)|�|U⌧ |

2 ) and f(�) to be Õ(n|V (�)\U� |).
Thus, as long as k ⌧

p
n,

1. For any U and all ⌧ such that V⌧ 6= U⌧ with |U⌧ | = |V⌧ | = |U |, f(⌧)H⌧ � HIdU
.

2. For all non-trivial left parts �, H��,�
IdV�

� f(�)HIdU�

Remark C.41. This does not quite satisfy the conditions of Theorem C.37 because there are ⌧ such
that V⌧ = U⌧ but which are non-trivial because E(⌧) 6= ;. For these ⌧ , condition 2 of Theorem
C.37 fails. [19] handle this issue by grouping together all of the ⌧ where V⌧ = U⌧ into the indicator
function for whether V⌧ = U⌧ is a clique. Since this issue is specific to planted clique, we don’t try to
incorporate it into our theorem to avoid losing generality.
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C.6 Further definitions needed for our applications

We will describe some more notations and definitions that will be useful to us to describe the
qualitative bounds for our applications. We make these modifications because sometimes the input is
from a distribution ⌦ which is not {�1, 1}. If the entries are labeled by more than 2 indices such as
Tensor PCA where we can have order-3 tensors, then we use hyperedges instead of edges. The other
modification is that we take an orthonormal basis for ⌦ and give each edge a label corresponding to
the basis element. Finally, there may be t types of indices rather than just one, so the symmetry group
will be Sn1 ⇥ . . .⇥ Snt

rather than Sn. To handle this, we will have shapes with different types of
vertices.

C.6.1 Tensor PCA

We consider the input to be a tensor A 2 R[n]k . The input entries are now sampled from the
distribution N (0, 1) instead of {�1, 1}. So, we will work with the Hermite basis of polynomials.
Let the standard unnormalized Hermite polynomials be denoted as h0(x) = 1, h1(x) = x, h2(x) =

x2�1, . . .. Then, we work with the basis ha(A) :=
Q

e2[n]k he(Ae) over a 2 N[n]k . Accordingly, we
will modify the graphs that represent ribbons (and by extension, shapes), to have labeled hyperedges
of arity k. So, an hyperedge e with a label t will correspond to the hermite polynomial ht(Ae).
Definition C.42 (Hyperedges). Instead of standard edges, we will have labeled hyperedges of arity k
in the underlying graphs for our ribbons as well as shapes. The label for an hyperedge e, denoted le,
is an element of N which will correspond to the Hermite polynomial being evaluated on that entry.

Note that our hyperedges are ordered since the tensor A is not necessarily symmetric. For
variables x1, . . . , xn, the rows and columns of our moment matrix will now correspond to monomials
of the form

Q
in x

pi

i for pi � 0. To capture this, we use the notion of index shape pieces and index
shapes. Informally, we split the above monomial product into groups based on their powers and each
such group will form an index shape piece.
Definition C.43 (Index shape piece). An index shape piece Ui = ((Ui,1, . . . , Ui,t), pi) is a tuple of
indices (Ui,1, . . . , Ui,t) along with a power pi 2 N. Let V (Ui) be the set {Ui,1, . . . , Ui,t} of vertices
of this index shape piece. When clear from context, we use Ui instead of V (Ui).

If we realize Ui,1, . . . , Ui,t to be indices a1, . . . , at 2 [n], then, this realization of this index
shape piece corresponds to the monomial

Q
jt x

pi

aj
.

Definition C.44 (Index shape). An index shape U is a set of index shape pieces Ui that have different
powers. Let V (U) be the set of vertices [iV (Ui). When clear from context, we use U instead of
V (U).

Observe that each realization of an index shape corresponds to a row or column of the moment
matrix.
Definition C.45. For two index shapes U, V , we write U ⌘ V if for all powers p, the index shape
pieces of power p in U and V have the same length.
Definition C.46. Define Imid to be the set of all index shapes U that contain only index shape pieces
of power 1.

In the definition of shapes, the distinguished set of vertices should now be replaced by index
shapes.
Definition C.47 (Shapes). Shapes are tuples ↵ = (H↵, U↵, V↵) where H↵ is a graph with hyperedges
of arity k and U↵, V↵ are index shapes such that U↵, V↵ ✓ V (H↵).
Definition C.48 (Proper shape). A shape ↵ is proper if it has no isolated vertices outside U↵ [ V↵,
no multi-edges and all the edges have a nonzero label.

To define the notion of vertex separators, we modify the notion of paths for hyperedges.
Definition C.49 (Path). A path is a sequence of vertices u1, . . . , ut such that ui, ui+1 are in the same
hyperedge, for all i  t� 1.

The notions of vertex separator and decomposition into left, middle and right parts are identically
defined with the above notion of hyperedges and paths. In the definition of trivial shape ⌧ , we now
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require U⌧ ⌘ V⌧ . For U 2 Imid, MU will be the set of proper non-trivial middle parts ⌧ with
U⌧ ⌘ V⌧ ⌘ U and LU will be the set of left parts � such that V� ⌘ U . Similarly, for U, V 2 Imid,
LU,V will be the set of left parts � such that U� ⌘ U and V� ⌘ V .

In order to define the moment matrix, we need to truncate our shapes based on the number of
vertices and the labels on our hyperedges. So, we make the following definition.
Definition C.50 (Truncation parameters). For integers Dsos, DV , DE � 0, say that a shape ↵
satisfies the truncation parameters Dsos, DV , DE if

- The degrees of the monomials that U↵ and V↵ correspond to, are at most Dsos

2

- The left part �, the middle part ⌧ and the right part �0T of ↵ satisfy
|V (�)|, |V (⌧)|, |V (�0T )|  DV

- For each e 2 E(↵), le  DE .

C.6.2 Sparse PCA

We consider the m vectors v1, . . . , vm 2 Rd to be the input. Similar to Tensor PCA, we will work
with the Hermite basis of polynomials since the entries are sampled from the distribution N (0, 1). In
particular, if we denote the unnormalized Hermite polynomials by h0(x) = 1, h1(x) = x, h2(x) =
x2 � 1, . . ., then, we work with the basis ha(v) :=

Q
i2[m],j2[n] hai,j

(vi,j) over a 2 Nm⇥n. To
capture this basis, we will modify the graphs that represent ribbons (and by extension, shapes), to
be bipartite graphs with two types of vertices, and have labeled edges that go across vertices of
different types. So, an edge (i, j) with label t between a vertex i of type 1 and a vertex j of type 2
will correspond to ht(vi,j).
Definition C.51 (Vertices). We will have two types of vertices, the vertices corresponding to the m
input vectors that we call type 1 vertices and the vertices corresponding to ambient dimension of the
space that we call type 2 vertices.
Definition C.52 (Edges). Edges will go across vertices of different types, thereby forming a bipartite
graph. An edge between a type 1 vertex i and a type 2 vertex j corresonds to the input entry vi,j .
Each edge will have a label in N corresponding to the Hermite polynomial evaluated on that entry.

We will have variables x1, . . . , xn in our SoS program, so we will work with index shape pieces
and index shapes as in Tensor PCA, since the rows and columns of our moment matrix will now
correspond to monomials of the form

Q
in x

pi

i for pi � 0. But since in our decompositions into left,
right and middle parts, we will have type 2 vertices as well in the vertex separators, we will define a
generalized notion of index shape pieces and index shapes.
Definition C.53 (Index shape piece). An index shape piece Ui = ((Ui,1, . . . , Ui,t), ti, pi) is a tuple
of indices (Ui,1, . . . , Ui,t) along a type ti 2 {1, 2} with a power pi 2 N. Let V (Ui) be the set
{Ui,1, . . . , Ui,t} of vertices of this index shape piece. When clear from context, we use Ui instead of
V (Ui).

For an index shape piece ((Ui,1, . . . , Ui,t), ti, pi) with type ti = 2, if we realize Ui1 , . . . , Uit to
be indices a1, . . . , at 2 [n], then, this index shape pieces correspond this to the monomial

Q
jn x

pi

aj
.

Definition C.54 (Index shape). An index shape U is a set of index shape pieces Ui that have either
have different types or different powers. Let V (U) be the set of vertices [iV (Ui). When clear from
context, we use U instead of V (U).

Observe that each realization of an index shape corresponds to a row or column of the moment
matrix. For our moment matrix, the only nonzero rows correspond to index shapes that have only
index shape pieces of type 2, since the only SoS variables are x1 . . . , xn, but in order to do our
analysis, we need to work with the generalized notion of index shapes that allow index shape pieces
of both types.
Definition C.55. For two index shapes U, V , we write U ⌘ V if for all types t and all powers p, the
index shape pieces of type t and power p in U and V have the same length.
Definition C.56. Define Imid to be the set of all index shapes U that contain only index shape pieces
of power 1.
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Since we are working with standard graphs, the notion of path and vertex separator need no
modifications, but we will now use the minimum weight vertex separator instead of the minimum
vertex separator where we define the weight as follows.
Definition C.57 (Weight of an index shape). Suppose we have an index shape U = {U1, U2} 2
Imid where U1 = ((U1,1, . . . , U1,|U1|), 1, 1) is an index shape piece of type 1 and U2 =
((U2,1, . . . , U2,|U2|), 2, 1) is an index shape piece of type 2. Then, define the weight of this index
shape to be w(U) =

p
m

|U1|pn
|U2|.

We now give the modified definition of shapes.
Definition C.58 (Shapes). Shapes are tuples ↵ = (H↵, U↵, V↵) where H↵ is a graph with two types
of vertices, has labeled edges only across vertices of different types and U↵, V↵ are index shapes such
that U↵, V↵ ✓ V (H↵).
Definition C.59 (Proper shape). A shape ↵ is proper if it has no isolated vertices outside U↵ [ V↵,
no multi-edges and all the edges have a nonzero label.

In Appendix F, we will show that with this new definition of weight and shapes, any shape ↵ has
a unique decomposition into � � ⌧ � �0T where �, ⌧,�0T are left, middle and right parts respectively.
Here, ⌧ may possibly be improper.

In the definition of trivial shape ⌧ , we now require U⌧ ⌘ V⌧ . For U 2 Imid, MU will be the set
of proper non-trivial middle parts ⌧ with U⌧ ⌘ V⌧ ⌘ U and LU will be the set of left parts � such
that V� ⌘ U . Similarly, for U, V 2 Imid, LU,V will be the set of left parts � such that U� ⌘ U and
V� ⌘ V .

Finally, in order to define the moment matrix, we need to truncate our shapes based on the
number of vertices and the labels on our edges. So, we make the following definition.
Definition C.60 (Truncation parameters). For integers Dsos, DV , DE � 0, say that a shape ↵
satisfies the truncation parameters Dsos, DV , DE if

- The degrees of the monomials that U↵ and V↵ correspond to, are at most Dsos

2

- The left part �, the middle part ⌧ and the right part �0T of ↵ satisfy
|V (�)|, |V (⌧)|, |V (�0T )|  DV

- For each e 2 E(↵), le  DE .

C.6.3 Relaxing the third condition

In Theorem C.37, the third qualitative condition we’d like to show is as follows: For all U, V 2 Imid

such that |U | > |V | and all � 2 �U,V , H��,�
IdV�

� f(�)HIdU�
. For technical reasons, we won’t be

able to show this directly. To handle this, we instead work with a slight modification of HIdU�
, a

matrix H 0
� that’s very close to HIdU�

. So, what we will end up showing is: For all U, V 2 Imid such
that |U | > |V | and all � 2 �U,V , H��,�

IdV�

� f(�)H 0
� .

Let DV be the truncation parameter. A canonical choice for H 0
� is to take

1. H 0
�(�,�

0) = HIdU
(�,�0) whenever |V (� � �)|  DV and |V (�0 � �)|  DV .

2. H 0
�(�,�

0) = 0 whenever |V (� � �)| > DV or |V (�0 � �)| > DV .

With this choice, H 0
� is the same as HIdU�

upto truncation error.

D Application: Tensor PCA

We first decompose the moment matrix into graph matrices and then show the qualitative bounds
needed.

D.1 Decomposition into graph matrices

Define the degree of SoS to be Dsos = nCsos" for some constant Csos > 0 that we choose later. And
define the truncation parameters to be DV = nCV ", DE = nCE" for some constants CV , CE > 0.
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Remark D.1 (Choice of parameters). We first set " to be a sufficiently small constant. Based on the
choice of ", we will set the constant C� > 0 sufficiently small so that the planted distribution is well
defined. Based on these choices, we choose CV , CE , Csos in that order.

The underlying graphs for the graph matrices have the following structure; There will be n
vertices of a single type and the edges will be ordered hyperedges of arity k. For the analysis of
Tensor PCA, we will use the following notation. For an index shape U and a vertex i, define degU (i)
as follows: If i 2 V (U), then it is the power of the unique index shape piece A 2 U such that
i 2 V (A). Otherwise, it is 0. Also define deg(U) =

P
i2V (U) deg

U (i). This is also the degree of
the monomial that U corresponds to. For a shape ↵ and vertex i in ↵, let deg↵(i) =

P
i2e2E(↵) le

and let deg(↵) = deg(U↵) + deg(V↵).
We will now describe the decomposition of the moment matrix ⇤ using Lemma B.1.

Definition D.2. If a shape ↵ is proper, satisfies the truncation parameters Dsos, DV , DE and is such
that deg↵(i) + degU↵(i) + degV↵(i) is even for all i 2 V (↵), define

�↵ = �|V (↵)|
✓

1p
�n

◆deg(↵) Y

e2E(↵)

 
�

(�n)
k

2

!le

Otherwise, define �↵ = 0.

Corollary D.3. ⇤ =
P

�↵M↵.

D.2 Qualitative bounds

We prove the PSD mass condition and the middle shape and intersection term bounds, by first stating
them and then introducing appropriate notation to prove them all in a unified manner.

Lemma D.4 (PSD mass). For all U 2 Imid, HIdU
⌫ 0

We define the following quantities to capture the contribution of the vertices within ⌧, � to the
Fourier coefficients.

Definition D.5. For U 2 Imid and ⌧ 2 MU , if deg⌧ (i) is even for all vertices i 2 V (⌧) \ U⌧ \ V⌧ ,
define

S(⌧) = �|V (⌧)|�|U⌧ |
Y

e2E(⌧)

 
�

(�n)
k

2

!le

Otherwise, define S(⌧) = 0. For all U, V 2 Imid where w(U) > w(V ) and � 2 �U,V , if deg�(i) is
even for all vertices i in V (�) \ U� \ V� , define

S(�) = �|V (�)|� |U� |+|V� |
2

Y

e2E(�)

 
�

(�n)
k

2

!le

Otherwise, define S(�) = 0.

We now state the bounds in terms of these quantities.

Lemma D.6 (Middle shape bounds). For all U 2 Imid and ⌧ 2 MU ,
"

S(⌧)
|Aut(U)|HIdU

H⌧

HT
⌧

S(⌧)
|Aut(U)|HIdU

#
⌫ 0

We again use the canonical definition of H 0
� from Appendix C.6.3.

Lemma D.7 (Intersection term bounds). For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,
|Aut(V )|
|Aut(U)| ·

1
S(�)2H

��,�
IdV

� H 0
� .
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D.2.1 Proof of PSD mass condition

We introduce some notation which makes it easy to show these bounds and which also sheds light on
the structure of the coefficient matrices. When we compose shapes �,�0, from Definition D.2, in order
for ����0 to be nonzero, observe that all vertices i in ����0 should have deg���

0
(i) + degU���0 (i) +

degV���0 (i) to be even. To partially capture this notion conveniently, we will introduce the notion of
parity vectors.
Definition D.8. Define a parity vector ⇢ to be a vector whose entries are in {0, 1}. For U 2 Imid,
define PU to be the set of parity vectors ⇢ whose coordinates are indexed by U .
Definition D.9. For a left shape �, define ⇢� 2 PV�

, called the parity vector of �, to be the parity
vector such that for each vertex i 2 V� , the i-th entry of ⇢� is the parity of degU� (i) + deg�(i), that
is (⇢�)i ⌘ degU� (i) + deg�(i) (mod 2). For U 2 Imid and ⇢ 2 PU , let LU,⇢ be the set of all left
shapes � 2 LU such that ⇢� = ⇢, that is, the set of all left shapes with parity vector ⇢.

For a shape ⌧ , for a ⌧ coefficient matrix H⌧ and parity vectors ⇢ 2 PU⌧
, ⇢0 2 PV⌧

, define the
⌧ -coefficient matrix H⌧,⇢,⇢0 as H⌧,⇢,⇢0(�,�0) = H⌧ (�,�0) if � 2 LU⌧ ,⇢,�

0 2 LV⌧ ,⇢0 and 0 otherwise.
The following proposition is immediate.
Proposition D.10. For any shape ⌧ and ⌧ -coefficient matrix H⌧ , H⌧ =

P
⇢2PU⌧

,⇢02PV⌧

H⌧,⇢,⇢0

Proposition D.11. For any U 2 Imid, HIdU
=
P

⇢2PU
HIdU ,⇢,⇢

Proof. For any �,�0 2 LU , using Definition D.2, note that in order for HIdU
(�,�0) to be nonzero,

we must have ⇢� = ⇢�0 .

We define the following quantity to capture the contribution of the vertices within � to the Fourier
coefficients.
Definition D.12. For a shape � 2 L, if deg�(i) + degU� (i) is even for all vertices i 2 V (�) \ V�,
define

T (�) = �|V (�)|� |V�|
2

✓
1p
�n

◆deg(U�) Y

e2E(�)

 
�

(�n)
k

2

!le

Otherwise, define T (�) = 0. For U 2 Imid and ⇢ 2 PU , define v⇢ to be the vector indexed by � 2 L
such that v⇢(�) is T (�) if � 2 LU,⇢ and 0 otherwise.

With this notation, the PSD mass condition is easily shown.

Proof of the PSD mass condition Lemma D.4. For all U 2 Imid, ⇢ 2 PU , Definition D.2 implies
HIdU ,⇢,⇢ = 1

|Aut(U)|v⇢v
T
⇢ . Therefore, HIdU

=
P

⇢2PU
HIdU ,⇢,⇢ = 1

|Aut(U)|
P

⇢2PU
v⇢vT⇢ ⌫ 0.

D.2.2 Middle shape bounds

The next proposition captures the fact that when we compose shapes �, ⌧,�0T , in order for ���⌧�0T

to be nonzero, the parities of the degrees of the merged vertices should add up correspondingly.
Proposition D.13. For all U 2 Imid and ⌧ 2 MU , there exist two sets of parity vectors P⌧ , Q⌧ ✓
PU and a bijection ⇡ : P⌧ ! Q⌧ such that H⌧ =

P
⇢2P⌧

H⌧,⇢,⇡(⇢).

Proof. Using Definition D.2, in order for H⌧ (�,�0) to be nonzero, in � � ⌧ � �0, we must have that
for all i 2 U⌧ [ V⌧ , degU� (i) + degU�0 (i) + deg��⌧��

0T
(i) must be even. In other words, for any

⇢ 2 PU , there is at most one ⇢0 2 PU such that if we take � 2 LU,⇢,�0 2 LU with H⌧ (�,�0)
nonzero, then the parity of �0 is ⇢0. Also, observe that ⇢0 determines ⇢. We then take P⌧ to be the set
of ⇢ such that ⇢0 exists, Q⌧ to be the set of ⇢0 and in this case, we define ⇡(⇢) = ⇢0.

A straightforward verification of the conditions of Definition D.2 implies the following proposi-
tion.
Proposition D.14. For any U 2 Imid and ⌧ 2 MU , suppose we take ⇢ 2 P⌧ . Let ⇡ be the bijection
from Proposition D.13 so that ⇡(⇢) 2 Q⌧ . Then, H⌧,⇢,⇡(⇢) =

1
|Aut(U)|2S(⌧)v⇢v

T
⇡(⇢).
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We can now prove the middle shape bounds.

Proof of the middle shape bounds Lemma D.6. Let P⌧ , Q⌧ ,⇡ be from Proposition D.13. For ⇢, ⇢0 2
PU , let W⇢,⇢0 = v⇢(v⇢0)T . Then, HIdU

=
P

⇢2PU
HIdU ,⇢,⇢ = 1

|Aut(U)|
P

⇢2PU
W⇢,⇢ and H⌧ =

P
⇢2P⌧

H⌧,⇢,⇡(⇢) =
1

|Aut(U)|2S(⌧)
P

⇢2P⌧
W⇢,⇡(⇢). We have

"
S(⌧)

|Aut(U)|HIdU
H⌧

HT
⌧

S(⌧)
|Aut(U)|HIdU

#
=

S(⌧)

|Aut(U)|2

 P
⇢2PU

W⇢,⇢
P

⇢2P⌧
W⇢,⇡(⇢)P

⇢2P⌧
WT

⇢,⇡(⇢)

P
⇢2PU

W⇢,⇢

�

We have S(⌧)
|Aut(U)|2 � 0 and the matrix is just
P

⇢2PU\P⌧
W⇢,⇢ 0

0
P

⇢2PU\Q⌧
W⇢,⇢

�
+

 P
⇢2P⌧

W⇢,⇢
P

⇢2P⌧
W⇢,⇡(⇢)P

⇢2P⌧
WT

⇢,⇡(⇢)

P
⇢2P⌧

W⇡(⇢),⇡(⇢)

�

We have
P

⇢2PU\P⌧
W⇢,⇢ =

P
⇢2PU\P⌧

v⇢vT⇢ ⌫ 0. Similarly,
P

⇢2PU\Q⌧
W⇢,⇢ ⌫ 0 and so,

the first term in the above expression,
P

⇢2PU\P⌧
W⇢,⇢ 0

0
P

⇢2PU\Q⌧
W⇢,⇢

�
is positive semidefinite.

For the second term,
 P

⇢2P⌧
W⇢,⇢

P
⇢2P⌧

W⇢,⇡(⇢)P
⇢2P⌧

WT
⇢,⇡(⇢)

P
⇢2P⌧

W⇡(⇢),⇡(⇢)

�
=
X

⇢2P⌧


v⇢vT⇢ v⇢(v⇡(⇢))

T

v⇡(⇢)(v⇢)
T v⇡(⇢)(v⇡(⇢))

T

�
⌫ 0

D.2.3 Intersection term bounds

Similar to Proposition D.13, the next proposition captures the fact that when we compose shapes
�, �, �T ,�0T , in order for ������0T ��0T to be nonzero, the parities of the degrees of the merged
vertices should add up correspondingly.

We use the following notation. For all U, V 2 Imid where w(U) > w(V ), for � 2 �U,V and
parity vectors ⇢, ⇢0 2 PU , define the � � �T -coefficient matrix H��,�

IdV ,⇢,⇢0 as H��,�
IdV ,⇢,⇢0(�,�0) =

H��,�
IdV

(�,�0) if � 2 LU,⇢,�0 2 LU,⇢0 and 0 otherwise.
Proposition D.15. For all U, V 2 Imid where w(U) > w(V ), for all � 2 �U,V , there exists a set of
parity vectors P� ✓ PU such that H��,�

IdV
=
P

⇢2P�
H��,�

IdV ,⇢,⇢.

Proof. Take any ⇢ 2 PU . For � 2 LU,⇢,�0 2 LU , since H��,�
IdV

(�,�0) =
�
�����T ��0T

|Aut(V )| , H��,�
IdV

(�,�0)
is nonzero precisely when ������T ��0T is nonzero. For this quantity to be nonzero, using Defini-
tion D.2, we get that it is necessary, but not sufficient, that the parity vector of �0 must also be ⇢. And
also observe that there exists a set P� of parity vectors ⇢ for which H��,�

IdV ,⇢,⇢ is nonzero and their sum
is precisely H��,�

IdV
.

For all U, V 2 Imid where w(U) > w(V ), for all � 2 �U,V and parity vector ⇢ 2 PU , define
the matrix H 0

�,⇢,⇢ as H 0
�,⇢,⇢(�,�

0) = H 0
�(�,�

0) if �,�0 2 LU,⇢ and 0 otherwise. The following
proposition is immediate from the definition.
Proposition D.16. For all U, V 2 Imid where w(U) > w(V ), for � 2 �U,V , H 0

� =
P

⇢2P�
H 0

�,⇢,⇢.

