
A Additional Related Work

Figure 7: Connecting related work. This work helps
draw connections between prior work, filling in a miss-
ing link.

Our work is also related to unsupervised skill
discovery [1, 19, 27, 42, 52, 74, 110], in that the
algorithm learns multiple policies by interacting
in the environment without a reward function.
Both these skill learning algorithms and our con-
trastive algorithm optimize a lower bound on
mutual information. Indeed, prior work has dis-
cussed the close connection between mutual in-
formation and goal-conditioned RL [19, 127].
The key challenge in making this connection
is grounding the skills, so that each skill cor-
responds to a specific goal-conditioned policy.
While the skills can be grounded by manually-specifying the critic used for maximizing mutual
information [19], manually-specifying the critic for high-dimensional tasks (e.g., images) would be
challenging. Our work takes a different approach to grounding, one based on reasoning directly about
continuous probabilities. In the end, our method will learn skills that each corresponds to a specific
goal-conditioned policy and will be scalable to high-dimensional tasks.

Fig. 7 highlights some of the connections between related work. Prior work has thoroughly explained
how many representation learning methods correspond to a lower bound on mutual information [84,
99]. Prior work in RL has proposed unsupervised skill learning algorithms using similar mutual
information objectives [1, 27, 42], and more recent work has connected these unsupervised skills
learning algorithms to goal-reaching. The key contribution of this paper is to connect representation
learning to goal-conditioned RL.

B Proofs

B.1 Q-function are equivalent to the discounted state occupancy measure

This section proves Proposition 1. We start by recalling the definition of the discounted state
occupancy measure (Eq. 3):

p(st+ = sg) = (1− γ)

∞∑
t=0

γtp
π(·|·,sg)
t (st = sg). (8)

We first analyze the term for t = 0, and then analyze the term for t > 0. The probability of visiting a
state at time t = 0 is just the initial state distribution:

p
π(·|·,sg)
0 (st = sg) = p0(s0 = sg).

We can now rewrite Eq. 8 as

p(st+ = sg) = (1− γ)p0(s0 = sg) + (1− γ)

∞∑
t=1

γtp
π(·|·,sg)
t (st = sg). (9)

For t > 1, we can write the term as follows:

p
π(·|·,sg)
t (st = sg) = E

p
π(·|·,sg)

t−1 (st−1)π(at−1|st−1,sg)
[pt(st = sg | st−1, at−1)]

= E
p
π(·|·,sg)

t−1 (st−1),π(at−1|st−1,sg)
[p(st = sg | st−1, at−1)]

= Eτ∼π(τ |st) [p(st = sg | st−1, at−1)] .

In the second line, we have used the Markov property to say that the probability of visiting sg at time
t depends only on dynamics, p(st+1 | st, at). In the third line, we have rewritten the expectation over
trajectories, using st−1 and at−1 and the t− 1th state-action pair in the trajectory. Substituting this

19

into Eq. 9, we get

p(st+ = sg) = (1− γ)p0(s0 = sg) + (1− γ)

∞∑
t=1

γtEτ∼π(τ |sg) [p(st = sg | st−1, at−1)]

= (1− γ)p0(s0 = sg) + (1− γ)

∞∑
t=0

γtEτ∼π(τ |sg) [p(st+1 = sg | st, at)]

= (1− γ)p0(s0 = sg) + (1− γ)Eτ∼π(τ |sg)

[∞∑
t=0

γtp(st+1 = sg | st, at)

]

= Eτ∼π(τ |sg)

[
(1− γ)p0(s0 = sg) + (1− γ)

∞∑
t=0

γtp(st+1 = sg | st, at)

]

= Eτ∼π(τ |sg)

[∞∑
t=0

γtrg(st, at)

]
.

On the second line, we have changed the bounds of the summation to start at 0, and changed the
terms inside the summation accordingly. On the third line, we applied linearity of expectation to
move the summation inside the expectation. On the fourth line, we applied linearity of expectation
again to move the term for t = 0 inside the expectation. Finally, we substituted the definition of
rg(s, a) to obtain the desired result.

B.2 Contrastive RL is Policy Improvement

This section proves the Contrastive RL (NCE) corresponds to policy improvement, yielding policies
with higher rewards at each iteration (Lemma 4.2).

