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Abstract

Action recognition has improved dramatically with massive-scale video datasets.
Yet, these datasets are accompanied with issues related to curation cost, privacy,
ethics, bias, and copyright. Compared to that, only minor efforts have been devoted
toward exploring the potential of synthetic video data. In this work, as a stepping
stone towards addressing these shortcomings, we study the transferability of video
representations learned solely from synthetically-generated video clips, instead of
real data. We propose SynAPT, a novel benchmark for action recognition based
on a combination of existing synthetic datasets, in which a model is pre-trained
on synthetic videos rendered by various graphics simulators, and then transferred
to a set of downstream action recognition datasets, containing different categories
than the synthetic data. We provide an extensive baseline analysis on SynAPT
revealing that the simulation-to-real gap is minor for datasets with low object and
scene bias, where models pre-trained with synthetic data even outperform their
real data counterparts. We posit that the gap between real and synthetic action
representations can be attributed to contextual bias and static objects related to
the action, instead of the temporal dynamics of the action itself. The SynAPT
benchmark is available at https://github.com/mintjohnkim/SynAPT.

1 Introduction

Large-scale pre-training using massive datasets, containing hundreds of thousands or even millions
of video clips, have brought significant progress in action recognition [28, 38, 1, 17]. High capac-
ity models trained on such large datasets have shown remarkable generalization performance to
downstream tasks where training data is limited [64, 17].

While this progress is exciting, these large-scale video datasets also have shortcomings. Collecting
and annotating videos is expensive, tedious, and time-consuming. As a result, methods that learn
feature representations from unlabeled videos, including self-supervised [61], weakly-supervised [17],
and semi-supervised approaches [53], have received significant attention in recent years. However,
these works do not address other important ethical, legal, and technical issues related to processing
real-world data, as described below:

Privacy concerns. Video samples may include human interactions and activities, but often, the
individuals’ sensitive information (e.g., faces, license plates, or location indicators) is captured along.

Proprietary issues. Massive-scale datasets containing millions or billions of images and videos,
such as IG65M [17] and JFT3B [65], are not publicly available, preventing the larger community
from reproducing results, which hinders research progress.
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Figure 1: We introduce SynAPT, a novel action recognition benchmark, to pre-train a model on
synthetic videos and transfer learned knowledge to real downstream tasks with label sets disjoint from
pre-training data. We observe that the models pre-trained on synthetic videos can even outperform
those pre-trained on real videos when the downstream datasets have low object and scene bias.

Ethical issues and bias. Ethical issues related to skin tone and gender [6], and unwanted contextual
bias are difficult to control in existing large-scale datasets. Consequently, state-of-the-art models may
fail to predict actions such as a person dancing in a mall [11], or a woman snowboarding [21].

Data protection and copyright issues. Data collected without consent, which is common for existing
massive-scale datasets, may violate copyright as well as data protection laws such as the General
Data Protection Regulation (GDPR).

A promising way to address these issues is using computer-generated synthetic videos for pre-training.
By leveraging 3D models of humans and scenes, an arbitrarily large number of videos can be
generated by varying simulation parameters such as lighting, texture, and background, while enabling
the control of sensitive attributes of humans, such as gender and race. This approach of training
with synthetic data has a long history in computer vision [15, 33, 39]. Recent efforts on action
recognition [23, 45, 58] have used completely synthetic datasets or synthetic/real hybrid datasets to
train deep neural network models. However, these works rely on domain adaptation techniques that
assume the same label set for both synthetic data and real data. This might not always be feasible
as each action class requires motion capture or simulation capacities. To the best of our knowledge,
no previous work has studied the transferability of action representations based on synthetic data to
diverse downstream tasks, where the synthetic and real domains have disjoint label sets.