Proposition D.17. For all U, V 2 Imid where w(U) > w(V ), for all � 2 �U,V and ⇢ 2 P� ,
H��,�

IdV ,⇢,⇢ = |Aut(U)|
|Aut(V )|S(�)

2H 0
�,⇢,⇢.

Proof. Fix �,�0 2 LU,⇢ such that |V (���)|, |V (�0 ��)|  DV . Note that |V (�)|� |V�|
2 + |V (�0)|�

|V
�0 |
2 + 2(|V (�)|� |U� |+|V� |

2 ) = |V (� � � � �T � �0T )|. Using Definition D.2, we can easily verify
that ������T ��0T = T (�)T (�0)S(�)2. Therefore, H��,�

IdV ,⇢,⇢(�,�
0) = |Aut(U)|

|Aut(V )|S(�)
2HIdU ,⇢,⇢(�,�0).

Since H 0
�,⇢,⇢(�,�

0) = HIdU ,⇢,⇢(�,�0) whenever |V (� � �)|, |V (�0 � �)|  DV , this completes the
proof.
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With this, we can prove the intersection term bounds.

Proof of intersection term bounds Lemma D.7. We have

|Aut(V )|
|Aut(U)| ·

1

S(�)2
H��,�

IdV
=
X

⇢2P�

|Aut(V )|
|Aut(U)| ·

1

S(�)2
H��,�

IdV ,⇢,⇢ =
X

⇢2P�

H 0
�,⇢,⇢ �

X

⇢2PU

H 0
�,⇢,⇢ = H 0

�

where we used the fact that for all ⇢ 2 PU , we have H 0
�,⇢,⇢ ⌫ 0.

E Application: Sparse PCA

Just as in the earlier application, we decompose the moment matrix into graph matrices and then
show the necessary qualitative bounds.

E.1 Decomposition into graph matrices

Define the degree of SoS to be Dsos = dCsos" for some constant Csos > 0 that we choose later.
Define the truncation parameters to be DV = dCV ", DE = dCE" for some constants CV , CE > 0.
Regarding the choice of parameters, Remark D.1 directly applies.

The underlying graphs for the graph matrices have the following structure: There will be two
types of vertices - d type 1 vertices corresponding to the dimensions of the space and m type 2
vertices corresponding to the different input vectors. The shapes will correspond to bipartite graphs
with edges going between across of different types.

For the analysis of Sparse PCA, we will use the following notation. For a shape ↵ and type
t 2 {1, 2}, let Vt(↵) denote the vertices of V (↵) that are of type t and let |↵|t = |Vt(↵)|. For
an index shape U and a vertex i, define degU (i) as follows: If i 2 V (U), then it is the power of
the unique index shape piece A 2 U such that i 2 V (A). Otherwise, it is 0. Also, let deg(U) =P

i2V (U) deg
U (i). This is also the degree of the monomial pU . For a shape ↵ and vertex i in ↵, let

deg↵(i) =
P

i2e2E(↵) le and let deg(↵) = deg(U↵) + deg(V↵). For an index shape U 2 Imid and
type t 2 {1, 2}, let Ut 2 U denote the index shape piece of type t in U if it exists, otherwise define
Ut to be ;. Also, denote by |U |t the length of the tuple Ut.

We will now describe the decomposition of the moment matrix ⇤, where we apply Lemma B.2.
Definition E.1. If a shape ↵ is proper, satisfies the truncation parameters Dsos, DV , DE and is such
that both U↵, V↵ only contain index shape pieces of type 1 and deg↵(i) + degU↵(i) + degV↵(i) is
even for all i 2 V (↵), define

�↵ =

✓
1p
k

◆deg(↵)✓k

d

◆|↵|1
�|↵|2

Y

j2V2(↵)

(deg↵(j)� 1)!!
Y

e2E(↵)

p
�
le

p
k
le

Otherwise, define �↵ = 0.
Corollary E.2. ⇤ =

P
�↵M↵.

E.2 Qualitative bounds

In this section, we will prove the main PSD mass condition and obtain bounds of the other two
conditions. As in the prior section, we will state the bounds first, introduce notation and then prove
them all in a unified manner.
Lemma E.3 (PSD mass). For all U 2 Imid, HIdU

⌫ 0

We define the following quantities to capture the contribution of the vertices within ⌧, � to the
Fourier coefficients.
Definition E.4. For U 2 Imid and ⌧ 2 MU , if deg⌧ (i) is even for all vertices i 2 V (⌧) \ U⌧ \ V⌧ ,
define

S(⌧) =

✓
k

d

◆|⌧ |1�|U⌧ |1
�|⌧ |2�|U⌧ |2

Y

j2V2(⌧)\U⌧\V⌧

(deg⌧ (j)� 1)!!
Y

e2E(⌧)

p
�
le

p
k
le
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Otherwise, define S(⌧) = 0. For all U, V 2 Imid where w(U) > w(V ) and � 2 �U,V , if deg�(i) is
even for all vertices i in V (�) \ U� \ V� , define

S(�) =

✓
k

d

◆|�|1�
|U� |1+|V� |1

2

�|�|2�
|U� |2+|V� |2

2

Y

j2V2(�)\U�\V�

(deg�(j)� 1)!!
Y

e2E(�)

p
�
le

p
k
le

Otherwise, define S(�) = 0.

For getting the best bounds, it will be convenient to discretize the Normal distribution. The
following fact follows from standard results on Gaussian quadrature, see for e.g. [34, Lemma 4.3].
Fact E.5 (Discretizing the Normal distribution). There is an absolute constant Cdisc such that,
for any positive integer D, there exists a distribution E over the real numbers supported on D
points p1, . . . , pD, such that |pi|  Cdisc

p
D for all i  D and Eg⇠E [gt] = Eg⇠N (0,1)[g

t] for all
t = 0, 1, . . . , 2D � 1.
Definition E.6. For any shape ⌧ , suppose U 0 = (U⌧ )2, V 0 = (V⌧ )2 are the type 2 vertices in U⌧ , V⌧

respectively. Define R(⌧) = (Cdisc
p
DE)

P
j2U0[V 0 deg

⌧ (j).

We can now state our bounds.
Lemma E.7 (Middle shape bounds). For all U 2 Imid and ⌧ 2 MU ,

"
S(⌧)R(⌧)
|Aut(U)| HIdU

H⌧

HT
⌧

S(⌧)R(⌧)
|Aut(U)| HIdU

#
⌫ 0

We again use the canonical definition of H 0
� from Appendix C.6.3.

Lemma E.8 (Intersection term bounds). For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,
|Aut(V )|
|Aut(U)| ·

1
S(�)2R(�)2H

��,�
IdV

� H 0
� .

E.2.1 Proof of the PSD mass condition

Most of the notation and analysis here are similar to the case of Tensor PCA, we just need to
appropriately modify them since there are two types of vertices in the Sparse PCA application. When
we compose shapes �,�0, from Definition E.1, in order for ����0 to be nonzero, observe that all
vertices i in ����0 should have deg���

0
(i) + degU���0 (i) + degV���0 (i) to be even. To capture this

notion conveniently, we again use the notion of parity vectors.
Definition E.9. Define a parity vector ⇢ to be a vector whose entries are in {0, 1}. For U 2 Imid,
define PU to be the set of parity vectors ⇢ whose coordinates are indexed by U1 followed by U2.
Definition E.10. For a left shape �, define ⇢� 2 PV�

, called the parity vector of �, to be the parity
vector such that for each vertex i 2 V� , the i-th entry of ⇢� is the parity of degU� (i) + deg�(i), that
is, (⇢�)i ⌘ degU� (i) + deg�(i) (mod 2). For U 2 Imid and ⇢ 2 PU , let LU,⇢ be the set of all left
shapes � 2 LU such that ⇢� = ⇢, that is, the set of all left shapes with parity vector ⇢.

For a shape ⌧ , for a ⌧ coefficient matrix H⌧ and parity vectors ⇢ 2 PU⌧
, ⇢0 2 PV⌧

, define the
⌧ -coefficient matrix H⌧,⇢,⇢0 as H⌧,⇢,⇢0(�,�0) = H⌧ (�,�0) if � 2 LU⌧ ,⇢,�

0 2 LV⌧ ,⇢0 and 0 otherwise.
This immediately implies the following proposition.
Proposition E.11. For any shape ⌧ and ⌧ -coefficient matrix H⌧ , H⌧ =

P
⇢2PU⌧

,⇢02PV⌧

H⌧,⇢,⇢0

Proposition E.12. For any U 2 Imid, HIdU
=
P

⇢2PU
HIdU ,⇢,⇢

Proof. For any �,�0 2 LU , using Definition E.1, note that in order for HIdU
(�,�0) to be nonzero,

we must have ⇢� = ⇢�0 .

We now discretize the normal distribution while matching the first 2DE � 1 moments.
Definition E.13. Let D be a distribution over the real numbers obtained by setting D = DE in
Fact E.5. So, in particular, for any x sampled from D, we have |x|  Cdisc

p
DE and for t  2DE�1,

Ex⇠D[xt] = (t� 1)!!.

37



We define the following quantities to capture the contribution of the vertices within � to the
Fourier coefficients.
Definition E.14. For a shape � 2 L, if deg�(i) + degU� (i) is even for all vertices i 2 V (�) \ V�,
define

T (�) =

✓
1p
k

◆deg(U�)✓k

d

◆|�|1� |V�|1
2

�|�|2� |V�|2
2

Y

j2V2(�)\V�

(deg�(j)� 1)!!
Y

e2E(�)

p
�
le

p
k
le

Otherwise, define T (�) = 0.
Definition E.15. Let U 2 Imid. Let xi for i 2 U2 be variables. Denote them collectively as xU2 .
For ⇢ 2 PU , define v⇢,xU2

to be the vector indexed by left shapes � 2 L such that the �th entry is
T (�)

Q
i2U2

xdeg�(i)
i if � 2 LU,⇢ and 0 otherwise.

The following proposition is obvious and immediately implies the PSD mass condition.
Proposition E.16. For any U 2 Imid, ⇢ 2 PU , suppose xi for i 2 U2 are random variables sampled
from D. Then, HIdU ,⇢,⇢ = 1

|Aut(U)| Ex[v⇢,xU2
vT⇢,xU2

].

Proof. Observe that for �,�0 2 LU,⇢ and t 2 {1, 2}, (|�|t � |V�|t
2 ) + (|�0|t � |V

�0 |t
2 ) = |� � �0|t.

The result follows by verifying the conditions of Definition E.1 and using Definition E.13.

Proof of the PSD mass condition Lemma E.3. We have HIdU
=
P

⇢2PU
HIdU ,⇢,⇢ ⌫ 0 because of

the above proposition.

E.2.2 Middle shape bounds

The next proposition captures the fact that when we compose shapes �, ⌧,�0T , in order for ���⌧��0T

to be nonzero, the parities of the degrees of the merged vertices should add up correspondingly.
Proposition E.17. For all U 2 Imid and ⌧ 2 MU , there exist two sets of parity vectors P⌧ , Q⌧ ✓
PU and a bijection ⇡ : P⌧ ! Q⌧ such that H⌧ =

P
⇢2P⌧

H⌧,⇢,⇡(⇢).

Proof. Using Definition E.1, in order for H⌧ (�,�0) to be nonzero, we must have that, in � � ⌧ � �0,
for all i 2 U⌧ [ V⌧ , degU� (i) + degU�0 (i) + deg��⌧��

0T
(i) must be even. In other words, for any

⇢ 2 PU , there is at most one ⇢0 2 PU such that if we take � 2 LU,⇢,�0 2 LU with H⌧ (�,�0)
nonzero, then the parity of �0 is ⇢0. Also, observe that ⇢0 determines ⇢. We then take P⌧ to be the set
of ⇢ such that ⇢0 exists, Q⌧ to be the set of ⇢0 and in this case, we define ⇡(⇢) = ⇢0.

Proposition E.18. For any U 2 Imid and ⌧ 2 MU , suppose we take ⇢ 2 P⌧ . Let ⇡ be the bijection
from Proposition E.17 so that ⇡(⇢) 2 Q⌧ . Let U 0 = (U⌧ )2, V 0 = (V⌧ )2 be the type 2 vertices in
U⌧ , V⌧ respectively. Let xi for i 2 U 0 [ V 0 be random variables independently sampled from D.
Define xU 0 (resp. xV 0 ) to be the subset of variables xi for i 2 U 0 (resp. i 2 V 0). Then,

H⌧,⇢,⇡(⇢) =
1

|Aut(U)|2S(⌧)Ex

"
v⇢,x

U0

 
Y

i2U 0[V 0

xdeg⌧ (i)
i

!
vT⇡(⇢),x

V 0

#

Proof. For � 2 LU,⇢,�0 2 LU,⇡(⇢) and t 2 {1, 2}, we have (|⌧ |t� |U⌧ |t)+ (|�|t� |V�|t
2 )+ (|�0|t�

|V
�0 |t
2 ) = |� � ⌧ � �0|t. The result then follows by a straightforward verification of the conditions of

Definition E.1 using Definition E.13.

We are ready to show the middle shape bounds.

Proof of the middle shape bounds Lemma E.7. Let P⌧ , Q⌧ ,⇡ be from Proposition E.17. Let U 0 =
(U⌧ )2, V 0 = (V⌧ )2 be the type 2 vertices in U⌧ , V⌧ respectively. Let xi for i 2 U 0 [ V 0 be random
variables independently sampled from D. Define xU 0 (resp. xV 0 ) to be the subset of variables xi for
i 2 U 0 (resp. i 2 V 0).
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For ⇢ 2 PU , define W⇢,⇢ = EyU2⇠DU2 [v⇢,yU2
vT⇢,yU2

] so that HIdU ,⇢,⇢ = 1
|Aut(U)|W⇢,⇢. Observe

that W⇢,⇢ = E[v⇢,x
U0 v

T
⇢,x

U0 ] = E[v⇢,x
V 0 v

T
⇢,x

V 0 ] because xU 0 and xV 0 are also sets of variables
sampled from D and, U 0, V 0 have the same size as U2 because U⌧ = V⌧ = U .

For ⇢, ⇢0 2 PU , define Y⇢,⇢0 = E
h
v⇢,x

U0

⇣Q
i2U 0[V 0 x

deg⌧ (i)
i

⌘
vT⇡(⇢),x

V 0

i
. Then, H⌧ =

P
⇢2P⌧

H⌧,⇢,⇡(⇢) =
1

|Aut(U)|2S(⌧)
P

⇢2P⌧
Y⇢,⇡(⇢). We have

"
S(⌧)R(⌧)
|Aut(U)| HIdU

H⌧

HT
⌧

S(⌧)R(⌧)
|Aut(U)| HIdU

#
=

S(⌧)

|Aut(U)|2


R(⌧)

P
⇢2PU

W⇢,⇢
P

⇢2P⌧
Y⇢,⇡(⇢)P

⇢2P⌧
Y T
⇢,⇡(⇢) R(⌧)

P
⇢2PU

W⇢,⇢

�

We hae S(⌧)
|Aut(U)|2 � 0 and the matrix is just

R(⌧)

P
⇢2PU\P⌧

W⇢,⇢ 0
0

P
⇢2PU\Q⌧

W⇢,⇢

�
+


R(⌧)

P
⇢2P⌧

W⇢,⇢
P

⇢2P⌧
Y⇢,⇡(⇢)P

⇢2P⌧
Y T
⇢,⇡(⇢) R(⌧)

P
⇢2P⌧

W⇡(⇢),⇡(⇢)

�

We have
P

⇢2PU\P⌧
W⇢,⇢ =

P
⇢2PU\P⌧

E[v⇢,x
U0 v

T
⇢,x

U0 ] ⌫ 0. Similarly,
P

⇢2PU\Q⌧
W⇢,⇢ ⌫ 0.

Also, R(⌧) � 0 and so, the first term in the above expression is positive semidefinite. And the second
term is just

X

⇢2P⌧

E

2

4
R(⌧)v⇢,x

U0 v
T
⇢,x

U0 v⇢,x
U0

⇣Q
i2U 0[V 0 x

deg⌧ (i)
i

⌘
vT⇡(⇢),x

V 0

vT⇢,x
U0

⇣Q
i2U 0[V 0 x

deg⌧ (i)
i

⌘
v⇡(⇢),x

V 0 R(⌧)v⇡(⇢),x
V 0 v

T
⇡(⇢),x

V 0

3

5

We will prove that the term inside the expectation is positive semidefinite for each ⇢ 2 P⌧ and
each sampling of the xi from D, which will complete the proof. Fix ⇢ 2 P⌧ and any sampling of
the xi from D. Let w1 = v⇢,X

U0 , w2 = v⇡(⇢),x
V 0 . Let E =

Q
i2U 0[V 0 x

deg⌧ (i)
i . We would like to

prove that

R(⌧)w1wT

1 Ew1wT
2

EwT
1 w2 R(⌧)w2wT

2

�
⌫ 0. For all y sampled from D, |y|  Cdisc

p
DE and so,

|E|  (Cdisc
p
DE)

P
j2U0[V 0 deg

⌧ (j) = R(⌧).
If E � 0, then

R(⌧)w1wT

1 Ew1wT
2

EwT
1 w2 R(⌧)w2wT

2

�
= (R(⌧)� E)


w1wT

1 0
0 w2wT

2

�
+ E


w1wT

1 w1wT
2

wT
1 w2 w2wT

2

�
⌫ 0

since R(⌧)� E � 0 And if E < 0,

R(⌧)w1wT

1 Ew1wT
2

EwT
1 w2 R(⌧)w2wT

2

�
= (R(⌧) + E)


w1wT

1 0
0 w2wT

2

�
� E


w1wT

1 �w1wT
2

�wT
1 w2 w2wT

2

�
⌫ 0

since R(⌧) + E � 0.

E.2.3 Intersection term bounds

Just as in Proposition E.17, the next proposition captures the fact that when we compose shapes
�, �, �T ,�0T , in order for ������T ��0T to be nonzero, the parities of the degrees of the merged
vertices should add up correspondingly. Just as in the tensor PCA application, we similarly define
H��,�

IdV ,⇢,⇢0 and H 0
�,⇢,⇢. The following propositions are simple and proved the same way.

Proposition E.19. For all U, V 2 Imid where w(U) > w(V ), for all � 2 �U,V , there exists a set of
parity vectors P� ✓ PU such that H��,�

IdV
=
P

⇢2P�
H��,�

IdV ,⇢,⇢.

Proposition E.20. For all U, V 2 Imid where w(U) > w(V ), for � 2 �U,V , H 0
� =

P
⇢2P�

H 0
�,⇢,⇢.

We will now define vectors which are truncations of v⇢,xU2
. This definition and the following

proposition are mostly a matter of technicality and they are essentially similar to the PSD mass
condition analysis.
Definition E.21. Let U, V 2 Imid where w(U) > w(V ), and let � 2 �U,V . Let xi for i 2 U2 be
variables. Denote them collectively as xU2 . For ⇢ 2 PU , define v��

⇢,xU2
to be the vector indexed by

left shapes � 2 L such that the �th entry is v⇢,xU2
(�) if |V (� � �)|  DV and 0 otherwise.
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With this, we can decompose each slice H��,�
IdV ,⇢,⇢.

Proposition E.22. For any U, V 2 Imid where w(U) > w(V ), and for any � 2 �U,V , suppose we
take ⇢ 2 P� . When we compose � with �T to get � � �T , let U 0 = (U���T )2, V 0 = (V���T )2 be the
type 2 vertices in U���T , V���T respectively. And let W 0 be the set of type 2 vertices in � � �T that
were identified in the composition when we set V� = UT

� . Let xi for i 2 U 0 [W 0 [ V 0 be random
variables independently sampled from D. Define xU 0 (resp. xV 0 , xW 0) to be the subset of variables
xi for i 2 U 0 (resp. i 2 V 0, i 2 W 0). Then,

H��,�
IdV ,⇢,⇢ =

1

|Aut(V )|S(�)
2 E

x

"
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T

#

Proof. Fix �,�0 2 LU,⇢ such that |V (� � �)|, |V (�0 � �)|  DV . Note that for t 2 {1, 2}, |�|t �
|V�|t
2 + |�0|t � |V

�0 |t
2 +2(|�|t � |U� |t+|V� |t

2 ) = |� � � � �T � �0T |t. We can easily verify the equality
using Definition E.1 and Definition E.13.

Proposition E.23. For any U, V 2 Imid where w(U) > w(V ), and for any � 2 �U,V , suppose we
take ⇢ 2 PU . Then, H 0

�,⇢,⇢ = 1
|Aut(U)| EyU2⇠DU2

h
(v��

⇢,yU2
)(v��

⇢,yU2
)T
i
.

We can finally show the intersection term bounds.

Proof of the intersection term bounds Lemma E.8. Let U 0, V 0,W 0 be as in Proposition E.22. We
have

|Aut(V )|
|Aut(U)| ·

1

S(�)2R(�)2
H��,�

IdV
=
X

⇢2P�

|Aut(V )|
|Aut(U)| ·

1

S(�)2R(�)2
H��,�

IdV ,⇢,⇢

=
X

⇢2P�

1

|Aut(U)| ·
1

R(�)2
E
x

"
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T

#

We will now prove that, for all ⇢ 2 P� ,

1

|Aut(U)| ·
1

R(�)2
E
x

"
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T

#
� H 0

�,⇢,⇢

which reduces to proving that

2

R(�)2
E
x

"
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T

#
� 2 E

yU2⇠DU2

h
(v��

⇢,yU2
)(v��

⇢,yU2
)T
i

= E
x

h
(v��

⇢,x
U0 )(v

��
⇢,x

U0 )
T + (v��

⇢,x
V 0 )(v

��
⇢,x

V 0 )
T
i

where the last equality followed from linearity of expectation and the fact that U 0 ⌘ V 0 ⌘ U2. Since
H��,�

IdV ,⇢,⇢ is symmetric, we have

E
x

"
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T

#
= E

x

"
(v��

⇢,x
V 0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
U0 )

T

#

So, it suffices to prove

1

R(�)2
E
x

"
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T + (v��
⇢,x

V 0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
U0 )

T

#

� E
x

h
(v��

⇢,x
U0 )(v

��
⇢,x

U0 )
T + (v��

⇢,x
V 0 )(v

��
⇢,x

V 0 )
T
i
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We will prove that for every sampling of the xi from D, we have

1

R(�)2

 
(v��

⇢,x
U0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
V 0 )

T + (v��
⇢,x

V 0 )

 
Y

i2U 0[W 0[V 0

xdeg���T

(i)
i

!
(v��

⇢,x
U0 )

T

!

� (v��
⇢,x

U0 )(v
��
⇢,x

U0 )
T + (v��

⇢,x
V 0 )(v

��
⇢,x

V 0 )
T

Then, taking expectations will give the result. Indeed, fix a sampling of the xi from D. Let

E =
Q

i2U 0[W 0[V 0 x
deg���T

(i)
i and let w1 = v��

⇢,x
U0 , w2 = v��

⇢,x
V 0 . Then, the inequality we need

to show is E
R(�)2 (w1wT

2 + w2wT
1 ) � w1wT

1 + w2wT
2 . Now, since |xi|  Cdisc

p
DE for all i, we

have |E| 
Q

i2U 0[W 0[V 0(Cdisc
p
DE)deg

���T

(i) = R(�)2. If E � 0, using E
R(�)2 (w1 �w2)(w1 �

w2)T ⌫ 0 gives

E

R(�)2
(w1w

T
2 + w2w

T
1 ) �

E

R(�)2
(w1w

T
1 + w2w

T
2 ) � w1w

T
1 + w2w

T
2

since 0  E  R(�)2. And if E < 0, using �E
R(�)2 (w1 + w2)(w1 + w2)T ⌫ 0 gives

E

R(�)2
(w1w

T
2 + w2w

T
1 ) �

�E

R(�)2
(w1w

T
1 + w2w

T
2 ) � w1w

T
1 + w2w

T
2

since 0  �E  R(�)2. Finally, we use the fact that for all ⇢ 2 PU , we have H 0
�,⇢,⇢ ⌫ 0 which can

be proved the same way as the proof of Lemma E.3. Therefore,

|Aut(V )|
|Aut(U)| ·

1

S(�)2R(�)2
H��,�

IdV
�
X

⇢2P�

H 0
�,⇢,⇢ �

X

⇢2PU

H 0
�,⇢,⇢ = H 0

�

E.3 Intuition for quantitative bounds

In this section, we will give some intuition for the bounds that appear in our main theorem Theo-
rem A.1, which is formally proved in Appendix K. Informally, the theorem states that when m  d

�2

and m  k2

�2 , then ⇤ ⌫ 0 with high probability.

