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Abstract

The distance matrix of a dataset X of n points with respect to a distance function
f represents all pairwise distances between points in X induced by f . Due to their
wide applicability, distance matrices and related families of matrices have been
the focus of many recent algorithmic works. We continue this line of research
and take a broad view of algorithm design for distance matrices with the goal of
designing fast algorithms, which are specifically tailored for distance matrices, for
fundamental linear algebraic primitives. Our results include efficient algorithms
for computing matrix-vector products for a wide class of distance matrices, such
as the ℓ1 metric for which we get a linear runtime, as well as an Ω(n2) lower
bound for any algorithm which computes a matrix-vector product for the ℓ∞ case,
showing a separation between the ℓ1 and the ℓ∞ metrics. Our upper bound results,
in conjunction with recent works on the matrix-vector query model, have many
further downstream applications, including the fastest algorithm for computing
a relative error low-rank approximation for the distance matrix induced by ℓ1
and ℓ22 functions and the fastest algorithm for computing an additive error low-
rank approximation for the ℓ2 metric, in addition to applications for fast matrix
multiplication among others. We also give algorithms for constructing distance
matrices and show that one can construct an approximate ℓ2 distance matrix in
time faster than the bound implied by the Johnson-Lindenstrauss lemma.

1 Introduction

Given a set of n points X = {x1, . . . , xn}, the distance matrix of X with respect to a distance function
f is defined as the n× n matrix A satisfying Ai,j = f(xi, xj). Distances matrices are ubiquitous
objects arising in various applications ranging from learning image manifolds [TSL00, WS06],
signal processing [SY07], biological analysis [HS93], and non-linear dimensionality reduction
[Kru64, Kru78, TSL00, CC08], to name a few1. Unfortunately, explicitly computing and storing A
requires at least Ω(n2) time and space. Such complexities are prohibitive for scaling to large datasets.

A silver lining is that in many settings, the matrix A is not explicitly required. Indeed in many
applications, it suffices to compute some underlying function or property of A, such as the eigenvalues
and eigenvectors of A or a low-rank approximation of A. Thus an algorithm designer can hope to use
the special geometric structure encoded by A to design faster algorithms tailored for such tasks.

Therefore, it is not surprising that many recent works explicitly take advantage of the underlying
geometric structure of distance matrices, and other related families of matrices, to design fast
algorithms (see Section 1.2 for a thorough discussion of prior works). In this work, we continue this
line of research and take a broad view of algorithm design for distance matrices. Our main motivating
question is the following:

1We refer the reader to the survey [DPRV15] for a more thorough discussion of applications of distance
matrices.
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Can we design algorithms for fundamental linear algebraic primitives which are
specifically tailored for distance matrices and related families of matrices?

We make progress towards the motivating question by studying three of the most fundamental
primitives in algorithmic linear algebra. Specifically:

1. We study upper and lower bounds for computing matrix-vector products for a wide array of
distance matrices,

2. We give algorithms for multiplying distance matrices faster than general matrices, and,

3. We give fast algorithms for constructing distance matrices.

1.1 Our Results

We now describe our contributions in more detail.

1. We study upper and lower bounds for constructing matrix-vector queries for a
wide array of distance matrices.

A matrix-vector query algorithm accepts a vector z as input and outputs the vector Az. There is
substantial motivation for studying such queries. Indeed, there is now a rich literature for fundamental
linear algebra algorithms which are in the “matrix free" or “implicit" model. These algorithms only
assume access to the underlying matrix via matrix-vector queries. Some well known algorithms in
this model include the power method for computing eigenvalues and the conjugate gradient descent
method for solving a system of linear equations. For many fundamental functions of A, nearly
optimal bounds in terms of the number of queries have been achieved [MM15, BHSW20, BCW22].
Furthermore, having access to matrix-vector queries also allows the simulation of any randomized
sketching algorithm, a well studied algorithmic paradigm in its own right [Woo14]. This is because
randomized sketching algorithms operate on the matrix ΠA or AΠ where Π is a suitably chosen
random matrix, such as a Gaussian matrix. Typically, Π is chosen so that the sketches ΠA or AΠ
have significantly smaller row or column dimension compared to A. If A is symmetric, we can easily
acquire both types of matrix sketches via a small number of matrix-vector queries.

Therefore, creating efficient versions of matrix-vector queries for distance matrices automatically
lends itself to many further downstream applications. We remark that our algorithms can access to
the set of input points but do not explicitly create the distance matrix. A canonical example of our
upper bound results is the construction of matrix-vector queries for the function f(x, y) = ∥x− y∥pp.

Theorem 1.1. Let p ≥ 1 be an integer. Suppose we are given a dataset of n points X =
{x1, . . . , xn} ⊂ Rd. X implicitly defines the matrix Ai,j = ∥xi − xj∥pp. Given a query z ∈ Rn, we
can compute Az exactly in time O(ndp). If p is odd, we also require O(nd log n) preprocessing time.

We give similar guarantees for a wide array of functions f and we refer the reader to Table 1 which
summarizes our matrix-vector query upper bound results. Note that some of the functions f we
study in Table 1 do not necessarily induce a metric in the strict mathematical sense (for example the
function f(x, y) = ∥x− y∥22 does not satisfy the triangle inequality). Nevertheless, we still refer to
such functions under the broad umbrella term of “distance functions" for ease of notation. We always
explicitly state the function f we are referring to.

Crucially, most of our bounds have a linear dependency on n which allows for scalable computation
as the size of the dataset X grows. Our upper bounds are optimal in many cases, see Theorem A.13.

Combining our upper bound results with optimized matrix-free methods, immediate corollaries of
our results include faster algorithms for eigenvalue and singular value computations and low-rank
approximations. Low-rank approximation is of special interest as it has been widely studied for
distance matrices; for low-rank approximation, our bounds outperform prior results for specific
distance functions. For example, for the ℓ1 and ℓ22 case (and in general PSD matrices), [BCW20]
showed that a rank-k approximation can be found in time O(ndk/ε+ nkw−1/εw−1). This bound
has extra poly(1/ε) overhead compared to our bound stated in Table 2. The work of [IVWW19]
has a worse poly(k, 1/ε) overhead for an additive error approximation for the ℓ2 case. See Section
1.2 for further discussion of prior works. The downstream applications of matrix-vector queries are
summarized in Table 2.
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Function f(x, y) Preprocessing Query Time Reference
ℓpp for p even ∥x− y∥pp − O(ndp) Thms. A.1 / A.3
ℓpp for p odd ∥x− y∥pp O(nd log n) O(ndp) Thms. 2.2 / A.4
Mixed ℓ∞ maxi,j |xi − yj | O(nd log n) O(n2) Thm. A.5

Mahalanobis Distance2 xTMy O(nd2) O(nd) Thm. A.6
Polynomial Kernel ⟨x, y⟩p − O(ndp) Thm. A.7

Total Variation Distance TV(x, y) O(nd log n) O(nd) Thm. A.8
KL Divergence DKL(x ∥ y) − O(nd) Thm. A.2

Symmetric Divergence DKL(x ∥ y) + DKL(y ∥x) − O(nd) Thm. A.9
Cross Entropy H(x, y) − O(nd) Thm. A.9

Hellinger Distance2
∑d

i=1

√
x(i)y(i) − O(nd) Thm. A.10

Table 1: A summary of our results for exact matrix-vector queries.

We also study fundamental limits for any upper bound algorithms. In particular, we show that no
algorithm can compute a matrix-vector query for general inputs for the ℓ∞ metric in subquadratic time,
assuming a standard complexity-theory assumption called the Strong Exponential Time Hypothesis
(SETH) [IP01, IPZ01].
Theorem 1.2. For any α > 0 and d = ω(log n), any algorithm for exactly computing Az for any
input z, where A is the ℓ∞ distance matrix, requires Ω(n2−α) time (assuming SETH).

This shows a separation between the functions listed in Table 1 and the ℓ∞ metric. Surprisingly, we
can create queries for the approximate matrix-vector query in substantially faster time.

Theorem 1.3. Suppose X ⊆ {0, 1, . . . , O(1)}d. We can compute By in time O(n · dO(
√
d log(d/ε)))

where ∥A−B∥∞ ≤ ε.

To put the above result into context, the lower bound of Theorem 1.2 holds for points sets in {0, 1, 2}d
in d ≈ log n dimensions. In contrast, if we relax to an approximation guarantee, we can obtain a
subquadratic-time algorithm for d up to Θ(log2(n)/ log log(n)).

Finally, we provide a general understanding of the limits of our upper bound techniques. In Theorem
B.1, we show that essentially the only f for which our upper bound techniques apply have a “linear
structure" after a suitable transformation. We refer to Appendix Section B for details.

2. We give algorithms for multiplying distance matrices faster than general matrices.

Fast matrix-vector queries also automatically imply fast matrix multiplication, which can be reduced
to a series of matrix-vector queries. For concreteness, if f is the ℓpp function which induces A, and
B is any n× n matrix, we can compute AB in time O(n2dp). This is substantially faster than the
general matrix multiplication bound of nw ≈ n2.37. We also give an improvement of this result for
the case where we are multiplying two distance matrices arising from ℓ22. See Table 2 for summary.