Proof. The main idea of the proof is to relate the Q-values for the average policy to the Q-values for
the goal-conditioned policy. We do this by employing the result from [31, Appendix C.2], where ϵ is
the parameter for filtered relabeling (Sec. 4.5):∣∣∣Qβ(·mid·,e)(s, a, e)−Qβ(·|·,e

′)(s, a, e)
∣∣∣ ≤ ϵ.

This result means that we are doing policy improvement with approximate Q-values. Then, [10,
Lemma 6.1] tells that doing policy improvement using approximate Q-values gives us approximate
policy improvement:

Eπ′(τ |sg)

[
∞∑
t=0

γtrsg (st, at)

]
≥ Eπ(τ |sg)

[
∞∑
t=0

γtrsg (st, at)

]
− 2γϵ

1− γ
for all goals sg ∈ {sg | pg(sg) > 0}.

C Contrastive RL (CPC)

In this section, we derive a version of contrastive RL based on the infoNCE objective [95]. Com-
pared with the NCE objective used in contrastive RL (NCE), this objective uses a categorical cross
entropy loss instead of a binary cross entropy loss. We replace Eq. 6 with the following infoNCE
objective [95]:

max
f

E
(s,a)∼p(s,a),s

(1)
f ∼pπ(·|·)(st+|s,a)

s
(2:B)
f ∼p(sf)

[
log p(1)

]
,

where p(1) is the first coordinate of the softmax over the critic:

p = SOFTMAX([f(s, a, s
(1)
f), · · · , f(s, a, s(b)f)]).

The optimal critic for the infoNCE loss satisfies [84, 95, 99]

f∗(s, a, sf) = log

(
pπ(·|·)(st+ = sf | s, a)

p(sf)c(s, a)

)
,

20

where c(s, a) is an arbitrary function. Thus, there are many optimal critics. Choosing actions
that maximize the critic f∗ does not necessarily correspond to choosing actions that maximize the
probability of the future state. Thus, we need to regularize c(s, a) so that it does not depend on a. We
do this by introducing a regularizer, based on [123]:

min
f
E

s
(1:B)
f ∼p(sf)

LOGSUMEXP([f(s, a, s
(1)
f), · · · , f(s, a, s(b)f)])2.

To provide some intuition for this regularizer, consider applying this regularizer to an optimal critic:

LOGSUMEXP([f∗(s, a, s
(1)
f), · · · , f∗(s, a, s(b)f)])2

=

log
1

c(s, a)

∑
sf

pπ(·|·)(st+ = sf | s, a)
p(sf)c(s, a)

2

=

log
∑

sf∈s
(1:B)
f

pπ(·|·)(st+ = sf | s, a)
p(sf)

− log c(s, a)

2

≈

log
∑

sf∈s
(2:B)
f

pπ(·|·)(st+ = sf | s, a)
p(sf)

− log c(s, a)

2

≈
(
logEsf∼p(sf)

[
pπ(·|·)(st+ = sf | s, a)

p(sf)

]
− log c(s, a)

)2

= (− log c(s, a))
2
.

In the third line we ignore the positive term; this is reasonable if the batch size is large enough. In
the third line we replaced the sum with an expectation; this is biased because log(·) is not a linear
function. Thus, this regularizer (approximately) regularizes c(s, a) to be close to 1 for all states and
actions. By reducing the dependency of c(s, a) on the actions a, we can ensure that actions that
maximize the critic do maximize the probability of reaching the desired goal. In practice, we add this
regularizer with the infoNCE objective, using a coefficient of 1e-2 on the regularizer.

D Contrastive RL (NCE + C-learning)

In this section we describe contrastive RL (NCE + C-learning) the combined NCE + C-
learning method used in Sec. 5.3 (Fig. 5). Mathematically, the NCE + C-learning objective is a
simple, unweighted sum of the C-learning objective and the NCE objective:

L(f) =(1− γ)E
(s,a)∼p(s,a),s+

f
∼p(st+1|st,at)

[log σ(f(s, a, s+f))]

+ γE sg∼pg(sg),(st,at)∼p(s,a),
st+1∼p(st+1|st,at),at+1∼π(at+1|st+1,sg)

[
p(st+ = sg | st, at)

p(sf = sg)︸ ︷︷ ︸
≈exp(f(st+1,at+1,sg))

log σ(f(s, a, sf = sg))

]

+ Esg∼pg(sg),(s,a)∼p(s,a) [log(1− σ(f(s, a, sg))]

+ E
(s,a)∼p(s,a),s+

f
∼p(st+|st,at)

[log σ(f(s, a, s+f))] + E
(s,a)∼p(s,a),s−

f
∼p(sf)

[log(1− σ(f(s, a, s−f)))].