We will try and understand why the inequality �2
��⌧��0T kM⌧k2  ����T ��0��0T holds. Assume

for simplicity that d < n and consider the shapes in Fig. 3. The assumption d < n is used in this
example since otherwise, if d > n, the decomposition differs from what’s shown in the figure.

Figure 3: Shapes � � ⌧1 � �T ,� � ⌧2 � �T and � � �T .

Firstly, the shape � � �T has a coefficient of ����T ⇡
⇣

1p
k

⌘4 �
k
d

�2. The first shape � � ⌧1 � �T

has a coefficient of ���⌧1��T ⇡
⇣

1p
k

⌘4 �
k
d

�4 ⇣p
�p
k

⌘4
and with high probability, upto lower order
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terms, kM⌧1k  md (these norm bounds follow from [1]). So, the inequality �2
��⌧1��T kM⌧1k

2 
����T ����T rearranges to m  d

�2 . But this is precisely one of the assumptions on m. Moreover,
this also confirms that we need this assumption on m in order for our strategy to go through.

The second shape � � ⌧2 � �T has a coefficient of ���⌧2��T ⇡
⇣

1p
k

⌘4 �
k
d

�4 ⇣p
�p
k

⌘8
and with

high probability, upto lower order terms, kM⌧2k  m2d. So, the inequality �2
��⌧2��T kM⌧2k

2 
����T ����T rearranges to m2  k2d

�4 . But this is obtained simply by multiplying our assumptions
on m, namely m  k2

�2 and m  d
�2 .

Moreover, consider a shape of the form ��⌧3��T where ⌧3 is similar to ⌧2 except it has t (instead
of 3) different circle vertices that are common neighbors to the top 2 square vertices. Analyzing our
required inequality, we get for our strategy to go through, m has to satisfy m  k2

�2 ·
�

d
k2

� 2
t+1 . By

taking t arbitrarily large, we can see that the condition m  k2

�2 is needed.

So, we get that for our analysis to go through, the assumptions m  d
�2 and m  k2

�2 are
necessary. We will prove that in fact, these are sufficient. To do this, we use an argument that exploits
the special structure of the shapes ↵ that appear in our decomposition of ⇤ and their coefficients �↵,
as we obtained in Definition E.1. For details, see Appendix K.

F Definitions and Quantitative Main Theorem Statement

F.1 Section Introduction

In this section, we make our definitions and results more precise. We also generalize our definitions
and results to handle problems where one or more of the following is true:

1. The input entries correspond to hyperedges rather than edges.
2. We have different types of indices.
3. ⌦ is a more complicated distribution than {�1,+1}.
4. We have to consider matrix indices which are not multilinear.

Throughout this section and the remainder of this manuscript, we give the reader a choice for
the level of generality. In particular, we will first recall our definition for the simpler case when our
input is {�1,+1}(

n

2) and we only consider multilinear indices. We will then discuss how this simpler
definition generalizes. We denote these generalizations with an asterix ⇤.

F.1.1 Additional Parameters for the General Case*

In the general case we will need a few additional parameters which we define here.
Definition F.1.

1. We define k to be the arity of the hyperedges corresponding to the input.

2. We define tmax to be the number of different types of indices. We define ni to be the number
of possibilities for indicies of type i and we define n = max {ni : i 2 [tmax]}.

F.2 Indices, Input Entries, Vertices, and Edges

Note: For this section, we use X to denote the input, we use x to denote entries of the input and we
use y to denote solution variables.
Definition F.2 (Vertices: Simplified Case). When the input and solution variables are indexed by one
type of index which takes values in [n] then we represent the index i by a vertex labeled i.

If we want to leave an index unspecified, we instead represent it by a vertex labeled with a
variable (we will generally use u, v, or w for these variables).
Definition F.3 (Vertices: General Case*). When the input and solution variables are indexed by
several types of indices where indices of type t take values in [nt], we represent an index of type t
with value i as a vertex labeled by the tuple (t, i). We say that such a vertex has type t.
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If we want to leave an index of type t unspecified, we instead represent it by a vertex labeled with
a tuple (t, ?) where ? is a variable (which will generally be u, v, or w).

Definition F.4 (Edges: Simplified Case). When the input is X 2 {�1,+1}(
n

2), we represent the
entries of the input by the undirected edges {(i, j) : i < j 2 [n]}. Given an edge e = (i, j), we take
xe = xij to be the input entry corresponding to e.
Definition F.5 (Edges: General Case*). In general, we represent the entries of the input by hyperedges
whose form depends on nature of the input. We still take xe to be the input entry corresponding to e.
Example F.6. If the input is an n1 ⇥ n2 matrix X then we will have two types of indices, one for the
row and one for the column. Thus, we will have the vertices {(1, i) : i 2 [n1]} [ {(2, j) : j 2 [n2]}.
In this case, we have an edge ((1, i), (2, j)) for each entry xij of the input.
Example F.7. If the input is an n⇥ n matrix X which is not symmetric then we only need the indices
[n]. In this case, we have a directed edge (i, j) for each entry xij where i 6= j. If the entries xii are
also part of the input than we also have loops (i, i) for these entries.
Example F.8. If our input is a symmetric n⇥ n⇥ n tensor X (i.e. xijk = xikj = xjik = xjki =
xkij = xkji) and xijk = 0 whenever i, j, k are not distinct then we only need the indices [n]. In
this case, we have an undirected hyperedge e = (i, j, k) for each entry xe = xijk of the input where
i, j, k are distinct.
Example F.9. If the input is an n1 ⇥n2 ⇥n3 tensor X then we will have three types of indices. Thus,
we will have the vertices {(1, i) : i 2 [n1]} [ {(2, j) : j 2 [n2]} [ {(3, k) : k 2 [n3]}. In this case,
we have a hyperedge e = ((1, i), (2, j), (3, k)) for each entry xe = xijk of the input.

F.3 Matrix Indices and Monomials

In this subsection, we discuss how our matrices are indexed and how we associate matrix indices
with monomials. We also describe the automorphism groups of matrix indices.
Definition F.10 (Matrix Indices: Simplified Case). If there is only one type of index and we have the
constraints y2i = 1 or y2i = yi on the solution variables then we define a matrix index A to be a tuple
of indices (a1, . . . , a|A|). We make the following definitions about matrix indices:

1. We associate the monomial
Q|A|

j=1 yaj
to A.

2. We define V (A) to be the set of vertices {ai : i 2 [|A|]}. For brevity, we will often write A
instead of V (A) when it is clear from context that we are referring to A as a set of vertices
rather than a matrix index.

3. We take the automorphism group of A to be Aut(A) = S|A| (the permutations of the
elements of A)

Example F.11. The matrix index A = (4, 6, 1) represents the monomial y4y6y1 = y1y4y6 and
Aut(A) = S3

Remark F.12. We take A to be an ordered tuple rather than a set for technical reasons.

In general, we need a more intricate definition for matrix indices. We start by defining matrix
index pieces
Definition F.13 (Matrix Index Piece Definition*). We define a matrix index piece Ai =
((ai1, . . . , ai|Ai|), ti, pi) to be a tuple of indices (ai1, . . . , ai|Ai|) together with a type ti and a power
pi. We make the following definitions about matrix index pieces:

1. We associate the monomial pAi
=
Q|Ai|

j=1 y
pi

tij
with Ai.

2. We define V (Ai) to be the set of vertices {(ti, aij) : j 2 [|Ai|]}.

3. We take the automorphism group of Ai to be Aut(Ai) = S|Ai|

4. We say that Ai and Aj are disjoint if V (Ai)\V (Aj) = ; (i.e. ti 6= tj or {ai1, . . . , ai|Ai|}\
{aj1, . . . , aj|Aj |} = ;)

Definition F.14 (General Matrix Index Definition*). We define a matrix index A = {Ai} to be a set
of disjoint matrix index pieces. We make the following definitions about matrix indices:
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1. We associate the monomial pA =
Q

Ai2A p(Ai) with A.

2. We define V (A) to be the set of vertices [Ai2AV (Ai). For brevity, we will often write A
instead of V (A) when it is clear from context that we are referring to A as a set of vertices
rather than a matrix index.

3. We take the automorphism group of A to be Aut(A) =
Q

Ai2A Aut(Ai)

Example F.15 (*). If A1 = ((2), 1, 1), A2 = ((3, 1), 1, 2), and A3 = ((1, 2, 3), 2, 1) then A =
{A1, A2, A3} represesents the monomial p = y12y213y

2
11y21y22y23 and we have Aut(A) = S1 ⇥

S2 ⇥ S3

F.4 Fourier Characters and Ribbons

A key idea is to analyze Fourier characters of the input.
Definition F.16 (Simplified Fourier Characters). If the input distribution is ⌦ = {�1, 1} then given
a multi-set of edges E, we define �E(X) =

Q
e2E xe.

Example F.17. If the input is a graph G 2 {�1, 1}(
n

2) and E is a set of potential edges of G (with
no multiple edges) then �E(G) = (�1)|E\E(G)|.

In general, the Fourier characters are somewhat more complicated.
Definition F.18 (Orthonormal Basis for ⌦*). We define the polynomials {hi : i 2 Z\ [0, |supp(⌦)|�
1]} to be the unique polynomials (which can be found through the Gram-Schmidt process) such that

1. 8i, E⌦[h2
i (x)] = 1

2. 8i 6= j, E⌦[hi(x)hj(x)] = 0

3. For all i, the leading coefficient of hi(x) is positive.
Example F.19. If ⌦ is the normal distribution then the polynomials {hi} are the Hermite polynomials
with the appropriate normalization so that for all i, E⌦[h2

i (x)] = 1. In particular, h0(x) = 1,
h1(x) = x, h2(x) =

x2�1p
2!

, h3(x) =
x3�3xp

3!
, etc.

Definition F.20 (General Fourier Characters*). Given a multi-set of hyperedges E, each of which has
a label l(e) 2 [|support(⌦)|� 1] (or N if ⌦ has infinite support), we define �E =

Q
e2E hl(e)(Xe).

We say that such a multi-set of hyperedges E is proper if it contains no duplicate hyperedges, i.e.
it is a set (though the labels on the hyperedges can be arbitrary non-negative integers). Otherwise,
we say that E is improper.
Remark F.21. The Fourier characters are {�E : E is proper}. For improper E, �E can be
decomposed as a linear combination of �Ej

where each Ej is proper. We allow improper E because
it is sometimes more convenient to have improper E in the middle of the analysis and then do this
decomposition at the end.
Definition F.22 (Ribbons). A ribbon R is a tuple (HR, AR, BR) where HR is a multi-graph (*or
multi-hypergraph with labeled edges in the general case) whose vertices are indices of the input and
AR and BR are matrix indices such that V (AR) ✓ V (HR) and V (BR) ✓ V (HR). We make the
following definitions about ribbons:

1. We define V (R) = V (HR) and E(R) = E(HR)

2. We define �R = �E(R).

3. We define MR to be the matrix such that (MR)ARBR
= �R and MAB = 0 whenever

A 6= AR or B 6= BR.

We say that R is a proper ribbon if HR contains no isolated vertices outside of AR [BR and E(R)
is proper. If there is an isolated vertex in (V (R) \AR) \BR or E(R) is improper then we say that
R is an improper ribbon.

Proper ribbons are useful because they give an orthonormal basis for the space of matrix valued
functions.
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Definition F.23 (Inner products of matrix functions). For a pair of real matrices M1,M2 of the same
dimension, we write hM1,M2i = tr(M1M2

T ) (i.e. hM1,M2i is the entrywise dot product of M1

and M2). For a pair of matrix-valued functions M1,M2 (of the same dimensions), we define

hM1,M2i = EX [hM1(X),M2(X)i]

Proposition F.24. If R and R0 are two proper ribbons then hMR,MR0i = 1 if R = R0 and is 0
otherwise.

F.5 Shapes

In this subsection, we describe a basis for S-invariant matrix valued functions where each matrix in
this basis can be described by a relatively small shape ↵. The fundamental idea behind shapes is
that we keep the structure of the objects we are working with but leave the elements of the object
unspecified.

F.5.1 Simplified Index Shapes

Definition F.25 (Simplified Index shapes). With our simplifying assumptions, an index shape U is a
tuple of unspecified indices (u1, · · · , u|U |). We make the following definitions about index shapes:

1. We define V (U) to be the set of vertices {ui : i 2 [|U |]}. For brevity, we will often write U
instead of V (U) when it is clear from context that we are referring to U as a set of vertices
rather than an index shape.

2. We define the weight of U to be w(U) = |U |.

3. We take the automorphism group of U to be Aut(U) = S|U | (the permutations of the
elements of U )

Definition F.26. We say that a matrix index A = (a1, . . . , a|A|) has index shape U = (u1, . . . , u|U |)
if |U | = |A|. Note that in this case, if we take the map ' : {uj : j 2 [|U |]} ! [n] where '(uj) = aj
then '(U) = ('(u1), . . . ,'(u|U |)) = (a1, . . . , a|A|) = A

Definition F.27. We say that index shapes U = (u1, . . . , u|U |) and V = (v1, . . . , v|V |) are equivalent
(which we write as U ⌘ V ) if |U | = |V |. If U ⌘ V then we can set U = V by setting vj = uj for all
j 2 [|U |].
Example F.28. The matrix index A = {4, 6, 1} has shape U = {u1, u2, u3} which has weight 3.

F.5.2 General Index Shapes*

In general, we define general index shapes in the same way that we defined general matrix indices
(just with unspecified indices)
Definition F.29 (Index Shape Piece Definition). We define a index shape piece Ui =
((ui1, . . . , ui|Ui|), ti, pi) to be a tuple of indices (ui1, . . . , ui|Ai|) together with a type ti and a
power pi. We make the following definitions about index shape pieces:

1. We define V (Ui) to be the set of vertices {(ti, uij) : j 2 [|Ui|]}.

2. We define w(Ui) = |Ui|logn(nti)

3. We take the automorphism group of Ui to be Aut(Ui) = S|Ui|

Definition F.30 (General Index Shape Definition). We define an index shape U = {Ui} to be a set
of index shape pieces such that for all i0 6= i, either ti0 6= ti or pi0 6= pi. We make the following
definitions about index shapes:

1. We define V (U) to be the set of vertices [Ui2UV (Ui). For brevity, we will often write U
instead of V (U) when it is clear from context that we are referring to U as a set of vertices
rather than an index shape.

2. We define w(U) to be w(U) =
P

Ui2U w(Ui)

3. We take the automorphism group of U to be Aut(U) =
Q

Ui2U Aut(Ui)
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Remark F.31. For technical reasons, we want to ensure that if two index shapes U and U 0 have the
same weight then U and U 0 have the same number of each type of vertex. To ensure this, we add an
infinitesimal perturbation to each ni if necessary.
Definition F.32. We say that a matrix index A has index shape U if there is an assignment of
values to the unspecified indices of U which results in A. More precisely, we say that A has
index shape U if there is a map ' : {uij} ! N such that if we define '(Ui) to be '(Ui) =
(('(ui1), . . . ,'(ui|Ui|)), ti, pi) then '(U) = {'(Ui)} = {Ai} = A.
Definition F.33. If U and V are two index shapes, we say that U is equivalent to V (which we write
as U ⌘ V ) if U and V have the same number of index shape pieces and we can order the index shape
pieces of U and V so that writing U = {Ui} and V = {Vi} where Ui = ((ui1, . . . , ui|Ui|), ti, pi)
and Vi = ((vi1, . . . , vi|Vi|), t

0
i, p

0
i), we have that for all i, |Vi| = |Ui|, t0i = ti, and p0i = pi. If U ⌘ V

then we can set U = V by setting uij = vij for all i and all j 2 [|Ui|].

F.5.3 Ribbon Shapes

With these definitions, we are now ready to define shapes and the matrices associated to them.
Definition F.34 (Shapes). A ribbon shape ↵ (which we call a shape for brevity) is a tuple ↵ =
(H↵, U↵, V↵) where H↵ is a multi-graph (*or multi-hypergraph with labeled edges in the general
case) whose vertices are unspecified distinct indices of the input (*whose type is specified in the
general case) and U↵ and V↵ are index shapes such that V (U↵) ✓ V (H↵) and V (V↵) ✓ V (H↵).
We make the following definitions about shapes:

1. We define V (↵) = V (H↵) (note that V (↵) and V↵ are not the same thing) and we define
E(↵) = E(H↵).

2. We say that a shape ↵ is proper if it contains no isolated vertices outside of V (U↵)[V (V↵),
E(↵) has no multiple edges/hyperedges and edges in E(↵) do not have label 0. If there is
an isolated vertex in V (↵) \ V (U↵) \ V (V↵) or E(↵) has a multiple edge/hyperedge then
we say that ↵ is an improper shape.

Note: For brevity, we will often write U↵ and V↵ instead of V (U↵) and V (V↵) when it is clear from
context that we are referring to U↵ and V↵ as sets of vertices rather than index shapes.
Definition F.35 (Trivial shapes). We say that a shape ↵ is trivial if V (↵) = V (U↵) = V (V↵) and
E(↵) = ;. Otherwise, we say that ↵ is non-trivial.
Remark F.36. Note that all trivial shapes can do is permute the order of the vertices in V (U↵) =
V (V↵).
Definition F.37. Informally, we say that a ribbon R has shape ↵ if replacing the indices in R with
unspecified labels results in ↵. Formally, we say that R has shape ↵ if there is an injective mapping
' : V (↵) ! [n] (*or [tmax] ⇥ [n] in the general case) such that '(↵) = R, i.e. '(H↵) = HR,
'(U↵) = AR, and '(V↵) = BR

Definition F.38. We say that two shapes ↵ and � are equivalent (which we write as ↵ ⌘ �) if they
are the same up to renaming their indices. More precisely, we say that ↵ ⌘ � if there is a bijective
map ⇡ : V (H↵) ! V (H�) such that ⇡(H↵) = H� , ⇡(U↵) = U� , and ⇡(V↵) = V� .
Definition F.39. Given a shape ↵ and matrix indices A,B of shapes U↵ and V↵ respectively, we
define R(↵, A,B) to be the set of ribbons R such that R has shape ↵, AR = A, and BR = B.
Definition F.40. For a shape ↵, we define the matrix-valued function M↵ to have entries M↵(A,B)
given by

(M↵)A,B(X) =
X

R2R(↵,A,B)

�R(X)

For examples of M↵, see [1].
Proposition F.41. The M↵’s for proper shapes ↵ are an orthogonal basis for the S-invariant
functions.†

†Because of orthogonality of the underlying Fourier characters, it is not hard to check that when ↵ 6= ↵
0 and

M↵,M↵0 have the same dimensions, hM↵,M↵0i = 0.

46



Remark F.42. Conceptually, one may think of forming an orthonormal basis for this space with
the functions M↵/

p
hM↵,M↵i, but for technical reasons it is easiest to work with these functions

without normalizing them to 1. By orthogonality and the fact that every Boolean function is a
polynomial, any S-invariant matrix-valued function ⇤ is expressible as

⇤ =
X

↵

h⇤,M↵i
hM↵,M↵i

·M↵

In the proof of our main theorem, we encounter improper shapes. We can handle them by
decomposing them into proper shapes using basic Fourier analysis. For now, we will illustrate how
this can be done via an example.

F.6 Composing Ribbons and Shapes

Definition F.43 (Composing Ribbons). We say that ribbons R1 and R2 are composable if BR1 =
AR2 . Note that this definition is not symmetric so we may have that R1 and R2 are composable but
R2 and R1 are not composable.

We say that R1 and R2 are properly composable if we also have that V (R1) \ V (R2) =
V (BR1) = V (AR2) (there are no unexpected intersections between R1 and R2).

If R1 and R2 are composable ribbons then we define the composition of R1 and R2 to be the
ribbon R1 �R2 such that

1. AR1�R2 = AR1 and BR1�R2 = BR2

2. V (R1 �R2) = V (R1) [ V (R2)

3. E(R1 �R2) = E(R1) [ E(R2) (and thus �R1�R2 = �R1�R2 )

We say that ribbons R1, . . . , Rk are composable/properly composable if for all j 2 [k�1], R1�. . .�Rj

and Rj+1 are composable/properly composable. If R1, . . . , Rk are composable then we define
R1 � . . . �Rk to be R1 � . . . �Rk = (R1 � . . . �Rk�1) �Rk

Proposition F.44. Ribbon composition is associative, i.e. if R1, R2, R3 are composable/properly
composable ribbons then R2, R3 are composable/properly composable, R1, (R2 �R3) are compos-
able/properly composable, and R1 � (R2 �R3) = (R1 �R2) �R3

Proposition F.45. If R1 and R2 are composable ribbons then MR1[R2 = MR1MR2 .

We have similar definitions for composing shapes.
Definition F.46 (Composing Shapes). We say that shapes ↵ and � are composable if U� ⌘ V↵. Note
that this definition is not symmetric so we may have that ↵ and � are composable but � and ↵ are
not composable.

If ↵ and � are composable shapes then we define the composition of ↵ and � to be the shape
↵ � � such that

1. U↵�� = U↵ and V↵�� = V�

2. After setting U� = V↵, we take V (↵ � �) = V (↵) [ V (�)

3. E(↵ � �) = E(↵) [ E(�)

We say that shapes ↵1, . . . ,↵k are composable if for all j 2 [k � 1], ↵1 � . . . � ↵j and ↵j+1 are
composable. If ↵1, . . . ,↵k are composable then we define the shape ↵1 � . . .�↵k to be ↵1 � . . .�↵k =
(↵1 � . . . � ↵k�1) � ↵k

Proposition F.47. Shape composition is associative, i.e. if ↵1,↵2,↵3 are composable shapes then
↵2,↵3 are composable, ↵1, (↵2 � ↵3) are composable, and ↵1 � (↵2 � ↵3) = (↵1 � ↵2) � ↵3

Example F.48. Fig. 4 illustrates an example of shape composition. We have two types of vertices
that we diagrammaticaly represent by squares and circles. Observe how the shapes � � �0T and
� � ⌧ � �0T are obtained from the shapes �, ⌧ and �0T .
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Figure 4: Illustration of shape composition and decomposition.

F.7 Decomposition of Shapes into Left, Middle, and Right parts

In this subsection, we describe how shapes can be decomposed into left, middle, and right parts based
on the leftmost and rightmost minimum vertex separators, which is a crucial idea for our analysis.

Definition F.49 (Paths). A path in a shape ↵ is a sequence of vertices v1, . . . , vt such that vi, vi+1

are in some edge/hyperedge together. A pair of paths is vertex-disjoint if the corresponding sequences
of vertices are disjoint.

Definition F.50 (Vertex separators). Let ↵ be a shape and let U and V be sets of vertices in ↵. We
say that a set of vertices S ✓ V (↵) is a vertex separator of U and V if every path in ↵ from U to V
contains at least one vertex in S. Note that any vertex separator S of U and V must contain all of
the vertices in U \ V .

As a special case, we say that S is a vertex separator of ↵ if S is a vertex separator of U↵ and
V↵

We define the weight of a set of vertices S ✓ V (↵) in the same way that weight is defined for
index shapes.

Definition F.51 (Simplified Weight). When there is only one type of index, the weight of a set of
vertices S ✓ V (↵) is simply |S|.
Definition F.52 (General Weight*). In general, given a set of vertices S ✓ V (↵), writing S = [tSt

where St is the set of vertices of type t in S, we define the weight of S to be w(S) =
P

t |St|logn(nt)

Remark F.53 (*). Again, if necessary, we add an infinitesimal perturbation to n1, n2, . . . , ntmax
so

that if two separators S and S0 have the same weight then S and S0 have the same number of each
type of vertex.