In this work, we introduce a novel benchmark named Synthetic Action Pre-training and Transfer
(SynAPT), that addresses this important problem. As shown in Figure 1, our pre-training dataset
consists solely of synthetic video clips. Based on existing synthetic datasets [23, 45, 58], we compile
a new benchmark with 150 action categories, where each category has 1,000 samples. We consider six
downstream datasets: UCF101 [54], HMDB51 [30], Something-Something V2 [18], Diving48 [32],
Ikea Furniture Assembly (IkeaFA) [55], and UAV-Human [31]. Both UCF101 and HMDB51 datasets
are based on YouTube videos depicting a broad variety of actions. As a result, they exhibit a high
object and scene bias [32], i.e., several actions can be recognized by just looking at static objects
or the background, as opposed to the action itself. For example, the action “playing violin” could
likely be recognized by detecting the object violin instead of understanding the temporal dynamics
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of the action. On the other hand, the remaining four datasets have low object and scene bias, as
understanding temporal dynamics is needed to correctly recognize actions in these datasets.

Based on this setting, we conducted an extensive analysis on the transferability of pre-trained video
models based on synthetic data, including the effect of linear probing and fine-tuning, number of
classes, number of samples per class, and their relative performance with respect to pre-trained
ImageNet models, which are used to measure the object and scene representation bias of each
dataset. We solidify our findings by replicating the experiments with models of various capacities
and complexity, and further perform rigorous hyperparameter sweeping on the downstream tasks.

It shows that the transferability gap between synthetic and real action recognition models is directly
related to the object and scene bias of the datasets. Models pre-trained on Kinetics clearly outperform
synthetic pre-trained models on datasets with high bias (UCF101, HMDB51). The gap is closed for
datasets with low bias (Mini-SSV2, Diving48, IkeaFA, UAV-Human), where synthetic pre-trained
models achieve similar or better accuracy than their real counterparts.

In summary, the main contributions of this work are as follows:

1. We propose a novel benchmark, SynAPT, for studying the transferability of synthetic video
representations for action recognition. To the best of our knowledge, no previous work has investigated
this problem before.

2. We extensively study the transferability of synthetic video representations for action recognition,
showing that the simulation to real gap is simply closed for datasets with low object and scene bias,
but still exists for datasets with high bias. This result suggests that the gap between real and synthetic
action representations exists largely due to contextual bias and static objects related to the action,
instead of the temporal dynamics of the action itself.

We hope that the proposed benchmark provides a direction to mitigate ethical and legal issues with
existing large-scale datasets of real images and videos for action recognition research.

2 Related Work

Action Recognition Benchmarks. Video datasets have rapidly evolved from small-scale benchmarks
such as KTH [50] and Weizmann [5], with a few thousand video clips, to medium-scale datasets
such as UCF101 [54] and HMDB51 [30], and recently to large-scale datasets containing hundreds
of thousands or millions of annotated videos, such as Kinetics [28], YouTube 8M [1], and the
Moments in Time dataset [38]. It is well-established that pre-training on such large datasets followed
by fine-tuning on downstream tasks boosts performance, especially when the target datasets are
small [54, 30, 25, 63, 19, 18, 52]. With the challenges of curating and defining label taxonomies
for massive-scale datasets, the focus has shifted to pre-training on unlabeled videos [61, 53], or
video datasets accompanied by weak supervision such as social media hashtags [17] or narrated
instructions [35], which can be obtained without expensive data curation. Compared to existing
action recognition benchmarks that use real-world datasets, we propose a novel benchmark that aims
at studying pre-training and transfer from synthetic videos, as a stepping stone to mitigate issues
related to privacy, bias, ethics, and copyright.

Learning from Synthetic Data. Synthetic data has been widely used to solve various computer
vision problems by replacing real-world training data [15, 36, 40, 42, 46, 60, 45, 58, 26, 29, 49, 62].
While many of these works have tried to generate synthetic data as similar as real data, Baradad et
al. [2] has shown that synthetic images with structured noise can be used for representation learning
as the diversity of training images is as important as naturalism. Further, approaches to optimizing
simulator parameters have been explored to learn better synthetic data for specific tasks [3, 48, 27],
or even tasks not seen during training [37].