While we could use half the batch to compute each of the loss terms, we can increase the effective
sample size by being careful with how the terms are estimated. First, we note that the first two terms
of each loss are similar – sample a future state (either the next state or a future state) and label it as a
positive. We can thus combine these two terms by sampling from a mixture of these two distributions,

p̃(sf | st, at) =
1− γ

1 + 1− γ
p(st+1 = sf | st, at) +

1

1 + 1− γ
p(st+ = sf | st, at),

and scaling the resulting loss by 1 + 1− γ = 2− γ:

L1(f) ≜(1− γ)E
(s,a)∼p(s,a),s+

f
∼p(st+1|st,at)

[log σ(f(s, a, s+f))] + +E
(s,a)∼p(s,a),s+

f
∼p(st+|st,at)

[log σ(f(s, a, s+f))]

= (2− γ)E
(s,a)∼p(s,a),s+

f
∼p̃(sf |st,at)

[log σ(f(s, a, s+f))]

21

This trick increases the effective sample size by 96% (130 → 256, as measured using [64]).

Both losses also contain terms that are an expectation over random goals. We can likewise combine
those terms:

L2(f) ≜γE sg∼pg(sg),(st,at)∼p(s,a),
st+1∼p(st+1|st,at),at+1∼π(at+1|st+1,sg)

[
⌊exp(f(st+1, at+1, sg))⌋sg log σ(f(s, a, sf = sg))

]
+ Esg∼pg(sg),(s,a)∼p(s,a) [log(1− σ(f(s, a, sg))] + E

(s,a)∼p(s,a),s−
f
∼p(sf)

[log(1− σ(f(s, a, s−f)))]

= γE sg∼pg(sg),(st,at)∼p(s,a),
st+1∼p(st+1|st,at),at+1∼π(at+1|st+1,sg)

[
⌊exp(f(st+1, at+1, sg))⌋sg log σ(f(s, a, sf = sg))

]
+ 2Esg∼pg(sg),(s,a)∼p(s,a) [log(1− σ(f(s, a, sg))] .

Note that estimating the first term in L2 requires sampling an action for each next state and goal
pair. This prohibits us from using the same outer product trick as in Sec. 4.4 to estimate this term.
While we could still use that trick to estimate the second term in L2, we found that doing so hurt
performance. We hypothesize that the reason is that this creates an imbalance in the gradients – some
goals are labeled as negatives but are not also labeled as positives. Thus, we do not use the outer
product trick for this method. The final objective is L(f) = L1(f) + L2(f).

22

E Experimental Details

We implemented contrastive RL and the baselines using the ACME RL library [57] in combination
with JAX [13]. Precisely, we took the SAC agent9 and made the modifications below. Unless
otherwise mentioned, we used the same hyperparameters as this implementation.

1. Implemented environments that returned observations that contained the original observation
concatenated with the goal. While the goals are resampled when sampling from the replay
buffer, assuming that observations include the goals means that the Q-function and policy
networks do not need to include an additional input for the goal.

2. Modified the replay buffer to use trajectories rather than transitions. This allows us to sample
(st, at, sf) triplets.

3. Modified the critic network to be parametrized as an inner product between state-action
representations and goal representations.

4. Modified the critic loss based on Alg. 1. Note that the actor loss does not need to be modified
(except for removing the entropy term for state-based tasks).

We summarize the hyperparameters in Table 2. Both the state-action encoder and the goal encoder
are fully-connected neural networks with 2 layers of size 256 with ReLU activations. We found
that normalizing the final representation, applying a final activation function, or using a learnable
temperature hurt performance, so we do not use these tricks. For image-based tasks, observations
have size (64, 64, 3), and we use a CNN encoder from prior work [88] to encode the observations
before passing them to the encoders. The policy has a similar architecture: an image-encoder for
image-based tasks, followed by 2 fully connected layers with size 256 and ReLU activations.

