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Abstract

We present the problem of reinforcement learning with exogenous termination.
We define the Termination Markov Decision Process (TerMDP), an extension
of the MDP framework, in which episodes may be interrupted by an external
non-Markovian observer. This formulation accounts for numerous real-world
situations, such as a human interrupting an autonomous driving agent for reasons
of discomfort. We learn the parameters of the TerMDP and leverage the structure
of the estimation problem to provide state-wise confidence bounds. We use these
to construct a provably-efficient algorithm, which accounts for termination, and
bound its regret. Motivated by our theoretical analysis, we design and implement a
scalable approach, which combines optimism (w.r.t. termination) and a dynamic
discount factor, incorporating the termination probability. We deploy our method
on high-dimensional driving and MinAtar benchmarks. Additionally, we test
our approach on human data in a driving setting. Our results demonstrate fast
convergence and significant improvement over various baseline approaches.

1 Introduction

The field of reinforcement learning (RL) involves an agent interacting with an environment, max-
imizing a cumulative reward [Puterman, 2014]. As RL becomes more instrumental in real-world
applications [Lazic et al., 2018, Kiran et al., 2021, Mandhane et al., 2022], exogenous inputs beyond
the prespecified reward pose a new challenge. Particularly, an external authority (e.g., a human
operator) may decide to terminate the agent’s operation when it detects undesirable behavior. In this
work, we generalize the basic RL framework to accommodate such external feedback.

We propose a generalization of the standard Markov Decision Process (MDP), in which external
termination can occur due to a non-Markovian observer. When terminated, the agent stops interacting
with the environment and cannot collect additional rewards. This setup describes various real-world
scenarios, including: passengers in autonomous vehicles [Le Vine et al., 2015, Zhu et al., 2020],
users in recommender systems [Wang et al., 2009], employees terminating their contracts (churn
management) [Sisodia et al., 2017], and operators in factories; particularly, datacenter cooling systems,
or other safety-critical systems, which require constant monitoring and rare, though critical, human
takeovers [Modares et al., 2015]. In these tasks, human preferences, incentives, and constraints play
a central role, and designing a reward function to capture them may be highly complex. Instead, we
propose to let the agent itself learn these latent human utilities by leveraging the termination events.

We introduce the Termination Markov Decision Process (TerMDP), depicted in Figure 1. We consider
a terminator, observing the agent, which aggregates penalties w.r.t. a predetermined, state-action-
dependent, yet unknown, cost function. As the agent progresses, unfavorable states accumulate costs
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Figure 1: A block diagram of the TerMDP framework. An agent interacts with an environment while an
exogenous observer (i.e., terminator) can choose to terminate the agent based on previous interactions. If the
agent is terminated, it transitions to a sink state where a reward of 0 is given until the end of the episode.

that gradually increase the terminator’s inclination to stop the agent and end the current episode.
Receiving merely the sparse termination signals, the agent must learn to behave in the environment,
adhering to the terminator’s preferences while maximizing reward.

Our contributions are as follows. (1) We introduce a novel history-dependent termination model, a
natural extension of the MDP framework which incorporates non-trivial termination (Section 2). (2)
We learn the unknown costs from the implicit termination feedback (Section 3), and provide local
guarantees w.r.t. every visited state. We leverage our results to construct a tractable algorithm and
provide regret guarantees. (3) Building upon our theoretical results, we devise a practical approach
that combines optimism with a cost-dependent discount factor, which we test on MinAtar [Young
and Tian, 2019] and a new driving benchmark. (4) We demonstrate the efficiency of our method
on these benchmarks as well as on human-collected termination data (Section 5). Our results show
significant improvement over other candidate solutions, which involve direct termination penalties
and history-dependent approaches. We also introduce a new task for RL – a driving simulation game
which can be easily deployed on mobile phones, consoles, and PC 4.

2 Termination Markov Decision Process

We begin by presenting the termination framework and the notation used throughout the paper.
Informally, we model the termination problem using a logistic model of past “bad behaviors". We
use an unobserved state-action-dependent cost function to capture these external preferences. As the
overall cost increases throughout time, so does the probability of termination.