Only a few works attempted to learn action recognition from synthetic data. ElderSim [23] generates
realistic videos of elders’ daily activities in households to augment limited publicly available elder
activity data. SURREACT [58] introduced a novel data generation method that reconstructs 3D
human body models from videos to render synthetic videos from unseen viewpoints at various angles.
Procedural Human Action Videos dataset (PHAV) [45] generates human action videos that show
more overlap with traditional dataset classes such as “push”, “kick ball”, “walking”, or “hug”. It
combines existing motion capture sequences with synthetic generated actions based on physically
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plausible motion variations. In our work, we compile a large-scale synthetic video dataset to explore
a mixture of these simulators as a synthetic pre-training baseline for video backbones in general.

Existing approaches to use simulators for action recognition [15, 23, 58] have shown performance
improvement by adding the simulated videos to the original training datasets. However, in con-
trast to our proposed benchmark, no prior work has studied the transferability of synthetic video
representations to other domains that may have different action categories than the synthetic datasets.

Domain Knowledge Transfer from Synthetic Data. Many approaches have been proposed to
transfer knowledge from synthetic to real domains, generally relying on standard domain adaptation
methods [12, 34, 13, 10] to bridge the gap between the two domains. Examples include generative
models to improve the realism of synthetic images and videos [44, 22], as well as methods that operate
in the feature space, such as adversarial methods which encourage domain confusion to learn domain-
invariant features [43, 16, 57], and discrepancy-based approaches that align feature distributions of
the two domains [47, 66, 9]. More recently, Syn2Real [41], a large-scale synthetic-to-real benchmark
has been introduced for unsupervised domain adaptation.

These domain adaptation methods assume the same label set between the synthetic and real domains.
By contrast, in our work, we remove this assumption and instead consider multiple downstream
tasks with disjoint label sets. In addition, while prior work has been focused on adapting video
representations from the synthetic to real domains, we show that the action recognition performance
gap between these domains is directly related to the object and scene bias of the downstream datasets.

3 Proposed Benchmark

As discussed in the introduction, synthetic videos can help avoid many issues that accompany real
videos, for use in prediction tasks. Towards this end, we propose SynAPT, a novel benchmark,
consisting of a dataset of only synthetically generated video clips, curated using publicly available
assets: 1) ElderSim [23], 2) SURREACT [58], and 3) PHAV [45]. While these assets have been used
previously for recognition tasks within the same label sets, we use them to pre-train video backbones,
which we subsequently transfer to downstream datasets with label sets different from synthetic data.

3.1 Synthetic Dataset Sources

ElderSim [23] is a dataset based on videos of elders’ daily activities in households, along with 2D
and 3D skeleton trajectories, with a goal of augmenting limited publicly available elder activity data.
ElderSim has four realistic 3D rendered furnished residential house models for background with
flexible lighting and camera viewpoint options. There are 15 different human agents with various
simulation parameters, such as skin color, outfits and gender. Overall, the dataset features 462K
videos based on 55 different action classes captured under 28 viewpoints. Classes include daily
activities such as “eating food with a fork” or “sitting up/standing up”.

SURREACT [58] reconstructs 3D human body models from videos to render synthetic videos for
unseen viewpoints at various angles. For this work, we use the SURREACT data based on the body
pose information of two datasets, UESTC [24] and NTU [51]. Note that compared to ElderSim,
SURREACT only supports static images as background. For each original sample, eight different
synthetic videos are generated with varying viewpoints, human body shape, clothes, and gender.

Procedural Human Action Videos (PHAV) [45] is a large scale synthetic dataset generated using
modern game engines, providing physically plausible motions and actions. PHAV contains actions
performed by 20 artist-designed human models at seven different large-scale environment back-
grounds. The videos have four lighting settings based on period of day, as well as four weather
options. Around 40,000 videos are provided, with at least 1,000 examples per class.

3.2 Synthetic Dataset Curation
Using the generators/dataset described in Section 3.1, we created our Synthetic dataset with 150
classes in total. 55 actions from ElderSim, 100 actions from SURREACT, and 35 actions from
PHAV were collected. We manually screened and combined overlapping classes, and randomly
selected 1,000 samples for each class, resulting in a collection of 150,000 videos. For classes with
samples from multiple assets, an equal number of videos were sampled from each asset to maintain
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an adequate ratio. We extracted frames at a constant frame rate of 30 frames per second. We will
provide the respective scripts for the community to generate this synthetic data.

