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Abstract

Vision Transformers (ViT) become widely-adopted architectures for various vision
tasks. Masked auto-encoding [2, 1, 28, 55] for feature pretraining and multi-
scale hybrid convolution-transformer architectures [12, 21, 49, 34, 57] can further
unleash the potentials of ViT, leading to state-of-the-art performances on image
classification, detection and semantic segmentation. In this paper, our MCMAE
framework demonstrates that multi-scale hybrid convolution-transformer can learn
more discriminative representations via the mask auto-encoding scheme. However,
directly using the original masking strategy leads to the heavy computational cost
and pretraining-finetuning discrepancy. To tackle the issue, we adopt the masked
convolution to prevent information leakage in the convolution blocks. A simple
block-wise masking strategy is proposed to ensure computational efficiency. We
also propose to more directly supervise the multi-scale features of the encoder
to boost multi-scale features. MCMAE-Base improves ImageNet-1K finetuning
accuracy by 1.4% compared with MAE-Base. On object detection, MCMAE-Base
finetuned for only 25 epochs surpasses MAE-Base fined-tuned for 100 epochs
by 2.9% AP box and 2.2% APmask respectively. Code and pretrained models are
available at https://github.com/Alpha-VL/ConvMAE.

1 Introduction
Self-supervised learning frameworks, such as DINO [6], MOCO-V3 [10], MAE [28], unleash
the potential of Vision Transformers (ViT) and achieve high performance on various downstream
vision tasks [33, 30, 58]. Among them, Mask Autoencoders (MAE) [28] demonstrate superior
learning ability and scalability. Motivated by BERT [15, 46, 4] in natural language processing,
MAE utilizes an asymmetric encoder and decoder architecture, in which masked tokens of the
encoder are reconstructed by the decoder. Experiments show that MAE can learn discriminative
and scalable representations from ImageNet-1K [14] without relying on large-scale datasets, such as
ImageNet-22K.

Local inductive bias [49, 21, 34, 12, 19, 57] and hierarchical representations [42, 53] are explored
for boosting the performance of ViT. The combination of local convolution and global transformer
operations leads to clear improvements on image classification [33], object detection [30], and
semantic segmentation [58]. In contrast to MAE [28], well-performing multi-scale backbones built
upon local and global operations are mainly trained in supervised manner. A natural question is
whether multi-scale backbone with local and global operations, which show promising performance on
supervised learning can be exploited to enhance the masked auto-encoding paradigm [28, 15, 2, 65].

In this paper, a simple and effective self-supervised learning framework, dubbed as MCMAE, is
proposed to train scalable representations by introducing hybrid convolution-transformer architectures
and masked convolution into the masked auto-encoders. Although the modifications to the original
MAE are minimal, MCMAE shows great success on pretraining visual representations for boosting
the performances of various tasks.
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Different from MAE [28], the encoder of MCMAE progressively abstracts the input image into
multi-scale token embedding, while the decoder reconstructs the pixels corresponding to masked
tokens. For high-resolution token embedding at early stages, convolutions blocks are adopted to
encode local content. For low-resolution token embedding at late stage, transformer blocks are used
to aggregate global context. The encoder therefore obtains both local and global FOV at different
stages and generates discriminative multi-scale features. Note that the MCMAE encoder is partly
motivated by the strong hybrid convolution and transformer backbones, including Co-AtNet [12],
Early Convolution [57], Container [21] and Uniformer [34]. However, previous hybrid convolution-
transformer networks were either not explored for masked auto-encoding [21, 34, 20] or show
very similar performance to MAE [52, 59]. Instead of designing novel architectures, we focus on
making basic hybrid convolution-transformer architectures work for mask auto-encoding and conduct
extensive experiments to demonstrate its effectiveness on various downstream tasks.

The efficient and effective training of MCMAE is enabled by a block-wise masking strategy with
masked convolution [60, 25, 31, 48, 24, 40]. The masking strategy adopted in current mask-
autoencoding frameworks, such as BEiT [2], MAE [28], SimMIM [59], cannot be naively used
for MCMAE as all tokens need to be kept in the later transformer stages. This leads to unaffordable
computation cost for pretraining large and huge models, losing MAE’s efficiency advantage of
omitting masked tokens in transformer encoder. In addition, directly pretraining with the convolution-
transformer encoder causes pretraing-finetuning discrepancy as only visible tokens are processed
during finetuning stages.