3. We give fast algorithms for constructing distance matrices.

Finally, we give fast algorithms for constructing approximate distance matrices. To establish some
context, recall the classical Johnson-Lindenstrauss (JL) lemma which (roughly) states that a random
projection of a dataset X ⊂ Rd of size n onto a dimension of size O(log n) approximately preserves
all pairwise distances [JL84]. A common applications of this lemma is to instantiate the ℓ2 distance
matrix. A naive algorithm which computes the distance matrix after performing the JL projection
requires approximately O(n2 log n) time. Surprisingly, we show that the JL lemma is not tight with
respect to creating an approximate ℓ2 distance matrix; we show that one can initialize the ℓ2 distance
in an asymptotically better runtime.
Theorem 1.4 (Informal; See Theorem D.5 ). We can calculate a n × n matrix B such that
each (i, j) entry Bij of B satisfies (1 − ε)∥xi − xj∥2 ≤ Bij ≤ (1 + ε)∥xi − xj∥2 in time
O(ε−2n2 log2(ε−1 log n)).
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Problem f(x, y) Runtime Prior Work

(1 + ε) Relative error rank k

low-rank approximation
ℓ1, ℓ

2
2

Õ
(

ndk
ε1/3

+ nkw−1

ε(w−1)/3

)
Theorem C.4

O
(

ndk
ε + nkw−1

εw−1

)
[BCW20]

Additive error ε∥A∥F rank k

low-rank approximation
ℓ2

Õ
(

ndk
ε1/3

+ nkw−1

ε(w−1)/3

)
Theorem C.6

Õ(nd · poly(k, 1/ε))
[IVWW19]

(1 + ε) Relative error rank k

low-rank approximation
Any in Table 1

Õ
(

Tk
ε1/3

+ nkw−1

ε(w−1)/3

)
Theorem C.7

Õ
(

n2dk
ε1/3

+ nkw−1

ε(w−1)/3

)
[BCW22]

(1± ε) Approximation to
top k singular values

Any in Table 1
Õ
(

Tk
ε1/2

+ nk2

ε + k3

ε3/2

)
Theorem C.8

Õ

(
n2dk
ε1/2

+ nk2

ε + k3

ε

3/2
)

[MM15]
Multiply distance matrix A

with any B ∈ Rn×n
Any in Table 1

O(Tn)

Lemma C.9
O(nw)

Multiply two distance
matrices A and B

ℓ22
O(n2dw−2)

Lemma C.11
O(nw)

Table 2: Applications of our matrix-vector query results. T denotes the matrix-vector query time,
given in Table 1. w ≈ 2.37 is the matrix multiplication constant [AW21].

Our result can be viewed as the natural runtime bound which would follow if the JL lemma implied
an embedding dimension bound of O(poly(log log n)). While this is impossible, as it would imply
an exponential improvement over the JL bound which is tight [LN17], we achieve our speedup by
carefully reusing distance calculations via tools from metric compression [IRW17]. Our results also
extend to the ℓ1 distance matrix; see Theorem D.5 for details.

Notation. Our dataset will be the n points X = {x1, . . . , xn} ⊂ Rd. For points in X , we denote
xi(j) to be the jth coordinate of point xi for clarity. For all other vectors v, vi denotes the ith
coordinate. We are interested in matrices of the form Ai,j = f(xi, xj) for f : Rd × Rd → R which
measures the similarity between any pair of points. f might not necessarily be a distance function but
we use the terminology “distance function" for ease of notation. We will always explicitly state the
function f as needed. w ≈ 2.37 denotes the matrix multiplication constant, i.e., the exponent of n in
the time required to compute the product of two n× n matrix [AW21].

1.2 Related Works

Matrix-Vector Products Queries. Our work can be understood as being part of a long line of
classical works on the matrix free or implicit model as well as the active recent line of works on the
matrix-vector query model. Many widely used linear algebraic algorithms such as the power method,
the Lanczos algorithm [Lan50], conjugate gradient descent [S+94], and Wiedemann’s coordinate
recurrence algorithm [Wie86], to name a few, all fall into this paradigm. Recent works such as
[MM15, BHSW20, BCW22] have succeeded in precisely nailing down the query complexity of these
classical algorithms in addition to various other algorithmic tasks such as low-rank approximation
[BCW22], trace estimation [MMMW21], and other linear-algebraic functions [SWYZ21b, RWZ20].
There is also a rich literature on query based algorithms in other contexts with the goal of minimizing
the number of queries used. Examples include graph queries [Gol17], distribution queries [Can20],
and constraint based queries [ES20] in property testing, inner product queries in compressed sensing
[EK12], and quantum queries [LSZ21, CHL21].

Most prior works on query based models assume black-box access to matrix-vector queries. While
this is a natural model which allows for the design non-trivial algorithms and lower bounds, it is
not always clear how such queries can be initialized. In contrast, the focus of our work is not on
obtaining query complexity bounds, but rather complementing prior works by creating an efficient
matrix-vector query for a natural class of matrices.
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Subquadratic Algorithms for Distance Matrices. Most work on subquadratic algorithms for
distance matrices have focused on the problem of computing a low-rank approximation. [BW18,
IVWW19] both obtain an additive error low-rank approximation applicable for all distance matrices.
These works only assume access to the entries of the distance matrix whereas we assume we also
have access to the underlying dataset. [BCW20] study the problem of computing the low-rank
approximation of PSD matrices with also sample access to the entries of the matrix. Their results
extend to low-rank approximation for the ℓ1 and ℓ22 distance matrices in addition to other more
specialized metrics such as spherical metrics. Table 2 lists the runtime comparisons between their
results and ours.

Practically, the algorithm of [IVWW19] is the easiest to implement and has outstanding empirical
performance. We note that we can easily simulate their algorithm with no overall asymptotic runtime
overhead using O(log n) vector queries. Indeed, their algorithm proceeds by sampling rows of the
matrix according to their ℓ22 value and then post-processing these rows. The sampling probabilities
only need to be accurate up to a factor of two. We can acquire these sampling probabilities by
performing O(log n) matrix-vector queries which sketches the rows onto dimension O(log n) and
preserves all row-norms up to a factor of two with high probability due to the Johnson-Lindenstrauss
lemma [JL84]. This procedure only incurs an additional runtime of O(T log n) where T is the time
required to perform a matrix-vector query.

The paper [ILLP04] shows that the exact L1 distance matrix can be created in time O(n(w+3)/2) ≈
n2.69 in the case of d = n, which is asymptotically faster than the naive bound of O(n2d) = O(n3).
In contrast, we focus on creating an (entry-wise) approximate distance matrices for all values of d.

We also compare to the paper of [ACSS20]. In summary, their main upper bounds are approximation
algorithms while we mainly focus on exact algorithms. Concretely, they study matrix vector products
for matrices of the form Ai,j = f(∥xi − xj∥22) for some function f : R→ R. They present results
on approximating the matrix vector product of A where the approximation error is additive. They
also consider a wide range of f , including polynomials and other kernels, but the input to is always
the ℓ2 distance squared. In contrast, we also present exact algorithms, i.e., with no approximation
errors. For example one of our main upper bounds is an exact algorithm when Ai,j = ∥xi − xj∥1
(see Table 1 for the full list). Since it is possible to approximately embed the ℓ1 distance into ℓ22, their
methods could be used to derive approximate algorithms for ℓ1, but not the exact ones. Furthermore,
we also study a wide variety of other distance functions such as ℓ∞ and ℓpp (and others listed in Table
1) which are not studied in Alman et al. In terms of technique, the main upper bound technique of
Alman et al. is to expand f(∥xi − xj∥22) and approximate the resulting quantity via a polynomial.
This is related to our upper bound results for ℓpp for even p where we also use polynomials. However,
our results are exact, while theirs are approximate. Our ℓ1 upper bound technique is orthogonal to the
polynomial approximation techniques used in Alman et al. We also employ polynomial techniques
to give upper bounds for the approximate ℓ∞ distance function which is not studied in Alman et
al. Lastly, Alman et al. also focus on the Laplacian matrix of the weighted graph represented by
the distance matrix, such as spectral sparsification and Laplacian system solving. In contrast, we
study different problems including low-rank approximations, eigenvalue estimation, and the task of
initializing an approximate distance matrix. We do not consider the distance matrix as a graph or
consider the associated Laplacian matrix.

It is also easy to verify the “folklore" fact that for a gram matrix AAT , we can compute AAT v in
time O(nd) if A ∈ Rn×d by computing AT v first and then A(AT v). Our upper bound for the ℓ22
function can be reduced to this folklore fact by noting that ∥x− y∥22 = ∥x∥22 + ∥y∥22 − 2⟨x, y⟩. Thus
the ℓ22 matrix can be decomposed into two rank one components due to the terms ∥x∥22 and ∥y∥22, and
a gram matrix due to the term ⟨x, y⟩. This decomposition of the ℓ22 matrix is well-known (see Section
2 in [DPRV15]). Hence, a matrix-vector query for the ℓ22 matrix easily reduces to the gram matrix
case. Nevertheless, we explicitly state the ℓ22 upper bound for completeness since we also consider all
ℓpp functions for any integer p ≥ 1.

Polynomial Kernels. There have also been works on faster algorithms for approximating a kernel
matrix K defined as the n×n matrix with entries Ki,j = k(xi, xj) for a kernel function k. Specifically
for the polynomial kernel k(xi, xj) = ⟨xi, xj⟩p, recent works such as [ANW14, AKK+20, WZ20,
SWYZ21a] have shown how to find a sketch K ′ of K which approximately satisfies ∥K ′z∥2 ≈
∥Kz∥2 for all z. In contrast, we can exactly simulate the matrix-vector product Kz. Our runtime
is O(ndp) which has a linear dependence on n but an exponential dependence on p while the
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aforementioned works have at least a quadratic dependence on n but a polynomial dependence on
p. Thus our results are mostly applicable to the setting where our dataset is large, i.e. n ≫ d and
p is a small constant. For example, p = 2 is a common choice in practice [CHC+10]. Algorithms
with polynomial dependence in d and p but quadratic dependence in n are suited for smaller datasets
which have very large d and large p. Note that a large p might arise if approximates a non-polynomial
kernel using a polynomial kernel via a taylor expansion. We refer to the references within [ANW14,
AKK+20, WZ20, SWYZ21a] for additional related work. There is also work on kernel density
estimation (KDE) data structures which upon query y, allow for estimation of the sum

∑
x∈X k(x, y)

in time sublinear in |X| after some preprocessing on the dataset X . For widely used kernels such
as the Gaussian and Laplacian kernels, KDE data structures were used in [BIMW21] to create a
matrix-vector query algorithm for kernel matrices in time subquadratic in |X| for input vectors which
are entry wise non-negative. We refer the reader to [CS17, BCIS18, SRB+19, BIW19, CKNS20]
and references within for prior works on KDE data structures.

