
Supplementary for Expediting Large-Scale Vision
Transformer for Dense Prediction without Fine-tuning

Weicong Liang1∗ Yuhui Yuan4∗† Henghui Ding3 Xiao Luo2

Weihong Lin4 Ding Jia1 Zheng Zhang4 Chao Zhang1 Han Hu4

1Key Laboratory of Machine Perception (MOE)
School of Intelligence Science and Technology, Peking University
2School of Mathematical Sciences, Peking University 3ETH Zurich

4Microsoft Research Asia

Adaptive
Average
Pooling

 

 Local
Clustering

 
 

 

Token 
Similarity 

Reconstruct 

 

Token Clustering Layer Token Reconstruction Layer

Figure 1: Illustrating more details of our approach. The token clustering layer consists of an adaptive
average pooling block (for initializing the cluster centers) and an iterative local clustering block (for performing
the k-means clustering). The token reconstruction layer consists of a token similarity estimation block (for
estimating the reconstruction relation matrix) and a reconstruction block (for reconstructing the high-resolution
representations). Zα represents the original high-resolution representations after α-th transformer layer. Sα

represents the clustered low-resolution representations by token clustering layer. Sα+β represents the refined
clustered low-resolution representations after additional β transformer layers. Zα+β represents the reconstructed
high-resolution representations from Sα+β by using the token reconstruction layer.

A. Illustrating More Details of Our Approach

We first illustrate the overall details of our token clustering layer and token reconstruction layer
in Figure 1. We then present the example implementation of token clustering layer and token
reconstruction layer based on PyTorch in Listing 1 and Listing 2, respectively.

B. More Hyper-parameter Details

We summarize the detailed hyper-parameter settings for the dense prediction methods based on plain
ViTs and Swin Transformers in Table 1 and Table 2, respectively.

Table 1 summarizes the hyper-parameters, including the inserted positions α & α+β of token
clustering layer & token reconstruction layer, the number of remaining transformer layers after the
token reconstruction layer γ, the total number of transformer layers L, the number of tokens before
clustering H

P × W
P , the number of tokens after clustering h× w, the number of neighboring pixels λ,

the number of EM iterations κ, the temperature value τ , and the number of nearest neighbors k, for
Segmenter, DPT, and SWAG.

∗Equal contribution.
†B yuhui.yuan@microsoft.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1 def token_clustering_layer(features , cluster_features_shape , num_iters , tau):
2 # args:
3 # features: shape [B, C, H, W]
4 # cluster_features_shape: [h, w]
5 # num_iters: num of iterations of updating cluster features
6 # teu: the temperture of distance matrix
7 # output:
8 # cluster_features: shape [B, hw, C]
9

10 B, C, H, W = features.shape
11
12 # initialize the cluster features
13 cluster_features = interpolate(features , cluster_features_shape)
14
15 # construct mask to constrain the interactions within local range
16 mask = calculate_mask(features.shape , cluster_features_shape)
17 mask = (~mask) * 1e16
18
19 features = features.reshape(B, C, -1).permute(0, 2, 1) # (B, HW, C)
20 cluster_features = cluster_features.reshape(B, C, -1).permute(0, 2, 1) # (B, hw, C)
21
22 for _ in range(num_iters):
23 # calculate L2 distance of features and cluster features , the shape distance_matrix is (B, hw,

HW)
24 distance_matrix = L2_distance(features , cluster_features)
25 # mask remote distance through softmax
26 distance_matrix += mask
27 weights = (-distance_matrix / teu).softmax(dim=1)
28 # let the sum of weight of each cluster feature be 1
29 weights = weights / weights.sum(dim=2, keepdim=True).clamp_(min=1e-16)
30 cluster_features = matrix_product(weights , features)
31
32 return cluster_features

Listing 1: PyTorch example of token clustering layer.