For a positive integer n, we denote [n] = {1, . . . , n}. We define the Termination Markov Decision
Process (TerMDP) by the tupleMT = (S,A, P,R,H, c), where S andA are state and action spaces
with cardinality S and A, respectively, and H ∈ N is the maximal horizon. We consider the following
protocol, which proceeds in discrete episodes k = 1, 2, . . . ,K. At the beginning of each episode k,
an agent is initialized at state sk1 ∈ S . At every time step h of episode k, the agent is at state skh ∈ S ,
takes an action akh ∈ A and receives a random reward Rk

h ∈ [0, 1] generated from a fixed distribution
with mean rh(s

k
h, a

k
h). A terminator overseeing the agent utilizes a cost function c : [H]×S×A 7→ R

that is unobserved and unknown to the agent. At time step h, the episode terminates with probability

ρkh(c) = ρ

(
h∑

t=1

ct(s
k
t , a

k
t )− b

)
,

where ρ(x) = (1 + exp(−x))−1 is the logistic function and b ∈ R is a bias term which determines
the termination probability when no costs are aggregated. Upon termination, the agent transitions
to a terminal state sterm which yields no reward, i.e., rh(sterm, a) = 0 for all h ∈ [H], a ∈ A. If no
termination occurs, the agent transitions to a next state skh+1 with probability Ph(s

k
h+1|skh, akh). Let

t∗k = min
{
h : skh = sterm

}
− 1 be the time step when the kth episode was terminated. Notice that

the termination probability is non-Markovian, as it depends on the entire trajectory history. We also

4Code for Backseat Driver and our method, TermPG, can be found at https://github.com/guytenn/Terminator.
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note that, when c ≡ 0, the TerMDP reduces to a finite horizon MDP with discount factor γ = ρ(−b).
Finally, we note that our model allows for negative costs. Indeed, these may capture satisfactory
behavior, diminishing the effect of previous mistakes, and decreasing the probability of termination.

We define a stochastic, history dependent policy πh(sh, τ1:h) which maps trajectories τ1:h =
(s1, a1, . . . , sh−1, ah−1) up to time step h (excluding) and the hth states sh to probability distributions
overA. Its value is defined by V π

h (s, τ)=E
[∑H

t=h rt(st, at)
∣∣∣ sh = s, τ1:h = τ, at ∼ πt(st, τ1:t)

]
.

With slight abuse of notation, we denote the value at the initial time step by V π
1 (s). An optimal policy

π∗ maximizes the value for all states and histories simultaneously 5; we denote its value function
by V ∗. We measure the performance of an agent by its regret; namely, the difference between the
cumulative value it achieves and the value of an optimal policy,

Reg(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1).

Notations. We denote the Euclidean norm by ∥·∥2 and the Mahalanobis norm induced by the
positive definite matrix A ≻ 0 by ∥x∥A =

√
xTAx. We denote by nk

h(s, a) the number of times
that a state action pair (s, a) was visited at the hth time step before the kth episode. Similarly, we
denote by X̂k

h(s, a) the empirical average of a random variable X (e.g., reward and transition kernel)
at (s, a) in the hth time step, based on all samples before the kth episode.

We assume there exists a known constant L that bounds the norm of the costs;
namely,

√∑
s,a

∑H
t=1 c

2
t (st, at) ≤ L, and denote the set of possible costs by C.

We also denote the maximal reciprocal derivative of the logistic function by κ =

maxh∈[H] max{(st,at)}h
t=1∈(S×A)h

(
ρ̇
(∑h

t=1 ct(st, at)− b
))−1

. This factor will be evident in our
theoretical analysis in the next section, as estimating the costs in regions of saturation of the sigmoid
is more difficult when the derivative nears zero. Finally, we use O(x) to refer to a quantity that
depends on x up to a poly-log expression in S,A,K,H,L, κ and log

(
1
δ

)
.

3 An Optimistic Approach to Overcoming Termination

Unlike the standard MDP setup, in the TerMDP model, the agent can potentially be terminated at
any time step. Consider the TerMDP model for which the costs are known. We can define a Markov
policy πh mapping augmented states S ×R to a probability distribution over actions, where here, the
state space is augmented by the accumulated costs

∑h−1
t=1 ct(st, at) . There exists a policy, which

does not use historical information, besides the accumulated costs, and achieves the value of the
optimal history-dependent policy (see Appendix C). Therefore, when solving for an optimal policy
(e.g., by planning), one can use the current accumulated cost instead of the full trajectory history.

This suggests a plausible approach for solving the TerMDP – first learn the cost function, and then
solve the state-augmented MDP for which the costs are known. This, in turn, leads to the following
question: can we learn the costs c from the termination signals? In what follows, we answer this
question affirmatively. We show that by using the termination structure, one can efficiently converge
to the true cost function locally – for every state and action. We provide uncertainty estimates for the
state-wise costs, which allow us to construct an efficient optimistic algorithm for solving the problem.