2 Faster Matrix-Vector Product Queries for ℓ1

We derive faster matrix-vector queries for distance matrices for a wide array of distance metrics.
First we consider the case of the ℓ1 metric such that Ai,j = f(xi, xj) where f(x, y) = ∥x− y∥1 =∑d

i=1 |xi − yi|.

Algorithm 1 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure PREPROCESSING
3: for i ∈ [d] do
4: Ti ← sorted array of the ith coordinates of all x ∈ X .
5: end for
6: end procedure

Algorithm 2 matrix-vector Query for p = 1

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure QUERY({Ti}i∈[d], y)
4: y1, · · · , yn ← coordinates of y.
5: Associate every xi ∈ X with the scalar yi
6: for i ∈ [d] do
7: Compute two arrays Bi, Ci as follows.
8: Bi contains the partial sums of yjxj(i) computed in the order induced by Ti

9: Ci contains the partial sums of yj computed in the order induced by Ti

10: end for
11: z ← 0n

12: for k ∈ [n] do
13: for i ∈ [d] do
14: q ← position of xk(i) in the order of Ti

15: S1 ← Bi[q]
16: S2 ← Bi[n]−Bi[q]
17: S3 ← Ci[q]
18: S4 ← Ci[n]− Ci[q]
19: z(k)+ = xk(i) · (S3 − S4) + S2 − S1

20: end for
21: end for
22: end procedure

We first analyze the correctness of Algorithm 2.
Theorem 2.1. Let Ai,j = ∥xi − xj∥1. Algorithm 2 computes Ay exactly.

6



Proof. Consider any coordinate k ∈ [n]. We show that (Ay)k is computed exactly. We have

(Ay)(k) =

n∑
j=1

yj∥xk − xj∥1 =

n∑
j=1

d∑
i=1

yj |xk(i)− xj(i)| =
d∑

i=1

n∑
j=1

yj |xk(i)− xj(i)|.

Let πi denote the order of [n] induced by Ti. We have

d∑
i=1

n∑
j=1

yj |xk(i)−xj(i)| =
d∑

i=1

 ∑
j:πi(k)≤πi(j)

yj(xj(i)− xk(i)) +
∑

j:πi(k)>πi(j)

yj(xk(i)− xj(i))

 .

We now consider the inner sum. It rearranges to the following:

xk(i)

 ∑
j:πi(k)>πi(j)

yj −
∑

j:πi(k)≤πi(j)

yj

+
∑

j:πi(k)≤πi(j)

yjxj(i)−
∑

j:πi(k)>πi(j)

yjxj(i)

= xk(i) · (S3 − S4) + S2 − S1,

where S1, S2, S3, and S4 are defined in lines 15− 18 of Algorithm 2 and the last equality follows
from the definition of the arrays Bi and Ci. Summing over all i ∈ [d] gives us the desired result.

The following theorem readily follows.

Theorem 2.2. Suppose we are given a dataset {x1, . . . , xn} which implicitly defines the distance
matrix Ai,j = ∥xi − xj∥1. Given a query y ∈ Rd, we can compute Ay exactly in O(nd) query time.
We also require a one time O(nd log n) preprocessing time which can be reused for all queries.

3 Lower and Upper bounds for ℓ∞

In this section we give a proof of Theorem 1.2. Specifically, we give a reduction from a so-called
Orthogonal Vector Problem (OVP) [Wil05] to the problem of computing matrix-vector product Az,
where Ai,j = ∥xi − xj∥∞, for a given set of points X = {x1, . . . , xn}. The orthogonal vector
problem is defined as follows: given two sets of vectors A = {a1, . . . , an} and B = {b1, . . . , bn},
A,B ⊂ {0, 1}d, |A| = |B| = n, determine whether there exist x ∈ A and y ∈ B such that the dot
product x · y =

∑d
j=1 xjyj (taken over reals) is equal to 0. It is known that if OVP can be solved in

strongly subquadratic time O(n2−α) for any constant α > 0 and d = ω(log n), then SETH is false.
Thus, an efficient reduction from OVP to the matrix-vector product problem yields Theorem 1.2.

Lemma 3.1. If the matrix-vector product problem for ℓ∞ distance matrices induced by n vectors of
dimension d can be solved in time T (n, d), then OVP (with the same parameters) can be solved in
time O(T (n, d)).

Proof. Define two functions, f, g : {0, 1}d → [0, 1], such that f(0) = g(0) = 1/2, f(1) = 0,
g(1) = 1. We extend both functions to vectors by applying f and g coordinate wise and to sets by
letting f({a1, . . . , an}) = {f(a1), . . . , f(an)}); the function g is extended in the same way for B.
Observe that, for any pair of non-zero vectors a, b ∈ {0, 1}d, we have ∥f(a)− g(b)∥∞ = 1 if and
only if a · b > 0, and ∥f(a)− g(b)∥∞ = 1/2 otherwise.

Consider two sets of binary vectors A and B. Without loss of generality we can assume that the
vectors are non-zero, since otherwise the problem is trivial. Define three distance matrices: matrix MA

defined by the set f(A), matrix MB defined by the set g(B) and MAB defined by the set f(A)∪f(B).
Furthermore, let M be the “cross-distance” matrix, such that such that Mi,j = ∥f(ai)− g(bj)∥∞.
Observe that the matrix MAB contains blocks MA and MB on its diagonal, and blocks M and MT

off-diagonal. Thus, MAB · 1 = MA · 1+MB · 1+ 2M · 1, where 1 denotes an all-ones vector of the
appropriate dimension. Since M · 1 = (MAB · 1−MA · 1−MB · 1)/2, we can calculate M · 1 in
time O(T (n, d)). Since all entries of M are either 1 or 1/2, we have that M · 1 < n2 if and only if
there is an entry Mi,j = 1/2. However, this only occurs if ai · bj = 0.
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3.1 Approximate ℓ∞ Matrix-Vector Queries

In light of the lower bounds given above, we consider initializing approximate matrix-vector queries
for the ℓ∞ function. Note that the lower bound holds for points in {0, 1, 2}d and thus it is natural to
consider approximate upper bounds for the case of limited alphabet.

Binary Case. We first consider the case that all points x ∈ X are from {0, 1}d. We first claim
the existence of a polynomial T with the following properties. Indeed, the standard Chebyshev
polynomials satisfy the following lemma, see e.g., see Chapter 2 in [SV+14].

Lemma 3.2. There exists a polynomial T : R→ R of degree O(
√
d log(1/ε)) such that T (0) = 0

and |T (x)− 1| ≤ ε for all x ∈ [1/d, 1].

Now note that ∥x − y∥∞ can only take on two values, 0 or 1. Furthermore, ∥x − y∥∞ = 0 if and
only if ∥x− y∥22 = 0 and ∥x− y∥∞ = 1 if and only if ∥x− y∥22 ≥ 1. Therefore, ∥x− y∥∞ = 0 if
and only if T (∥x− y∥22/d) = 0 and ∥x− y∥∞ = 1 if and only if |T (∥x− y∥22/d)− 1| ≤ ε. Thus,
we have that

|Ai,j − T (∥xi − xj∥22/d)| = |∥xi − xj∥∞ − T (∥xi − xj∥22/d)| ≤ ε

for all entries Ai,j of A. Note that T (∥x− y∥22/d) is a polynomial with O((2d)t) monomials in the
variables x(1), . . . , x(d). Consider the matrix B satisfying Bi,j = T (∥xi−xj∥22/d). Using the same
ideas as our upper bound results for f(x, y) = ⟨x, y⟩p, it is straightforward to calculate the matrix
vector product By (see Section A.2). To summarize, for each k ∈ [n], we write the kth coordinate of
By as a polynomial in the d coordinates of xk. This polynomial has O((2d)t) monomials and can be
constructed in O(n(2d)t) time. Once constructed, we can evaluate the polynomial at x1, . . . , xn to
obtain all the n coordinates of By. Each evaluation requires O((2d)t) resulting in an overall time
bound of O(n(2d)t).

Theorem 3.3. Let Ai,j = ∥xi − xj∥∞. We can compute By in time O(n(2d)
√
d log(1/ε)) where

∥A−B∥∞ ≤ ε.

Entries in {0, . . . ,M}. We now consider the case that all points x ∈ X are from {0, . . . ,M}d.
Our argument will be a generalization of the previous section. At a high level, our goal is to detect
which of the M + 1 possible values in {0, . . . ,M} is equal to the ℓ∞ norm. To do so, we appeal to
the prior section and design estimators which approximate the indicator function “∥x− y∥∞ ≥ i”.
By summing up these indicators, we can approximate ∥x− y∥∞.

Our estimators will again be designed using the Chebyshev polynomials. To motivate them, suppose
that we want to detect if ∥x− y∥∞ ≥ i or if ∥x− y∥∞ < i. In the first case, some entry in x− y will
have absolute value value at least i where as in the other case, all entries of x− y will be bounded by
i− 1 in absolute value. Thus if we can boost this ‘signal’, we can apply a polynomial which performs
thresholding to distinguish the two cases. This motivates considering the functions of ∥x− y∥kk for a
larger power k. In particular, in the case that ∥x− y∥∞ ≥ i, we have ∥x− y∥kk ≥ ik and otherwise,
∥x − y∥kk ≤ dik−1. By setting k ≈ log(d), the first value is much larger than the latter, which we
can detect using the ‘threshold’ polynomials of the previous section.

We now formalize our intuition. It is known that appropriately scaled Chebyshev polynomials satisfy
the following guarantees, see e.g., see Chapter 2 in [SV+14].
Lemma 3.4. There exists a polynomial T : R→ R of degree O(

√
t log(t/ε)) such that |T (x)| ≤ ε/t

for all x ∈ [0, 1/(10t)] and |T (x)− 1| ≤ ε/t2 for all x ∈ [1/t, 1].

Given x, y ∈ Rd, our estimator will first try to detect if ∥x − y∥∞ ≥ i. Let T1 be a polynomial
from Lemma 3.4 with t = O(Mk) for k = O(M log(Md)) and assuming k is even. Let T2 be a
polynomial from Lemma 3.4 with t = O(

√
d log(M/ε)). Our estimator will be

T2

1

d

d∑
j=1

T1

(
(x(j)− y(j))k

ik ·Mk

) .