1 def token_reconstruction_layer(cluster_features , features_before_clustering , features_after_clustering ,
k, teu):

2 # args:
3 # cluster_features: shape [B, hw, C]
4 # features_before_clustering: features of alpha -th layer before clustering , shape [B, hw , C]
5 # features_after_clustering: features of alpha -th layer before clustering , shape [B, HW, C]
6 # k: topk parameter
7 # teu: the temperture of weight matrix
8 # output:
9 # features: reconstruction features , shape [B, HW , C]

10
11 # calculate L2 distance between features and cluster_features
12 distance = L2_distance(features_before_clustering , features_after_clustering)
13 weight = exp(-teu * distance)
14 # only remain the k weight of the most simliar features , calculating mask
15 topk , indices = topk(weight , k=k, dim=2)
16 mink = min(topk , dim=-1).values
17 mink = mink.unsqueeze (-1).repeat(1, 1, weight.shape [-1])
18 mask = greater_or_equal(weight , mink)
19 weight = weight * mask
20
21 weight = weight / weight.sum(dim=2, keepdim=True).clamp_(min=1e-16)
22 features = matrix_product(weight , cluster_features)
23
24 return features

Listing 2: PyTorch example of token reconstruction layer.

Table 2 summarizes the hyper-parameters, including the inserted positions α & α+β of the window
token clustering layer & window token reconstruction layer, the number of remaining transformer
layers after the token reconstruction layer γ, the total number of transformer layers L, the number of
window tokens before clustering K × K, the number of window tokens after clustering k × k, the
number of neighboring pixels λ, the number of EM iterations κ, the temperature value τ , and the
number of nearest neighbors k, for Mask2Former and SwinV2-L + HTC++.

C. More Evaluation Details

We illustrate the evaluation details used for measuring the GFLOPs and FPS of different methods in
Table 3. We choose the input resolutions for different methods with different backbones according
to their official implementations. To illustrate the effectiveness of our method more accurately,
we do not include the complexity and latency brought by the especially heavy detection heads or
segmentation heads within Mask2Former and SwinV2-L + HTC++. For example, the GFLOPs of

2



SwinV2-L backbone accounts for only 56.7% of the whole model, therefore, we only report the
GFLOPs and FPS improvements of our method over the backbone.

D. Comparison with EViT [3] on Dense Prediction

To demonstrate the advantage of our approach over the representative method that is originally
designed for the image classification tasks, i.e., EViT [3], we report the detailed comparison results in
Figure 3. The original EViT propose to identify and only keep the top ρ% tokens according to their
attention scores relative to the [class] token. Specifically, we follow the official implementations
to insert the token identification module into the 8-th, 14-th, and 20-th layer of ViT-L/16 (with 24
layers in total) to decrease the number of tokens by (1-ρ%), respectively. We report the results of
EViT by choosing ρ%=60%/70%/80%/90% in Figure 3. Accordingly, we can see that our method
significantly outperforms EViT across various GFLOPs & FPS settings when evaluating without
either re-training or fine-tuning.

The EViT can not be used for dense prediction directly, as it only keeps around 21.6% ∼ 72.9%
of the tokens at last. To reconstruct the missed token representations over the abandoned positions,
we apply two different strategies, including (i) reusing the representations before the corresponding
token identification module, and (ii) using our token reconstruction layer to reconstruct the missed
token representations according to Figure 2a. We empirically find the first strategy achieves much
worse results, thus choosing the second strategy by default.

E. Adapting DynamicViT [6] for Dense Prediction

To adapt DynamicViT for dense prediction tasks, we propose to add multiple token reconstruction
layers to reconstruct high-resolution representations from the selected low-resolution representations
iteratively. Figure 2 (b) presents more details of the overall framework. We also report the comparison
results in Table 4.