Learning the Costs. To learn the costs, we show that the agent can effectively gain information
about costs even in time steps where no termination occurs. Recall that at any time step h ∈
[H − 1], the agent acquires a sample from a Bernoulli random variable with parameter p = ρkh(c) =

ρ
(∑h

t=1 ct(s
k
t , a

k
t )− b

)
. Notably, a lack of termination, which occurs with probability 1− ρkh(c),

is also an informative signal of the unknown costs. We propose to leverage this information by
recognizing the costs c as parameters of a probabilistic model, maximizing their likelihood. We use

5Such a policy always exists; we can always augment the state space with the history, which would make the
environment Markovian and imply the existence of an optimal history-dependent policy [Puterman, 2014].

3



Algorithm 1 TermCRL: Termination Confidence Reinforcement Learning

1: require: λ > 0
2: for k = 1, . . . ,K do
3: for (h, s, a) ∈ [H]× S ×A do
4: r̄kh(s, a) = r̂kh(s, a) + brk(h, s, a) + bpk(h, s, a)

5: c̄kh(s, a) = ĉkh(s, a)− bck(h, s, a) // Appendix I.1
6: end for
7: πk ← TerMDP-Plan

(
MT

(
S,A, H, r̄k, P̂ k, c̄k

))
// Appendix H

8: Rollout a trajectory by acting πk

9: ĉk+1 ∈ argmaxc∈C Lk
λ(c) // Equation (1)

10: Update P̂ k+1(s, a), r̂k+1(s, a), nk+1(s, a) over rollout trajectory
11: end for

the regularized cross-entropy, defined for some λ > 0 by

Lk
λ(c) =

k∑
k′=1

H−1∑
h=1

[
1{h < t∗k′} log

(
1− ρkh(c)

)
+ 1{h = t∗k′} log

(
ρkh(c)

)]
− λ ∥c∥22 . (1)

By maximizing the cost likelihood in Equation (1), global guarantees of the cost can be achieved,
similar to previous work on logistic bandits [Zhang et al., 2016, Abeille et al., 2021]. Particularly,
denoting by ĉk ∈ argmaxLk

λ(c) the maximum likelihood estimates of the costs, it can be shown that
for any history, a global upper bound on

∥∥ĉk − c
∥∥
Σk

can be obtained, where the history-dependent
design matrix Σk captures the empirical correlations of visitation frequencies (see Appendix K for
details). Unfortunately, using

∥∥ĉk − c
∥∥
Σk

amounts to an intractable algorithm [Chatterji et al., 2021],
and thus to an undesirable result.

Instead, as terminations are sampled on every time step (i.e., non-terminations are informative signals
as well), we show we can obtain a local bound on the cost function c. Specifically, we show that the
error

∣∣ĉkh(s, a)− ch(s, a)
∣∣ diminishes with nk

h(s, a). The following result is a main contribution of
our work, and the crux of our regret guarantees later on (see Appendix K for proof).

Theorem 1 (Local Cost Estimation Confidence Bound). Let ĉk ∈ argmaxc∈C Lk
λ(c) be the maximum

likelihood estimate of the costs. Then, for any δ > 0, with probability of at least 1−δ, for all episodes
k ∈ [K], timesteps h ∈ [H − 1] and state-actions (s, a) ∈ S ×A, it holds that∣∣ĉkh(s, a)− ch(s, a)

∣∣ ≤ O((nk
h(s, a)

)−0.5√
κSAHL3 log

(
1

δ

(
1 +

kL

S2A2H

)))
.

We note the presence of κ in our upper bound, a common factor [Chatterji et al., 2021], which is
fundamental to our analysis, capturing the complexity of estimating the costs. Trajectories that saturate
the logistic function lead to more difficult credit assignment. Specifically, when the accumulated costs
are high, any additional penalty would only marginally change the termination probability, making
its estimation harder. A similar argument can be made when the termination probability is low.

We emphasize that in contrast to previous work on global reward feedback in RL [Chatterji et al.,
2021, Efroni et al., 2020b], which focused specifically on settings in which information is provided
only at the end of an episode, the TerMDP framework provides us with additional information
whenever no termination occurs, allowing us to achieve strong, local bounds of the unknown costs.
This observation is crucial for the design of a computationally tractable algorithm, as we will see
both in theory as well in our experiments later on.