If coordinate j is such that |x(j)− y(j)| ≥ i, then

(x(j)− y(j))k

ik ·Mk
≥ 1

Mk

8



and so T1 will evaluate to a value very close to 1. Otherwise, we know that

(x(j)− y(j))k

ik ·Mk
≤ (i− 1)k

ikMk
=

1

Mk
(1− 1/i)

k ≪ 1

Mk
· 1

poly(M,d)

by our choice of k, which means that T1 will evaluate to a value close to 0. Formally,

1

d

d∑
j=1

T1

(
(x(j)− y(j))k

ik ·Mk

)
will be at least 1/d if there is a j ∈ [d] with |x(j)− y(j)| ≥ i and otherwise, will be at most 1/(10d).
By our choice of T2, the overall estimate output at least 1− ε in the first case and a value at most ε in
the second case.

The polynomial which is the concatenation of T2 and T1 has O
(
(dk · deg(T1))

deg(T2)
)

=

(dM)O(M
√
d log(Md)) monomials, if we consider the expression as a polynomial in the variables

x(1), . . . , x(d). Our final estimator will be the sum across all i ≥ 1. Following our upper bound
techniques for matrix-vector products for polynomial, e.g. in Section A.2, and as outlined in the prior
section, we get the following overall query time:
Theorem 3.5. Suppose we are given X = {x1, . . . , xn} ⊆ {0, . . . ,M}d which implicitly defines the
matrix Ai,j = ∥xi − xj∥∞. For any query y, we can compute By in time n · (dM)O(M

√
d log(Md/ε))

where ∥A−B∥∞ ≤ ε.

4 Empirical Evaluation

We perform an empirical evaluation of our matrix-vector query for the ℓ1 distance function. We
chose to implement our ℓ1 upper bound since it’s a clean algorithm which possesses many of the
same underlying algorithmic ideas as some of our other upper bound results. We envision that similar
empirical results hold for most of our upper bounds in Table 1. Furthermore, matrix-vector queries
are the dominating subroutine in many key practical linear algebra algorithms such as the power
method for eigenvalue estimation or iterative methods for linear regression: a fast matrix-vector query
runtime automatically translates to faster algorithms for downstream applications.

Dataset (n, d) Algo. Preprocessing Time Avg. Query Time

Gaussian Mixture (5 · 104, 50)
Naive 453.7 s 43.3 s
Ours 0.55 s 0.09 s

MNIST (5 · 104, 784) Naive 2672.5 s 38.6 s
Ours 5.5 s 1.9 s

Glove (1.2 · 106, 50) Naive - ≈ 2.6 days (estimated)
Ours 16.8 s 3.4 s

Table 3: Dataset description and empirical results. (n, d) denotes the number of points and dimension
of the dataset, respectively. Query times are averaged over 10 trials with Gaussian vectors as queries.

Experimental Design. We chose two real and one synthetic dataset for our experiments. We have
two “small" datasets and one “large" dataset. The two small datasets have 5 · 104 points whereas the
large dataset has approximately 106 points. The first dataset is points drawn from a mixture of three
spherical Gaussians in R50. The second dataset is the standard MNIST dataset [LeC98] and finally,
our large dataset is Glove word embeddings2 in R50 [PSM14].

The two small datasets are small enough that one can feasibly initialize the full n× n distance matrix
in memory in reasonable time. A 5 · 104× 5 · 104 matrix with each entry stored using 32 bits requires
10 gigabytes of space. This is simply impossible for the Glove dataset as approximately 5.8 terabytes
of space is required to initialize the distance matrix (in contrast, the dataset itself only requires < 0.3
gigabytes to store).

2Can be accessed here: http://github.com/erikbern/ann-benchmarks/

9

http://github.com/erikbern/ann-benchmarks/


The naive algorithm for the small datasets is the following: we initialize the full distance matrix
(which will count towards preprocessing), and then we use the full distance matrix to perform a
matrix-vector query. Note that having the full matrix to perform a matrix-vector product only helps
the naive algorithm since it can now take advantage of optimized linear algebra subroutines for
matrix multiplication and does not need to explicitly calculate the matrix entries. Since we cannot
initialize the full distance matrix for the large dataset, the naive algorithm in this case will compute
the matrix-vector product in a standalone fashion by generating the entries of the distance matrix on
the fly. We compare the naive algorithm to our Algorithms 1 and 2.

Our experiments are done in a 2021 M1 Macbook Pro with 32 gigabytes of RAM. We implement all
algorithms in Python 3.9 using Numpy with Numba acceleration to speed up all algorithms whenever
possible.

Results. Results are shown in Table 3. We show preprocessing and query time for both the naive
and our algorithm in seconds. The query time is averaged over 10 trials using Gaussian vectors as
queries. For the Glove dataset, it was infeasible to calculate even a single matrix-vector product, even
using fast Numba accelerated code. We thus estimated the full query time by calculating the time on
a subset of 5 · 104 points of the Glove dataset and extrapolating to the full dataset by multiplying
the query time by (n/(5 · 104))2 where n is the total number of points. We see that in all cases, our
algorithm outperforms the naive algorithm in both preprocessing time and query time and the gains
become increasingly substantial as the dataset size increases, as predicted by our theoretical results.

Acknowledgements. This research was supported by the NSF TRIPODS program (award DMS-
2022448), Simons Investigator Award, MIT-IBM Watson AI Lab, GIST- MIT Research Collaboration
grant, and NSF Graduate Research Fellowship under Grant No. 1745302.
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A Omitted Upper Bounds for Faster Matrix-Vector Queries

We now consider the case of ℓpp for p = 2. Generalizing the results of p = 1 and p = 2 allows us to
handle general ℓpp functions.

Algorithm 3 matrix-vector Query for p = 2

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure QUERY(y)
4: v ←

∑n
i=j yjxj

5: S1 ←
∑n

i=j y
2
j

6: S2 ←
∑n

i=j y
2
j ∥x∥22

7: z ← 0n

8: for k ∈ [n] do
9: z(k)← S1∥xk∥22 + S2 − 2⟨xk, v⟩

10: end for
11: end procedure

Theorem A.1. We can compute Ay in O(nd) query time.

Proof. The proof follows from the following calculation of the kth coordinate of Ay:

(Ay)(k) =

n∑
j=1

yj∥xk − xj∥22 = ∥xk∥22

 n∑
j=1

y2j

+

n∑
j=1

y2j ∥xj∥22 − 2

〈
xk,

n∑
j=1

yjxj

〉
.

We can extend our results to general ℓpp functions as well as a wide array of commonly used functions
to measure (dis)similarity between vectors. For example, suppose the points xi represent a probability
distribution over the domain [n] := {1, . . . , n}. A widely used “distance" function over distributions
is the KL-divergence defined as

f(xi, xj) = DKL(xi ∥xj) =
∑
k∈[d]

xi(k) log(xi(k))−xi(k) log(xj(k)) = −H(xi)−
∑
k∈[d]

xi(k) log(xj(k)),

where H is the entropy function. Our techniques extend to the KL-divergence as well.

Algorithm 4 matrix-vector Query for KL Divergence

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure QUERY( y)
4: Si ←

∑n
j=1 yj log(xj(i)) for all i ∈ [d]

5: Hi ← H(xi) for all i ∈ [n]
6: Y ←

∑n
j=1 yj

7: z ← 0n

8: for k ∈ [n] do
9: z(k)← −Hk · Y −

∑d
i=1 xk(i)Si

10: end for
11: end procedure

Theorem A.2. We can compute Ay in O(nd) query time.
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Proof. Note that computed all of Si and Hi takes O(nd) time. Now

(Ay)(k) =

n∑
j=1

yjDKL(xk ∥xj)

=

n∑
j=1

−yjH(xk)−
n∑

j=1

yj

d∑
k=1

xi(k) log(xj(k))

= −H(xk)

 n∑
j=1

yj

− d∑
k=1

n∑
j=1

yjxi(k) log(xj(k))

= −Hk · Y −
d∑

k=1

xi(k)Sk,

as desired.

A.1 General p

We now consider the case of a general non-negative even integer p.

Algorithm 5 matrix-vector Query for even p

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure QUERY(y)
4: Compute all the values Si,t :=

∑n
j=1 xj(i)

p−t(−1)p−t for all i ∈ [d] and t ∈ {0, . . . , p}
5: z ← 0n

6: for k ∈ [n] do
7: z(k)←

∑d
i=1

∑p
t=1 xk(i)

tSi,t

8: end for
9: end procedure

Theorem A.3. We can compute Ay in O(ndp) query time.

Proof. Consider the following calculation of the kth coordinate of Ay:

(Ay)(k) =

n∑
j=1

yj∥xk − xj∥pp

=

n∑
j=1

yj

d∑
i=1

(xk(i)− xj(i))
p

=

n∑
j=1

d∑
i=1

p∑
t=1

xk(i)
txj(i)

p−t(−1)p−t

=

d∑
i=1

p∑
t=1

xk(i)
t

n∑
j=1

xj(i)
p−t(−1)p−t

=

d∑
i=1

p∑
t=1

xk(i)
tSi,t.

Note that computing Si,t for all i and t takes O(ndp) time. Then returning the value of (Ay)k takes
O(dp) time resulting in the claimed runtime.

The case of a general non-negative odd integer p follows in a straightforward manner by combining
the above techniques with those of the p = 1 case of Theorem 2.2 so we omit the proof.
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Theorem A.4. For odd integer p, we can compute Ay in O(nd log n) preprocessing time and O(ndp)
query time.

A.2 Other Distance Functions

In this section we initialize matrix-vector queries for a wide variety of “distance" functions.

‘Mixed’ ℓ∞. We consider the case of a ‘permutation invariant’ version of the ℓ∞ norm defined as
follows:

f(x, y) = max
i∈[d],j∈[d]

|xi − yj |.

f is not a norm but we will refer to it as ‘mixed’ ℓ∞.