To tackle the issues, we focus on designing hybrid convolution-transformer architectures suitable for
mask auto-encoding. Specifically, our MCMAE adopts a block-wise masking strategy to first obtain a
mask for the late stage in transformer and then progressively upsamples the mask to larger resolutions
in early convolutional stages. In this way, tokens processed by late stages can be completely separated
into masked tokens and visible tokens and inherit the computation efficiency of MAE. To prevent
information leakage, the convolution blocks at early stages are equipped with masked convolutions,
which avoid mixing up features of masked and visible regions in late stages to ensue the training
effectiveness. Masked convolution has been well explored in sparse feature extraction [25, 48, 24, 60]
and image inpainting [40]. It can be naturally integrated into the hybrid convolution-transformer
architecture to enable masked auto-encoding.

Our MCMAE can naturally provide multi-scale features for object detection and semantic segmenta-
tion, which are required by modern detection [30] and segmentation frameworks [58]. Multi-scale
features from the pretrained MCMAE can significantly improve the performances of object detection
and semantic segmentation compared with MAE. MCMAE with masked-based autoencoding can
even surpass the fully-supervised pretraining of Swin and MViT [42, 36].

In summary, our contributions can be summarized below: (1) We present the strong and efficient self-
supervised framework MCMAE, which is easy to implement but show outstanding performances on
different tasks. (2) The proposed MCMAE naturally generates hierarchical representations and exhibit
promising performances on object detection. (3) MCMAE-Base improves the ImageNet finetuning
accuracy by 1.4% compared with MAE-Base. On COCO 2017 with Mask-RCNN, MCMAE-Base
achieves 53.2% AP box and 47.1% APmask with a 25-epoch training schedule while MAE-Base
attains 50.3% AP box and 44.9% APmask with 100 training epochs. On ADE20K with UperNet,
MCMAE-Base surpasses MAE-Base by 3.6 mIoU (48.1% vs. 51.7%).

2 Approach
2.1 A Brief Revisit of MAE
Masked Autoencoders (MAE) [28] is a self-supervised method for pretraining ViT by reconstructing
masked RGB patches from visible patches. Although MAE has a simple design, it has been proven
to be a strong and scalable pretraining framework for learning visual presentations. MAE consists
of transformer-based encoder and decoder, where only visible patches are fed into the encoder
and learnable mask tokens are processed by the decoder for image reconstruction to learn visual
representations. As the encoder only needs to process a small portion of visible tokens, it alleviates
the scalability problem to pretrain large vision models.

2.2 MCMAE
MCMAE is a simple and effective derivative of the popular MAE [28] with minimal but effective
modifications on the encoder design and the masking strategy. The goal of MCMAE is to learn
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Figure 1: The pipeline of our proposed MCMAE which consists of a hybrid convolution-transformer
encoder, block-wise masking strategy with masked convolution and multi-scale decoder.

discriminative multi-scale visual representations and to prevent pretraining-�netuning discrepancy
when applies MAE [28] on convolution-transformer networks.

Directly applying the original masking strategy on the feature maps of the convolution-transformer
encoder would make transformer layers keeping all tokens during the pretraining, jeopardizing the
training ef�ciency. We introduce a hierarchical masking strategy coupled with masked convolution for
the convolution stages to ensure only a small number of visible tokens are input into the transformer
layers. The overall pipeline of MCMAE is shown in Figure 1.

The Hybrid Convolution-transformer Encoder. There are previous strong hybrid convolution-
transformer architectures, such as Co-AtNet [12], Container [21], BoTNet [49], Uniformer [34] and
Early Conv [57]. Without using such complicated architectures, we show that a simple design of
multi-scale convolution-transformer encoder can already learn powerful representations for various
downstream tasks. As shown in Figure 1, our encoder consists of 3 stages with output spatial
resolutions ofH4 � W

4 , H
8 � W

8 , H
16 � W

16 , respectively, whereH � W is the input image resolution.
The �rst two convolutional stages use convolution blocks to transform the inputs to token embeddings
E1 2 R

H
4 � W

4 � C1 andE2 2 R
H
8 � W

8 � C2 . Our convolution blocks follow the design principle of the
transformer block by only replacing the self-attention operation with the5 � 5 depthwise convolution
The third transformer stage uses commonly used self-attention blocks to obtain token embeddings
E3 2 R

H
16 � W

16 � C3 . Between every stage, stride-2 convolutions are used to downsample the tokens
to half of its previous spatial resolution. The local convolutions in stages 1 and 2 have relatively
small �eld-of-view, the transformer blocks in stage 3 aggregate and fuse features from the coarse-
grained features and extend the �eld of view to the whole image. Different from other ViTs, such as
CPT [11], Container [21], Uniformer [34], CMT [26], Swin [42], which replace absolute position
embedding [42] with relative position embedding or zero-padded convolution at the inputs of the
�rst stage [11, 21, 34, 26], we �nd that adding absolute position embeddings to the inputs of the
transformer stage-3 leads to the optimal performance. The class token is also removed from our
encoder which shows limited in�uence.