3.1 Termination Confidence Reinforcement Learning

We are now ready to present our method for solving TerMDPs with unknown costs. Our pro-
posed approach, which we call Termination Confidence Reinforcement Learning (TermCRL), is
shown in Algorithm 1. Leveraging the local convergence guarantees of Theorem 1, we estimate
the costs by maximizing the likelihood in Equation (1). We compensate for uncertainty in the
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Algorithm 2 TermPG

1: require: window w, number of ensembles M , number of rollouts N , number of iterations K,
policy gradient algorithm ALG-PG

2: initialize: Bpos ← ∅,Bneg ← ∅, πθ ← random initialization
3: for k = 1, . . . ,K do

4: Rollout N trajectories using πθ,R =
{
si1, a

i
1, r

i
1, . . . , s

i
t∗i
, ait∗i , r

i
t∗i

}N

i=1
.

5: for i = 1, . . . , N do

6: Add t∗i − 1 negative examples
(
smax{1,l−w+1}, amax{1,l−w+1}, . . . , sl, al

)t∗−1

l=1
to Bneg.

7: Add one positive example
(
smax{1,t∗−w+1}, at∗−max{1,t∗−w+1}, . . . , st∗ , at∗

)
.

8: end for
9: Train bootstrap ensemble {cϕm}

M
m=1 using binary cross entropy over data Bneg,Bpos.

10: Augment states inR by sil ← sil ∪
∑min{w,l}

j=1 minm cϕm
(sil−j , a

i
l−j).

11: Update policy πθ ← ALG-PG(R) with dynamic discount (see Section 4.2).
12: end for

reward, transitions, and costs by incorporating optimism. We define bonuses for the reward, tran-
sition, and cost function by brk(h, s, a) = O

(√
log(1/δ)

nk
h(s,a)∨1

)
, bpk(h, s, a) = O

(√
SH2 log(1/δ)

nk
h(s,a)∨1

)
, and

bck(h, s, a) = O
(√

κSAHL3

nk
h(s,a)∨1

log
(
1
δ

))
for some δ > 0 (see Appendix I.1 for explicit definitions).

We add the reward and transition bonuses to the estimated reward (line 4), while the optimistic cost
bonus is applied directly to the estimated costs (line 5). Then, a planner (line 7) solves the optimistic
MDP for which the costs are known and are given by their optimistic counterparts. We refer the reader
to Appendix H for further discussion on planning in TerMDPs. The following theorem provides
regret guarantees for Algorithm 1. Its proof is given in Appendix J and relies on Theorem 1 and the
analysis of UCRL [Auer et al., 2008, Efroni et al., 2019].
Theorem 2. [Regret of TermCRL] With probability at least 1− δ, the regret of Algorithm 1 is

Reg(K) ≤ O

(√
κS2A2H8.5L3K log3

(
SAHK

δ

))
.

Compared to the standard regret of UCRL [Auer et al., 2008], an additional
√
κAH4L3 multiplicative

factor is evident in our result, which is due to the convergence rates of the costs in Theorem 1.
Motivated by our theoretical results, in what follows we propose a practical approach, inspired by
Algorithm 1, which utilizes local cost confidence intervals in a deep RL framework.

4 Termination Policy Gradient

Following the theoretical analysis in the previous section, we propose a practical approach for solving
TerMDPs. Particularly, in this section, we devise a policy gradient method that accounts for the
unknown costs leading to termination. We assume a stationary setup for which the transitions, rewards,
costs, and policy are time-homogeneous. Our approach consists of three key elements: learning the
costs, leveraging uncertainty estimates over costs, and constructing efficient value estimates through
a dynamic cost-dependent discount factor.

Algorithm 2 describes the Termination Policy Gradient (TermPG) method, which trains an ensemble
of cost networks (to estimate the costs and uncertainty) over rollouts in a policy gradient framework.
We represent our policy and cost networks using neural networks with parameters θ, {ϕm}Mm=1. At
every iteration, the agent rolls out N trajectories in the environment using a parametric policy, πθ.
The rollouts are split into subtrajectories which are labeled w.r.t. the termination signal, where
positive labels are used for examples that end with termination. Particularly, we split the rollouts
into “windows" (i.e., subtrajectories of length w), where a rollout of length t∗, which ends with
termination, is split into t∗ − 1 negative examples