Table 2: Hyperparameters for our method and the baselines.
hyperparameter value

batch size 256
learning rate 3e-4 for all components
discount 0.99
actor target entropy 0 for state-based experiments,

−dim(a) for image-based experiments
target EMA term (for TD3 and SAC) 0.005
image encoder architecture Taken from Mnih et al. [88]
image decoder architecture (for auto-encoder and model-
based baselines)

Taken from Ha and Schmidhuber [47]

hidden layers sizes (for actor and representations) (256, 256)
initial random data collection 10,000 transitions
replay buffer size 1,000,000 transitions
samples per insert1 256
train-collect interval2 16 for state-based tasks, 64 for image-based

tasks
representation dimension (dim(ϕ(s, a)),dim(ψ(sg))) 64
actor minimum std dev 1e-6
number of augmentations (for DrQ only) 4
logsumexp regularizer coefficient (for CPC only) 1e-2
action repeat None
goals for actor loss random states (not future states)
1 How many times is each transition used for training before being discarded.
2 We collect N transitions, add them to the buffer, and then do N gradient steps using the experience sampled randomly from the buffer.

9https://github.com/deepmind/acme/tree/master/acme/agents/jax/sac

23

Table 3: Changes to hyperparameters for offline RL experiments (Fig. 1).
hyperparameter value

batch size 256 → 1024
representation dimension 64 → 16
hidden layers sizes (for actor and representations) (256, 256) → (1024, 1024), as in [25].
goals for actor loss future states

E.1 Environments

fetch reach (image, state) – This task is taken from Plappert et al. [97]. This task involves
moving a robotic arm to a goal location in free space. The benchmark specifies success as
reaching within 5cm of the goal.
fetch push (image, state) – This task is taken from Plappert et al. [97]. This task involves
using a robotic arm to push an object across a table to a goal location. The benchmark
specifies success as reaching within 5cm of the goal.
sawyer push (image, state) – This task is taken from Yu et al. [139]. This task involves using
a robotic arm to push an object across table to a goal location. The benchmark specifies
success as reaching within 5cm of the goal.
ant umaze (state) – This task is taken from Fu et al. [36]. This task involves controlling an
ant-like robot towards a goal location, which is sampled randomly in a “U”-shaped maze.
Unlike all other tasks in this paper, the goal was lower dimensional than the observation: the
goal was just the XY coordinate of the desired position. Following prior work [15, 115],
success is defined as reaching within 0.5m of the goal.
sawyer bin (image, state) – This task is taken from Yu et al. [139]. This task involves using
a robotic arm to pick up a block from one bin and place it at a goal location in another bin.
The benchmark specifies success as reaching within 5cm of the goal.
point Spiral11x11 (image) – This task is an image-based version of the 2D navigation tasks
in Eysenbach et al. [30]. This task involves directly controlling the XY coordinates of an
agent to reach a goal in a spiral-shaped maze (see Fig. 16). We define success as reaching
within 2m of the goal.

24

F Additional Experiments

F.1 Linear regression with the learned features

To study the learned representations in isolation we take the state-action representations ϕ(s, a)
trained on the image-based point NineRooms task, and run a linear probe [3, 51] experiment to
see whether the representations have learned to encode task-relevant information (the shortest path
distance to the goal).

We use the task of nine-room navigation and run Contrastive RL and TD3+HER on it. We visualize
the environment in Fig. 8a and the agent randomly initialized in one of the nine rooms is commanded
to go to the goal position. We dump the replay buffer during training as the dataset and run a linear
regression to predict the shortest distance between the agent and the goal. Note that this shortest
path distance is not the Euclidean distance since there are walls blocking the way. Fig. 8b shows that
features learned by contrastive RL can predict this distance better than all baselines.

As shown in Fig. 8b, contrastive RL (NCE) learns representations that achieve lower test error than
those learned by TD3+HER and by a random CNN encoder.

F.2 When is contrastive learning better than learning a foreward model?

1 2 3 4 5 6 7
goal dimension

0.00

0.05

0.10

0.15

0.20
m

in
im

um
 d

ist
an

ce

to
 g

oa
l (

m
)

 is better

contrastive RL (NCE)
model based

Figure 9: Contrasive learning outperforms a forward
model when the goal is 4-dimensional or larger. Error
bars show the standard deviation across 5 random seeds.