Algorithm 6 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure PREPROCESSING
3: for j ∈ [n] do
4: minj ,maxj ← minimum and maximum values of the entries of xj , respectively.
5: end for
6: end procedure

Algorithm 7 matrix-vector Query for mixed ℓ∞

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure QUERY({minj ,maxj}nj=1, y)
4: z ← 0n

5: for k ∈ [n] do
6: z(k)←

∑n
j=1 yj ·max (|mink −minj |, |mink −maxj |, |maxk −minj |, |maxk −maxj |)

7: end for
8: end procedure

Theorem A.5. We can compute Ay in O(nd) preprocessing time and O(n2) query time.

Proof. The preprocessing time holds because we calculate the maximum and minimum of a list of d
numbers a total of n times. For the query time, note that each z(k) takes O(n) time to compute since
we do a O(1) operation is each index of the sum in Line 6 of Algorithm 7.

To prove correctness, note that for any two vectors x, y ∈ Rd, the maximum value of |xi − yj |
is attained if xi and yj are among the minimum / maximum values of the coordinates of x and y
respectively. To see this, fix a value of xi. We can always increase |xi − yj | by setting yj to be the
maximum or minimum over all j.

Mahalanobis Distance Squared. We consider the function

f(x, y) = xTMy

for some d× d matrix M . This is the squared version of the well-known Mahalanobis distance.

Algorithm 8 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure PREPROCESSING
3: S ← d× n matrix where the jth column is Mxj for all j ∈ [n].
4: end procedure
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Algorithm 9 matrix-vector Query for Mahalanobis distance squared

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure QUERY( S, y)
4: v ← Sy
5: z ← 0n

6: for k ∈ [n] do
7: z(k)← ⟨xk, v⟩
8: end for
9: end procedure

Theorem A.6. We can compute Ay in O(nd2) preprocessing time and O(nd) query time.

Proof. Note that the kth coordinate of Ay is given by

(Ay)(k) =

n∑
j=1

yjx
T
kMxj =

〈
xk,

n∑
j=1

yjMxk

〉
= ⟨xk, Sy⟩

which proves correctness. It takes O(nd2) time to compute S, O(nd) time to compute Sy, and then
O(d) time to compute the kth coordinate of Ay for all k ∈ [n].

Polynomial Kernels. We now consider polynomial kernels of the form

f(x, y) = ⟨x, y⟩p.

Theorem A.7. We can compute Ay in O(ndp) query time.

Proof Sketch. Consider the following expression

g(z) =

n∑
j=1

yj⟨z, xj⟩p

as a polynomial g : Rd → R in the d coordinates of z. By rearranging, the above sum can be written
as a sum over O(dp) terms, corresponding to each monomial za1

1 . . . zad

d where a1 + . . .+ ad = p.
The coefficient of each term takes O(nd) time to compute given xi and y. Once computed, we can
evaluate the polynomial at z = xj for all j which form the coordinates of Ay. Again, this can be
viewed as “linearizing" the kernel given by ⟨x, y⟩p.

We note that a proof similar to that of Theorem A.7 was given in Section 5.3 of [ACSS20] by
expanding the relevant quantity as a polynomial; see Section 1.2 for detailed comparison between
[ACSS20] and our work.

A.3 Distances for Distributions

We now consider the case that each xi specifies a discrete distribution over a domain of d elements.
Matrices A where Ai,j is a function computing distances between distributions xi and xj have
recently been studied in machine learning.

We consider how to construct matrix-vector queries for such matrices for a range of widely used
distance measures on distributions. First note that a result on the TV distance follows immediately
from our ℓ1 result.

Theorem A.8. Suppose Ai,j = TV(xi, xj). We can compute Ay in O(nd log n) preprocessing time
and O(nd) query time.

We now consider some other distance functions on distributions.
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Divergences. Through a similar calculation as the KL divergence case, we can also achieve O(nd)
query times if f is the Jensen-Shannon divergence, defined as

f(x, y) =
DKL(x ∥ y) + DKL(y ∥x)

2
,

as well as the cross entropy function.
Theorem A.9. Let f be the Jensen-Shannon divergence or cross entropy function. Then Ay can be
computed in O(nd) time.

Through a similar calculation as done in Section A.2 (for the case of p = 1), we can also perform
matrix-vector multiplication queries in the case that

f(x, y) =

d∑
i=1

√
x(i)y(i).

This is the squared Hellinger distance.
Theorem A.10. Let f be the squared Hellinger distance. Then Ay can be computed in O(nd) time.

A.4 Approximate Matrix-Vector Query for ℓ2

While our techniques do not extend to the ℓ2 case for exact matrix-vector queries, we can nonetheless
instantiate approximate matrix-vector queries for the ℓ2 function. We first recall the following well
known embedding result.
Theorem A.11. Let ε ∈ (0, 1) and define T : Rd → Rk by

T (x)i =
1

βk

d∑
j=1

Zijxj , i = 1, . . . , k

where β =
√
2/π. Then for every vector x ∈ Rd, we have

Pr[(1− ε)∥x∥2 ≤ ∥T (x)∥1 ≤ (1 + ε)∥x∥2] ≥ 1− ecε
2k,

where c > 0 is a constant.

We can instantiate approximate matrix-vector queries for f(x, y) = ∥x − y∥2 via the following
algorithm.

Algorithm 10 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure PREPROCESSING(T )
3: X ′ ← TX where T is the linear map from Theorem A.11
4: Run Algorithm 1 on X ′

5: end procedure

For queries, we just run Algorithm 2 on X ′. We have the following guarantee:
Theorem A.12. Let Ai,j = ∥xi − xj∥2. There exists a matrix B such that we can compute By in
O(nd2 + nd log n) preprocessing time and O(n log(n)/ε2) query time where

∥A−B∥F ≤ ε∥A∥F
with probability 1− 1/poly(n).

Proof. The preprocessing and query time follow from the time required to apply the transformation
T from Theorem A.11 to our set of points X as well as the time needed for the ℓ1 matrix-vector query
result of Theorem 2.1. The Frobenius norm guarantee follows from the fact that every entry of A will
be approximated with relative error in B using Theorem A.11.
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A.5 Matrix-Vector Query Lower Bounds

Table 1 shows that we can initialize matrix-vector queries for a variety of distance functions in O(nd)
time. It is straightforward to see that this bound is optimal for a large class of distance matrices.

Theorem A.13. Consider the case that Ai,j = f(xi, xj) satisfying f(x, x) = 0 for all x. Further
assume that for all x, there exists an input y such that f(x, y) = 1. An algorithm which outputs an
entry-wise approximation of Az to any constant factor for input z requires Ω(nd) time in the worst
case.

Proof. We consider two cases for input points of A. In the first case, all points in our dataset X are
identical. In the second case, a randomly chosen point is distance 1 away from the n− 1 identical
points. Computing the product of A times the all ones vector allows us to distinguish the two cases as
A1 has entries summing to 0 in the first case whereas A1 has entries summing to n− 1 in the second
case. Thus to approximate A1 entry-wise to any constant factor, we must distinguish the two cases.
If we read o(n) points, then with good probability we will see no duplicates. Thus, we must read
Ω(n) points, require Ω(nd) time.

B When Do Our Upper Bound Techniques Work?

By this point, we have seen many examples of matrix-vector queries which can be initialized as well
as a lower bound for a natural distance function which prohibits any subquadratic time algorithm.
Naturally, we are thus interested in the limits of our upper bound techniques for instantiating fast
matrix-vector product. An understanding of such limits sheds light on families of structured matrices
which may admit fast matrix-vector queries in general. In this section we fully characterize the
capabilities of our upper bound methods and show that essentially our techniques can only work
“linear" functions (in a possibly different basis).

First we set some notation. Let A be a n× n matrix we wish to compute where each (i, j) entry is
given by f(xi, xj). Given a query vector z ∈ Rn, the kth coordinate of Az is given by

(Az)(k) =

n∑
i=1

zif(xk, xi).

An example choice of f is given by f(x, y) =
∑d

j=1 x(j) log(y(j)) (assuming all the coordinates of
x and y are entry wise non-negative. Note this is related to the cross entropy function in Table 1).

We first highlight the major steps which are common to all of our upper bound algorithms using f as
an example. Our upper bound technique proceeds as follows:

• Break up f(x, y) into a sum over d terms:
∑d

j=1 x(j) log(y(j)).

• Switch the order of summation:

(Az)(k) =

n∑
i=1

zif(xk, xi) =

d∑
j=1

n∑
i=1

zixk(j) log(xi(j)).

• Evaluate each of the inner d summations with 1 evaluation each (after some preprocessing).
In other words, for a fixed j, each of the sums

∑n
i=1 zixk(j) log(xi(j)) can be computed as

one evaluation, namely xk(j) ·
(∑n

i=1 zi log(xi(j))
)

and in preprocessing, we can compute∑n
i=1 zi log(xi(j)) as it does not depend on the coordinate k.

The key steps of the above outline, namely switching the order of summation and precomputation of
repeated terms, can be encapsulated in the following framework.
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Theorem B.1. Suppose there exist mappings T1, T2 : Rd → Rd′
(possibly non-linear) and a

continuous g : R× R→ R such that for every k,

(Az)(k) =

n∑
i=1

zif(xk, xi)

=

n∑
i=1

zi

d′∑
j=1

g (T1(xk)(j), T2(xi)(j)) (breaking f into sum over d′ terms)

=

d′∑
j=1

n∑
i=1

zi · g (T1(xk)(j), T2(xi)(j)) (switching order of summation).

Further suppose that each of the terms
∑n

i=1 zi · g (T1(xk)(j), T2(xi)(j)) can be evaluated as
n∑

i=1

zi · g (T1(xk)(j), T2(xi)(j)) = g

(
T1(xk)(j),

n∑
i=1

ziT2(xi)(j)

)
for any choice of the vector z. Then g(a, b) must be a linear function in b.

Theorem B.1 is stated in quite general terms. We are stipulating the following statements: the
functions T1, T2 represent possibly non-linear transformations to Rd′

on x, y respectively such
that f(x, y) can be decomposed as a sum over d′ function evaluations. Each function evaluation
takes in the same coordinate, say the jth coordinate, of both T1(x) and T2(y) and computes the
function g(T1(x)(j), T2(y)(j)). Finally the resulting sum

∑n
i=1 zi · g (T1(xk)(j), T2(xi)(j)) can be

computed as g
(
T1(xk)(j),

∑n
i=1 h(zi)T2(xi)(j)

)
.