(
smax{1,l−w+1}, amax{1,l−w+1}, . . . , sl, al

)t∗−1

l=1
,
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Figure 2: Block diagram of the cost training procedure. Rollouts are split into subtrajectories, labeled according
to whether they end in termination. Given the dataset of labeled subtrajectories, an ensemble of M cost networks
is trained end-to-end using cross-entropy with bootstrap samples (all time steps share the same ensemble).

and one positive example
(
smax{1,t∗−w+1}, at∗−max{1,t∗−w+1}, . . . , st∗ , at∗

)
. Similarly, a rollout

of length H which does not end with termination contains H negative examples. We note that by
taking finite windows, we assume the terminator “forgets" accumulated costs that are not recent -
a generalization of the theoretical TerMDP model in Section 2, for which w = H . In Section 5,
we provide experiments of misspecification of the true underlying window width, where this model
assumption does not hold.

4.1 Learning the Costs

Having collected a dataset of positive and negative examples, we train a logistic regression model
consisting of an ensemble of M cost networks {cϕm}

M
m=1, shared across timesteps, as depicted in

Figure 2. Specifically, for an example
(
smax{1,l−w+1}, amax{1,l−w+1}, . . . , sl, al

)
we estimate the

termination probability by ρ
(∑min{w,l}

j=1 cϕm(sl−j+1, al−j+1)− bm

)
, where {bm}Mm=1 are learnable

bias parameters. The parameters are then learned end-to-end using the cross entropy loss. We use
the bootstrap method [Bickel and Freedman, 1981, Chua et al., 2018] over the ensemble of cost
networks. This ensemble is later used in Algorithm 2 to produce optimistic estimates of the costs.
Particularly, the agent policy πθ uses the current state augmented by the optimistic cummulative
predicted cost, i.e., saug

l = (sl, Coptimistic), where Coptimistic =
∑min{w,l}

j=1 minm cϕm
(sl−j+1, al−j+1).

Finally, the agent is trained with the augmented states using a policy gradient algorithm ALG-PG (e.g.,
PPO [Schulman et al., 2017], IMPALA [Espeholt et al., 2018]).

4.2 Optimistic Dynamic Discount Factor

While augmenting the state with the optimistic accumulated costs is sufficient for obtaining optimality,
we propose to further leverage these estimates more explicitly – noticing that the finite horizon
objective we are solving can be cast to a discounted problem. Particularly, it is well known that the
discount factor γ ∈ (0, 1) can be equivalently formulated as the probability of “staying alive" (see
the discounted MDP framework, Puterman [2014]). Similarly, by augmenting the state s with the
accumulated cost Ch =

∑h
t=1 c(st, at), we view the probability 1 − ρ(Ch) as a state-dependent

discount factor, capturing the probability of an agent in a TerMDP to not be terminated.

We define a dynamic, cost-dependent discount factor for value estimation. We use the state-action
value function Q(s, a, C) over the augmented states, defined for any s, a, C by

Qπ(s, a, C) = Eπ

[
H∑
t=1

(
t∏

h=1

γh

)
r(st, at)

∣∣∣∣∣ s1 = s, a1 = a,C1 = C

]
,
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Figure 3: Mean reward with std. over five seeds of “Backseat Driver”. Left: coin avoidance; right: human
termination. Variants with reward shaping (RS, orange and brown) penalize the agent with a constant value
upon termination. The recurrent PG variant (green) uses a history-dependent policy without learning costs. The
TermPG+Penalty variant (purple) penalizes the reward at every time step using the estimated costs.

where γh = 1− ρ
(
C +

∑h−1
i=2 c(si, ai)− b

)
. This yields the Termination Bellman Equations (see

Appendix D for derivation)

Qπ(s, a, C) = r(s, a) + (1− ρ(C))Es′∼P (·|s,a),a′∼π(s′)[Q
π(s′, a′, C + c(s′, a′))].

To incorporate uncertainty in the estimated costs, we use the optimistic accumulated costs
Coptimistic =

∑min{w,l}
j=1 minm cϕm

(sl−j+1, al−j+1). Then, the discount factor becomes
γ(Coptimistic) = 1− ρ(Coptimistic − b). Assuming that, w.h.p., optimistic costs are smaller than the true
costs, the discount factor decreases as the agent exploits previously visited states.

The dynamic discount factor allows us to obtain a more accurate value estimator. In particular, we
leverage the optimistic cost-dependent discount factor γ(Coptimistic) in our value estimation procedure,
using Generalized Advantage Estimation (GAE, Schulman et al. [2015]). As we will show in the
next section, using the optimistic discount factor significantly improves overall performance.