Definition F.54 (Leftmost and rightmost minimum vertex separators). The leftmost minimum vertex
separator is the vertex separator S of minimum weight such that for every other minimum-weight
vertex separator S0, S is a separator of U↵ and S0. The rightmost minimum vertex separator is the
vertex separator T of minimum weight such that for every other minimum-weight vertex separator T 0,
T is a separator of T 0 and V↵
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We now have the following crucial idea. Every shape ↵ can be decomposed into the composition
of three composable shapes �, ⌧,�0T based on the leftmost and rightmost minimum vertex separators
S, T of ↵ together with orderings of S and T .
Definition F.55 (Simplified Separators With Orderings). Under our simplifying assumptions, given a
set of vertices S ✓ V (↵) and an ordering OS = s1, . . . , s|S| of the vertices of S, we define the index
shape (S,OS) to be (S,OS) = (s1, . . . , s|S|).
Definition F.56 (General Separators With Orderings*). In the general case, we need to give an
ordering for each type of vertex. Let S ✓ V (↵) be a subset of the vertices of ↵ and write S = [tSt

where St is the set of vertices in S of type t. Given OS = {Ot} where Ot = st1, . . . , st|St|
is an ordering of the vertices of St, we define the index shape piece (St, Ot) to be (St, Ot) =
((st1, . . . , st|St|), t, 1) and we define the index shape (S,OS) to be (S,OS) = {(St, Ot)}.

Proposition F.57. The number of possible orderings O for S is equal to |Aut((S,OS))|
Definition F.58 (Shape transposes). Given a shape ↵, we define ↵T to be the shape ↵ with U↵ and
V↵ swapped i.e. U�T = V� and V�T = U� .
Definition F.59 (Left, middle, and right parts). Let ↵ be a shape. Let S and T be the leftmost and
rightmost minimal vertex separators of ↵ together with orderings OS , OT of S and T .

- We define the left part �↵ of ↵ to be the shape such that

1. H�↵
is the induced subgraph of H↵ on all of the vertices of ↵ reachable from U↵

without passing through S (note that H�↵
includes the vertices of S) except that we

remove any edges/hyperedges which are contained entirely within S.
2. U�↵

= U↵ and V�↵
= (S,OS)

- We define the right part �0T
↵ of ↵ to be the shape such that

1. H�0T
↵

is the induced subgraph of H↵ on all of the vertices of ↵ reachable from V↵

without passing through T (note that H�0T
↵

includes the vertices of T ) except that we
remove any edges/hyperedges which are contained entirely within T .

2. V�0T
↵
= V↵ and U�0T

↵
= (T,OT )

- We define the middle part ⌧↵ of ↵ to be the shape such that

1. H⌧↵ is the induced subgraph of H↵ on all of the vertices of ↵ which are not reachable
from U↵ and V↵ without touching S and T (note that H⌧↵ includes the vertices of S
and T ). H⌧↵ also includes the hyperedges entirely within S and the hyperedges entirely
within T .

2. U⌧↵ = (S,OS) and V⌧↵ = (T,OT )

.
Example F.60. Fig. 4 illustrates an example decomposition. We have two types of vertices that we
diagrammatically represent by squares and circles. In this example, we assume that the set containing
a single circle vertex has a lower weight compared to a set of two square vertices.

1. If we start with the shape � � �0T , then it can be decomposed uniquely in to the composition
of the left shape �, the right shape �0T . In this case, the middle shape (not shown in this
figure) is trivial.

2. If we start with the shape ��⌧ ��0T , then it can be decomposed uniquely into the composition
of the left shape �, the middle shape ⌧ and the right shape �0T , which are all shown in this
figure.

Proposition F.61. If �, ⌧,�0T are the left, middle, and rights parts for ↵ for given orderings OS , OT

of S and T then ↵ = � � ⌧ � �0T .
Remark F.62. One may ask which ordering(s) we should take of S and T . The answer is that we
will take all of the possible orderings of S and T simultaneously, giving equal weight to each.

Based on this decomposition and the following claim, we make the following definitions for
what it means for a shape to be a left, middle, or right part.

49



Claim F.63 (Proved in Section 6.1 in [19]). †

- Every shape � which is the left part of some other shape ↵ has that V� is its left-most and
right-most minimum-weight separator.

- Every shape �T which is the right part of some other shape ↵ has that U�T is its left-most
and right-most minimum-weight separator.

- Every shape ⌧ which is the middle part of some other shape ↵ has U⌧ as its left-most
minimum size separator and V⌧ as its right-most minimum-weight separator.

Definition F.64.

1. We say that a shape � is a left shape if � is a proper shape, V� is the left-most and right-most
minimum-weight separator of �, every vertex in V (�) \ V� is reachable from U� without
touching V� , and � has no hyperedges entirely within V� .

2. We say that a shape ⌧ is a proper middle shape if ⌧ is a proper shape, U⌧ is the left-most
minimum-weight separator of ⌧ , and V⌧ is the right most minimum-weight separator of ⌧ .
In the analysis, we will also need to consider improper middle shapes ⌧ which may not be
proper shapes and which may have smaller separators between U⌧ and V⌧ .

3. We say that a shape �T is a right shape if �T is a proper shape, U�T is the left-most and
right-most minimum-weight separator of �T , every vertex in V (�T ) \ U�T is reachable
from V�T without touching U�T , and �T has no hyperedges entirely within U�T .

Proposition F.65. For all shapes �, � is a left shape if and only if �T is a right shape.
Remark F.66. As the reader has likely guessed, throughout this section we use � to denote left parts
and ⌧ to denote middle parts. Instead of having a separate letter for right parts, we express right
parts as the transpose of a left part.

F.8 Coefficient matrices

We will have that ⇤ =
P

↵ �↵M↵. To analyze ⇤, it is extremely useful to express these coefficients
in terms of matrices. To do this, we will need a few more definitions. We start by defining the sets of
index shapes that can appear when analyzing ⇤.
Definition F.67. Given a moment matrix ⇤, we define the following sets of index shapes.

1. We define I(⇤) = {U : 9 matrix index A : A is a row index of ⇤, A has shape U} to be the
set of index shapes which describe row and column indices of ⇤.

2. We define wmax to be wmax = max {w(U) : U 2 I(⇤)}.

3. With our simplifying assumptions, we define Imid to be Imid = {U : |U |  wmax}

3*. In general, we define Imid to be Imid = {U : w(U)  wmax, 8Ui 2 U, pi = 1}

We also need to define the sets of shapes which can appear when analyzing ⇤.
Definition F.68 (Truncation Parameters). Given a moment matrix ⇤ =

P
↵ �↵M↵, we define

DV , DE to be the smallest natural numbers such that for all shapes ↵ such that �↵ 6= 0, decomposing
↵ as ↵ = � � ⌧ � �0T ,

1. |V (�)|  DV , |V (⌧)|  DV , and |V (�0)|  DV .

2.* For all edges e 2 E(�) [ E(⌧) [ E(�0), le  DE .
Remark F.69. Under our simplifying assumptions, all edges have label 1 so we will take DE = 1
and ignore conditions involving DE .
Definition F.70. Given a moment matrix ⇤, we define the following sets of shapes:

1. L = {� : � is a left shape, U� 2 I(⇤), V� 2 Imid, |V (�)|  DV , 8e 2 E(�), le  DE}

2. Given V 2 Imid, we define LV = {� 2 L : V� ⌘ V }
†The proof in [19] only explicitly treats the case when the shapes ↵ are graphs, but the proof easily generalizes

to the case when the ↵ are hypergraphs.
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3. Given U 2 Imid, we define MU = {⌧ : ⌧ is a non-trivial proper middle shape, U⌧ ⌘
V⌧ ⌘ U, |V (⌧)|  DV , 8e 2 E(⌧), le  DE}

Definition F.71. Given a moment matrix ⇤, we define a ⇤-coefficient matrix (which we call a
coefficient matrix for brevity) to be a matrix whose rows and columns are indexed by left shapes
�,�0 2 L.

We say that a coefficient matrix H is SOS-symmetric if H(�,�0) is invariant under permuting the
vertices of U� and permuting the vertices of U�0 (*more precisely, for the general case we permute
the vertices within each index shape piece of U� and permute the vertices within each index shape
piece of U�0 ).
Definition F.72. Given a shape ⌧ , we say that a coefficient matrix H is a ⌧ -coefficient matrix if
H(�,�0) = 0 whenever V� 6⌘ U⌧ or V⌧ 6⌘ U�0T .
Definition F.73. Given an index shape U , we define IdU to be the shape with UIdU

= VIdU
= U ,

no other vertices, and no edges.

Given a shape ⌧ and a ⌧ -coefficient matrix H , we create two different matrix-valued functions,
Mfact

⌧ (H) and Morth
⌧ (H). As we will see, we can express ⇤ in terms of Morth but to show PSDness

we will need to shift to Mfact. We analyze the difference betweem Mfact and Morth in subsections
G.2, G.3, and G.4.
Definition F.74. Given a shape ⌧ and a ⌧ -coefficient matrix H , define

Mfact
⌧ (H) =

X

�2LU⌧
,�02LV⌧

H(�,�0)M�M⌧M
T
�0

Proposition F.75. For all A and B with shapes in I(⇤),
�
Mfact

⌧ (H)
�
(A,B) =

X

�2LU⌧
,�02LV⌧

H(�,�0)
X

A0,B0

X

R12R(�,A,A0),R22R(⌧,A0,B0),
R32R(�0T ,B0,B)

MR1(A,A0)MR2(A
0, B0)MR3(B

0, B)

If R1, R2, R3 are properly composable then R = R1 �R2 �R3 has the expected shape ��⌧ ��0T .
Otherwise, R1 �R2 �R3 will have a different shape. We define Morth

⌧ (H) to be the same sum as
Mfact

⌧ (H) except that it is restricted to properly composable ribbons R1, R2, R3.

Definition F.76. We define Morth
⌧ (H) so that for all A and B with shapes in I(⇤),

�
Morth

⌧ (H)
�
(A,B)

=
X

�2LU⌧
,�02LV⌧

H(�,�0)
X

A0,B0

X

R12R(�,A,A0),R22R(⌧,A0,B0),
R32R(�0T ,B0,B),R1,R2,R3 are properly composable

MR1(A,A0)MR2(A
0, B0)MR3(B

0, B)

=
X

�2LU⌧
,�02LV⌧

H(�,�0)
X

A0,B0

X

R12R(�,A,A0),R22R(⌧,A0,B0),
R32R(�0T ,B0,B),R1,R2,R3 are properly composable

MR1�R2�R3(A,B)

It would be nice if we had that Morth
⌧ (H) =

P
�2RU⌧

,�02RV⌧

H(�,�0)M��⌧��0T . However,
this is not quite correct because there is an additional term related to automorphism groups.
Definition F.77. Given a shape ↵, define Aut(↵) to be the set of mappings from ↵ to itself which
keep U↵ and V↵ fixed.
Example F.78. Consider the shape � where U� = (u1, u2, u3), V� = (v1, v2, v3), and V (�) =
U� [ V� [ {w1, w2, w3} with edges

E(↵) ={(u1, w1), (u2, w1), (u3, w1), (u1, w2), (u2, w2), (u3, w2), (u1, w3), (u2, w3), (u3, w3)}
[ {(w1, v1), (w1, v2), (w2, v1), (w2, v2), (w3, v1), (w3, v2)}

where all edges have label 1. Then, Aut(�) = Aut(�T ) = S3 and Aut(� � �T ) = S3 ⇥ S2 ⇥ S3.
Note that in this case Aut(� � �T )/(Aut(�)⇥Aut(�T )) = S2. The last computation will be useful
for the definition that follows.
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Definition F.79. Given composable shapes �, ⌧,�0T , we define

Decomp(�, ⌧,�0) = Aut(� � ⌧ � �0)/(Aut(�)⇥Aut(⌧)⇥Aut(�0T ))

Remark F.80. Each element ⇡ 2 Decomp(�, ⌧,�0) decomposes � � ⌧ � �0T into �, ⌧ , and �0T

by specifying copies ⇡(�), ⇡(⌧), ⇡(�0T ) of �, ⌧ , and �0T such that ⇡(�) � ⇡(⌧) � ⇡(�0T ) =

⇡(� � ⌧ � �0T ) = � � ⌧ � �0T . Thus, |Decomp(�, ⌧,�0)| is the number of ways to decompose
� � ⌧ � �0T into �, ⌧ , and �0T .
Lemma F.81.

Morth
⌧ (H) =

X

�2LU⌧
,�02LV⌧

H(�,�0)|Decomp(�, ⌧,�0T )|M��⌧��0T

Proof sketch. Observe that there is a bijection between ribbons R with shape � � ⌧ � �0T together
with an element ⇡ 2 Decomp(�, ⌧,�0) and triples of ribbons (R1, R2, R3) such that

1. R1, R2, R3 have shapes �, ⌧ , and �0T , respectively.

2. V (R1)\ V (R2) = AR2 = BR1 , V (R2)\ V (R3) = AR3 = BR2 , and V (R1)\ V (R3) =
AR2 \BR2

To see this, note that given such ribbons R1, R2, R3, the ribbon R = R1 � R2 � R3 has shape
� � ⌧ � �0T and the ribbons R1, R2, R3 specify a decomposition of � � ⌧ � �0T into �, ⌧ , and �0T .

Conversely, given R and an element ⇡ 2 Decomp(�, ⌧,�0), ⇡ specifies how to decompose R

into ribbons R1, R2, R3 of shapes �, ⌧ , and �0T .

Remark F.82. As this lemma shows, we have to be very careful about symmetry groups in our
analysis. For accuracy, it is safest to check that the coefficients for each individual ribbon match.

Given a matrix-valued function ⇤, we can associate coefficient matrices to ⇤ as follows:
Definition F.83. Given a matrix-valued function ⇤ =

P
↵:↵ is proper �↵M↵,

1. For each index shape U 2 Imid and every �,�0 2 LU , we take HIdU
(�,�0) =

1
|Aut(U)|����0T

2. For each U 2 Imid, ⌧ 2 MU and �,�0 2 LU , we take H⌧ (�,�0) =
1

|Aut(U⌧ )|·|Aut(V⌧ )|���⌧��0T

Lemma F.84. ⇤ =
P

U2Imid
Morth

IdU
(HIdU

) +
P

U2Imid

P
⌧2MU

Morth
⌧ (H⌧ )

Proof. We check that the coefficients for each individual ribbon R match. There are two cases to
consider.

If R has shape ↵ where ↵ has a unique minimum vertex separator S, then there is a bijection
between orderings OS for S and pairs of ribbons R1, R2 such that R1 � R2 = R and the shapes
�,�0T of R1, R2 are left and right shapes respectively.

To see this, observe that when we concatenate R1 and R2, this assigns the matrix index BR1 =
AR2 to S, which is equivalent to specifying an ordering OS for S. Conversely, given an ordering OS

for S, we take R1 to be the part of R between AR and (S,OS) and we take R2 to be the part of R
between (S,OS) and BR.

From this bijection, it follows that the coefficient of MR is �↵ on both sides of the equation.
Similarly, if R has shape ↵ where ↵ does not have a unique minimal vertex separator, then there

is a bijection between orderings OS , OT for the leftmost and rightmost minimum vertex separators
S, T of R and triples of ribbons R1, R2, R3 such that R1 �R2 �R3 = R and the shapes �, ⌧,�0T of
R1, R2, R3 are left, proper middle, and right shapes respectively.

To see this, observe that when we concatenate R1, R2, and R3, this assigns the matrix index
BR1 = AR2 to S and assigns the matrix index BR2 = AR3 to T , which is equivalent to specifying
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orderings OS , OT for S, T . Conversely, given orderings OS , OT for S, T , we take R1 to be the part
of R between AR and (S,OS), we take R2 to be the part of R between (S,OS) and (T,OT ), and
we take R2 to be the part of R between (T,OT ) and BR.

From this bijection, it again follows that the coefficient of MR is �↵ on both sides of the
equation.

F.9 The ��,�� operation and qualitative theorem statement

In the intersection term analysis (see subsections G.2, G.3, and G.4), we will need to further
decompose left shapes � as � = �2 � � where �2 and � are themselves left shapes. Accordingly, we
make the following definitions
Definition F.85. Given a moment matrix ⇤, we define the following sets of left shapes:

1. � = {� : � is a non-trivial left shape, U� , V� 2 Imid, |V (�)|  DV , 8e 2 E(�), le 
DE}

2. Given U, V 2 Imid such that w(U) > w(V ), define �U,V = {� 2 � : U� ⌘ U, V� ⌘ V }.

3. Given U 2 Imid, define �U,⇤ = {� 2 � : U� ⌘ U}

4. Given V 2 Imid, define �⇤,V = {� 2 � : V� ⌘ V }
Remark F.86. Under our simplifying assumptions, � is the same as L except that � excludes the
trivial shapes. In general, while L requires that U� 2 I(⇤), � requires that U� 2 Imid. Note that
I(⇤) and Imid may be incomparable because

1. There may be index shapes U 2 Imid such that no matrix index of ⇤ has shape U .

2. All index shape pieces Ui for index shapes U 2 Imid must have pi = 1 while this is not the
case for I(⇤).

We now state our theorem qualitatively after giving one more definition.
Definition F.87. Given a shape ⌧ , left shapes � 2 �⇤,U⌧

and �0 2 �⇤,V⌧
, and a ⌧ -coefficient matrix

H , define H��,�0
to be the (� � ⌧ � �0T )-coefficient matrix with entries

1. H��,�0
(�,�0) = H(� � �,�0 � �0) if |V (� � �)|  DV and |V (�0 � �0)|  DV .

2. H��,�0
(�,�0) = 0 if |V (� � �)| > DV or |V (�0 � �0)| > DV .

Remark F.88. For the theorem, we will only need the case when �0 = �

Our qualitative theorem statement is as follows:
Theorem F.89. Let ⇤ =

P
U2Imid

Morth
IdU

(HIdU
) +

P
U2Imid

P
⌧2MU

Morth
⌧ (H⌧ ) be an SOS-

symmetric matrix valued function.
There exist functions f(⌧) and f(�) depending on n and other parameters such that if the

following conditions hold:

1. For all U 2 Imid, HIdU
⌫ 0

2. For all U 2 Imid and all ⌧ 2 MU ,


HIdU
f(⌧)H⌧

f(⌧)HT
⌧ HIdU

�
⌫ 0

3. For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V , H��,�
IdV

� f(�)HIdU

then with high probability ⇤ ⌫ 0

Remark F.90. Roughly speaking, conditions 1 and 2 give us an approximate PSD decomposition
for the moment matrix M . Condition 3 comes from the intersection term analysis, which is the most
technically intensive part of the proof.
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F.10 Quantitative theorem statement

To state our theorem quantitatively, we will need a few more things. First, the conditions of the
theorem will involve functions Bnorm(↵), B(�), N(�), and c(↵). Roughly speaking, these functions
will be used as follows in the analysis:

1. Bnorm(↵) will bound the norms of the matrices M↵

2. B(�) and N(�) will help us bound the intersection terms (see Section G.4).
3. c(↵) will help us sum over the possible � and ⌧ .

Second, for technical reasons it turns out that comparing H��,�
IdV�

to HIdU�
doesn’t quite work. Instead,

we compare H��,�
IdV�

to a matrix H 0
� of our choice where H 0

� is very close to HIdU�
(H 0

� will be the
same as HIdU�

up to truncation error).

Definition F.91. Given a function Bnorm(↵), we define the distance d⌧ (H⌧ , H 0
⌧ ) between two

⌧ -coefficient matrices H⌧ and H 0
⌧ to be

d⌧ (H⌧ , H
0
⌧ ) =

X

�2LU⌧
,�02LV⌧

|H 0
⌧ (�,�

0)�H⌧ (�,�
0)|Bnorm(�)Bnorm(⌧)Bnorm(�0)

Third, we need an SOS-symmetric analogue of the identity matrix.
Definition F.92. We define IdSym to be the matrix such that

1. The rows and columns of IdSym are indexed by the matrix indices A,B whose index shape
is in I(⇤).

2. IdSym(A,B) = 1 if pA = pB and IdSym(A,B) = 0 if pA 6= pB .
Proposition F.93. If M has SOS-symmetry and the rows and columns of IdSym are indexed by
matrix indices A,B whose index shape is in I(⇤) then M � kMk IdSym

Corollary F.94. For all ⌧ and all SOS-symmetric ⌧ -coefficient matrices H⌧ and H 0
⌧ ,

Mfact
⌧ (H 0

⌧ ) +Mfact
⌧T (H 0

⌧T )�Mfact
⌧ (H⌧ )�Mfact

⌧T (H⌧T ) � 2d⌧ (H⌧ , H
0
⌧ )IdSym

Note that if ⌧ , H⌧ and H 0
⌧ are all symmetric then

Mfact
⌧ (H 0

⌧ )�Mfact
⌧ (H⌧ ) � d⌧ (H⌧ , H

0
⌧ )IdSym

Finally, we need a few more definitions about shapes ↵.
Definition F.95 (M0). We define M0 to be the set of all shapes ↵ such that

1. |V (↵)|  3DV

2.* 8e 2 E(↵), le  DE

3.* All edges e 2 E(↵) have multiplicity at most 3DV .
Definition F.96 (S↵). Given a shape ↵, define S↵ to be the leftmost minimum vertex separator of ↵
Definition F.97 (I↵). Given a shape ↵, define I↵ to be the set of vertices in V (↵) \ (U↵ [ V↵) which
are isolated.

Our main theorem will require the choice of several functions and parameters
q,Bvertex, Bedge(e), Bnorm(↵), B(�), N(�), c(↵) satisfying certain conditions. Bedge is not needed
in the simplified case. For simplicity, we defer the formal conditions to the next section.
Definition F.98 ("-feasible parameters). For " > 0, define
q,Bvertex, Bedge(e), Bnorm(↵), B(�), N(�), c(↵) to be "-feasible parameters if they satisfy
the conditions in Theorem G.1.

For our applications, we can work with the parameters as given by the following lemma, justified
in Appendix H.
Lemma F.99. For all " > 0, the parameters
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1. q = 3
l
DV ln(n) +

ln( 1
"
)

3 +DV ln(5) + 3D2
V ln(2)

m

2. Bvertex = 6DV
4
p
2eq

3. Bnorm(↵) = B|V (↵)\U↵|+|V (↵)\V↵|
vertex n

w(V (↵))+w(I↵)�w(S↵)
2

4. B(�) = B
|V (�)\U� |+|V (�)\V� |
vertex n

w(V (�)\U� )

2

5. N(�) = (3DV )2|V (�)\V� |+|V (�)\U� |

6. c(↵) = 100(3DV )|U↵\V↵|+|V↵\U↵|+2|E(↵)|2|V (↵)\(U↵[V↵)|

are "-feasible.
Remark F.100. In our applications, we show SoS lower bounds for n" degrees of SoS, where input
size is nO(1). In this setting, we take DV , DE to be of the order of nO("). Therefore, for simplicity,
we can interpret the parameters as

q = nO("), Bvertex = nO("), Bnorm(↵) = nO(")|V (↵)|n
w(V (↵))+w(I↵)�w(S↵)

2

B(�) = nO(")|V (�)|n
w(V (�)\U� )

2 , N(�) = nO(")|V (�)|, c(↵) = nO(")|V (↵)|

We can now state our main theorem.
Theorem F.101. Given the moment matrix ⇤ =

P
U2Imid

Morth
IdU

(HIdU
) +P

U2Imid

P
⌧2MU

Morth
⌧ (H⌧ ), for all " > 0, if we take "-feasible parameters, and we

have SOS-symmetric coefficient matrices {H 0
� : � 2 �} such that the following conditions hold:

1. (PSD mass) For all U 2 Imid, HIdU
⌫ 0

2. (Middle shape bounds) For all U 2 Imid and ⌧ 2 MU ,
"

1
|Aut(U)|c(⌧)HIdU

Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

3. (Intersection term bounds) For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,

c(�)2N(�)2B(�)2H��,�
IdV

� H 0
�

then with probability at least 1� ",

⇤ ⌫ 1

2

 
X

U2Imid

Mfact
IdU

(HIdU
)

!
� 3

0

@
X

U2I

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

(Truncation error bounds) If it is also true that whenever kM↵k  Bnorm(↵) for all ↵ 2 M0,

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 6

0

@
X

U2I

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

then with probability at least 1� ", ⇤ ⌫ 0.