3.3 Downstream Tasks
To assess the transferablity of video representations based on synthetic data, we fine-tuned and linear
probed the pre-trained models on six different downstream tasks. In this subsection, we describe the
details of the datasets used for the downstream tasks.

UCF101 [54] is a human-action dataset collected from YouTube, consisting of 101 action classes
with 13,320 videos in total. UCF101 contains various realistic action classes, as well as subdivided
organization methodology (i.e. action categories are further divided into five types and 25 groups, in
which videos in a same group have common qualities such as background or viewpoint).

HMDB51 [30] presents 51 human activities with refined quality, light conditions, and accurate
surrounding features, and is thus smaller than UCF101 with only 6,849 clips. HMDB51 is further
divided into five types, including rather detailed action classes such as “smiling” or “laughing”.

Something-Something V2 [18] was introduced to test the ability of a model to understand temporal
dynamics rather than relying on objects or background in scenes. The dataset consists of 174 classes
with around 220,000 videos of humans performing basic actions with common objects, in which
action labels are independent of the objects themselves (e.g. “putting something behind something”).
For our experiments, we use a reduced version of this dataset named Mini-SSV2 [8], which consists
of only half of the action labels. 87 labels are chosen at random, resulting in around 93,000 videos.

Diving48 [32] is a collection of diving competition videos, made up of around 18,000 videos which
are divided into 48 dive sequences. Since all videos share a similar background and object features,
Diving48 is considered a fine-grained dataset and is often used to test the robustness of video models.

Ikea Furniture Assembly [55], or IkeaFA, provides 111 videos, each 2-4 minutes long. Summing
up to around 480,000 frames of data, IkeaFA is a collection of GoPro furniture assembly videos, all
of which are collected under a constant background by 14 individuals, either on a table or on the floor.
There are 12 action classes in IkeaFA, including “pick leg”, “attach leg”, and “flip table”.

UAV-Human [31] dataset is collected using an Unmanned Aerial Vehicle, thus providing a collection
of videos from unique viewpoints. The dataset provides different recording modalities (i.e. fisheye
videos and night-vision videos). To stay consistent with the pre-training and other downstream
datasets, we only utilize videos based on the standard RGB camera for this work. Those comprise
22,476 videos depicting 155 action classes, collected from 119 subjects. Note that for all reported
numbers in the following sections, we use cross-subject-v1 evaluation method as described in [31].

4 Experiments

4.1 Implementation Details with Various Model Architectures

We ran experiments on three different model architectures with various capacities and complexity:
Temporal Segment Network (TSN) [59], I3D [7], and R(2+1)D [56], covering 2D, 3D, and 2.5D
feature representations, respectively. We use ResNet-50 [20] backbone for all the models. Note
that we trained all models in this paper from scratch without ImageNet pre-trained weights unless
specified. Refer to Appendix A for a description of the three architectures. Pre-trained model weights
are available at https://github.com/mintjohnkim/SynAPT.

Hyperparameter Sweeping. The Kinetics and Synthetic baseline models for TSN, I3D, and
R(2+1)D were trained using SGD optimizer with momentum of 0.9, final layer dropout rate of 0.5,
and number of samples of 8 frames per clip. We examined initial learning rates [0.01, 0.02] with
cosine decay, batch sizes [64, 128], and weight decay rates [0.0001, 0.0005, 0.001], resulting in total
12 combinations of hyperparameters per baseline model. We selected the best-performing model for
each baseline to transfer onto our downstream tasks.

For each downstream task, while keeping the optimizer, momentum, dropout rate, and number of
samples fixed, we explored initial learning rates [0.0001, 0.0005, 0.001], batch sizes [32, 64], and
weight decay rates [0.0001, 0.0005, 0.001], resulting in total 18 hyperparameter combinations per
downstream task per baseline model.
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Table 1: Top-1 accuracy results via fine-tuning (FT) and linear probing (LP) on downstream tasks.