5 Experiments

In this section we evaluate the strength of our approach, comparing it to several baselines, including:
(1) PG (naive): The standard policy gradient without additional assumptions, which ignores termi-
nation. (2) Recurrent PG: The standard policy gradient with a history-dependent recurrent policy
(without cost estimation or dynamic discount factor). As the history is a sufficient statistic of the
costs, the optimal policy is realizable. (3) PG with Reward Shaping (RS): We penalize the reward
upon termination by a constant value, i.e., r(s, a)− p1{sterm}, for some p > 0. This approach can
be applied to any variant of Algorithm 2 or the methods listed above. (4) TermPG: Described in
Algorithm 2. We additionally implemented two variants of TermPG, including: (5) TermPG with
Reward Shaping: We penalize the reward with a constant value upon termination. (6) TermPG
with Cost Penalty: We penalize the reward at every time step by the optimistic cost estimator, i.e.,
r − αCoptimistic for some α > 0. All TermPG variants used an ensemble of three cost networks, and a
dynamic cost-dependent discount factor, as described in Section 4.2. We report mean and std. of the
total reward (without penalties) for all our experiments.

Backseat Driver (BDr). We simulated a driving application, using MLAgents [Juliani et al., 2018],
by developing a new driving benchmark, “Backseat Driver" (depicted in Figure 4), where we tested
both synthetic and human terminations. The game consists of a five lane never-ending road, with
randomly instantiating vehicles and coins. The agent can switch lanes and is rewarded for overtaking
vehicles. In our experiments, states were represented as top view images containing the position of
the agent, nearby cars, and coins with four stacked frames. We used a finite window of length 120 for
termination (30 agent decision steps), mimicking a passenger forgetting mistakes of the past.

BDr Experiment 1: Coin Avoidance. In the first experiment of Backseat Driver, coins are considered
as objects the driver must avoid. The coins signify unknown preferences of the passenger, which are
not explicitly provided to the agent. As the agent collects coins, a penalty is accumulated, and the
agent is terminated probabilistically according to the logistic cost model in Section 2. We emphasize
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Figure 5: Results for MinAtar benchmarks. All runs were averaged over five seeds. Comparison of best
performing TermPG variant to best performing PG variant (relative improvement percentage): 80% in Space
Invaders, 150% in Seaquest, 410% in Breakout, and 90% in Asterix.

that, while the coins are visible to the agent (i.e., part of the agent’s state), the agent only receives
feedback from collecting coins through implicit terminations.

Results for Backseat Driver with coin-avoidance termination are depicted in Figure 3. We compared
TermPG (pink) and its two variants (brown, purple) to the PG (blue), recurrent PG (green), and
reward shaping (orange) methods described above. Our results demonstrate that TermPG significantly
outperforms the history-based and penalty-based baselines. We found TermPG (pink) to perform
significantly better, doubling the reward of the best PG variant. All TermPG variants converged
quickly to a good solution, suggesting fast convergence of the costs (see Appendix F).

Figure 4: Backseat Driver

BDr Experiment 2: Human Termination. To comple-
ment our results, we evaluated human termination on Back-
seat Driver. For this, we generated data of termination
sequences from agents of varying quality (ranging from
random to expert performance). We asked five human
supervisors to label subsequences of this data by termi-
nating the agent in situations of “continual discomfort".
This guideline was kept ambiguous to allow for diverse
termination signals. The final dataset consisted of 512
termination examples. We then trained a model to pre-
dict human termination and implemented it into Backseat
Driver to simulate termination. We refer the reader to
Appendix E for specific implementation details. Figure 3 shows results for human termination in
Backseat Driver. As before, a significant performance increase was evident in our experiments.
Additionally, we found that using a cost penalty (purple) or termination penalty (brown) for TermPG
did not greatly affect performance.

MinAtar. We further compared our method to the PG, recurrent PG, and reward shaping methods,
on MinAtar [Young and Tian, 2019]. For each environment, we defined cost functions that do not
necessarily align with the pre-specified reward, to mimic uncanny behavior that humans are expected
to dislike. For example, in Breakout, the agent was penalized whenever the paddle remained in
specific regions (e.g., sides of the screen), whereas in Space Invaders, the agent was penalized for

8



Table 1: Summary of results (top) and ablations for TermPG (bottom). Standard deviation optimism did not
have significant impact on performance. Removing optimism or the dynamic discount factor had negative impact
on performance. TermPG was found to be robust to model misspecifcations of the accumulated cost window.