F.10.1 General Main Theorem

Before stating the general main theorem, we need to modify a few definitions for ↵ and give a few
definitions for ⌦
Definition F.102 (S↵,min and S↵,max). Given a shape ↵ 2 M0, define S↵,min to be the leftmost
minimum vertex separator of ↵ if all edges with multiplicity at least 2 are deleted and define S↵,max

to be the leftmost minimum vertex separator of ↵ if all edges with multiplicity at least 2 are present.
Definition F.103 (General I↵). Given a shape ↵, define I↵ to be the set of vertices in V (↵)\(U↵[V↵)
such that all edges incident with that vertex have multplicity at least 2.
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Definition F.104 (B⌦). We take B⌦(j) to be a non-decreasing function such that for all j 2 N,
E⌦[xj ]  B⌦(j)j

Definition F.105 (h+
j ). For all j, we define h+

j to be the polynomial hj where we make all of the
coefficients have positive sign.
Lemma F.106. If ⌦ = N(0, 1) then we can take B⌦(j) =

p
j and we have that

h+
j (x) 

1p
j!
(x2 + j)

j

2 
✓
e

j
(x2 + j)

◆ j

2

For a proof, see [1, Lemma 8.15]. We again give a choice of "-feasible parameters used in our
applications, justified in Appendix H.
Lemma F.107. For all " > 0, the parameters

1. q =
⌃
3DV ln(n) + ln( 1" ) + (3DV )kln(DE + 1) + 3DV ln(5)

⌥

2. Bvertex = 6qDV

3. Bedge(e) = 2h+
le
(B⌦(6DV DE))maxj2[0,3DV DE ]

⇢�
h+
j (B⌦(2qj))

� le

max {j,le}

�

As a special case, if ⌦ = N(0, 1) then we can take Bedge(e) =
�
400D2

V D
2
Eq
�le

4. Bnorm(↵) = 2eB|V (↵)\U↵|+|V (↵)\V↵|
vertex

⇣Q
e2E(↵) Bedge(e)

⌘
n

w(V (↵))+w(I↵)�w(S↵,min)

2

5. B(�) = B
|V (�)\U� |+|V (�)\V� |
vertex

⇣Q
e2E(�) Bedge(e)

⌘
n

w(V (�)\U� )

2

6. N(�) = (3DV )2|V (�)\V� |+|V (�)\U� |

7. c(↵) = 100(3tmaxDV )|U↵\V↵|+|V↵\U↵|+k|E(↵)|(2tmax)|V (↵)\(U↵[V↵)|

are "-feasible.

Similar to Remark F.100, in our applications, we can interpret the above parameters in a much
simpler manner. Just as in all our applications, assume we work with the Gaussian distribution
⌦ = N(0, 1), k is a constant and we work with SoS degree n". Then, we think of each vertex or
edge of the shape ↵ or � essentially contributing a factor of n". Therefore, we can interpret

q = nO("), Bvertex = nO("), Bedge = nO(")|E(↵)|

Bnorm(↵) = nO(")(|V (↵)|+|E(↵)|)n
w(V (↵))+w(I↵)�w(S↵,min)

2 , B(�) = nO(")(|V (�)|+|E(�)|)n
w(V (�)\U� )

2

N(�) = nO(")|V (�)|, c(↵) = nO(")(|V (↵)|+|E(↵)|)

Theorem F.108. Given the moment matrix ⇤ =
P

U2Imid
Morth

IdU
(HIdU

) +P
U2Imid

P
⌧2MU

Morth
⌧ (H⌧ ), for all " > 0, if we take "-feasible parameters and we

have SOS-symmetric coefficient matrices {H 0
� : � 2 �} such that the following conditions hold:

1. (PSD mass) For all U 2 Imid, HIdU
⌫ 0

2. (Middle shape bounds) For all U 2 Imid and ⌧ 2 MU ,
"

1
|Aut(U)|c(⌧)HIdU

Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

3. (Intersection term bounds) For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,

c(�)2N(�)2B(�)2H��,�
IdV

� H 0
�

then with probability at least 1� ",

⇤ ⌫ 1

2

 
X

U2Imid

Mfact
IdU

(HIdU
)

!
� 3

0

@
X

U2I

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym
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(Truncation error bounds) If it is also true that whenever kM↵k  Bnorm(↵) for all ↵ 2 M0,

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 6

0

@
X

U2Imid

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

then with probability at least 1� ", ⇤ ⌫ 0.

F.11 Choosing H 0
� and Truncation Error

A canonical choice for H 0
� is to take

1. H 0
�(�,�

0) = HIdU
(�,�0) whenever |V (� � �)|  DV and |V (�0 � �)|  DV .

2. H 0
�(�,�

0) = 0 whenever |V (� � �)| > DV or |V (�0 � �)| > DV .

With this choice, the truncation error is

dIdU�
(HIdU�

, H 0
�) =

X

�,�02LU�
:V (�)DV ,V (�0)DV ,

|V (���)|>DV or |V (�0��)|>DV

Bnorm(�)Bnorm(�0)HIdU�
(�,�0)

G Proof of the Main Theorem

In this section, we prove the main theorem under the assumption that the functions Bnorm(↵), B(�),
N(�), and c(↵) have certain properties. More precisely, we prove the following theorem.
Theorem G.1. For all " > 0 and all "0 2 (0, 1

20 ], for any moment matrix

⇤ =
X

U2Imid

Morth
IdU

(HIdU
) +

X

U2Imid

X

⌧2MU

Morth
⌧ (H⌧ ),

if Bnorm(↵), B(�), N(�), and c(↵) are functions such that

1. With probability at least (1� "), for all shapes ↵ 2 M0, ||M↵||  Bnorm(↵).

2. For all ⌧ 2 M0, � 2 �⇤,U⌧
, �0 2 �⇤,V⌧

, and all intersection patterns P 2 P�,⌧,�0 ,

Bnorm(⌧P )  B(�)B(�0)Bnorm(⌧)

Note: Intersection patterns and P�,⌧,�0 will be defined later, see Definitions G.8 and G.9.

3. For all composable �1, �2, B(�1)B(�2) = B(�1 � �2).

4. 8U 2 Imid,
P

�2�U,⇤
1

|Aut(U)|c(�) < "0

5. 8V 2 Imid,
P

�2�⇤,V
1

|Aut(U�)|c(�) < "0

6. 8U 2 Imid,
P

⌧2MU

1
|Aut(U)|c(⌧) < "0

7. For all ⌧ 2 M0, � 2 �⇤,U⌧
[ {IdU⌧

}, and �0 2 �⇤,V⌧
[ {IdV⌧

},

X

j>0

X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

 
jY

i=1

N(Pi)

!

 N(�)N(�0)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivial

Note: ��,�0,j will be defined later, see Definition G.18.

and we have SOS-symmetric coefficient matrices {H 0
� : � 2 �} such that the following conditions

hold:

1. For all U 2 Imid, HIdU
⌫ 0
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2. For all U 2 Imid and ⌧ 2 MU ,"
1

|Aut(U)|c(⌧)HIdU
Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

3. For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,

c(�)2N(�)2B(�)2H��,�
IdV

� H 0
�

then with probability at least 1� ",

⇤ ⌫ 1

2

 
X

U2Imid

Mfact
IdU

(HIdU
)

!
� 3

0

@
X

U2Imid

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

If it is also true that whenever ||M↵||  Bnorm(↵) for all ↵ 2 M0,

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 6

0

@
X

U2Imid

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

then with probability at least 1� ", ⇤ ⌫ 0.

Throughout this section, we assume that we have functions Bnorm(↵), B(�), N(�), and c(↵).
If 8↵ 2 M0, ||M↵||  Bnorm(↵) then we say that the norm bounds hold. For the other properties of
these functions, we will either restate these properties in our intermediate results to highlight where
these properties are needed or just state that the conditions on these functions are satisfied for brevity.

G.1 Warm-up: Analysis with no intersection terms

In this subsection, we show how the analysis works if we ignore the difference between Mfact and
Morth

Theorem G.2. For all "0 2 (0, 1
2 ], if the norm bounds hold and the following conditions hold

1. For all U 2 Imid, HIdU
⌫ 0

2. For all U 2 Imid and all ⌧ 2 MU"
1

|Aut(U)|c(⌧)HIdU
Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

3. 8U 2 Imid,
P

⌧2MU

1
|Aut(U)|c(⌧)  "0.

then X

U2Imid

Mfact
IdU

(HIdU
) +

X

U2Imid

X

⌧2MU

Mfact
⌧ (H⌧ ) ⌫ (1� 2"0)

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 0

Proof. We first show how a single term M�M⌧M�0T plus its transpose M�0M⌧TM�T can be
bounded.

Lemma G.3. If the norm bounds hold then for all ⌧ 2 M0 and shapes �,�0 such that �, ⌧,�0T are
composable, for all a, b such that a > 0, b > 0, and ab = Bnorm(⌧)2,

M�M⌧M�0T +M�0M⌧TM�T � aM�M�T + bM�0M�0T

Proof. Observe that

0 �
 
p
aM� �

p
b

Bnorm(⌧)
M�0M⌧T

! 
p
aM� �

p
b

Bnorm(⌧)
M�0M⌧T

!T

=

aM�M�T �M�M⌧M�0T �M�0M⌧TM�T +
b

Bnorm(⌧)2
M�0M⌧TM⌧M�0T �

aM�M�T �M�M⌧M�0T �M�0M⌧TM�T +
b

Bnorm(⌧)2
M�0(Bnorm(⌧)2Id)M�0T

Thus, M�M⌧M�0T +M�0M⌧TM�T � aM�M�T + bM�0M�0T , as needed.
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Unfortunately, if we try to bound everything term by term, there may be too many terms to
bound. Instead, we generalize this argument for vectors and coefficient matrices.

Definition G.4. Let ⌧ be a shape. We say that a vector v is a left ⌧ -vector if the coordinates of v are
indexed by left shapes � 2 LU⌧

. We say that a vector w is a right ⌧ -vector if the coordinates of w are
indexed by left shapes �0 2 LV⌧

.

Lemma G.5. For all ⌧ 2 M0, if the norm bounds hold, v is a left ⌧ -vector, and w is a right ⌧ -vector
then

Mfact
⌧ (vwT ) +Mfact

⌧T (wvT ) � Bnorm(⌧)
⇣
Mfact

IdU⌧

(vvT ) +Mfact
IdV⌧

(wwT )
⌘

and
�Mfact

⌧ (vwT )�Mfact
⌧T (wvT ) � Bnorm(⌧)

⇣
Mfact

IdU⌧

(vvT ) +Mfact
IdV⌧

(wwT )
⌘

Proof. Observe that

0 �
 
X

�

v�M� ⌥ w�M�M⌧T

Bnorm(⌧)

! 
X

�0

v�0M�0 ⌥ w�0M�0M⌧T

Bnorm(⌧)

!T

=

X

�,�0

(v�v�0)M�M�0T ⌥
X

�,�0

(v�w�0)

Bnorm(⌧)
M�M⌧M�0

⌥
X

�,�0

(w�v�0)

Bnorm(⌧)
M�M⌧TM�0 +

1

Bnorm(⌧)2

X

�,�0

(v�v�0)M�M⌧M⌧TM�0T

Further observe that
P

�,�0 (v�v�0)M�M�0T = Mfact
IdU⌧

(vvT ),
P

�,�0 (v�w�0)M�M⌧M�0T =

Mfact
⌧ (vwT ),

P
�,�0 (w�v�0)M�M⌧TM�0T = Mfact

⌧T (wvT ) and

X

�,�0

(w�w�0)M�M⌧M⌧TM�0T =

 
X

�

w�M�

!
M⌧M⌧T

 
X

�

w�M�

!T

�
 
X

�

w�M�

!
Bnorm(⌧)2Id

 
X

�

w�M�

!T

= Bnorm(⌧)2Mfact
IdV⌧

(wwT )

Putting everything together implies the result.

Corollary G.6. For all ⌧ 2 M0, if the norm bounds hold and HU and HV are matrices such that
HU Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧ HV

�
⌫ 0

then Mfact
⌧ (H⌧ ) +Mfact

⌧T (H⌧T ) � Mfact
IdU⌧

(HU ) +Mfact
IdV⌧

(HV )

Proof. If


HU Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧ HV

�
⌫ 0 then we can write it as

P
i (vi, wi)(vi, wi)T .

Since the Mfact operations are linear, the result now follows by summing the equation

Mfact
⌧ (viw

T
i ) +Mfact

⌧T (wiv
T
i ) � Bnorm(⌧)

⇣
Mfact

IdU⌧

(viv
T
i ) +Mfact

IdV⌧

(wiw
T
i )
⌘

over all i.

Theorem G.2 now follows directly. For all U 2 Imid and all ⌧ 2 MU , using Corollary G.6 with
HU = HV = 1

|Aut(U)|c(⌧)HIdU
,

Mfact
⌧ (H⌧ ) +Mfact

⌧T (H⌧T ) � 1

|Aut(U)|c(⌧)M
fact
IdU

(HIdU
) +

1

|Aut(U)|c(⌧)M
fact
IdU

(HIdU
)

Summing this equation over all U 2 Imid and all ⌧ 2 MU , we obtain thatX

U2Imid

X

⌧2MU

Mfact
⌧ (H⌧ ) � 2"0

X

U2Imid

Mfact
IdU

(HIdU
)

as needed.
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G.2 Intersection Term Analysis Strategy

As we saw in the previous subsection, the analysis works out nicely if we work with Mfact. Unfortu-
nately, our matrices are expressed in terms of Morth. In this subsection, we describe our strategy for
analyzing the difference between Mfact and Morth.

Recall the following expressions for
�
Mfact

⌧ (H)
�
(A,B) and

�
Morth

⌧ (H)
�
(A,B) where A has

shape U⌧ and B has shape V⌧ :
�
Mfact

⌧ (H)
�
(A,B) =

X

�2LU⌧
,�02LV⌧

H(�,�0)
X

A0,B0

X

R12R(�,A,A0),R22R(⌧,A0,B0),
R32R(�0T ,B0,B)

MR1(A,A0)MR2(A
0, B0)MR3(B

0, B)

�
Morth

⌧ (H)
�
(A,B)

=
X

�2LU⌧
,�02LV⌧

H(�,�0)
X

A0,B0

X

R12R(�,A,A0),R22R(⌧,A0,B0),
R32R(�0T ,B0,B),R1,R2,R3 are properly composable

MR1(A,A0)MR2(A
0, B0)MR3(B

0, B)

This implies that
�
Mfact

⌧ (H)
�
(A,B)�

�
Morth

⌧ (H)
�
(A,B) is equal to

X

�2LU⌧
,�02LV⌧

H(�,�0)
X

A0,B0

X

R12R(�,A,A0),R22R(⌧,A0,B0), and R32R(�0T ,B0,B)
R1,R2,R3 are not properly composable

MR1(A,A0)MR2(A
0, B0)MR3(B

0, B)

Thus, to understand the difference between Mfact and Morth, we need to analyze the terms
�R1�R2�R3 = �R1�R2�R3 for ribbons R1, R2, R3 which are composable but not properly com-
posable. These terms, which we call intersection terms, are not negligible and must be analyzed
carefully. In particular, we decompose each resulting ribbon R = R1 �R2 �R3 into new left, middle,
and right parts. We do this as follows:

1. Let V⇤ be the set of vertices which appear more than once in V (R1 � R2 � R3). In other
words, V⇤ is the set of vertices involved in the intersections between R1, R2, and R3 (not
counting the facts that BR1 = AR2 and BR2 = AR3 because we expect these intersections).

2. Let A0 be the leftmost minimum vertex separator of AR1 and BR1 [ V⇤ in R1. We turn A0

into a matrix index by specifying an ordering OA0 for the vertices in A0.

3. Let B0 be the leftmost minimum vertex separator of AR3 [ V⇤ and BR3 in R2. We turn B0

into a matrix index by specifying an ordering OB0 for the vertices in B0.

4. Decompose R1 as R1 = R0
1 [R4 where R0

1 is the part of R1 between AR1 and A0 and R4

is the part of R1 between B0 and BR1 = AR2 . Similarly, decompose R3 as R3 = R5 [R0
3

where R5 is the part of R3 between BR1 = AR2 and B0 and R0
3 is the part of R3 between

B0 and BR3 .

5. Take R0
2 = R4 �R2 �R5 and note that R0

1 �R0
2 �R0

3 = R1 �R2 �R3. We view R0
1, R

0
2, R

0
3

as the left, middle, and right parts of R = R1 �R2 �R3

While we will verify our analysis by checking the coefficients of the ribbons, we want to express
everything in terms of shapes. We use the following conventions for the names of the shapes:

1. As usual, we let �, ⌧ , and �0T be the shapes of R1, R2, and R3.

2. We let � and �0T be the shapes of R4 and R5.

3. We let �2, ⌧P , and �0
2
T be the shapes of R0

1, R0
2, and R0

3. Here P is the intersection pattern
induced by R4, R2, and R5 which we define in the next subsection.

Remark G.7. A key feature of our analysis is that it will work the same way regardless of the shapes
�2,�0

2
T of R0

1 and R0
3. In other words, if we replace �2 by �2a and �0

2 by �0
2a for a given intersection

term, this just replaces � = �2 [ � with �a = �2a [ � and �0 = �0
2 [ �0 with �0

a = �0
2a [ �0. This

allows us to focus on the shapes �, ⌧ , and �0T and is the reason why the ��, � operation appears in
our results.
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G.3 Intersection Term Analysis

In this section, we implement our strategy for analyzing intersection terms. We begin by defining
intersection patterns which describe how the ribbons R1, R2, and R3 intersect.
Definition G.8 (Rough Definition of Intersection Patterns). Given ⌧ 2 M0, � 2 �⇤,U⌧

[ {IdU⌧
},

�0 2 �⇤,V⌧
[ {IdV⌧

}, and ribbons R1, R2, and R3 of shapes �, ⌧ , and �0T which are composable
but not properly composable, we define the intersection pattern P induced by R1, R2, and R3 and
the resulting shape ⌧P as follows:

1. We take V (P ) = V (� � ⌧ � �0T ).

2. We take E(P ) to be the set of edges (u, v) such that u, v are distinct vertices in V (��⌧ ��0T )
but u and v correspond to the same vertex in R1 �R2 �R3

3. We define ⌧P to be the shape of the ribbon R = R1 �R2 �R3

Definition G.9. Given ⌧ 2 M0, � 2 �⇤,U⌧
[ {IdU⌧

}, and �0 2 �⇤,V⌧
[ {IdV⌧

}, we define P�,⌧,�0T

to be the set of all possible intersection patterns P which can be induced by ribbons R1, R2, and R3

of shapes �, ⌧ , and �0T .
Remark G.10. Note that if � = IdU⌧

and �0 = IdV⌧
then P�,⌧,�0T = ; as every intersection pattern

must have an unexpected intersection so either � or �0 must be non-trivial.

It would be nice if the intersection pattern P together with the ribbon R allowed us to recover
the original ribbons R1, R2, and R3. Unfortunately, it is possible for different triples of ribbons to
result in the same intersection pattern P and ribbon R. That said, the number of such triples cannot
be too large, and this is sufficient for our purposes.
Definition G.11. Given an intersection pattern P 2 P�,⌧,�0T , let R be a ribbon of shape ⌧P . We
define N(P ) to be the number of different triples of ribbons R1, R2, R3 such that R1 �R2 �R3 = R
and R1, R2, R3 induce the intersection pattern P .

Lemma G.12. For all intersection patterns P 2 P�,⌧,�0T , N(P )  |V (⌧P )||V (�)\U� |+|V (�0)\U
�0 |

Proof sketch. This can be proved by making the observations that AR1 = AR and BR3 = BR, all
of the remaining vertices in V (R1) and V (R3) must be equal to some vertex in V (R), and once
R1 and R3 are determined, there is at most one ribbon R2 such that R1, R2, R3 are composable,
R = R1 �R2 �R3, and R1, R2, R3 induce the intersection pattern P .

With these definitions, we can now analyze the intersection terms.
Definition G.13. Given a left shape �, define e� to be the vector which has a 1 in coordinate � and
has a 0 in all other coordinates.
Lemma G.14. For all ⌧ 2 M0, � 2 LU⌧

, and �0 2 LV⌧
,

Mfact
⌧ (e�e

T
�0)�Morth

⌧ (e�e
T
�0) =

X

�22L,�2�:�2��=�

1

|Aut(U�)|
X

P2P�,⌧,IdV⌧

N(P )Morth
⌧P (e�2e

T
�0)

+
X

�0
22L,�02�:�0

2��0=�0

1

|Aut(U�0)|
X

P2P
IdU⌧

,⌧,�0T

N(P )Morth
⌧P (e�e

T
�0
2
)

+
X

�22L,�2�:�2��=�

X

�0
22L,�02�:�0

2��0=�0

1

|Aut(U�)| · |Aut(U�0)|
X

P2P
�,⌧,�0T

N(P )Morth
⌧P (e�2e

T
�0
2
)

Proof sketch. This lemma follows from the following bijection. Consider the third term
X

�22L,�2�:�2��=�

X

�0
22L,�02�:�0

2��0=�0

1

|Aut(U�)| · |Aut(U�0)|
X

P2P
�,⌧,�0T

N(P )Morth
⌧P (e�2e

T
�0
2
)

On one side, we have the following data:
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1. Ribbons R1, R2, and R3 of shapes �, ⌧, �0T such that R1, R2, R3 are composable but R1

and R2 �R3 are not properly composable (i.e. R1 has an unexpected intersection with R2

and/or R3) and R1 � R2 and R3 are not properly composable (i.e. R3 has an unexpected
intersection with R1 and/or R2).

2. An ordering OA0 on the leftmost minimum vertex separator A0 of AR1 and V⇤ [BR1 (recall
that V⇤ is the set of vertices which appear more than once in V (R1 �R2 �R3)).

3. An ordering OB0 on the rightmost minimum vertex separator B0 of V⇤ [AR3 and BR3 .

On the other side, we have the following data

1. An intersection pattern P 2 P�,⌧,�0T where � and �0T are non-trivial.

2. Ribbons R0
1, R0

2, R0
3 of shapes �2, ⌧P , �0

2
T which are properly composable

3. A number in [N(P )] describing which possible triple of ribbons resulted in the intersection
pattern P and the ribbon R0

2.

To see this bijection, note that given the data on the first side, we can recover the ribbons R0
1, R0

2, and
R0

3 as follows:

1. We decompose R1 as R1 = R0
1 �R4 where BR0

1
= AR4 = A0 with the ordering OA0 .

2. We decompose R3 as R3 = R5 � R0
3 where where BR5 = AR0

3
= B0 with the ordering

OB0 .

3. We take R0
2 = R4 �R2 �R5.

The intersection pattern P and the number in [N(P )] can be obtained from R1, R2, and R3.
Conversely, with the data on the other side, we can recover the data on the first side as follows:

1. R0
2 gives an ordering OA0 for A0 = AR0

2
and an ordering OB0 for B0 = BR0

2
.

2. The ribbon R0
2, intersection pattern P , and number in [N(P )] allow us to recover R4, R2,

and R5.

3. We take R1 = R0
1 �R4 and R3 = R5 �R0

3.

Thus, both sides have the same coefficient for each ribbon.
The analysis for the the first term is the same except that when �0 is trivial, we always take �0 =

IdV⌧
. Thus, we always have that B0 = BR0

2
= BR2 (with the same ordering) and R0

3 = R3 = IdB0 .
Because of this, there is no need to specify R3, R0

3, R5, or an ordering on B0.
Similarly, the analysis for the the second term is the same except that when � is trivial, we

always take � = IdU⌧
. Thus, we always have that A0 = AR0

2
= AR2 (with the same ordering) and

R0
1 = R1 = IdA0 . Because of this, there is no need to specify R1, R0

1, R4, or an ordering on A0.

Applying Lemma G.14 for all � and �0 simultaneously, we obtain the following corollary.

Definition G.15. For all U, V 2 Imid, given a � 2 �U,V and a vector v indexed by left shapes
� 2 LV , define v�� to be the vector indexed by left shapes �2 2 LU such that v��(�2) = v(�2 � �)
if �2 � � 2 LV and v��(�2) = 0 otherwise.