In Fig. 2a, we observed that the model-based
baseline performed well on the ant umaze task,
but poorly on many of the other tasks. One
explanation is that the model-based approach
will perform well when the goal is relatively
low-dimensional, and that contrastive learning
will be more useful in settings with higher-
dimensional goals. We tested this experiment on
the 7-dimensional sawyer push environment.
We applied both contrastive RL and the model-
based baseline to versions of this task where
the goal was varied from 1-dimensional to 7-
dimensional. Note that changing the goal di-
mension changes the task: a 1-dimensional goal
corresponds to moving the gripper to the correct X position, whereas a 7-dimensional goal corre-
sponds to moving the object and gripper to the correct poses. We measured the Euclidean distance
to the goal (↓ is better). We show results in Fig. 9. As expected, higher-dimensional goals are a bit
more challenging to achieve. What we are really interested in is the gap between the model-based
approach and the contrastive RL, which opens up starting with a 4-dimensional goal. Altogether, this

(a) Nine-Room environment.

Nine-Room Maze Task0.00

0.05

0.10

0.15

0.20

Te
st

 E
rro

r

Linear Regression with Learned Representation
Contrastive RL
TD3 + HER
Random

(b) Linear probe experiment.

Figure 8: Linear regression with the learned features. Contrastive RL can produce better features for
predicting the shortest-path distance, indicating that the learned features have captured highly non-linear
information about the environment dynamics.

25

experiment provides some evidence that contrastive RL may be preferred over a forward model, even
for tasks with very low dimensional goals.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

0.0

0.2

0.4

0.6

0.8
su

cc
es

s r
at

e
sawyer push

0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e7

0.0

0.2

0.4

0.6
ant umaze

0 1 2 3 4 5
environment steps 1e5

0.4

0.6

0.8

point Spiral11x11 (images)

0% random goals
50% random goals
100% random goals

Figure 10: Goals used for the actor loss. Goals are either sampled from the distribution over future states or
from a distribution of random states. Error bars show the standard deviation across 5 random seeds.

F.3 Goals used in the actor loss

In theory, the distribution of goals for the actor loss (Eq. 7) does not affect the optimal policy, as
long as the distribution has full support. In our experiments, we sampled these goals randomly, in the
same way that we sampled negative examples for contrastive learning. We ran an ablation experiment
to study this decision, and show results in Fig. 10. These results show that sampling future goals
consistently performs poorly, perhaps because it results in only training the policy on how to reach
“easy” goals. A mixture of future goals and random goals works much better, but the best results
seem to come from training on only random goals.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

fetch push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

sawyer push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

sawyer bin

representation
initialization:

None
sawyer_push
sawyer_bin
fetch_push

Figure 11: Transferring representations to solve new tasks. After training the representations on one task for
1M environment steps, we used them to initialize a new agent for solving a new task.

F.4 Transferring representations to solve new tasks

In this experiment, we studied whether the representations learned by contrastive RL (NCE) for
one task might be useful for solving another task. We started by training contrastive RL (NCE) on
three image-based tasks: fetch push, sawyer push, and sawyer bin. The observations for all
tasks look different and the sawyer and fetch tasks have different robots. The two sawyer tasks look
the most similar because they both come from the metaworld [139] benchmark suite. We used the
representations learned for each of these tasks to initialize a second contrastive RL agent, which we
used to solve this same set of tasks. We were primarily interested in transfer – do the representations
from one task help in learning to solve another task? Intuitively, even if the tasks are different, a good
representation will capture some structural properties (e.g., identifying the robot arm, and identifying
objects), which should transfer across the task.

We show results in Fig. 11. After training on the first task for 1M environment steps, we used the
learned representation as initialization for solving the new task. On the fetch push task, we see
little benefit from using pretrained representations, perhaps because the task is relatively easy. On the
sawyer push, we see the largest benefit from pretraining the representations on the same task as
the target task. More interestingly, we see a small benefit from taking the representations learned
on the sawyer bin task and using those to solve the sawyer push. On the most challenging task,
sawyer bin, using representations pretrained on either fetch push or sawyer bin can accelerate

26

the solving of this task. Taken together, these results suggest that transferring the representations
from one task to another is sometimes useful.

F.5 Robustness to Environment Perturbations

Figure 12: Perturbations to the image-based fetch
push environment.

We ran an preliminary experiment to study
whether the image-based policies learned by
contrastive RL (NCE) were robust to pertur-
bations in the environment. We took an
agent trained on the fetch push with image-
observations, and evaluated the agent on four
variants of the environment (see Fig. 12):

• Original environment, without modification;
• Object color changed from black to red;
• Table color changed from white to yellow;
• Initial arm position moved towards the camera.