If these conditions hold (which is precisely the case in the proof of all our upper bound results), then
it must be the case that g has a very special form, in particular, g must be a linear function in its
second variable. To make the setting more concrete, we map the terminology of Theorem B.1 into
some examples from our upper bound results.

First consider the case that f(x, y) = ⟨x, y⟩. In this case, both T1 and T2 are the identity maps
and g(a, b) = ab. It is indeed the case that g(a, b) is linear in b. Now consider a slightly more
complicated choice f(x, y) =

∑d
j=1 x(j) log(y(j)). Here, we first have the mappings T1 = identity

but T2 is a coordinate wise map such that T2(y) = [log(y1), . . . , log(yn)]. The function g again
satisfies g(a, b) = ab. Finally we consider the example f(x, y) = ∥x− y∥22 which sets d′ ≫ d. In
particular, the mapppings T1, T2 expand x, y into a O(d2)-dimensional vector, whose coordinates
represent all possible combinations products of two coordinates of x and y respectively. (The reader
may realize that this particular case is an example of “linearizing” the kernel given by f ). Again g is
the same function as before.

The proof of Theorem B.1 relies on the following classical result on the solutions of Cauchy’s
functional equation.
Theorem B.2. Let t : R→ R be a continuous function which satisfies t(x+ y) = t(x) + t(y) for all
inputs x, y in its domain. Then t must be a linear function.

For us the hypothesis that t is continuous suffices but it is know that the above result follows
from much weaker hypothesis. We refer to the reader to [Kuc09] for reference related to Cauchy’s
functional equation.

Proof of Theorem B.1. Our goal is to show that if
n∑

i=1

zi · g (T1(xk)(j), T2(xi)(j)) = g

(
T1(xk)(j),

n∑
i=1

ziT2(xi)(j)

)
for all z and choices of input points xi then g must be linear in the second variable. First set zj = 0
for all j ≥ 2 and z1 = z2 = 1. For ease of notation, denote q := T1(xk)(j). As we vary the
coordinate of the points x1 and x2, the values T2(x1)(j) and T2(x2)(j) also vary over the range of
T2. Thus,

g(q, a) + g(q, b) = g(q, a+ b)
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for all possible inputs a, b. However, this is exactly the hypothesis of Theorem B.2 so it follows that
g must be a linear function in its second coordinate, as desired.

While the proof of Theorem B.1 is straightforward, it precisely captures the scenarios where our
upper bound techniques apply. In short, it implies that f must have a linear structure, under a suitable
change of basis, for our techniques to hold. If its not the case, then our techniques do not apply and
new ideas are needed. Nevertheless, as displayed by the versatility of examples in Table 1, such a
structure is quite common in many applications where matrices of distance or similarity functions
arise.

The observant reader might wonder how our result for the ℓ1 function fits into the above framework
as it is not obviously linear. However, we note that the function hj(x) =

∑n
i=1 |x(j)−xi(j)| (which

appears in the theorem statement of Theorem B.1 as the sum
∑n

i=1 zi · g
(
T1(xk)(j), T2(xi)(j)

)
is

actually a piece-wise linear function in x(j). The sorting preprocessing we performed for Theorem
2.1 can be thought of as creating a data structure which allows us to efficiently index into the correct
linear piece.

C Applications of Matrix-Vector Products

C.1 Preliminary Tools

We highlight specific prior results which we use in conjunction with our matrix-vector query upper
bounds to obtain improved algorithmic results. First we recall a result of [BCW22] which gives
a nearly optimal low-rank approximation result in terms of the number of matrix-vector queries
required.
Theorem C.1 (Theorem 5.1 in [BCW22]). Given matrix-vector query access to a matrix A ∈ Rn×n,
accuracy parameter ε ∈ (0, 1), k ∈ [n] and any p ≥ 1, there exists an algorithm which uses
Õ(k/ε1/3) matrix-vector queries and outputs a n× k matrix Z with orthonormal columns such that
with probability at least 9/10,

∥A(I − ZZT )∥p ≤ (1 + ε) min
U :UTU=Ik

∥A(I − UUT )∥p

where ∥M∥p = (
∑n

i=1 σi(M)p)1/p is the p-th Schatten norm where σ1, . . . , σ(M) are the singular
values of M . The runtime of the algorithm is Õ(Tk/ε1/3 + nkw−1/ε(w−1)/3) where T is the time
for computing a matrix-vector query.

The second result is of [MM15] which give an optimized analysis of a variant of power method for
computing the top k singular values.
Theorem C.2 (Theorem 1 and 7 in [MM15]). Given matrix-vector query access to a matrix A ∈
Rn×n, accuracy parameter ε ∈ (0, 1), k ∈ [n], there exists an algorithm which uses Õ(k/ε1/2)
matrix-vector queries and outputs a 1 ± ε approximation to the top k singular values of A. The
runtime of the algorithm is Õ(Tk/ε1/2 + nk2/ε+ k3/ε3/2).

Lastly, we recall the gaurantees of the classical conjugate-gradient descent method.
Theorem C.3. Let A be a symmetric PSD matrix and consider the linear system Ax = b and let
x∗ = argminx∥Ax− b∥2. Let κ denote the condition number of A. Given a starting vector x0, the
conjugate gradient descent algorithm uses O(

√
κ log(1/ε)) matrix-vector queries and returns x such

that
∥x− x∗∥A ≤ ε∥x0 − x∗∥A

where ∥x∥A = (xTAx)1/2 denotes the A-norm.

Note that matrices in our setting are also PSD, for example if Ai,j = ⟨xi, xj⟩. For non PSD matrices
A, one can also use the conjugate gradient descent method on the matrix ATA which squares the
condition number. Therefore, there are more complicated algorithms which work directly on the
matrix-vector queries of A for non PSD matrices, for example see references in Chapters 6 and 7 of
of [AG11]. We omit their discussion for clarity and just note that in practice, iterative methods which
directly use matrix-vector queries are preferred for linear system solving.
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C.2 Applications

We now derive specific applications using prior results from “matrix-free" methods. First we cover
low-rank approximation.

For the ℓ1 and ℓ22 distance matrices, we improve upon prior works for computing a relative error
low-rank approximation. While we can obtain such an approximation for a wide variety of Schatten
norms, we state the bound in terms of the Frobenius norm since it has been studied in prior works.
Theorem C.4. Let p ≥ 1 and consider the case that Ai,j = ∥xi − xj∥pp for all i, j. We can compute
a matrix B such that

∥A−B∥F ≤ (1 + ε)∥A−Ak∥F
where Ak denotes the optimal rank-k approximation to A in Frobenius norm. The runtime is
Õ(ndpk/ε1/3 + nkw−1/ε(w−1)/3).

Proof. The theorem follows from combining the matrix-vector query runtime of Table 1 and Theorem
C.1.

Note that the best prior result for the special case of ℓ1 and ℓ22 from [BCW20] where they obtained a
runtime bound of O(ndk/ε+nkw−1/εw−1). Thus our bound improves upon this by a multiplicative
factor of poly(1/ε). We point out that the bound of O(ndk/ε+ nkw−1/εw−1) is actually optimal
for the class of algorithms which sample the entries of A. Thus our results show that if we know the
set of points beforehand, which is a natural assumption, one can overcome such lower bounds.

For the case of Ai,j = ∥xi − xj∥2, we cannot hope to achieve a relative error approximation
for low-rank approximation since we only have fast matrix-vector queries to the matrix B where
Bi,j = (1± ε)∥xi − xj∥2 via Theorem A.12. Nevertheless, we can still obtain an additive error low-
rank approximation guarantee which outperforms prior works. First we show that our approximation
matrix-vector queries are sufficient to obtain such a guarantee.
Lemma C.5. Let A,B satisfy ∥A − B∥F ≤ ε∥A∥F and suppose A′ and B′ are the best rank-r
approximation of A and B respectively in the Frobenius norm. Then

∥A−B′∥F ≤ ∥A−A′∥F + 2ε∥A∥F .

Proof. We have

∥A−B′∥F ≤ ∥A−B∥F + ∥B −B′∥F
≤ ε∥A∥F + ∥B −A′∥F
≤ ε∥A∥F + ∥B −A∥F + ∥A−A′∥F
≤ ∥A−A′∥F + 2ε∥A∥F .

Theorem C.6. Let Ai,j = ∥xi − xj∥2 for all i, j. We can compute a matrix B such that

∥A−B∥F ≤ ∥A−Ak∥F + ε∥A∥F
with probability 1−1/poly(n) where Ak denotes the optimal rank-k approximation to A in Frobenius
norm. The runtime is Õ(ndk/ε1/3 + nkw−1/ε(w−1)/3).

Proof. The runtime follows from applying Theorem C.1 on the matrix created after applying Theo-
rems A.11 and A.12. The approximation guarantee follows from Lemma C.5.

The best prior work for additive error low-rank approximation for this case is due to [IVWW19]
which obtained such a guarantee with runtime Õ(nd ·poly(k, 1/ε)) for a large unspecified polynomial
in k and 1/ε. Lastly we note that our relative error low-rank approximation guarantee holds for any f
in Table 1, as summarized in Table 2.
Theorem C.7. Suppose we have exact matrix-vector query access to a matrix A with each query
taking time T . Then we can output a matrix B such that

∥A−B∥F ≤ (1 + ε)∥A−Ak∥F
where Ak denotes the optimal rank-k approximation to A in Frobenius norm. The runtime is
Õ(Tk/ε1/3 + nkw−1/ε(w−1)/3).
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Directly appealing to Theorems C.2 and C.3 in conjunction with our matrix-vector queries achieves
the fastest runtime for computing the top k singular values and solving linear systems for a wide
variety of distance matrices that we are aware of.