Proposition G.16. For all composable �2, �1 2 � and all vectors v indexed by left shapes in LV�1
,

(v��1)��2 = v��2��1
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Corollary G.17. For all ⌧ 2 M0, for all left ⌧ -vectors v and all right ⌧ -vectors w,

Morth
⌧ (vwT ) = Mfact

⌧ (vwT )�
X

�2�⇤,U⌧

1

|Aut(U�)|
X

P2P�,⌧,IdV⌧

N(P )Morth
⌧P (v��wT )

�
X

�02�⇤,V⌧

1

|Aut(U�0)|
X

P2P
IdU⌧

,⌧,�0T

N(P )Morth
⌧P (v(w��)T )

�
X

�2�⇤,U⌧

X

�02�⇤,V⌧

1

|Aut(U�)| · |Aut(U�0)|
X

P2P
�,⌧,�0T

N(P )Morth
⌧P (v��(w��0

)T )

Applying Corollary G.17 iteratively, we obtain the following theorem:

Definition G.18. Given �, �0 2 � [ {IdU : U 2 Imid} and j > 0, let ��,�0,j be the set of all
�1, �0

1, · · · , �j , �0
j 2 � [ {IdU : U 2 Imid} such that:

1. �j , . . . , �1 are composable and �j � . . . � �1 = �

2. �0
j , . . . , �

0
1 are composable and �0

j � . . . � �0
1 = �0

3. For all i 2 [1, j], �i or �0
i is non-trivial (i.e. �i 6= IdU�i

or �0
i 6= IdU

�0
i

).

Remark G.19. Note that if � = IdU and �0 = IdV then for all j > 0, ��,�0,j = ;.

Theorem G.20. For all ⌧ 2 M0, left ⌧ -vectors v, and right ⌧ -vectors w,

Morth
⌧ (vwT ) = Mfact

⌧ (vwT )+
X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

X

j>0

(�1)j
X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

 
jY

i=1

N(Pi)

!
Mfact

⌧Pj

(v��(w��0
)T )

where we take ⌧P0 = ⌧ .

G.4 Bounding the difference between Mfact and Morth

In this subsection, we bound the difference between Mfact
⌧ (H⌧ ) and Morth

⌧ (H⌧ ). Recall conditions
2, 5, 7 of Theorem G.1 for B(�), N(�), and c(�). With these conditions, we can now bound the
difference between Mfact and Morth.

Lemma G.21. If the norm bounds and the conditions on B(�), N(�), and c(�) hold then for all
⌧ 2 M0, left ⌧ -vectors v, and right ⌧ -vectors w,

⇣
Mfact

⌧ (vwT ) +Mfact
⌧T (wvT )

⌘
�
�
Morth

⌧ (vwT ) +Morth
⌧T (wvT )

�
�

"0Bnorm(⌧)Mfact
IdU⌧

(vvT ) + 2
X

�2�⇤,U⌧

B(�)2N(�)2Bnorm(⌧)c(�)

|Aut(U�)|
Mfact

IdU�

(v��(v��)T )+

"0Bnorm(⌧)Mfact
IdV⌧

(wwT ) + 2
X

�02�⇤,V⌧

B(�0)2N(�0)2Bnorm(⌧)c(�0)

|Aut(U�0)| Mfact
IdU

�0
(w��0

(w��0
)T )
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Proof. By Theorem G.20, taking ⌧P0 = ⌧ ,

Morth
⌧ (vwT ) = Mfact

⌧ (vwT )+
X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

X

j>0

(�1)j
X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

 
jY

i=1

N(Pi)

!
Mfact

⌧Pj

(v��(w��0
)T )

Taking the transpose of this equation gives

Morth
⌧T (wvT ) = Mfact

⌧T (wvT )+
X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

X

j>0

(�1)j
X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

 
jY

i=1

N(Pi)

!
Mfact

⌧T

Pj

(w��0
(v��)T )

Now observe that by Lemma G.5, if the norm bounds hold,

±
✓
Mfact

⌧Pj

(v��(w��0
)T ) +Mfact

⌧T

Pj

(w��0
(v��)T )

◆
=

±Mfact
⌧Pj

  s
N(�)B(�)c(�)

N(�0)B(�0)c(�0)
v��

! s
N(�0)B(�0)c(�0)

N(�)B(�)c(�)
(w��0

)T
!!

±

Mfact
⌧T

Pj

  s
N(�0)B(�0)c(�0)

N(�)B(�)c(�)
w��0

! s
N(�)B(�)c(�)

N(�0)B(�0)c(�0)
(v��)T

!!
�

Bnorm(⌧Pj
)

✓
N(�)B(�)c(�)

N(�0)B(�0)c(�0)
Mfact

IdU�

(v��(v��)T ) +
N(�0)B(�0)c(�0)

N(�)B(�)c(�)
Mfact

IdU
�0
(w��0

(w��0
)T )

◆

Combining these equations,
⇣
Mfact

⌧ (vwT ) +Mfact
⌧T (wvT )

⌘
�
�
Morth

⌧ (vwT ) +Morth
⌧T (wvT )

�
�

X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

X

j>0

X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

 
jY

i=1

N(Pi)

!
Bnorm(⌧Pj

)

✓
N(�)B(�)c(�)

N(�0)B(�0)c(�0)
Mfact

IdU�

(v��(v��)T ) +
N(�0)B(�0)c(�0)

N(�)B(�)c(�)
Mfact

IdU
�0
(w��0

(w��0
)T )

◆

Putting these equations together,
⇣
Mfact

⌧ (vwT ) +Mfact
⌧T (wvT )

⌘
�
�
Morth

⌧ (vwT ) +Morth
⌧T (wvT )

�
�

X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

B(�)2N(�)2Bnorm(⌧)c(�)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivialc(�0)
Mfact

IdU�

(v��(v��)T )+

X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

B(�0)2N(�0)2Bnorm(⌧)c(�0)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivialc(�)
Mfact

IdU
�0
(w��0

(w��0
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Now observe that
X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

B(�)2N(�)2Bnorm(⌧)c(�)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivialc(�0)
Mfact

IdU�

(v��(v��)T ) �

0

@
X

�02�⇤,V⌧

1

|Aut(U�0)|c(�0)

1

ABnorm(⌧)Mfact
IdU⌧

(vvT )+

X

�2�⇤,U⌧

0

@
X

�02�⇤,V⌧
[{IdV⌧

}

1

(|Aut(U�0)|)1�0 is non-trivialc(�0)

1

A B(�)2N(�)2Bnorm(⌧)c(�)

(|Aut(U�)|)1� is non-trivial
Mfact

IdU�

(v��(v��)T ) �

"0Bnorm(⌧)Mfact
IdU⌧

(vvT ) + 2
X

�2�⇤,U⌧

B(�)2N(�)2Bnorm(⌧)c(�)

|Aut(U�)|
Mfact

IdU�

(v��(v��)T )

Following similar logic,
X

�2�⇤,U⌧
[{IdU⌧

},�02�⇤,V⌧
[{IdV⌧

}:
� or �0 is non-trivial

B(�0)2N(�0)2Bnorm(⌧)c(�0)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivialc(�)
Mfact

IdU
�0
(w��0

(w��0
)T ) �

"0Bnorm(⌧)Mfact
IdV⌧

(wwT ) + 2
X

�02�⇤,V⌧

B(�0)2N(�0)2Bnorm(⌧)c(�0)

|Aut(U�0)| Mfact
IdU

�0
(w��0

(w��0
)T )

Putting everything together implies the result.

Using Lemma G.21 we have the following corollaries:
Corollary G.22. For all U 2 Imid, if the norm bounds and the conditions on B(�), N(�), and c(�)
hold and HIdU

⌫ 0 then

Mfact
IdU

(HIdU
)�Morth

IdU
(HIdU

) � "0Mfact
IdU

(HIdU
) + 2

X

�2�⇤,U

B(�)2N(�)2c(�)

|Aut(U�)|
Mfact

IdU�

(H��,�
IdU

)

Corollary G.23. For all U 2 Imid and all ⌧ 2 MU , if the norm bounds and the conditions on B(�),
N(�), and c(�) hold and

"
1

|Aut(U)|c(⌧)HIdU
Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

then
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Mfact

⌧ (H⌧ ) +Mfact
⌧T (HT

⌧ )
⌘
�
�
Morth

⌧ (H⌧ ) +Morth
⌧T (HT

⌧ )
�
�

2"0
1

|Aut(U)|c(⌧)M
fact
IdU

(HIdU
) + 4

X
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B(�)2N(�)2c(�)

|Aut(U�)| · |Aut(U)|c(⌧)M
fact
IdU�

(H��,�
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)

G.5 Proof of the Main Theorem

We now prove the following theorem which is a slight modification of Theorem G.1 and which
implies Theorem G.1.
Theorem G.24. For all " > 0 and all "0 2 (0, 1

20 ], for any moment matrix

⇤ =
X

U2Imid

Morth
IdU

(HIdU
) +

X

U2Imid

X

⌧2MU

Morth
⌧ (H⌧ ),

if the parameters are "-feasible and moreover, for all ↵ 2 M0, ||M↵||  Bnorm(↵), and we have
SOS-symmetric coefficient matrices {H 0

� : � 2 �} such that the following conditions hold:
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1. For all U 2 Imid, HIdU
⌫ 0

2. For all U 2 Imid and ⌧ 2 MU ,
"

1
|Aut(U)|c(⌧)HIdU

Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0
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1
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then ⇤ ⌫ 0.

Proof. We make the following observations:

1. By Theorem G.2,
X

U2Imid

Mfact
IdU

(HIdU
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X

U2Imid

X

⌧2MU

Mfact
⌧ (H⌧ ) ⌫ (1� 2"0)

X
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IdU
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)

2. By Corollary G.22,
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Putting everything together,

⇤ =
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(HIdU
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Mfact
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H Choosing the functions Bnorm(↵), B(�), N(�), and c(↵)

In this subsection, we give functions Bnorm(↵), B(�), N(�), and c(↵) which are "-feasible thereby
proving Lemma F.99 and Lemma F.107 and completing the proof of our main theorem.

H.1 Choosing Bnorm(↵)

We need matrix norm bounds which hold for all ↵ 2 M0. To obtain such norm bounds, we start with
the norm bounds in the graph matrix norm bound paper. We then modify these bounds as follows:

1. We make the bounds more compatible with the conditions of our theorem. To do this, we
upper bound many of the terms in the norm bound by B|V (↵)\U↵|+|V (↵)\V↵|

vertex where Bvertex

is a function of our parameters. In general, we will also need to upper bound some of the
terms by

Q
e2E(↵)(Bedge(e)) where Bedge(e) is a function of le, ⌦, and our parameters.

2. We generalize the bounds so that they apply to improper shapes as well as proper shapes.
Under our simplifying assumptions, all we need to do here is to take isolated vertices into
account. In general, we also need to handle multi-edges.

H.1.1 Simplified Bnorm(↵)

Under our simplifying assumptions, we start with the following norm bound from the updated graph
matrix norm bound paper [1]:
Theorem H.1 (Simplified Graph Matrix Norm Bounds). Under our simplifying assumptions, for all
" > 0 and all proper shapes ↵, taking c↵ = |V (↵) \ (U↵ [ V↵)|+ |S↵ \ (U↵ \ V↵)|,

Pr
⇣
||M↵|| > (2|V↵ \ (U↵ \ V↵)|)|V (↵)\(U↵\V↵)|(2eq)

c↵

2 n
w(V (↵))�w(S↵)

2

⌘
< "

where q = 3

⇠
ln(n

w(S↵)

"
)

3c↵

⇡

Corollary H.2. For all shapes ↵ and all " > 0,

Pr

✓
||M↵|| >

⇣
2|V↵| 4

p
2eq
⌘|V (↵)\U↵|+|V (↵)\V↵|

n
w(V (↵))+w(I↵)�w(S↵)

2

◆
< "

where q = 3

⇠
ln(n

w(S↵)

"
)

3c↵

⇡
.
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Corollary H.3. For all z 2 N and all " > 0, taking "00 = "
5z2z2

, with probability at least 1� " we
have that for all shapes ↵ such that |V (↵)|  z,

||M↵|| 
⇣
2|V↵| 4

p
2eq
⌘|V (↵)\U↵|+|V (↵)\V↵|

n
w(V (↵))+w(I↵)�w(S↵)

2

where q = 3

⇠
ln(n

w(S↵)

"00 )

3c↵

⇡
.

Proof. This result can be proved from Corollary H.2 using a union bound and the following proposi-
tion:

Proposition H.4. Under our simplifying assumptions, for all z 2 N, there are at most 5z2z
2

proper
shapes ↵ such that V (↵)  z.

Proof. Observe that we can construct any proper shape ↵ with at most m vertices as follows:

1. Start with z vertices v1, . . . , vz .

2. For each vertex vi, choose whether vi 2 V (↵) \ U↵ \ V↵, vi 2 U↵ \ V↵, vi 2 V↵ \ U↵,
vi 2 U↵ \ V↵, or vi /2 V (↵).

3. For each pair of vertices vi, vj 2 V (↵), choose whether or not (vi, vj) 2 E(↵)

Corollary H.5. For all DV 2 N and all " > 0, taking

q = 3

2

666
ln( 5

3DV 29D
2
V n3DV

" )

3

3

777
= 3

⇠
DV ln(n) +

ln( 1" )

3
+DV ln(5) + 3D2

V ln(2)

⇡
,

Bvertex = 6DV
4
p
2eq, and

Bnorm(↵) = B|V (↵)\U↵|+|V (↵)\V↵|
vertex n

w(V (↵))+w(I↵)�w(S↵)
2 ,

with probability at least (1� ") we have that for all shapes ↵ 2 M0, ||M↵||  Bnorm(↵)

Proof. This follows from Corollary H.3 and the fact that for all ↵ 2 M0, w(S↵)  |V (↵)|  3DV

H.1.2 General Bnorm(↵)

In general, we start with the following norm bound from the updated graph matrix norm bound paper
[1]:
Theorem H.6 (General Graph Matrix Norm Bounds). For all " > 0 and all proper shapes ↵, taking
q = dln(n

w(S↵)

" )e

P

0

@||M↵|| > 2e(2q|V (↵)|)|V (↵)\(U↵\V↵)|

0

@
Y

e2E(↵)

h+
le
(B⌦(2qle))

1

An
(w(V (↵))�w(S↵))

2

1

A < "

Corollary H.7. For all " > 0, for all z, lmax,m 2 N, taking "00 = "
5z(lmax+1)zk

, with probability at
least 1� ", for all shapes ↵ such that

1. |V (↵)|  z.

2. All edges in E(↵) have label at most lmax.

3. All edges in E(↵) have multiplicity at most m.
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,

||M↵|| 2e(2q|V (↵)|)|V (↵)\U↵|+|V (↵)\V↵|

0

@
Y

e2E(↵)

2h+
le
(B⌦(2mlmax)) max

j2[0,mlmax]

⇢�
h+
j (B⌦(2qj))

� le

max {j,le}

�1

A

n
w(V (↵))+w(I↵)�w(S↵,min)

2

where q =
l
ln
⇣

nw(S↵,max)

"00

⌘m

Proof. Observe that for each ↵ which has multi-edges, we can write M↵ =
P

i ciM↵i
where each

↵i has no multiple edges. We first upper bound
P

i |ci|.

Lemma H.8. For any a1, . . . , am 2 N [ {0}, taking pmax =
Pm

i=1 ai and writing
Qm

i=1 hai
=Ppmax

k=0 ckhk,
pmaxX

k=0

|ck|  (pmax + 1)
mY

i=1

h+
ai
(B⌦(2pmax)) 

mY

i=1

2h+
ai
(B⌦(2pmax))

Proof. The result follows by Cauchy-Schwarz using the fact that hk form an orthonormal basis

Corollary H.9. For any shape ↵ such that every edge of ↵ has multiplicity at most m and label
at most lmax, if we write M↵ =

P
i ciM↵i

where each ↵i has no multi-edges then
P

i |ci| Q
e2E(↵) 2h

+
le
(B⌦(2mlmax))

The result now follows from Theorem H.6 and the following observations:

1. |V (↵) \ (U↵ \ V↵)|  |V (↵) \ U↵|+ |V (↵) \ V↵|.

2. For any ↵, writing M↵ =
P

i ciM↵i
where each ↵i has no multi-edges, for all ↵i,

w(V (↵i)) + w(I↵i
)� w(S↵i

)  w(V (↵)) + w(I↵)� w(S↵,min)

3. For any a1, . . . , am 2 N [ {0} such that 8i0 2 [m], ai0  lmax, for all j 2 [0,mlmax]

h+
j (B⌦(2qj)) 

mY

i0=1

�
h+
j (B⌦(2qj))

� a
i0

max {j,a
i0} 

mY

i0=1

max
j02[0,mlmax]

(⇣
h+
j0(B⌦(2qj

0))
⌘ a

i0
max {j0,a

i0}

)

Proposition H.10. For all z, lmax 2 N, there are at most 5z(lmax + 1)z
k

proper shapes ↵ such that
|V (↵)|  z and every edge in E(↵).

Proof. This can be proved in the same way as before.

From this, the first condition of "-feasibility follows as an easy corollary.

H.2 Choosing B(�)

We now describe how to choose the function B(�) so that conditions 2, 3 of "-feasibility hold. The
most important part of choosing B(�) is to make sure that the factors of n are controlled. For this,
we use the following intersection tradeoff lemma. Under our simplifying assumptions, this lemma
follows from [19, Lemma 7.12]. We defer the general proof of this lemma to the end of this section.
Lemma H.11 (Intersection Tradeoff Lemma). For all �, ⌧, �0 and all intersection patterns P 2
P�,⌧,�0 ,

w(V (⌧P ))+w(I⌧P )�w(S⌧P ,min)  w(V (⌧))+w(I⌧ )�w(S⌧,min)+w(V (�)\U�)+w(V (�0)\U�0)

Based on this intersection tradeoff lemma, we can choose the function B(�) as follows.
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Corollary H.12. If we take

Bnorm(↵) = C ·B|V (↵)\U↵|+|V (↵)\V↵|
vertex

0

@
Y

e2E(↵)

Bedge(e)

1

An
w(V (↵))+w(I↵)�w(S↵)

2

for some constant C > 0 and take

B(�) = B
|V (�)\U� |+|V (�)\V� |
vertex

0

@
Y

e2E(�)

Bedge(e)

1

An
w(V (�)\U� )

2

then the 2nd and 3rd condition of "-feasibility hold.

Proof. We have that

Bnorm(⌧P ) = B
|V (⌧P )\U⌧P

|+|V (⌧P )\V⌧P
|

vertex

0

@
Y

e2E(⌧P )

Bedge(e)

1

An
w(V (⌧P ))+w(I⌧P

)�w(S⌧P
)

2

and

B(�)B(�0)Bnorm(⌧) = B
|V (�)\U� |+|V (�)\V� |+|V (�0)\U

�0 |+|V (�0)\V
�0 |+|V (⌧)\U⌧ |+|V (⌧)\V⌧ |

vertex0

@
Y

e2E(�)[E(�0)[E(⌧)

Bedge(e)

1

An
w(V (�)\U� )+w(V (�0)\U

�0 )+w(V (⌧))+w(I⌧ )�w(S⌧ )

2

The first condition now follows immediately from the following observations:

1.

|V (�) \ U� |+ |V (�) \ V� |+ |V (�0) \ U�0 |+ |V (�0) \ V�0 |+ |V (⌧) \ U⌧ |+ |V (⌧) \ V⌧ |

= |V (� � ⌧ � �0T ) \ U��⌧��0T |+ |V (� � ⌧ � �0T ) \ V��⌧��0T | � |V (⌧P ) \ U⌧P |+ |V (⌧P ) \ V⌧P |

2. E(⌧P ) = E(�)[E(⌧)[E(�0T ) so
Q

e2E(⌧P ) Bedge(e) =
Q

e2E(�)[E(�0)[E(⌧) Bedge(e).

3. By the intersection tradeoff lemma,

w(V (⌧P ))+w(I⌧P )�w(S⌧P )  w(V (⌧))+w(I⌧ )�w(S⌧ )+w(V (�)\U�)+w(V (�0)\U�0)

The second condition follows from the form of B(�).

H.3 Choosing N(�)

To choose N(�), we use the following lemma:

Lemma H.13. For all DV 2 N, for all composable �, ⌧, �0T such that |V (�)|  DV , |V (⌧)|  DV ,
and |V (�0)|  DV ,

X

j>0

X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

 
jY

i=1

N(Pi)

!

 (3DV )
2(|V (�)\V� |+|V (�0)\V

�0 |)+(|V (�)\U� |+|V (�0)\U
�0 |)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivial

Proof. Observe that aside from the orderings (which are canceled out by the |Aut(U�i
)| and

|Aut(U�0
i
)| factors), the intersection patterns {Pi : i 2 [j]} are determined by the following data on

each vertex v 2 (V (�) \ V�) [ (V (�0T ) \ V�0T ):

1. The first i 2 [j] such that v 2 (V (�i) \ V�i
) [ (V (�0

i
T ) \ V�0

i

T ). There are at most j
possibilities for this.
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2. A vertex u (if one exists) in V (�i�1 � . . . � �1 � ⌧ � �0
1
T . . . � �0

i�1
T ) such that u and v are

equal. There are at most 3DV possibilities for this.

Using these observations and taking jmax = |V (�) \ V� |+ |V (�0) \ V�0 |,
X

j>0

X

�1,�0
1,··· ,�j ,�0

j
2�

�,�0,j

Y

i:�i is non-trivial

1

|Aut(U�i
)|

Y

i:�0
i

is non-trivial

1

|Aut(U�0
i
)|

X

P1,··· ,Pj :Pi2P
�i,⌧Pi�1

,�0
i

T

1


jmaxX

j=1

(3jDV )
|V (�)\V� |+|V (�0)\V

�0 |

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivial

 jmax

✓
2

3

◆jmax (3DV )
2(|V (�)\V� |+|V (�0)\V

�0 |)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivial

<
(3DV )

2(|V (�)\V� |+|V (�0)\V
�0 |)

(|Aut(U�)|)1� is non-trivial(|Aut(U�0)|)1�0 is non-trivial

Now recall that for any �i, ⌧Pi�1 , �
0
i
T and any intersection pattern Pi 2 P�i,⌧Pi�1 ,�

0
i

T , N(Pi) 

|V (⌧Pi
)||V (�i)\U�i

|+|V (�0
i
)\U

�0
i

|. Thus, for any P1, · · · , Pj : Pi 2 P�i,⌧Pi�1 ,�
0
i

T ,
Qj

i=1 N(Pi) 
(3DV )

|V (�)\U� |+|V (�0)\U
�0 |. Putting everything together, the result follows.

The last condition of "-feasibility follows as a direct corollary.

H.4 Choosing c(↵)

In this section, we describe how to choose c(↵). For simplicity, we first describe how to choose c(↵)
under our simplifying assumptions. We then describe the minor adjustments that are needed when we
have hyperedges and multiple types of vertices.
Lemma H.14. Under our simplifying assumptons, for all U 2 Imid,

X

↵:U↵⌘U,↵ is proper and non-trivial

1

|Aut(U↵ \ V↵)|(3DV )|U↵\V↵|+|V↵\U↵|+2|E(↵)|2|V (↵)\(U↵[V↵)| < 5

Proof. In order to choose ↵, it is sufficient to choose the following:

1. The number j1 of vertices in U↵ \ V↵, the number j2 of vertices in V↵ \U↵, and the number
j3 of vertices in V (↵) \ (U↵ [ V↵).

2. A mapping in Aut(U↵ \ V↵) determining how the vertices in U↵ \ V↵ match up with each
other.

3. The position of each vertex u 2 U↵ \ V↵ within U↵ (there are at most |U↵|  DV choices
for this).

4. The position of each vertex v 2 V↵ \ U↵ within V↵ (there are at most |U↵|  DV choices
for this).

5. The number j4 of edges in E(↵).

6. The endpoints of each edge in E(↵).

This implies that for all j1, j2, j3, j4 � 0

X

↵:U↵⌘U,|U↵\V↵|=j1,|V↵\U↵|=j2
|V (↵)\(U↵[V↵)|=j3,|E(↵)|=j4

1

|Aut(U↵ \ V↵)|(DV )j1+j2(DV )2j4
 1
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Using this, we have that
X

↵:U↵⌘U,↵ is proper and non-trivial

1

|Aut(U↵ \ V↵)|(3DV )|U↵\V↵|+|V↵\U↵|+2|E(↵)|2|V (↵)\(U↵[V↵)|


X

j1,j2,j3,j42N[{0}:j1+j2+j3+j4�1

1

3j1+j29j42j3
 2

✓
3

2

◆2 9

8
� 1 < 5

This implies conditions 4, 5, 6 of "-feasibility.