Model Pre-training
Dataset

Downstream Dataset
UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

FT LP FT LP FT LP FT LP FT LP FT LP

TSN
Kinetics 86.17 69.92 57.45 46.34 48.50 8.61 62.84 9.65 42.07 31.71 32.45 3.52
Synthetic 83.40 28.02 54.38 20.92 49.69 12.82 63.50 10.91 42.68 35.98 35.57 5.70
Scratch 48.37 20.59 39.58 15.94 32.32 2.18

I3D
Kinetics 86.87 68.09 59.21 46.13 50.08 8.56 54.82 9.09 40.85 32.67 31.13 3.15
Synthetic 82.05 27.57 55.69 22.59 50.72 12.31 55.28 10.10 42.68 33.22 35.13 5.83
Scratch 46.37 18.82 39.77 12.64 34.76 1.97

R(2+1)D
Kinetics 87.21 69.44 58.33 47.19 51.48 8.76 53.04 9.80 39.02 34.49 29.83 3.52
Synthetic 80.02 26.41 53.27 22.22 52.01 13.26 57.31 10.00 41.46 35.74 31.79 5.49
Scratch 42.45 16.86 39.07 11.87 31.10 1.26

Table 2: Representation bias for each pre-training and downstream dataset computed using TSN
models. (LP = linear probing. Please refer to Appendix B for the representation biases computed
using I3D and R(2+1)D models.)

Pre-training Downstream Dataset

Kinetics Synthetic UCF101 HMDB51 Mini-
SSV2 Diving48 IkeaFA UAV-

Human
ImageNet LP Accuracy, M(D, ϕ) 44.67 22.32 65.32 38.56 13.68 10.96 34.76 2.59

Representation Bias, B(D, ϕ) 6.07 5.07 6.04 4.30 3.57 2.40 2.06 2.01

4.2 Transfer Learning Results

We first present the transfer learning experiments by showing finetuned and linear probing top-1
accuracy for backbones pre-trained on Kinetics, Synthetic, as well as with random initialization
(Scratch) in Table 1. Note that the Synthetic dataset used for pre-training consists of 150 classes
with 1000 samples per class, and the Kinetics dataset used for pre-training is down-scaled to match
the Synthetic dataset’s statistics. All classes and samples for the downsized Kinetics dataset were
randomly selected from full Kinetics [28]. We emphasize that our goal is not to obtain state-of-the-art
results on the downstream datasets, given the reduced pre-training dataset sizes as described above.
Instead, we aim at providing a fair comparison between real and synthetic models, that will allow
researchers to operate with synthetic data in a way that it is comparable to real-world baselines. We
show both fine-tuning and linear probing transfer results.

While the Kinetics pre-trained model is preferable for UCF101 and HMDB51, our Synthetic pre-
trained model outperforms the Kinetics model when transferring on Mini-SSV2, Diving48, IkeaFA,
and UAV-Human. Qualitatively, we conjecture that UCF101 and HMDB51 are more prone to object
and scene representation bias than the other four datasets. We further assume that the Synthetic
dataset is more robust to bias than Kinetics since clips are generated on either shared background
image/rendering or without surrounding objects in relation to the action class, which forces the model
to focus on the actions over possible biases.

To further analyze this property of generated synthetic videos, we quantify representation bias for
each downstream dataset using the following equation by borrowing the definition from [32]:

B(D, ϕ) = log
M(D, ϕ)

Mrnd
, (1)

where bias B for dataset D using representation ϕ is directly related to the ratio of the performance
of subject representation M(D, ϕ) to random chance performance, Mrnd. We calculate M(D, ϕ)
by measuring the performance of a linear action recognition classifier trained on top of a frozen
ImageNet model. The intuition is that ImageNet features encode static cues, such as objects, and
therefore M(D, ϕ) is related to the amount of action categories that can be recognized solely by
static cues in the videos, without any temporal dynamics.

Table 2 summarizes the representation bias measured using an ImageNet pre-trained model for
downstream tasks. As hypothesized, UCF101 and HMDB51 have high representation bias scores of
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Increasing Representation Bias

Pushup Hug Pullup Climb Stairs Dribble

Figure 2: Representation Bias vs Transferability. We see the downstream performance gap in
Synthetic vs Real data pre-training reduces with smaller downstream representation bias. The
different points on the x-axis correspond to different 25-class subsets of the HMDB dataset. Shown
below are examples of classes in increasing order of bias—higher bias subsets are constituted of
classes more biased towards scenes and objects.