Theorem C.8. Suppose we have exact matrix-vector query access to a matrix A with each query
taking time T . We can compute a 1 ± ε approximation to the k singular values of A in time
Õ(T/ε1/2 + nk2/ε + k3/ε3/2). Furthermore, we can solve linear systems for A with the same
guarantees as any iterative method which only uses matrix-vector queries with an multiplicative
overhead of T .

Finally, we can also perform matrix multiplication faster with distance matrices compared to the
general runtime of nw ≈ n2.37. This follows from the following lemma.

Lemma C.9. Suppose A ∈ Rn×n admits an exact matrix-vector query algorithm in time T . Then
for any B ∈ Rn×n, we can compute AB in time O(Tm).

Proof. We can compute AB by computing the product of A with the n columns of B separately.

As a corollary, we obtain faster matrix multiplication for all the family of matrices which we have
obtained a fast matrix-vector query for. We state one such corollary for the ℓpp case.

Corollary C.10. Let p ≥ 1 and consider the case that Ai,j = ∥xi − xj∥pp for all i, j. For any other
matrix B, we can compute AB in time O(n2dp).

We can improve upon the above result slightly if we are multiplying two distance matrices for the
p = 2 case.

Lemma C.11. Consider the case that Ai,j = ∥xi − xj∥22 for all i, j and Bi,j = ∥yi − yj∥22, i.e.,
both A and B are n× n matrices with f = ℓ22. We can compute AB in time O(n2dw−2).

Proof. By decomposing both A and B, it suffices to compute the product XXTY Y T where X,Y ∈
Rn×d are the matrices with the points xi and yi in the rows respectively. Z1 := XTY ∈ Rd×d can be
computed in O(nd2) time. Then Z2 := XZ1 ∈ Rn×d can also be computed in O(nd2) time. Finally,
we need to compute Z2 × Y T . This can be done in O(n2dw−2) time by decomposing both Z2 and
Y T into n/d many d× d square matrices and using the standard matrix multiplication bound on each
pair of square matrices. This results in the claimed runtime of O((n/d)2 · dw) = O(n2dw−2).

D A Fast Algorithm for Creating ℓ1 and ℓ2 Distance Matrices

We now present a fast algorithm for creating distance matrices which addresses our contribution
(3) stated in the introduction. Given a set of n points x1, . . . , xn in Rd, our goal is to initialize an
approximate n× n distance matrix B for the ℓ1 distance which satisfies

Bij = (1± ε)∥xi − xj∥1 (1)

for all entries of B where 0 < ε < 1 is a precision parameter. The straightforward way to create
the exact distance matrix takes take O(n2d) time and by using the stability of Cauchy random
variables, we can create B which satisfies (1) in O(n2 log n) time for any constant ε. (Note the
Johnson-Lindenstrauss lemma implies a similar guarantee for the ℓ2 distance matrix). The goal of
this section is to improve upon this ‘baseline’ runtime of O(n2 log n). The final runtime guarantees
of this section will be of the form O(n2 · poly(log log n)).

Our improvement holds in the Word-RAM model of computation. Formally, we assume each
memory cell (i.e. word) can hold O(log n) bits and certain computations on words take O(1) time.
The only assumptions we require are the arithmetic operations of adding or subtracting words as well
as performing left or right bit shifts on words takes constant time.

We first present prior work on metric compression of [IRW17] in Section D.1. Our algorithm
description starts from Section D.2 which describes our preprocesing step. Section D.3 then presents
our key algorithm ideas whose runtime and accuracy are analyzed in Sections D.4 and D.5.
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D.1 Metric Compression Tree of [IRW17]

The starting point of our result is the metric compression tree construction of [IRW17], whose
properties we summarize below. First we introduce some useful definitions. The aspect ration Φ of
X is defined as

Φ =
maxi,j ∥xi − xj∥1
mini ̸=j ∥xi − xj∥1

.

Let ∆′ = maxi∈[n] ∥x1 − xi∥1 and ∆ = 2⌈log∆′⌉.

Theorem 1 of [IRW17] implies the following result. Given a dataset X = {x1, . . . , xn} ⊂ Rd with
aspect ration Φ, there exists a tree data structure T which allows for the computation of a compressed
representation X for the purposes of distance computations. At a high level, T is created by enclosing
X in a large enough and appropriately shifted axis-parallel square and then recursively dividing into
smaller squares (also called cells) with half the side-length until all points of X are contained in their
own cell. The edges of T encode the cell containment relationships. Formally, T has the following
properties:

• The leaf nodes of T correspond to the points of X .
• The edges of T are of two types: short edges and long edges which are defined as follows.

Short edges have a length d bit vector associated with them whereas long edges have an
integer ≤ O(log Φ) associated with them.

• Each long edge with associated integer k represents a non-branching path of length k of
short edges, all of whose associated length d bit vectors are the 0 string.

• Each node of T (including the nodes that are on paths which are compressed as long edges)
have an associated level −∞ < ℓ ≤ log(4∆). A level ℓ of a node v corresponds to an
axis-parallel square Gℓ of side length 2ℓ which contains all axis-parallel squares of child
nodes of v.

The notion of a padded point is important for the metric compression properties of T .
Definition D.1 (Padded Point). A point xi is (ε,Λ, ℓ)-padded, if the grid cell Gℓ of side length 2ℓ

that contains xi also contains the ball of radius ρ(ℓ) centered at xi, where

ρ(ℓ) = 8ε−12ℓ−Λ
√
d.

We say that xi is (ε,Λ)-padded in T , if it is (ε,Λ, ℓ)-padded for every level ℓ.

The following lemma is proven in [IRW17]. First define

Λ = log(16d1.5 log Φ/(εδ)). (2)

Lemma D.1 (Lemma 1 in [IRW17]). Consider the construction of T defined formally in Section 3 of
[IRW17]. Every point xi is (ε,Λ)-padded in T with probability 1− δ.

Now let x be any point in our dataset. We can construct x̃ ∈ Rd, called the decompression of x,
from T with the following procedure: We follow the downward path from the root of T to the leaf
associated with x and collect a bit string for every coordinate d of x̃. When going down a short edge
with an associated bit vector b, we concatenate the ith bit of b to the end of the bit string that we are
keeping track of for the ith coordinate of x̃. When going down a long edge, we concatenate with a
number of zeros equalling the integer associated with the long edge. Finally, a binary floating point
is placed in the resulting bit strings of each coordinate after the bit corresponding to level 0. The
collected bits then correspond to the binary expansion of the coordinates of x̃. For a more thorough
description of the decompression scheme, see Section 3 of [IRW17].

The decompression scheme is useful because it allows approximate distance computations.
Lemma D.2 (Lemma 2 in [IRW17]). If a point xi is (ε,Λ)-padded in T , then for every j ∈ [n],

(1− ε)∥x̃i − x̃j∥1 ≤ ∥xi − xj∥1 ≤ (1 + ε)∥x̃i − x̃j∥1.

We now cite the runtime and space required for T . The following theorem follows from the results of
[IRW17].
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Theorem D.3. Let L = logΦ + Λ. T has O(nΛ) edges, height L, its total size is O(ndΛ+ n log n)
bits, and its construction time is O(ndL).

We contrast the above gauranttes with the naive representation of X which stores O(log n) bits of
precision for each coordinate and occupies O(nd log n) bits of space, whereas T occupies roughly
O(nd log log n+ n log n) bits.

Finally, Theorem 2 in [IRW17] implies we can create a collection of O(log n) trees T (by setting δ to
be a small constant in (2)) such that every point in X is padded in at least one tree in the collection.

D.2 Step 1: Preprocessing Metric Compression Trees

We now describe the preprocessing steps needed for our faster distance matrix compression. Let

w =
4dΛ

log n
(3)

and recall our setting of Λ in (2). Note that we assume w is an integer which implicitly assumes
4dΛ ≥ log n.

First we describe the preprocessing of T . Consider a short edge of T with an associated d length
bit string b. We break up b into w equal chunks, each containing d/w bits. Consider a single chunk
c. We pad (an equal number of) 2Λ many 0’s after each bit in c so that the total number of bits is
log n/2. We then store each padded chunk in one word. We do this for every chunk resulting in w
words for each short edge and we do this for all short edges in all the trees.

The second preprocessing step we perform is creating a O(
√
n) × O(

√
n) table A. The rows and

columns of A are indexed by all possible bit strings with logn
2 bits. The entries of A record evaluations

of the function f(x, y) defined as follow: given x, y where x, y ∈ {0, 1}
log n

2 , consider the partition
of each of them into d/w blocks, each with an equal number of bits (2Λ bits per block. Note that
2Λ · d/w = (log n)/2). Each block defines an integer. Doing so results in d/w integers x1, . . . , xd/w

derived from x and w integers y1, . . . , yd/w derived from y. Finally,

f(x, y) =

d/w∑
i=1

|xi − yi|.

D.3 Step 2: Depth-First Search

We now calculate one row of the distance matrix from point a padded point x to all other points in
our dataset. Our main subroutine is a tree search procedure. Its input is a node v in a tree T and
it performs a depth-first search on the subtree rooted at v as described in Algorithm 11. Given an
internal vertex v, it calculates all the distances between the padded point x to all data points in our
dataset which are leaf nodes in the subtree rooted at v. A summary of the algorithm follows.

We perform a depth-first search starting at v. As we traverse the tree, we keep track of the current
embedding of the internal nodes via collecting bits along the edges of T : we append bits when we
descend the tree and remove as we move up edges. However, we only keep track of this embedding
up to 2Λ levels below v. After that, we continue traversing the tree but don’t update the embedding.
The reason for this is after 2Λ levels, the embedding is precise enough for all nodes below with
respect to computing the distance to x. Towards this end, we also track how many levels below v the
tree search is currently at and update this value appropriately.