H.4.1 Choosing c(↵) in general*

When we have multiple types of vertices and hyperedges of arity k, Lemma H.14 can be generalized
as follows:
Lemma H.15. Under our simplifying assumptons, for all U 2 Imid,

X

↵:U↵⌘U,↵ is proper and non-trivial

1

|Aut(U↵ \ V↵)|(3DV tmax)|U↵\V↵|+|V↵\U↵|+k|E(↵)|(2tmax)|V (↵)\(U↵[V↵)| < 5

Proof sketch. This can be proved in the same way as Lemma H.14 with the following modifications:

1. In addition to choosing the number of vertices in U↵ \ V↵, V↵ \ U↵, and V (↵) \ (U↵ \ V↵),
we also have to choose the types of these vertices.

2. For each hyperedge, we have to choose k endpoints rather than 2 endpoints.

This implies the same conclusion regarding "-feasibility. For technical reasons, we will need a
more refined bound when the sum is over all shapes � of at least a prescribed size.
Lemma H.16. For all "0 > 0, for the same choice of c(↵) as above, for any U 2 Imid and integer
m � 1, we have

X

�2�U,⇤:|V (�)|�|U |+m

1

|Aut(U)|c(�)  "0

5 · 2m�1

Proof sketch. The proof is similar to the proof of "-feasibility, but we now have the extra condition
j2 + j3 � m in the proof of Lemma H.14. Then,

X

j1,j2,j3,j42N[{0}:j2+j3�m

1

3j1+j29j42j3


X

j1,j42N[{0}

1

2m3j19j4
=

27

16 · 2m  1

2m�1

H.5 Proof of the Generalized Intersection Tradeoff Lemma

We now prove the generalized intersection tradeoff lemma, which in particular generalizes [19,
Lemma 7.12].
Lemma H.17. For all �, ⌧, �0 and all intersection patterns P 2 P�,⌧,�0 ,

w(V (⌧P ))+w(I⌧P )�w(S⌧P ,min)  w(V (⌧))+w(I⌧ )�w(S⌧,min)+w(V (�)\U�)+w(V (�0)\U�0)

Proof.

Definition H.18.

1. We define ILM to be the set of vertices which, after intersections, touch � and ⌧ but not �0T .
In particular, ILM consists of the vertices which result from intersecting a pair of vertices in
V (�) \V� and V (⌧) \U⌧ \V⌧ and the vertices which are in U⌧ \V⌧ and are not intersected
with any other vertex.
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2. We define IMR to be the set of vertices which, after intersections, touch ⌧ and �0T but not �.
In particular, IMR consists of the vertices which result from intersecting a pair of vertices
in V (⌧) \ U⌧ \ V⌧ and V (�0T ) \ U�0T and the vertices which are in V⌧ \ U⌧ and are not
intersected with any other vertex.

3. We define ILR to be the set of vertices which, after intersections, touch � and �0T but not ⌧ .
In particular, ILR consists of the vertices which result from intersecting a pair of vertices in
V (�) \ V� and V (�0T ) \ U�0T .

4. We define ILMR to be the set of vertices which, after intersections, touch �, ⌧ , and �0T . In
particular, ILMR consists of the vertices which result from intersecting a triple of vertices in
V (�) \ V� , V (⌧) \U⌧ \ V⌧ , and V (�0T ) \U�0T , intersecting a pair of vertices in V (�) \ V�

and V⌧ \ U⌧ , intersecting a pair of vertices in U⌧ \ V⌧ and V (�0T ) \ U�0T , and single
vertices in U⌧ \ V⌧ .

The main idea is as follows. A priori, any of the vertices in ILM [ IMR [ ILR [ ILMR could
become isolated. We handle this by keeping track of the following types of flows - Flows from U�

to ILM [ ILR [ ILMR, flows from ILR [ IMR [ ILMR to V�0T , and flows from ILM to IMR. For
technical reasons, we also view vertices in ILMR as having flow to themselves. We then observe that
flows to and from these vertices prevent these vertices from being isolated and can provide flow from
U� to V�0T , which gives a lower bound on w(S⌧P ).

We now implement this idea.

Definition H.19 (Flow Graph). Given a shape ↵, we define the directed graph H↵ as follows:

1. For each vertex v 2 V (↵), we create two vertices vin and vout. We then create a directed
edge from vin to vout with capacity w(v)

2. For each pair of vertices (v, w) which is an edge of multiplicity 1 in E(↵) (or part of a
hyperedge of multiplicity 1 in E(↵)), we create a directed edge with infinite capacity from
vout to win and we create a directed edge with infinite capacity from wout to vin.

3. We define UH↵
to be UH↵

= {uin : u 2 U↵} and we define VH↵
to be VH↵

= {vout : v 2
V↵}

Lemma H.20. The maximum flow from UH↵
to VH↵

is equal to the minimum weight of a separator
between U↵ and V↵.

Proof. This can be proved using the max flow min cut theorem.

Definition H.21 (Modified Flow Graph). Given a shape ↵ together with a set IL ✓ V (↵) of vertices
in ↵ (which will be the vertices in ↵ which are intersected with a vertex to the left of ↵) and a set
IR ✓ V (↵) of vertices in ↵ (which will be the vertices in ↵ which are intersected with a vertex to the
right of ↵), we define the modified flow graph HIL,IR

↵ as follows:

1. We start with the flow graph H↵

2. For each vertex u 2 IL, we delete all of the edges into uin and add uin to UH↵

3. For each vertex v 2 IR, we delete all of the edges out of vout and add vout to VH↵

4. We call the resulting graph HIL,IR
↵ and the resulting sets U

H
IL,IR
↵

and V
H

IL,IR
↵

Lemma H.22. The maximum flow from U
H

IL,IR
↵

to V
H

IL,IR
↵

in HIL,IR
↵ is at least as large as the

maximum flow from UH↵
to VH↵

in H↵

Proof sketch. Observe that if we have a cut C in HIL,IR
↵ which separates U

H
IL,IR
↵

and V
H

IL,IR
↵

then
C separates UH↵

and VH↵
in H↵
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Before the intersections, we have the following flows. We take F1 to be the maximum flow from
U� to V� in �. Note that F1 has value w(V�). We take F2 to be the maximum flow from U⌧ to V⌧ in
⌧ . Note that F2 has value w(S⌧,min). We take F3 to be the maximum flow from U�0T to V�0T in �0T .
Note that F1 has value w(U�0T ).

After the intersections, we take the following flows: We take F 0
1 to be the maximum flow from

U
H

;,ILM[ILR[ILMR
�

to V
H

;,ILM[ILR[ILMR
�

in H;,ILM[ILR[ILMR

� . We take F 0
2 to be the maximum

flow from U
H

ILM[ILMR,IMR[ILMR
⌧

to V
H

ILM[ILMR,IMR[ILMR
⌧

in HILM[ILMR,IMR[ILMR

⌧ We take

F 0
3 to be the maximum flow from U

H
IMR[ILR[ILMR,;
�0T

to V
H

IMR[ILR[ILMR,;
�0T

in HIMR[ILR[ILMR,;
�0T .

Observe that because of how intersection patterns are defined, val(F 0
1) = w(U�) and val(F 0

3) =
w(V�0T ). By Lemma H.22, the value of F 0

2 is at least as large as the value of F2, so val(F 0
2) �

w(S⌧,min).
We now consider F 0

1 + F 0
2 + F 0

3. As is, this is not a flow, but we can fix this.

Definition H.23. For each vertex v 2 V (⌧P ), we define fin(v), fout(v), fthrough(v) to be the
flow into vin, flow out of vout, flow from vin to vout respectively in F 0

1 + F 0
2 + F 0

3. Also define
fimbalance(v) = |fin(v) � fout(v)| and fexcess(v) = fthrough(v) �max{fin(v), fout(v)}. With
this information, we fix the flow F 0

1 + F 0
2 + F 0

3 as follows. For each vertex v 2 V (⌧P ),

1. If fin(v) > fout(v) then we create a vertex vsupplemental,out and an edge from vout to
vsupplemental,out with capacity fimbalance(v) and we route fimbalance(v) of flow along this
edge. We then add vsupplemental,out to a set of vertices Vsupplemental.

2. If fin(v) < fout(v) then we create a vertex vsupplemental,in and an edge from
vsupplemental,in to vin with capacity fimbalance(v) and we route fimbalance(v) of flow
along this edge. We then add vsupplemental,out to a set of vertices Vsupplemental.

3. We reduce the flow on the edge from vin to vout by fexcess(v)

We call the resulting flow F 0

Proposition H.24. F 0 is a flow from U
H

;,ILM[ILR[ILMR
�

[ Usupplemental to V
H

IMR[ILR[ILMR,;
�0T

[

Vsupplemental with value val(F 0) = val(F 0
1) + val(F 0

2) + val(F 0
3)�

P
v2V (⌧) fexcess(v)

Corollary H.25. There exists a flow F 00 from U
H

;,ILM[ILR[ILMR
�

to V
H

IMR[ILR[ILMR,;
�0T

with value

val(F 00) � val(F 0
1) + val(F 0

2) + val(F 0
3)�

P
v2V (⌧) (fexcess(v) + fimbalance(v))

Proof. Consider the minimum cut C between U
H

;,ILM[ILR[ILMR
�

and V
H

IMR[ILR[ILMR,;
�0T

. If

we add all of the supplemental edges to C then this gives a cut C 0 between U
H

;,ILM[ILR[ILMR
�

and V
H

IMR[ILR[ILMR,;
�0T

with capacity capacity(C 0) = capacity(C) +
P

v2V (⌧) fimbalance(v) �

val(F 0). Thus, capacity(C) � val(F 0) �
P

v2V (⌧) fimbalance(v) so there exists a flow F 00

from U
H

;,ILM[ILR[ILMR
�

to V
H

IMR[ILR[ILMR,;
�0T

with value val(F 00) = capacity(C) � val(F 0
1) +

val(F 0
2) + val(F 0

3)�
P

v2V (⌧) (fexcess(v) + fimbalance(v))

We now make the following observations:

Lemma H.26.

1. For all vertices v /2 ILM [ IMR[ ILR[ ILMR, fexcess(v) = fimbalance(v) = 0 (and these
vertices can never be isolated).

2. For all vertices v 2 ILM , fexcess(v) + fimbalance(v)  w(v). Moreover, for all vertices
v 2 ILM which are isolated, fexcess(v) = fimbalance(v) = 0.

3. For all vertices v 2 IMR, fexcess(v) + fimbalance(v)  w(v). Moreover, for all vertices
v 2 ILM which are isolated, fexcess(v) = fimbalance(v) = 0.
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4. For all vertices v 2 ILR, fexcess(v) + fimbalance(v)  w(v). Moreover, for all vertices
v 2 ILM which are isolated, fexcess(v) = fimbalance(v) = 0.

5. For all vertices v 2 ILMR, fexcess(v) + fimbalance(v)  2w(v). Moreover, for all vertices
v 2 ILMR which are isolated, fexcess(v) = w(v) and fimbalance(v) = 0.

Proof. For the first statement, observe that for vertices v /2 ILM [ IMR [ ILR [ ILMR, neither
vin nor vout is ever a sink or source so the flow into these vertices must equal the flow out of these
vertices and thus fin(v) = fout(v) = fthrough(v). For the second statement, observe that for a
vertex v 2 ILM ,

1. F 0
1 will have a flow of fin(v) into vin and along the edge from vin to vout

2. F 0
2 will have a flow of fout(v) along the edge from vin to vout and out of vout.

Thus, fexcess(v) = fin(v) + fout(v) � max{fin(v), fout(v)}. Since fimbalance(v) = |fin(v) �
fout(v)|, fexcess(v) + fimbalance(v) = fin(v) + fout(v) �min{fin(v), fout(v)}  w(v). If v is
isolated then neither F 0

1 nor F 0
2 can have any flow to vin or out of vout so fin(v) = fthrough(v) =

fout(v) = 0 The third and fourth statements can be proved in the same way as the second statement.
For the fifth statement, observe that for a vertex v 2 ILMR,

1. F 0
1 will have a flow of fin(v) into vin and along the edge from vin to vout.

2. F 0
2 will have a flow of w(v) along the edge from vin to vout

3. F 0
3 will have a flow of fout(v) along the edge from vin to vout and out of vout.

Thus, fexcess(v) = w(v) + fin(v) + fout(v) � max{fin(v), fout(v)}. Since fimbalance(v) =
|fin(v)�fout(v)|, fexcess(v)+fimbalance(v) = w(v)+fin(v)+fout(v)�min{fin(v), fout(v)} 
2w(v). If v is isolated then neither F 0

1 nor F 0
3 can have any flow to vin or out of vout so fin(v) =

fout(v) = 0 and fthrough(v) = w(v).

Putting everything together, we have the following corollary:

Corollary H.27.
X

v2V (⌧P )

(fexcess(v) + fimbalance(v))  w(ILM )+w(ILR)+w(IMR)+2w(ILMR)�(w(I⌧P )�w(I⌧ ))

Combining this with Corollary H.25,

w(S⌧P ,min) � val(F 0
1) + val(F 0

2) + val(F 0
3)�

X

v2V (⌧P )

(fexcess(v) + fimbalance(v))

� w(U�) + w(S⌧,min) + w(V�0T )� w(ILM )� w(ILR)� w(IMR)� 2w(ILMR) + (w(I⌧P )� w(I⌧ ))

Since w(V (⌧P )) = w(V (⌧))+w(V (�))+w(V (�0))�w(ILM )�w(ILR)�w(IMR)�2w(ILMR),

w(S⌧P ,min) � w(U�)+w(S⌧,min)+w(V�0T )+w(V (⌧P ))�w(V (⌧))�w(V (�))�w(V (�0))+(w(I⌧P )�w(I⌧ ))

Rearranging this gives the result.

I Bounding truncation error

Now, we illustrate one way to show truncation error bounds when we apply the general theorem.
Assume kM↵k  Bnorm(↵) for all ↵ 2 M0. We want to show

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 6

0

@
X

U2Imid

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

To do this, we simply sandwich a factor of Idsym between the two terms. Let Dsos be the degree
of the SoS program. We will describe in Appendix I.1 how to show

P
U2Imid

Mfact
IdU

(HIdU
) ⌫
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1

nK1D2
sos

Idsym for a constant K1 > 0. We also show
P

U2Imid

P
�2�U,⇤

dIdU
(HIdU

,H0
�
)

|Aut(U)|c(�)  nK2Dsos

2DV

for a constant K2 > 0. Along with the fact that IdSym ⌫ 0, we can choose Dsos small enough so
that 1

nK1D2
sos

> nK2Dsos

2DV
, completing the proof.

We will need the following simple bound that says that if we have sufficient decay for each
vertex, then, the sum of this decay, over all shapes � � �0 for �,�0 2 L0

U , is bounded.
Definition I.1. For U 2 Imid, let L0

U ⇢ LU be the set of non-trivial shapes in LU .

Lemma I.2. Suppose DV = nCV ", DE = nCE" for constants CV , CE > 0, are the truncation
parameters for our shapes. For any U 2 Imid,

X

U2Imid

X

�,�02L0
U

1

DDsos

sos nF"|V (���0)|
 1

for a constant F > 0 that depends only on CV , CE . In particular, by setting CV , CE small enough,
we can make this constant arbitrarily small.

Proof. For a given j = |U |, the number of ways to choose U is at most tjmax. For a given U 2 Imid,
we will bound the number of ways to choose �,�0 2 L0

U . This can be done similar to Lemma H.14
and implies the result.

I.1 General strategy to lower bound
P

V 2Imid
Mfact(HIdV

)

In this section, we describe how to show that
P

V 2Imid
Mfact(HIdV

) ⌫ �IdSym for some � > 0
where � will depend on n and other parameters. For this, we use a similar strategy as [64]. For each
V 2 Imid, we choose a weight wV 2 (0, 1]. We then observe that since each coefficient matrix
HIdV

is PSD, X

V 2Imid

Mfact(HIdV
) ⌫

X

V 2Imid

wV M
fact(HIdV

)

By choosing the weights wV appropriately, we can bound the off-diagonal parts by the diagonal parts,
giving us �IdSym.
Definition I.3. For all V 2 Imid we define IdSym,V to be the matrix such that

1. IdSym,V (A,B) = 1 if A and B both have index shape V .

2. Otherwise, IdSym,V (A,B) = 0.
Proposition I.4. IdSym =

P
V 2Imid

IdSym,V

Definition I.5. For each V 2 Imid, we define �V = |Aut(V )|HIdV
(IdV , IdV ).

Theorem I.6. If {wV : V 2 Imid} are weights such that for all V 2 Imid and all left shapes
� 2 LV , wV  wU�

�U�

|Imid|Bnorm(�)2c(�)2HIdV
(�,�) then

X

V 2Imid

Mfact(HIdV
) ⌫ 1

2

X

V 2Imid

wV �V IdSym,V ⌫ 1

2
min

V 2Imid

{wV �V }IdSym

Proof. Observe that for each V 2 Imid,

wV

X

�,�02LV

HIdV
(�,�0)M�M

T
�0 = wV �V IdSym,V +wV

X

�,�02LV :� 6=IdV or �0 6=IdV

HIdV
(�,�0)

✓
M�MT

�0 +M�0MT
�

2

◆

The first part of the right hand side is a diagonal part that we want to extract. We now show that we
can bound the second part in terms of the diagonal parts.

Proposition I.7. For all V 2 Imid and all shapes �,�0 2 LV , for all a, b > 0 such that ab �
Bnorm(�)2Bnorm(�0)2, if kM�k  Bnorm(�) and kM�0k  Bnorm(�0) then

M�M
T
�0 +M�0MT

� ⌫ �aIdSym,U�
� bIdSym,U

�0
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Corollary I.8. If HIdV
⌫ 0 then For any shapes �,�0 2 LV ,

wV HIdV
(�,�0)

�
M�M

T
�0 +M�0MT

�

�
⌫ � c(�)

c(�0)
wV HIdV

(�,�)Bnorm(�)2IdSym,U�

� c(�0)

c(�)
wV HIdV

(�0,�0)Bnorm(�0)2IdSym,U
�0

Proof. This follows from Proposition I.7 and the observation that since HIdV
⌫ 0, for all �,�0 2 LV ,

HIdV
(�,�0)2  HIdV

(�,�)HIdV
(�0,�0)

Since wV  wU�
�U�

|Imid|Bnorm(�)2c(�)2HIdV
(�,�) and wV  wU

�0 �U
�0

|Imid|Bnorm(�0)2c(�0)2HIdV
(�0,�0) , we

have that

X

�,�02LV :� 6=IdV or �0 6=IdV

wV HIdV
(�,�0)

✓
M�MT

�0 +M�0MT
�

2

◆
⌫ �2

X

�2LV

wU�
�U�

IdSym,U�

|Imid|c(�)

0

@
X

�02LV :�0 6=IdV

1

c(�0)

1

A

⌫ � 1

2|Imid|
X

U2Imid

wU�UIdSym,U

Thus, for each V 2 Imid,

wV Mfact(HIdV
) ⌫ wV �V IdSym,V � 1

2|Imid|
X

U2Imid

wU�UIdSym,U

Summing this equation over all V 2 V , we have that
X

V 2Imid

Mfact(HIdV
) ⌫

X

V 2Imid

wV M
fact(HIdV

) ⌫ 1

2

X

V 2Imid

wV �V IdSym,V ⌫ 1

2
min

V 2Imid

{wV �V }IdSym

as needed.

I.1.1 Handling Non-multilinear Matrix Indices*

If there are multilinear matrix indices, then Theorem I.6 still holds and it can be shown in a similar
way, but we need to make a few adjustments.

1. We modify the definition of IdSym,V as follows. For all V 2 Imid we define IdSym,V to
be the matrix such that
(a) IdSym,V (A,B) = 1 if A and B have the same index shape U and U has the same

number of each type of vertex as V . Note that B may be a permutation of A and U
may have different powers than V .

(b) Otherwise, IdSym,V (A,B) = 0.
Observe that with this modified definition, we will still have IdSym =

P
V 2Imid

IdSym,V .

2. Instead of taking �V = |Aut(V )|HIdV
(IdV , IdV ), we define �V as follows. Letting

HIdV ,no expansion be the diagonal submatrix of HIdV
indexed by left shapes � such that U�

has the same number of each type of vertex as V (though the powers may be different), we
take

�V = |Aut(V )|min{� : HIdV ,no expansion ⌫ �IdSym,V }

3. We similarly extend the definition of c to left shapes � with multilinear indices in U� so that
we still have

P
�2LV :(U�)reduced 6=v

1
c(�) 

1
10

J Tensor PCA: Quantitative bounds

In this section, we will prove the desired tradeoffs in Theorem A.2. We reuse the notation and bounds
from Appendix D.
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J.1 Middle shape bounds

Lemma J.1. Suppose �  n
k

4�". For all U 2 Imid and ⌧ 2 MU , suppose deg⌧ (i) is even for all
i 2 V (⌧) \ U⌧ \ V⌧ , then

p
n
|V (⌧)|�|U⌧ |S(⌧)  1

n0.5"
P

e2E(⌧) le

Proof. Firstly, we claim that
P

e2E(⌧) kle � 2(|V (⌧)|� |U⌧ |). For any vertex i 2 V (⌧) \ U⌧ \ V⌧ ,
deg⌧ (i) is even and is not 0, hence, deg⌧ (i) � 2. Any vertex i 2 U⌧ \ V⌧ cannot have deg⌧ (i) = 0
otherwise U⌧ \ {i} is a vertex separator of strictly smaller weight than U⌧ , which is not possible,
hence, deg⌧ (i) � 1. Therefore,

X

e2E(⌧)

kle �
X

i2V (⌧)\U⌧\V⌧

deg⌧ (i) +
X

i2U⌧\V⌧

deg⌧ (i) +
X

i2V⌧\U⌧

deg⌧ (i) � 2(|V (⌧)|� |U⌧ |)

By choosing C� sufficiently small, we have

p
n
|V (⌧)|�|U⌧ |S(⌧) 

p
n
|V (⌧)|�|U⌧ |�|V (⌧)|�|U⌧ |

Y

e2E(⌧)

n(� k

4�0.5")le  1

n0.5"
P

e2E(⌧) le

Corollary J.2. For all U 2 Imid and ⌧ 2 MU , we have c(⌧)Bnorm(⌧)S(⌧)  1.

Proof. Since ⌧ is a proper middle shape, we have w(I⌧ ) = 0 and w(S⌧,min) = w(U⌧ ). This implies

n
w(V (⌧))+w(I⌧ )�w(S⌧,min)

2 =
p
n
|V (⌧)|�|U⌧ |. If deg⌧ (i) is odd for any vertex i 2 V (⌧) \ U⌧ \ V⌧ ,

then S(⌧) = 0 and the inequality is true. So, assume deg⌧ (i) is even for all i 2 V (⌧) \ U⌧ \ V⌧ .
As was observed in the proof of Lemma J.1, every vertex i 2 V (⌧) \ U⌧ or i 2 V (⌧) \ V⌧ has
deg⌧ (i) � 1 and hence, |V (⌧) \U⌧ |+ |V (⌧) \V⌧ |  4

P
e2E(⌧) le. Also, |E(⌧)| 

P
e2E(⌧) le and

q = nO(1)·"(CV +CE). We can set CV , CE sufficiently small so that, using Lemma J.1,

c(⌧)Bnorm(⌧)S(⌧)  nO(1)·"(CV +CE)·
P

e2E(⌧) le ·
p
n
|V (⌧)|�|U⌧ |S(⌧)  1

We can now show middle shape bounds.
Lemma J.3. For all U 2 Imid and ⌧ 2 MU ,

"
1

|Aut(U)|c(⌧)HIdU
Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

Proof. The expression is equal to
2

4

⇣
1

|Aut(U)|c(⌧) �
S(⌧)Bnorm(⌧)

|Aut(U)|

⌘
HIdU

0

0
⇣

1
|Aut(U)|c(⌧) �

S(⌧)Bnorm(⌧)
|Aut(U)|

⌘
HIdU

3

5

+Bnorm(⌧)

"
S(⌧)

|Aut(U)|HIdU
H⌧

HT
⌧

S(⌧)
|Aut(U)|HIdU

#

By Lemma D.6,

"
S(⌧)

|Aut(U)|HIdU
H⌧

HT
⌧

S(⌧)
|Aut(U)|HIdU

#
⌫ 0, so the second term above is positive semidefi-

nite. For the first term, by Lemma D.4, HIdU
⌫ 0 and by Corollary J.2, 1

|Aut(U)|c(⌧)�
S(⌧)Bnorm(⌧)

|Aut(U)| �
0, which proves that the first term is also positive semidefinite.
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J.2 Intersection term bounds

Lemma J.4. Suppose �  n
k

4�". For all U, V 2 Imid where w(U) > w(V ) and for all � 2 �U,V ,

nw(V (�)\U�)S(�)2  1

nB"(|V (�)\(U�\V�)|+
P

e2E(�) le)

for some constant B that depends only on C�. In particular, it is independent of CV and CE .