6.04 and 4.30, respectively, while Mini-SSV2, Diving48, IkeaFA, and UAV-Human have much lower
representation bias scores of 3.57, 2.40, 2.06, and 2.01, respectively. It is expected that UCF101
and HMDB51 have high biases as they are composed of daily human actions with related objects
and scene features in them. In addition, while Mini-SSV2 shows lower bias score than UCF101 and
HMDB51 as its action categories focus on temporal movement/change of objects rather than objects
themselves, it still has higher bias than Diving48 as models can learn unintentional object bias since
some objects are more prone to specific action categories than others (e.g. round objects are more
inclined to roll). Every IkeaFA video is taken under the same setting, with identical objects present
in the frame throughout the entire video, and this consistency is reflected by its low representation
bias. Finally, UAV-Human also exhibits low representation bias as UAV’s far-distance viewpoint
encompasses vast scene and object information, degrading the model’s ability to predict an action
based on such information.

We observe that pre-training with Kinetics tends to perform better on downstream datasets with
high representation bias, while pre-training with Synthetic data performs better on tasks with lower
representation bias. Looking at the biases of the pre-training datasets themselves, we see Kinetics has
a much higher representation bias than Synthetic. This suggests that pre-training on datasets with low
bias, which can be achieved more easily with synthetic data, can perform well on downstream tasks
with low bias, and vice-versa.

4.2.1 Sensitivity Analysis

We conduct various sensitivity analyses to capture the transferability of video representations learned
from the Synthetic data. Here we show results using TSN [59]. Please refer to Appendix C and D for
additional results with I3D [7] and R(2+1)D [56].

Representation Bias and Transferability To further investigate the inverse relation between
representation bias and the transfer performance gap, we conducted the following experiment. We
ranked the classes of HMDB51 by difficulty based on average accuracy over its train examples of a
linear probe attached to an ImageNet pre-trained model. Hence, a dataset with less difficult classes
is expected to have high ImageNet representation bias. This way, we created 8 different 25-class
subsets of HMDB-51 at different representation biases. Figure 2 shows the downstream performance
of linear probes (reported as a ratio) for real vs synthetic pre-training on these different subsets. We
see, similar to our observation in Section 4.2, that as the representation bias of the downstream data
decreases, so does the performance gap of real vs. synthetic pre-training.

Effect of Number of Classes We study how the number of classes in pre-training datasets influences
the transferability on our downstream tasks, and analyze its relationship with representation bias. For
both Kinetics and Synthetic, we created three datasets with 30, 90, and 150 classes respectively, all

7



B(D, ϕ) = 6.04 B(D, ϕ) = 4.30 B(D, ϕ) = 3.57

B(D, ϕ) = 2.40 B(D, ϕ) = 2.06 B(D, ϕ) = 2.01

Figure 3: Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP. Fine-tuning (FT)
and Linear Probing (LP) transfer results on six downstream tasks with various number of classes in
pre-training datasets. We use TSN ResNet-50 [59] for the experiments above. Best viewed in color.

with 1000 samples per class. Note that subset classes were chosen randomly, and each dataset created
is a superset of every other smaller dataset.

Figure 3 plots the fine-tuning and linear probing transfer top-1 accuracies of all pre-trained models
on downstream tasks. Representation bias and pre-training datasets’ human-motion bias explain
the trends above. For the high representation bias datasets, i.e. UCF101 and HMDB51, we see a
significant gain in accuracy as we increase the number of pre-training classes. These datasets consist
of human action classes, which conceptually overlap with both the Kinetics and Synthetic actions,
and hence, enjoy the extra discriminative features learned from additional classes introduced during
pre-training.

On the other hand, Mini-SSV2 is not a human-action task, while Diving48 is composed of fast-paced
fine-grained human movement action classes. These two low representation bias tasks therefore have
low human-motion bias, and as a result, we do not see much improvement in accuracy with more
pre-training classes. Although IkeaFA and UAV-Human have low representation bias, both are human
action tasks with higher human-motion bias. While IkeaFA shows a marginal improvement, UAV-
Human shows a more dramatic increase in accuracy. We note that unlike other low representation
bias datasets, UAV-Human has some classes overlapping with pre-training datasets (see Appendix F)
and it is the most coarse grained actions among the four low representation bias datasets.