Block-wise Masking with Masked Convolutions. Mask auto-encoders, such as MAE [28] and
BEiT [2], adopt a random mask on the input tokens. However, the same strategy cannot be directly
applied to our MCMAE encoder. Uniformly masking stage-1 input tokens from theH

4 � W
4 feature

maps would cause all tokens of stage-3 to have partially visible information and requires keeping all
stage-3 tokens. Therefore, we propose to �rst generate the random mask to mask outp% (e.g., 75%)
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Figure 2: Overview of �netuning MCMAE for object detection and semantic segmentation. The
intermediate features of different stages serve as multi-scale inputs for an FPN [38] module.

of stage-3 input tokens and upsample the mask by 2 times and 4 times to obtain the corresponding
block-wise masks for masking stage-2 and stage-1 inputs, respectively. The corresponding masked
tokens in the three stages are dropped in the encoding process and are reconstructed by the decoder for
feature learning. In this way, MCMAE only needs to keep as few as 25% tokens in the time-consuming
transformer blocks for training and the ef�ciency of MCMAE is not compromised.

However, the5 � 5 depthwise convolutions in the �rst two stages naturally lead to receptive �elds
larger than the masked patches and cause information leakage when reconstructing masked tokens. To
avoid such information leakage and ensure the quality of pretraining, we adopt masked convolution
[25, 48] in the �rst two stages, so that the masked regions would never be involved in the encoding
process. The use of masked convolution is crucial to the superior performance of MCMAE and the
pretraining-testing discrepancy is prevented by removing partially masked tokens from stage.

The Multi-scale Decoder and Loss.The decoder of the original MAE [28] takes as input both visible
tokensEd from the encoder and the mask tokens [Mask], and transform them in stacked transformer
blocks for image reconstruction. Our MCMAE encoder obtains multi-scale featuresE1, E2, E3,
captures both �ne- and coarse-grained image information. To better supervise the pretraining of such
multi-grained representations, we downsampleE1 andE2 to the same size ofE3 with stride-4 and
stride-2 convolutions and fuse multi-grained tokens via a linear layer to obtain visible tokensEd ,

Ed = Linear(StrideConv( E1; 4) + StrideConv( E2; 2) + E3); (1)

whereStrideConv(�; k) represents stride-k convolution. The multi-scale decoder is illustrated in the
bottom-left part of Figure 1. The same losses from MAE [28] are used for reconstructing masked
image patches and only the reconstruction of masked patches are considered in the objective function.

2.3 MCMAE for Object Detection and Semantic Segmentation
After pretraining, the proposed MCMAE can naturally generate multi-scale feature maps, which can
be processed by existing object detection and semantic segmentation heads.

As shown in Figure 2, to �netune MCMAE for object detection, anE4 feature map of1=32 input
resolution is �rst obtained by2 � 2 max poolingE3. However, as the MCMAE stage-3 has 11 global
self-attention layers (in our MCMAE-base model) with excessive computational cost, we follow
Benchmarking ViT [37] to replace all but 1st, 4th, 7th, 11th global self-attention layers in stage-3
to shifted-window local self-attention layers [42] with alternatively shifted7 � 7 windows. The
modi�ed local self-attention layers are still initialized by the pretrained global self-attention layers. A
global relative position bias [2, 42, 28, 37] is shared between global transformer blocks. Similarly,
a local relative position bias [2, 42, 28, 37] is shared by local transformer blocks. In this way, the
heavy computational and GPU memory costs of the stage-3 are much mitigated. The multi-scale
featuresE1; E2; E3; E4 are then fed into the MaskRCNN [30] head for object detection. To �netune
MCMAE for semantic segmentation, its stage-3 architecture is kept as the images in segmentation
datasets have relatively smaller resolutions. The multi-scale features are feed into UperNet [58].
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