Proof. Suppose there is a vertex i 2 V (�) \U� \ V� such that deg�(i) is odd, then S(�) = 0 and the
inequality is true. So, assume deg�(i) is even for all vertices i 2 V (�) \ U� \ V� . We first claim that
k
P

e2E(�) le � 2|V (�) \ U� |. Since � is a left shape, all vertices i in V (�) \ U� have deg�(i) � 1.
In particular, all vertices i 2 V� \ U� have deg�(i) � 1. Moreover, if i 2 V (�) \ U� \ V� , since
deg�(i) is even, we must have deg�(i) � 2.

Let S0 be the set of vertices i 2 U� \V� that have deg�(i) � 1. Then, note that |S0|+|U�\V� | �
|V� | =) |S0| � |V� \ U� | since otherwise S0 [ (U� \ V�) will be a vertex separator of � of weight
strictly less than V� , which is not possible. Then,

X

e2E(�)

kle �
X

i2V (�)\U�\V�

deg�(i) +
X

i2U�\V�

deg�(i) +
X

i2V�\U�

deg�(i) � 2|V (�) \ U� |

Finally, note that 2|V (�)| � |U� | � |V� | = |U� \ V� | + |V� \ U� | + 2|V (�) \ U� \ V� | �
|V (�) \ (U� \ V�)|. By choosing C� sufficiently small, we have

nw(V (�)\U�)S(�)2  n|V (�)\U�)|�2|V (�)|�|U� |�|V� |
Y

e2E(�)

n�( k

2+")le  1

nB"(|V (�)\(U�\V�)|+
P

e2E(�) le)

for a constant B that depends only on C�.

Remark J.5. In the above bounds, note that there is a decay of nB" for each vertex in V (�)\(U�\V�).
One of the main technical reasons for introducing the slack parameter C� in the planted distribution
was to introduce this decay.

We can now obtain the intersection term bounds.
Lemma J.6. For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,

c(�)2N(�)2B(�)2H��,�
IdV

� H 0
�

Proof. By Lemma D.7, we have

c(�)2N(�)2B(�)2H��,�
IdV

� c(�)2N(�)2B(�)2S(�)2
|Aut(U)|
|Aut(V )|H

0
�

Using the same proof as in Lemma D.4, we can see that H 0
� ⌫ 0. Therefore, it suffices to prove

that c(�)2N(�)2B(�)2S(�)2 |Aut(U)|
|Aut(V )|  1. Since U, V 2 Imid, |Aut(U)| = |U |!, |Aut(V )| = |V |!.

Therefore, |Aut(U)|
|Aut(V )| =

|U |!
|V |!  D

|U�\V� |
V . Also, |E(�)| 

P
e2E(�) le and q = nO(1)·"(CV +CE). Let

B be the constant from Lemma J.4. We can set CV , CE sufficiently small so that, using Lemma J.4,

c(�)2N(�)2B(�)2S(�)2
|Aut(U)|
|Aut(V )|  nO(1)·"(CV +CE)·(|V (�)\(U�\V�)|+

P
e2E(�) le) · nw(V (�)\U�)S(�)2

 1

J.3 Truncation error bounds

In this section, we will obtain the truncation error bounds using the strategy sketched in Appendix I.
We also reuse the notation. First, we need the following bound on Bnorm(�)Bnorm(�0)HIdU

(�,�0).
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Lemma J.7. Suppose � = n
k

4�". For all U 2 Imid and �,�0 2 LU ,

Bnorm(�)Bnorm(�0)HIdU
(�,�0)  1

n0.5"C�|V (���0)|�Dsosn|U |

Proof. Suppose there is a vertex i 2 V (�) \ V� such that deg�(i) + degU� (i) is odd, then
HIdU

(�,�0) = 0 and the inequality is true. So, assume that deg�(i) + degU� (i) is even for all
i 2 V (�) \ V� . Similarly, assume that deg�

0
(i) + degU�0 (i) is even for all i 2 V (�0) \ V�0 . Also, if

⇢� 6= ⇢�0 , we will have HIdU
(�,�0) = 0 and we’d be done. So, assume ⇢� = ⇢�0 .

Let ↵ = � ��0. We will first prove that
P

e2E(↵) kle+2deg(↵) � 2|V (↵)|+2|U |. Firstly, note
that all vertices i 2 V (↵) \ (U↵ [ V↵) have deg↵(i) to be even and nonzero, and hence at least 2.
Moreover, in both the sets U↵\(U↵\V↵) and V↵\(U↵\V↵), there are at least |U |�|U↵\V↵| vertices
of degree at least 1, because U is a minimum vertex separator. Also, note that deg(↵) � |U↵|+ |V↵|.
This implies that
X

e2E(↵)

kle + 2deg(↵) � 2|V (↵) \ (U↵ [ V↵)|+ 2(|U |� |U↵ \ V↵|) + 2(|U↵|+ |V↵|) = 2|V (↵)|+ 2|U |

where we used the fact that U↵ \ V↵ ✓ U . Finally, by choosing CV , CE sufficiently small,

Bnorm(�)Bnorm(�0)HIdU
(�,�0)  1

n0.5"C�|V (↵)|�Dsosn|U |

where we used the facts �  1, deg(↵)  2Dsos.

We now apply the strategy by showing the following bounds.
Lemma J.8. Whenever kM↵k  Bnorm(↵) for all ↵ 2 M0,

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ �2D2

sos

nDsos

Idsym

Proof. For V 2 Imid, �V = 1
n|V | . We then choose wV =

�
1
n

�Dsos�|V |. For all left shapes � 2 LV ,
it’s easy to verify wV  wU�

�U�

|Imid|Bnorm(�)2c(�)2HIdV
(�,�) using Lemma J.7. Theorem I.6 completes the

proof.

Lemma J.9.
P

U2Imid

P
�2�U,⇤

dIdU
(HIdU

,H0
�
)

|Aut(U)|c(�)  1
�2Dsos2DV

.

Proof. Using the definition, we get
X

U2Imid

X

�2�U,⇤

dIdU
(HIdU

, H 0
�)

|Aut(U)|c(�) 
X

U2Imid

X

�,�02L0
U

1

n0.5"C�|V (���0)|�Dsos2min(m�,m�0 )�1

where we used Lemma J.7. Using n0.5C�|V (���0)| � n0.1"C�|V (���0)|2|V (���0)|,
X

U2Imid

X

�2�U,⇤

dIdU
(HIdU

, H 0
�)

|Aut(U)|c(�) 
X

U2Imid

X

�,�02L0
U

1

DDsos

sos n0.1"C�|V (���0)|�2Dsos2DV

where we set Csos small enough so that Dsos = n"Csos  nc"C� = 1
� . The final step will be to

argue that
P

U2Imid

P
�,�02L0

U

1
DDsos

sos n0.1C�"|V (���0)|  1 which will complete the proof. But this
will follow from Lemma I.2 if we set CV , CE small enough.

We can finally complete the analysis of the truncation error.
Lemma J.10. Whenever kM↵k  Bnorm(↵) for all ↵ 2 M0,

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 6

0

@
X

U2Imid

X

�2�U,⇤

dIdU
(H 0

� , HIdU
)

|Aut(U)|c(�)

1

A Idsym

Proof. Choose Csos sufficiently small so that �2D2
sos

nDsos
� 6

�2Dsos2DV
which is satisfied by setting

Csos < 0.5CV . Then, since IdSym ⌫ 0, Lemma J.8 and Lemma J.9 imply the result.
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K Sparse PCA: Quantitative bounds

In this section, we will verify the tradeoffs as in Theorem A.1. We already showed the relevant
qualitative bounds in Appendix E. We use the bounds and also the notation from that section. In this
section, let n = max(d,m). We just need to verify the conditions of Theorem F.108.

K.1 Middle shape bounds

Lemma K.1. Suppose 0 < A < 1
4 is a constant such that

p
�p
k
 d�A" and 1p

k
 d�2A. For all

m such that m  d1�"

�2 ,m  k2�"

�2 , for all U 2 Imid and ⌧ 2 MU , suppose deg⌧ (i) is even for all
i 2 V (⌧) \ U⌧ \ V⌧ , then

p
d
|⌧ |1�|U⌧ |1p

m
|⌧ |2�|U⌧ |2S(⌧) 

Y

j2V2(⌧)\U⌧\V⌧

(deg⌧ (j)� 1)!! · 1

dA"
P

e2E(⌧) le

Proof. Let r1 = |⌧ |1 � |U⌧ |1, r2 = |⌧ |2 � |U⌧ |2. Since �  1, it suffices to prove

E :=
p
d
r1p

m
r2
✓
k

d

◆r1
 p

�p
k

!P
e2E(⌧) le

 1

dA"
P

e2E(⌧) le

We will need the following claim.

Claim K.2.
P

e2E(⌧) le � 2max(r1, r2).

Proof. We will first prove
P

e2E(⌧) le � 2r1. For any vertex i 2 V1(⌧) \ U⌧ \ V⌧ , deg⌧ (i) is even
and is not 0, hence, deg⌧ (i) � 2. Any vertex i 2 U⌧ \ V⌧ cannot have deg⌧ (i) = 0 otherwise
U⌧ \ {i} is a vertex separator of strictly smaller weight than U⌧ , which is not possible, hence,
deg⌧ (i) � 1. Similarly, for i 2 V⌧ \ U⌧ , deg⌧ (i) � 1. Also, since H⌧ is bipartite, we haveP

i2V1(⌧)
deg⌧ (i) =

P
j2V2(⌧)

deg⌧ (j) =
P

e2E(⌧) le. Consider
X

e2E(⌧)

le �
X

i2V1(⌧)\U⌧\V⌧

deg⌧ (i) +
X

i2(U⌧ )1\V⌧

deg⌧ (i) +
X

i2(V⌧ )1\U⌧

deg⌧ (i) � 2r1

We can similarly prove
P

e2E(⌧) le � 2r2

To illustrate the main idea, we will start by proving the weaker bound E  1. Observe that our

assumptions imply m  d
�2 ,m  k2

�2 and also, E 
p
d
r1p

m
r2 �k

d

�r1 ⇣p
�p
k

⌘2max(r1,r2)
where we

used the fact that
p
�p
k
 d�A"  1.

Claim K.3. For integers r1, r2 � 0, if m  d
�2 and m  k2

�2 , then,

p
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m
r2
✓
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◆r1
 p

�p
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!2max(r1,r2)

 1

Proof. We will consider the cases r1 � r2 and r1 < r2 separately. If r1 � r2, we have

p
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m
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And if r1 < r2, we have
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For the desired bounds, we mimic the same argument while keeping track of factors of d".

Claim K.4. For integers r1, r2 � 0 and an integer r � 2max(r1, r2), if m  d1�"

�2 and m  k2�"

�2 ,
then,

p
d
r1p

m
r2
✓
k

d

◆r1
 p

�p
k

!r


✓

1

dA"

◆r

The result follows by setting r =
P

e2E(⌧) le in the above claim.

Corollary K.5. For all U 2 Imid and ⌧ 2 MU , we have c(⌧)Bnorm(⌧)S(⌧)R(⌧)  1.

Proof. First, note that if deg⌧ (i) is odd for any vertex i 2 V (⌧) \ U⌧ \ V⌧ , then S(⌧) = 0 and the
inequality is true. So, assume that deg⌧ (i) is even for all i 2 V (⌧) \ U⌧ \ V⌧ . Since ⌧ is a proper
middle shape, we have w(I⌧ ) = 0 and w(S⌧,min) = w(U⌧ ). This implies n

w(V (⌧))+w(I⌧ )�w(S⌧,min)

2 =
p
d
|⌧ |1�|U⌧ |1p

m
|⌧ |2�|U⌧ |2 . As was observed in the proof of Lemma K.1, every vertex i 2 V (⌧)\U⌧

or i 2 V (⌧) \ V⌧ has deg⌧ (i) � 1 and hence, |V (⌧) \ U⌧ | + |V (⌧) \ V⌧ |  4
P

e2E(⌧) le. Also,
q = dO(1)·"(CV +CE). We can set CV , CE sufficiently small so that

c(⌧)Bnorm(⌧)S(⌧)R(⌧)  dO(1)·(CV +CE)·"
P

e2E(⌧) le · (DV DE)
P

e2E(⌧) le · 1

dA"
P

e2E(⌧) le
 1

We can now obtain our desired middle shape bounds.
Lemma K.6. For all U 2 Imid and ⌧ 2 MU ,

"
1

|Aut(U)|c(⌧)HIdU
Bnorm(⌧)H⌧

Bnorm(⌧)HT
⌧

1
|Aut(U)|c(⌧)HIdU

#
⌫ 0

Proof. We have the expression to be equal to
2

4

⇣
1

|Aut(U)|c(⌧) �
S(⌧)R(⌧)Bnorm(⌧)

|Aut(U)|

⌘
HIdU

0

0
⇣

1
|Aut(U)|c(⌧) �

S(⌧)R(⌧)Bnorm(⌧)
|Aut(U)|

⌘
HIdU

3

5

+Bnorm(⌧)

"
S(⌧)R(⌧)
|Aut(U)| HIdU

H⌧

HT
⌧

S(⌧)R(⌧)
|Aut(U)| HIdU

#

By Lemma E.7,

"
S(⌧)R(⌧)
|Aut(U)| HIdU

H⌧

HT
⌧

S(⌧)R(⌧)
|Aut(U)| HIdU

#
⌫ 0, so the second term above is positive

semidefinite. For the first term, by Lemma E.3, HIdU
⌫ 0 and by Corollary K.5, 1

|Aut(U)|c(⌧) �
S(⌧)R(⌧)Bnorm(⌧)

|Aut(U)| � 0, which proves that the first term is also positive semidefinite.

K.2 Intersection term bounds

Lemma K.7. Suppose 0 < A < 1
4 is a constant such that

p
�p
k
 d�A", 1p

k
 d�2A and k

d  d�A".

For all m such that m  d1�"

�2 ,m  k2�"

�2 , for all U, V 2 Imid where w(U) > w(V ) and for all
� 2 �U,V ,

nw(V (�)\U�)S(�)2 

0

@
Y

j2V2(�)\U�\V�

(deg�(j)� 1)!!

1

A
2

1

dB"(|V (�)\(U�\V�)|+
P

e2E(�) le)

for some constant B > 0 that depends only on C�. In particular, it is independent of CV and CE .
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Proof. Suppose there is a vertex i 2 V (�) \ U� \ V� such that deg�(i) is odd, then S(�) = 0 and
the inequality is true. So, assume deg�(i) is even for all vertices i 2 V (�) \ U� \ V� . We have
nw(V (�)\U�) = d|�|1�|U� |1m|�|2�|U� |2 . Plugging in S(�), we get that we have to prove

E := d|�|1�|U� |1m|�|2�|U� |2
✓
k

d

◆2|�|1�|U� |1�|V� |1
�2|�|2�|U� |2�|V� |2

Y

e2E(�)

�le

kle
 1

dB"(|V (�)\(U�\V�)|+
P

e2E(�) le)

Let S0 be the set of vertices i 2 U� \ V� that have deg�(i) � 1. Let e, f be the number of type
1 vertices and the number of type 2 vertices in S0 respectively. Observe that S0 [ (U� \ V�) is a
vertex separator of �. Let g = |V� \ U� |1 (resp. h = |V� \ U� |2) be the number of type 1 vertices
(resp. type 2 vertices) in V� \ U� . We first claim that demf � dgmh. To see this, note that the

vertex separator S0 [ (U� \ V�) has weight
p
d
e+|U�\V� |1p

m
f+|U�\V� |2 . On the other hand, V�

has weight
p
d
g+|U�\V� |1p

m
h+|U�\V� |2 . Since � is a left shape, V� is the unique minimum vertex

separator and hence,
p
d
e+|U�\V� |1p

m
f+|U�\V� |2 �

p
d
g+|U�\V� |1p

m
h+|U�\V� |2 which implies

demf � dgmh. Let p = |V (�) \ (U� [ V�)|1 (resp. q = |V (�) \ (U� [ V�)|2) be the number of
type 1 vertices (resp. type 2 vertices) in V (�) \ (U� [ V�). To illustrate the main idea, we will first
prove the weaker inequality E  1. Since �  1, it suffices to prove

d|�|1�|U� |1m|�|2�|U� |2
✓
k

d

◆2|�|1�|U� |1�|V� |1 Y

e2E(�)

�le
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We have d|�|1�|U� |1m|�|2�|U� |2 = dp+gmq+h  np+ e+g

2 mq+ f+h

2 since demf � dgmh. Also,
2|�|1 � |U� |1 � |V� |1 = 2p+ e+ g. So, it suffices to prove

np+ e+g

2 mq+ f+h

2

✓
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◆2p+e+g Y

e2E(�)

✓
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We will first prove that
P

e2E(�) le � max(2p+e+g, 2q+f+h). Since H� is bipartite, we haveP
e2E(�) le =

P
i2V1(�)

deg�(i) =
P

i2V2(�)
deg�(i). Observe that all vertices i 2 V (�) \U� \ V�

have deg�(i) nonzero and even, and hence, deg�(i) � 2. Then,
X

e2E(�)

le =
X

i2V1(�)

deg�(i)

�
X

i2V1(�)\U�\V�

deg�(i) +
X

i2(U�)1\V�

deg�(i) +
X

i2(V�)1\U�

deg�(i)

� 2p+ e+ g

Similarly,
P

e2E(�) le � 2q + f + h. Therefore,
P

e2E(�) le � max(2p+ e+ g, 2q + f + h)

Now, let r1 = p+ e+g
2 , r2 = q+ f+h

2 . Then,
P

e2E(�) le � 2max(r1, r2) and we wish to prove

dr1mr2
�
k
d

�2r1 ��
k

�2max(r1,r2)  1 This expression simply follows by squaring Claim K.3. Now, to
prove that E  1

d
B"(|V (�)\(U�\V� )|+

P
e2E(�) le) , we mimic this argument while keeping track of factors

of d".

Remark K.8. In the above bounds, note that there is a decay of dB" for each vertex in V (�) \
(U� \ V�). One of the main technical reasons for introducing the slack parameter C� in the planted
distribution and the conditions involving the parameter A was precisely to introduce this decay.

With this, we obtain intersection term bounds.
Lemma K.9. For all U, V 2 Imid where w(U) > w(V ) and all � 2 �U,V ,
c(�)2N(�)2B(�)2H��,�

IdV
� H 0

�

Proof. Using the same proof as in Lemma E.3, we can see that H 0
� ⌫ 0. Therefore, by Lemma E.8,

it suffices to prove that c(�)2N(�)2B(�)2S(�)2R(�)2 |Aut(U)|
|Aut(V )|  1. Let B be the constant from

Lemma K.7. We can set CV , CE sufficiently small so that Lemma K.7 implies the result.
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K.3 Truncation error bounds

In this section, we will obtain truncation error bounds using the strategy sketched in Appendix I. We
also reuse the notation. To start with, we obtain a bound on Bnorm(�)Bnorm(�0)HIdU

(�,�0).

Lemma K.10. Suppose 0 < A < 1
4 is a constant such that

p
�p
k
 d�A" and 1p

k
 d�2A. Suppose

m is such that m  d1�"

�2 ,m  k2�"

�2 . For all U 2 Imid and �,�0 2 LU ,
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�0 |2+|U
�0 |2

Proof. Suppose there is a vertex i 2 V (�) \ V� such that deg�(i) + degU� (i) is odd, then
HIdU

(�,�0) = 0 and the inequality is true. So, assume that deg�(i) + degU� (i) is even for all
i 2 V (�) \ V� . Similarly, assume that deg�

0
(i) + degU�0 (i) is even for all i 2 V (�0) \ V�0 . Also, if

⇢� 6= ⇢�0 , we will have HIdU
(�,�0) = 0 and we would be done. So, assume ⇢� = ⇢�0 .

Let there be e (resp. f ) vertices of type 1 (resp. type 2) in V (�) \ U� \ V�. Then,
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(resp. h) vertices of type 1 (resp. type 2) in V (�0) \ U�0 \ V�0 . Then, similarly, n
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Let ↵ = ���0. Since all vertices in V (↵)\U↵\V↵ have degree at least 2, we have

P
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deg↵(i) � 2(e+g)+ |U�|1+ |U�|2. Similarly,
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|U�0 |2. Therefore, by setting r1 = e+ g, r2 = f + h in Claim K.4, we have

p
d
e+gp

m
f+h

✓
k

d

◆e+g Y

e2E(↵)

p
�
le

p
k
le

 1

dA"
P

e2E(↵) le

Also,
�
k
d

�|↵|1 
�
k
d

�e+g+|U�|1+|U
�0 |1 and

Q
j2V2(↵)

(deg↵(j)� 1)!!  d"CV

P
e2E(↵) le . Therefore,

n
w(V (�))�w(U)

2 n
w(V (�0))�w(U)

2 HIdU
(�,�0)

 d
O(1)Dsos

d
"CV

P
e2E(↵) le

p
d
e+gp

m
f+h

✓
k

d

◆e+g Y

e2E(↵)

p
�
le

p
k
le

· 1

d
|U�|1+|U

�0 |1m|U
�0 |2+|U

�0 |2

 d
"CV

P
e2E(↵) le

d
A"

P
e2E(↵) le

· 1

d
|U�|1+|U

�0 |1m|U
�0 |2+|U

�0 |2

By setting CV , CE sufficiently small and plugging in the expressions for Bnorm(�), Bnorm(�0), we
obtain the result.

We can apply the the strategy now.
Lemma K.11. Whenever kM↵k  Bnorm(↵) for all ↵ 2 M0,

X

U2Imid

Mfact
IdU

(HIdU
) ⌫ 1

dK1D2
sos

Idsym

for a constant K1 > 0 that can depend on C�.

Proof. We will use Theorem I.6. For V 2 Imid, �V = �|V |2

d|V |1k|V |2 . Let the minimum value of
this quantity over all V be N . We then choose wV = N/�V so that for all left shapes � 2 LV ,
Lemma K.10 implies wV  wU�

�U�

|Imid|Bnorm(�)2c(�)2HIdV
(�,�) , completing the proof.

Lemma K.12.
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(HIdU
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for a constant K2 > 0 that can depend on C�.
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Proof. We do the same calculations as in the proof of Lemma J.9, until
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where we used Lemma K.10. Using d0.5A"|V (���0)| � d0.1A"|V (���0)|2|V (���0)|,
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The final step will be to argue that
P

U2Imid

P
�,�02L0

U

1
DDsos

sos d0.1A"|V (���0)|  1 which will complete
the proof. But this will follow from Lemma I.2 if we set CV , CE small enough.

We can finally show that truncation errors can be handled.
Lemma K.13. Whenever kM↵k  Bnorm(↵) for all ↵ 2 M0,
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Proof. Choose Csos sufficiently small so that 1

dK1D2
sos

� 6dK2Dsos

2DV
which can be satisfied by setting

Csos < K3CV for a sufficiently small constant K3 > 0. Then, since IdSym ⌫ 0, Lemma K.11 and
Lemma K.12 imply the result.
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