In each setting, we evaluate the success rate over 20 trials, and repeated 5 times to compute standard
deviations (for a total of 100 trials). The learned agent was robust to the object color, with the success
rate changing from 78± 5% to 73± 10%. The agent was also robust to the change in initial position
(87± 6%). However, changing the table color caused the agent to fail (0± 0%), perhaps because the
table color consumes a large fraction of the image pixels.

F.6 Additional figures

0 1 2 3
environment steps 1e6

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch push

0.0 0.5 1.0
environment steps 1e7

ant umaze

=
= 100.0
= 1.0
= 0.01
= 0.0001

Figure 13: Filtered relabeling. We filter the relabeled experience so that the agent only trains on experience
where the probability under the commanded goal is similar to the probability under the actually-reached goal.
While such filtering is required to prove convergence, these results suggest that good performance can be
achieved without this filtering step.

This section presents additional figures.

• Fig. 13 compares contrastive RL (NCE) with varying values of the filtering parameter ϵ,
described in Sec. 4.5.

• Fig. 14 – This plot shows a TSNE embedding of the state-action representations ϕ(s, a) for
one trajectory of the bin picking task. This experiment uses image observations.

• Fig. 15 – This plot shows a TSNE embedding of the state-action representations from
the same bin picking task. We sampled states and actions using a trained agent. After
computing the TSNE embedding, we used RasterFairy [65] to rectify the embeddings to a
grid.

• Fig. 16 – A TSNE embedding of image representations from the point Spiral11x11
task.

• Fig. 17 – Using the same representations for the point Spiral11x11 task, we measure
the similarity between the critic gradients when evaluated at the same state but different
goals, ⟨∂f∂s |(s,g),

∂f
∂s |(s,g′)⟩.

27

Figure 14: Visualizing the learned representations. (Top) We show five observations from the bin picking
task, as well as the goal image. (Bottom) A TSNE embedding of the image representations ϕ(s, a) learned by
Contrastive RL (NCE). Note that different parts of the task (e.g., reaching, picking, placing) are well separated
in the learned representation space.

Figure 15: Visualizing the image representations learned by our method on the sawyer bin. We
compute a TSNE embedding of the representations, and then align the embeddings to a grid using
RasterFairy [65].

28

(a) (b)

(c) untrained encoder (d) contrastive RL (NCE) (e) TD3 + HER

Figure 16: TSNE embedding of representations ϕ(s, a). (a) Using the point Spiral11x11 task,
(b) we generated image observations at 270 locations throughout the maze. We computed the state-
action representations of these images, using action = (0, 0). (c, d, e) A TSNE embedding of these
representations reveals that the untrained encoder does not capture the structure of the environment,
whereas both our method and the TD3 + HER baseline do capture the maze structure.

(a) Random neural network (b) C-learning (c) contrastive RL (NCE)

Figure 17: Analyzing the gradients. We plot the cosine similarity between the (normalized) gradients of the
critic function with respect to the goal images. An untrained network has high gradient similarity, meaning that
updates to one state/task affect the networks predictions at many other states/tasks, a phenomenon that prior
work has identified as being detrimental to learning [2, 70, 135, 138]. Our method converges to a network where
gradients at one state have a low similarity with gradients at other states. A similar plot showing gradients with
various state inputs shows a similar effect.

29

G Failed Experiments

1. Representation normalization: We experimented with many ways of normalizing the learned
representations, including L2 normalization, scaling the representations by a learned temper-
ature parameter, and applying an elementwise tanh activation. None of these modifications
consistently improved performance.

2. Momentum encoder: Prior contrastive learning methods have found it useful to use a target
encoder or momentum buffer. We experimented with many similar tricks, including using a
momentum buffer for goal representations, sampling some fraction of goal representations
from a fixed random distribution, increasing the learning rate for the state encoder’s final
layer, and decreasing the learning rate for all layers in the goal encoder. None of these tricks
consistently improved performance.

3. Frame stacking – This tended to decrease performance slightly.
4. Loss scaling – Our contrastive RL (NCE) method uses the negative label much more often

than the positive label. We tried scaling the loss terms so that the negative and positive
examples received the same total weight, but found this had no effect on performance.

30