The current embedding is tracked using w words. Recall that the bit string of every short edge has
been repackaged into w words, each ‘responsible’ for d/w coordinates. Furthermore, in each word
on the edge, we have padded 0’s between the bits of each d/w coordinates. When we need to update
the current embedding by incorporating the bits along a short edge e, we simply perform a bit shift
on each of the w words on e and add it to the w words we are keeping track of. We need to make sure
we place the bits ‘in order.’ That is for our tracked embedding, for every d coordinates, the bits on an
edge e should precede the bits on the edge directly following e in the tree search. Due to the padding
from the preprocessing step, the bit shift implies the bits on the short edges after e will be placed in
their appropriate corresponding places in order in the embedding representation.
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Algorithm 11 DFS in Subtree

1: Input: Metric Compression Tree T , node v
2: procedure SEARCH( T, v)
3: Initialize a global counter p for the number of levels which have been processed. Initially set

to 0 and will be at most 2Λ
4: Initialize w words t1, . . . , tw, all initially 0
5: Initialize a global counter r for the current level which is initially set to the level of v in T
6: Perform a depth-first search in the subtree rooted at v. Run Process-Short-Edge if a short

edge is encountered, Process-Long-Edge if a long edge is encountered, and Process-Leaf
when we arrive at a leaf.

7: end procedure

While performing the depth-first search, we will encounter both short and long edges. When
encountering a short edge, we run the function Process-Short-Edge and similarly, we run
Process-Long-Edge when a long edge is encountered. Finally if we arrive at a leaf node, we
run Process-Leaf.

Algorithm 12 Process Short Edge

1: Input: Short edge e, number of processed nodes p, t1, . . . , tw
2: procedure PROCESS-SHORT-EDGE(e, p, t1, . . . , tw)
3: Let e1, . . . , ew be the w words associated with edge e
4: If search is traversing down e and p < 2Λ, add 2−pei to ti for all 1 ≤ i ≤ w and increment p
5: If search is traversing up e and p ≤ 2Λ, subtract 2−pei from ti for all 1 ≤ i ≤ w and

decrement p
6: Update r to the level of the current node
7: end procedure

Algorithm 13 Process Long Edge

1: Input: Long edge e, number of processed nodes p
2: procedure PROCESS-LONG-EDGE(e, p)
3: If search is traversing down e and p < 2Λ, increment p
4: If search is traversing up e and p ≤ 2Λ, decrement p
5: Update r to the level of the current node
6: end procedure

When we arrive at a leaf node y, we currently have the decompression of y computed from the
tree. Note that we only have kept track of the bits after node v (up to limited precision) since all
prior bits are the same for y and x since they are in the same subtree. More specifically, we have
w words t1, . . . , tw. The first word t1 has 2Λ bits of each of the first d/w coordinates of y. For
every coordinate, the 2Λ bits respect the order described in the decompression step in Section D.2. A
similar fact is true for the rest of the words ti. Now to calculate the distance between x and y, we just
have to consider the 2Λ bits of all d coordinates of x which come after descending down vertex v. We
then repackage these 2dΛ total bits into w words in the same format as y. Note this preprocessing for
x only happens once (at the subtreee level) and can be used for all leaves in the subtree rooted at v.

Algorithm 14 Process Leaf

1: Input: t1, . . . , tw
2: procedure PROCESS-LEAF(y, t1, . . . , tw)
3: Let the point y correspond to the current leaf node
4: Let s1, . . . , sw denote the embedding of x after node v, preprocessed to be in the same format

as t1, . . . , tw
5: Report

∑w
i=1 A[ti, si] as the distance between x and y

6: end procedure
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Finally, the complete algorithm just calls Algorithm 11 on successive parent nodes of x. We mark
each subtree that has already been processed (at the root node) so that the subtree is only ever visited
once. The number of calls to Algorithm 11 is at most the height of the tree, which is bounded by
O(log Φ+Λ). We then repeat this for all points x in our dataset (using the tree which x is padded in)
to create the full distance matrix.

D.4 Runtime Analysis

We consider the runtime required to compute the row corresponding to a padded point x in the
distance matrix. Multiplying by n results in the total runtime. Consider the tree T in which x
is padded in and which we use for the algorithm described in the previous section and recall the
properties of T outlined in Theorem D.3. T has O(nΛ) edges, each of which is only visited at most
twice in the tree search (going up and down). Thus the time to traverse the tree is O(nΛ). There are
also at most O(nΛ) short edges in T . Updating the embedding given by t1, . . . , tw takes O(w) time
per edge since it can be done in O(w) total word operations. Long edges don’t require this time since
they represent 0 bits; for long edges, we just increment the counter for the current level. Altogether,
the total runtime for updating t1, . . . , tw across all calls to Algorithm 11 for the padded point x is
O(nΛw). Finally, calculating the distance from x to a fixed point y requires O(w) time since we just
index into the array A w times. Thus the total runtime is dominated by O(nΛw). Finally, the total
runtime for computing all rows of the distance matrix is

O(n2Λw) = O

(
n2dΛ2

log n

)
= O

(
n2d

log n
log2

(
d log Φ

ε

))
by setting δ to be a small constant in (2).

D.5 Accuracy Analysis

We now show that the distances we calculate are accurate within a 1± ε multiplicative factor. The
lemma below shows that if a padded point x and another point y have a sufficiently far away least-
common ancestor in T , then we can disregard many lower order bits in the decompression computed
from T while still guaranteeing accurate distance measurements. The lemma crucially relies on x
being padded.
Lemma D.4. Suppose x is (ε,Λ)-padded in T . For another point y, suppose the least common
ancestor of x and y is at level ℓ. Let x̃ and ỹ denote the sketches of x and y produced by T . Let x̃′ be
a modified version of x̃ where for each of the d coordinates, we remove all the bits acquired after
level ℓ− 2Λ. Similarly define ỹ′. Then

∥x̃′ − ỹ′∥1 = (1± ε)∥x− y∥1.

Proof. Since x is padded, we know that ∥x− y∥1 ≥ p(ℓ− 1) by Definition D.1. On the other hand,
if we ignore the bits after level ℓ− 2Λ for every coordinate of x̃ and ỹ, the additive approximation
error in the distance is bounded by a constant factor times

d ·
ℓ−2Λ−1∑
i=−∞

2i = d · 2ℓ−2Λ.

From our choice of Λ, we can easily verify that d · 2ℓ−2Λ ≤ εp(ℓ− 1)/2. Putting everything together
and adjusting the value of ε, we have

∥x̃′ − ỹ′∥1 = ∥x̃− ỹ∥1 ± εp(ℓ− 1)/2 = (1± ε/2)∥x− y∥1 ± εp(ℓ− 1)/2 = (1± ε)∥x− y∥1
where we have used the fact that ∥x̃ − ỹ∥1 = (1 ± ε/2)∥x − y∥1 from the guarantees of the
compression tree of [IRW17].

Putting together our results above along with the Johnson-Lindenstrauss Lemma and Theorem A.11
proves the following theorem.
Theorem D.5. Let X = {x1, . . . , xn} be a dataset of n points in d dimensions with aspect ration Φ.
We can calculate a n× n matrix B such that each (i, j) entry Bij of B satisfies

(1− ε)∥xi − xj∥1 ≤ Bij ≤ (1 + ε)∥xi − xj∥1
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in time

O

(
n2d

log n
log2

(
d log Φ

ε

))
.

Assuming the aspect ratio is polynomially bounded, we can compute n× n matrix B such that each
(i, j) entry Bij of B satisfies

(1− ε)∥xi − xj∥2 ≤ Bij ≤ (1 + ε)∥xi − xj∥2
with probability 1− 1/poly(n). The construction time is

O

(
n2

ε2
log2

(
log n

ε

))
.

D.6 A Faster Algorithm for ℓ∞ Distance Matrix Construction Over Bounded Alphabet

In this section, we show how to create the ℓ∞ distance matrix. Recall from Section 3 that there exists
no o(n2) time algorithm to compute a matrix-vector query for the ℓ∞ distance matrix, assuming
SETH, even for n points in {0, 1, 2}d. This suggests that any algorithm for computing a matrix-vector
query needs to initialize the distance matrix. However, there is still a gap between a Ω(n2) lower
bound for matrix-vector queries and the naive O(n2d) time needed to compute the ℓ∞ distance
matrix. We make progress towards showing that this gap is not necessary. Our main result is that
surprisingly, we can initialize the ℓ∞ distance matrix in time much faster than the naive O(n2d) time.

Theorem D.6. Given n points over {0, 1, . . . ,M}d, we can initialize the exact ℓ∞ distance matrix in
time O(Mw−1n2(d logM)w−2) where w is the matrix multiplication constant. We can also initialize
a n× n matrix B such that each (i, j) entry Bij of B satisfies

(1− ε)∥xi − xj∥∞ ≤ Bij ≤ (1 + ε)∥xi − xj∥∞

in time Õ(ε−1n2(dM)w−2).

Thus for M = O(1), which is the setting of the lower bound, we can initialize the distance matrix in
time O(n2dw−2) and thus compute a matrix-vector query in that time as well.

Proof. The starting point of the proof is to first design an algorithm which constructs a matrix with
(i, j) entry an indicator vector for ∥x − y∥∞ ≤ i or ∥x − y∥∞ > i. Given this, we can then sum
across all M choices and construct the full distance matrix. Thus it suffices to solve this intermediate
task.

Pick a sufficiently large p such that dip ≤ (i+ 1)p. A choice of p = O(M log d) suffices. Now in
the case that ∥x − y∥∞ ≤ i, we have ∥x − y∥pp ≤ dip and otherwise, ∥x − y∥pp ≥ (i + 1)p. Thus,
the matrix C with the (i, j) entry being ∥xi − xj∥pp is able to distinguish the two cases so it suffices
to create such a matrix. Now we can write ∥x− y∥pp as an inner product in O(pd) variables, i.e., it is
a gram matrix. Thus computing C can be done by computing a product of n×O(pd) matrix by a
O(pd)× n matrix, which can be done in

O

((
n

pd

)2

(pd)w−2

)
= O(n2(pd)w−2).

time by partitioning each matrix into square submatrices of dimension O(pd). Plugging in
the bound for p and considering all possible choices of i results in the final runtime bound of
O(Mw−1n2(d logM)w−2), as desired.

Now if we only want to approximate each entry up to a multiplicative 1± ε factor, it suffices to only
loop over i’s which are increasing by powers of 1 + cε for a small constant c. This replaces an O(M)
factor by an O(ε−1 logM) factor.
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