Effect of Samples per Class We varied the number of samples per class for Kinetics and Synthetic
pre-train datasets to examine its effects on transferability. We fixed the number of classes to 150,
and created three subsets with 250, 750, and 1000 samples per class, with samples being chosen at
random and each dataset being a superset of every other smaller dataset.

Generally, we detect a slight increase in accuracy as we increase the number of samples per class
due to more availability of pre-training samples. However, we observe in Figure 4 that increasing
samples per class does not significantly boost transferability compared to increasing the number of
classes as we are less likely to introduce novel representation bias with extra samples within the same
class. Similarly, although increasing the number of synthetic samples implies further variation in
lighting, camera angles/position, humanoid types, and other video generation parameters, it does not
deliver striking performance enhancement as it is not addressing the representation bias issue.
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B(D, ϕ) = 6.04 B(D, ϕ) = 4.30 B(D, ϕ) = 3.57

B(D, ϕ) = 2.40 B(D, ϕ) = 2.06 B(D, ϕ) = 2.01

Figure 4: Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP. Fine-tuning (FT)
and Linear Probing (LP) transfer results on six downstream tasks with various number of samples per
class in pre-training datasets. In general, the transferability does not significantly boost compared to
increasing the number of classes. Best viewed in color.

Table 3: Baseline with TimeSformer [4] (with divided space-time attention) transformer backbone.

Model Pre-trained
Dataset

Downstream Dataset
UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

FT LP FT LP FT LP FT LP FT LP FT LP

TimeSformer
Kinetics 92.09 89.43 59.51 55.42 48.92 21.54 46.37 16.99 61.93 47.73 23.27 8.40
Synthetic 89.03 82.12 54.38 49.17 51.10 21.24 44.86 19.20 63.64 45.45 24.95 13.79

4.2.2 Additional Results

Transformer Baseline. Besides the baselines used in Table 1 which were all based on a ResNet-
50 backbone, we experimented with TimeSformer (divided space-time variant) [4] which uses a
transformer backbone. The results are reported in Table 3. Similar to other baseline methods, we can
see the downstream performance on tasks with higher bias is better with Kinetics pre-training than
with Synthetic pre-training and vice-versa for lower bias downstream tasks. We note here that unlike
other baselines in Table 1, this backbone is pre-trained on ImageNet-21K as is common in the use of
transformers for action recognition [14, 4].

Using a Different Real Video Dataset for Pre-training. To find if using another real video
dataset for pre-training shows similar downstream behavior as Kinetics, we pre-trained the same
TimeSformer model (with divided space-time attention) on a 150 class subset of Moment-in-Time
(MiT) dataset [38]. From the results in Table 4, we find that the behavior is similar to Kinetics
pre-training in that downstream performance is high on high bias downstream tasks and vice-versa.

16-frame Input Models. To study how changing the number of input frames affects our results,
we pre-trained 16-frame TSN models using the 150 classes Kinetics and Synthetic dataset, and
then evaluated them on the downstream tasks with full network fine-tuning (FT). From the results
in Table 5, we find that the model generally performs better with 16 frames than with 8 frames.
Additionally, similar to the 8-frame model, Kinetics pre-training performs better than Synthetic on
downstream tasks with high representation bias, and opposite happens on tasks with low bias.

For more experiments, including sensitivity analyses with different baseline models and details about
the benchmark, including downstream task statistics, please refer to the Appendix.
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Table 4: Pre-training with Moments-in-Time [38] as a different real video dataset than Kinetics.