Backseat Driver MinAtar
Experiment Coin Avoid. Human Space Inv. Seaquest Breakout Asterix

PG 5.3 ± 0.8 4.9 ± 1.5 5.2 ± 1.8 0.6 ± 0.4 1.4 ± 2.8 0.8 ± 0.3
Recurrent PG 3.4 ± 0.21 5 ± 1.8 2.8 ± 0.05 0.1 ± 0.3 0.7 ± 0.6 0.7 ± 0.2

PG + RS 5.9 ± 1.4 7.4 ± 1.7 7.6 ± 2.3 0.4 ± 0.2 0.5 ± 0.03 0.9 ± 0.2
TermPG (ours) 8.7 ± 1.4 8.3 ± 1.3 9.7 ± 1.1 1.4 ± 0.8 8.2 ± 0.3 1 ± 0.2

TermPG + RS (ours) 8.4 ± 1.3 7.7 ± 0.3 11.8 ± 0.8 0.3 ± 0.6 5.1 ± 1 0.8 ± 0.1
TermPG + Penalty (ours) 6 ± 0.8 11.8 ± 1.5 7.7 ± 1.4 2.4 ± 1 2.3 ± 2.3 1.7 ± 0.1

Ablation Test Coin Avoid. Human Space Inv. Seaquest Breakout Asterix
Optimism with Ensemble Std. 7.6 ± 2.1 7.5 ± 1.1 2.8 ± 0.02 0.9 ± 0.6 10.9 ± 1 1 ± 0.1

No Optimism 7.8 ± 1.3 8.8 ± 1.2 5.2 ± 1.6 0.7 ± 0.3 1.3 ± 0.7 1 ± 0.1
No Dynamic Discount 6.9 ± 0.6 5.9 ± 0.7 4.4 ± 1.8 0.4 ± 0.1 0.5 ± 0.02 0.8 ± 0.1

×0.5 Window Misspecification 7.2 ± 1.1 7.2 ± 0.5 9.7 ± 3.1 2.4 ± 0.4 7.9 ± 0.8 0.8 ± 0.1
×2 Window Misspecification 8.3 ± 0.1 8.4 ± 0.2 11.1 ± 3 2.2 ± 0.2 10.3 ± 0.8 1 ± 0.1

“near misses" of enemy bullets. We refer the reader to Appendix E for specific details of the different
termination cost functions.

Figure 5 depicts results on MinAtar. As with Backseat Driver, TermPG lead to significant improve-
ment, often achieving a magnitude order as much reward as Recurrent PG. We found that adding a
termination penalty and cost penalty produced mixed results, with them being sometimes useful (e.g.,
Space Invaders, Sequest, Asterix), yet other times harmful to performance (e.g., Breakout). Therefore,
we propose to fine-tune these penalties in Algorithm 2. Finally, we note that training TermPG was, on
average, 67% slower than PG, on the same machine. Nevertheless, though TermPG was somewhat
more computationally expensive, it showed a significant increase in overall performance. A summary
of all of our results is presented in Table 1 (top).

Ablation Studies. We present various ablations for TermPG in Table 1 (bottom). First, we tested
the effect replacing the type of cost optimism in TermPG. In Section 4, cost optimism was defined
using the minimum of the cost ensemble, i.e., min{cϕm

}. Instead, we replaced the cost optimism
to Coptimistic = mean{cϕm

} − αstd{cϕm
}, testing different values of α. Surprisingly, this change

mostly decreased performance, except for Breakout, where it performed significantly better. Other
ablations included removing optimism altogether (i.e., only using the mean of the ensemble), and
removing the dynamic discount factor. In both cases we found a significant decrease in performance,
suggesting that both elements are essential for TermPG to work properly and utilize the estimator of
the unknown costs. Finally, we tested misspecifications of our model by learning with windows that
were different from the environment’s real cost accumulation window. In both cases, TermPG was
suprisingly robust to window misspecification, as performance remained almost unaffected by it.

6 Related Work

Our setup can be linked to various fields, as listed below.

Constrained MDPs. Perhaps the most straightforward motivations for external termination stems
from constraint violation [Chow et al., 2018, Efroni et al., 2020a, HasanzadeZonuzy et al., 2020],
where strict or soft constraints are introduced to the agent, who must learn to satisfy them. In these
setups, which are often motivated by safety [Garcıa and Fernández, 2015], the constraints are usually
known. In contrast, in this work, the costs are unknown and only implicit termination is provided.