Model Pre-trained
Dataset

Downstream Dataset
UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

FT LP FT LP FT LP FT LP FT LP FT LP

TimeSformer
MiT 91.24 87.95 57.01 52.71 48.15 20.27 45.16 14.87 46.59 42.05 21.67 7.15

Synthetic 89.03 82.12 54.38 49.17 51.10 21.24 44.86 19.20 63.64 45.45 24.95 13.79

Table 5: Pre-training and fine-tuning a 16-frame TSN model. Using more frames does not change the
trends observed with Synthetic vs Kinetics pre-training in Sec. 4.2

Model Pre-trained
Dataset

Downstream Dataset
UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

TSN
(16-frames)

Kinetics 87.02 60.52 50.14 68.38 38.41 33.82
Synthetic 86.10 59.61 53.68 70.30 40.24 40.51

5 Conclusions

In this paper, we introduced SynAPT, a new action recognition benchmark, to mitigate the issues
inherent to training models with real videos, such as privacy, bias, ethics, and copyright. Specifically,
we constructed a Synthetic dataset from three publicly available assets (ElderSim, SURREACT,
PHAV), trained models on the Synthetic dataset, and finally transferred these pre-trained models to
various downstream tasks. Our experiments show that the models pre-trained on the Synthetic dataset
outperform those pre-trained on real videos on the downstream datasets with low representation
bias (Mini-SSV2, Diving48, IkeaFA, UAV-Human). This suggests that although models trained on
synthetic data expose weaker object and background scene features, they do provide features with
strong correlation to actions, making them more useful for downstream tasks with lower representation
bias. In fact, stronger object features (inherent to models trained with real videos) may even be a
nuisance factor for transfer tasks onto lower representation bias datasets. We believe SynAPT and the
in-depth analysis of models pre-trained on synthetic data will motivate their wider use, helping avoid
different issues with real data including those related to ethics and bias.
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[3] Harkirat Singh Behl, Atilim Güneş Baydin, Ran Gal, Philip HS Torr, and Vibhav Vineet. Au-
tosimulate:(quickly) learning synthetic data generation. In European Conference on Computer
Vision, pages 255–271. Springer, 2020.

[4] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for
video understanding? In International Conference on Machine Learning, volume 2, page 4,
2021.

[5] Matteo Bregonzio, Shaogang Gong, and Tao Xiang. Recognising action as clouds of space-time
interest points. In Computer Vision and Pattern Recognition, pages 1948–1955. IEEE, 2009.

10



[6] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in
commercial gender classification. In Conference on fairness, accountability and transparency,
2018.

[7] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the
kinetics dataset. In Computer Vision and Pattern Recognition, 2017.

[8] Chun-Fu Richard Chen, Rameswar Panda, Kandan Ramakrishnan, Rogerio Feris, John Cohn,
Aude Oliva, and Quanfu Fan. Deep analysis of cnn-based spatio-temporal representations
for action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6165–6175, 2021.

[9] Min-Hung Chen, Zsolt Kira, Ghassan AlRegib, Jaekwon Yoo, Ruxin Chen, and Jian Zheng.
Temporal attentive alignment for large-scale video domain adaptation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6321–6330, 2019.

[10] Peipeng Chen, Yuan Gao, and Andy J Ma. Multi-level attentive adversarial learning with
temporal dilation for unsupervised video domain adaptation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 1259–1268, 2022.

[11] Jinwoo Choi, Chen Gao, Joseph CE Messou, and Jia-Bin Huang. Why can’t i dance in the mall?
learning to mitigate scene bias in action recognition. Neural Information Processing Systems,
2019.

[12] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive survey. arXiv
preprint arXiv:1702.05374, 2017.

[13] Victor G Turrisi da Costa, Giacomo Zara, Paolo Rota, Thiago Oliveira-Santos, Nicu Sebe,
Vittorio Murino, and Elisa Ricci. Dual-head contrastive domain adaptation for video action
recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1181–1190, 2022.

[14] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6824–6835, 2021.

[15] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf, James Traer, Julian De Freitas,
Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, et al. Threedworld: A
platform for interactive multi-modal physical simulation. arXiv preprint arXiv:2007.04954,
2020.

[16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[17] Deepti Ghadiyaram, Du Tran, and Dhruv Mahajan. Large-scale weakly-supervised pre-training
for video action recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12046–12055, 2019.

[18] Raghav Goyal, Samira Kahou, Vincent Michalski, Joanna Materzyńska, Susanne Westphal,
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