Reward Design. Engineering a good reward function is a hard task, for which frequent design
choices may drastically affect performance [Oh et al., 2021]. Moreover, for tasks where humans are
involved, it is rarely clear how to engineer a reward, as human preferences are not necessarily known,
and humans are non-Markovian by nature [Clarke et al., 2013, Christiano et al., 2017]. Termination
can thus be viewed as an efficient mechanism to elicit human input, allowing us to implicitly interpret
human preferences and utility more robustly than trying to specify a reward.

Global Feedback in RL. Recent work considered once-per-trajectory reward feedback in RL,
observing either the cumulative rewards at the end of an episode [Efroni et al., 2020b, Cohen et al.,
2021] or a logistic function of trajectory-based features Chatterji et al. [2021]. While these works are
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based on a similar solution mechanism, our work concentrates on a new framework, which accounts
for non-Markovian termination. Additionally, we provide per-state concentration guarantees of the
unknown cost function, compared to global concentration bounds in previous work [Abbasi-Yadkori
et al., 2011, Zhang et al., 2016, Qi et al., 2018, Abeille et al., 2021]. Using our local guarantees, we
are able to construct a scalable policy gradient solution, with significant improvement over recurrent
and reward shaping based approaches.

Preference-based RL. In contrast to traditional reinforcement learning, preference-based rein-
forcement learning (PbRL) relies on subjective opinions rather than numerical rewards. In PbRL,
preferences are captured through probabilistic rankings of trajectories [Wirth et al., 2016, 2017, Xu
et al., 2020]. Similar to our work, Christiano et al. [2017] use a regression model to learn a reward
function that could account for the preference feedback. Our work considers a different setting in
which human feedback is provided through termination, where termination and reward may not align.

7 Discussion

This paper formulated a new model to account for history-dependent exogenous termination in
reinforcement learning. We defined the TerMDP framework and proposed a theoretically-guaranteed
solution, as well as a practical policy-gradient approach. Our results showed significant improvement
of our approach over various baselines. We stress that while it may seem as if the agent has two
potentially conflicting goals—avoiding termination and maximizing reward—they are, in fact, aligned.
The long-term consequences of actions need to account for longer survival which, in turn, allows
for more reward collection. In what follows, we discuss κ, as factored in our regret bounds, as well
possible limitations of our work.

The Role of κ As shown in Theorem 2, κ plays a significant role in the regret bound of Algorithm 1.
This linear dependence is induced from the confidence bounds of Theorem 1. Informally, κ is
negligible whenever the costs c and bias b are “well behaved". Suppose

∑h
t=1 ct(s

k
t , a

k
t )− b≫ 0. In

this case, κ would be large and termination would mostly occur after the first step. As such, estimation
of the costs would be hard (see Chatterji et al. [2021]). Alternatively, suppose

∑h
t=1 ct(s

k
t , a

k
t )− b≪

0. In this case, κ would also be large. Here, credit assignment would make the cost estimation
problem harder, as trajectories would span longer horizons. It is unclear, as to the writing of this
work, if other solutions to TerMDPs could bring about stronger regret guarantees that significantly
reduce their dependence on κ. We note that lower bounds, which include κ, have previously been
established for the estimation problem (see Abeille et al. [2021], Faury et al. [2020], Jun et al. [2021]).
Nevertheless, when searching for a policy which maximizes reward, it is unclear if estimation of the
costs is indeed necessary for every state. We leave this direction for future work.

Limitations and Negative Societal Impact A primary limitation of our work involves the linear
dependence of the logistic termination model. In some settings, it might be hard to capture true
human preferences and behaviors using a linear model. Nevertheless, when measured across the full
trajectory, our empirical findings show that this model is highly expressive, as we demonstrated on
real human termination data (Section 5). Additionally, we note that work in inverse RL [Arora and
Doshi, 2021] also assumes such linear dependence of human decisions w.r.t. reward. Future work can
consider more involved hypothesis classes, building upon our work to identify the optimal tradeoff
between expressivity and convergence rate.

Finally, we note a possible negative societal impact of our work. Termination is strongly motivated
by humans interacting with the agent. This may be harmful if not carefully controlled, as learning
incorrect or biased preferences may, in turn, result in unfavorable consequences, or if humans engage
in adversarial behavior in order to mislead an agent. Our work discusses initial research in this
domain. We encourage caution in real-world applications, carefully considering the possible effects
of model errors, particularly in applications that affect humans.
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