F. Comparison with Clustered Attention [9], ACT [10], and SMRF [2]

We illustrate the key differences between our approach and the existing clustered attention ap-
proaches [9, 10, 2] the following two aspects: (i) These clustering attention methods perform
clustering within each multi-head self-attention layer (MHSA) independently while our approach
only performs clustering once with the token clustering layer and refines the clustered representations
with the following transformer layers. Therefore, our approach introduces a much smaller additional
overhead caused by the clustering operation. (ii) These clustering attention methods only reduce
the computation cost of each MHSA layer equipped with clustering attention as they maintain the
high-resolution representations outside the MHSA layers while Our approach can reduce the compu-
tation cost of both MHSA layers and feed-forward network (FFN) layers after the token clustering
layer. We further summarize their detailed differences and the experimental comparison resultswith
ACT [10](without retraining) in Table 5 and Table 6, respectively.

According to the results in Table 6, we can see that (i) ACT also achieves strong performance without
retraining, (ii) our approach is a better choice considering the trade-off between performance and FPS
& GFLOPs, e.g., our method achieves close performance as ACT (51.32 vs. 51.38) while running
70% faster (9.1 vs. 5.3) and saving more than 35% GFLOPs (388.2 vs. 614.7).

G. Visualization

We first present the visual comparison results of our approach in Figure 4a, which shows three
different configurations over Segmenter+ViT-L/16 achieve 32.13%/48.21%/51.32% when setting the
cluster size h× w as 8× 8/16× 16/24× 24, respectively.

Then, we visualize both the original feature maps and the clustering feature maps in Figure 4b.
Accordingly, we can see that the clustering feature maps, based on our token clustering layer, well
maintain the overall structure information carried in the original high-resolution feature maps.

3



Last, to verify the redundancy in the tokens of vision transformer, we visualize the attention maps of
neighboring tokens in Figure 5.

References

[1] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar.
Masked-attention mask transformer for universal image segmentation. 2022.

[2] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient
attention using asymmetric clustering. NeurIPS, 33:6476–6489, 2020.

[3] Youwei Liang, GE Chongjian, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Evit:
Expediting vision transformers via token reorganizations. In International Conference on
Learning Representations, 2022.

[4] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. arXiv preprint
arXiv:2111.09883, 2021.

[5] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In ICCV, pages 12179–12188, 2021.

[6] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dy-
namicvit: Efficient vision transformers with dynamic token sparsification. arXiv preprint
arXiv:2106.02034, 2021.

[7] Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Pra-
teek Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens van der Maaten.
Revisiting weakly supervised pre-training of visual perception models, 2022.

[8] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. arXiv preprint arXiv:2105.05633, 2021.

[9] Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered
attention. NeurIPS, 33, 2020.

[10] Minghang Zheng, Peng Gao, Renrui Zhang, Kunchang Li, Xiaogang Wang, Hongsheng Li, and
Hao Dong. End-to-end object detection with adaptive clustering transformer. arXiv preprint
arXiv:2011.09315, 2020.

4



Table 1: Illustrating the hyper-parameter settings used for Segmenter, DPT, and SWAG.

Method Backbone Dataset α α+ β γ L H
P
× W

P
h× w λ κ τ k

Segmenter [8] ViT-L/16

ADE20K 10

24 0 24

40× 40 28× 28

5× 5 5 50 20Cityscapes 12 48× 48 32× 32

PASCAL-Context 14 30× 30 15× 15

DPT [5] R50+ViT-B/16
KITTI 2

12 0 12
76× 22 28× 28 5× 5 5 5 20

NYUv2 3 40× 30 16× 16 7× 7 5 10 50

SWAG [7]
ViT-H/14

ImageNet-1K
8 32 0 32 37× 37 25× 25 7× 7 5 1 20

ViT-L/16 8 24 0 24 32× 32 22× 22 9× 9 5 1 20

Table 2: Illustrating the hyper-parameter settings used for Mask2Former and SwinV2-L + HTC++.

Method Backbone Dataset α α+ β γ L K× K k× k λ κ τ k

Mask2Former [1] Swin-L

COCO (panoptic seg.) 10

22 2 24 12× 12 8× 8

7× 7 5 20 10

ADE20K (semantic seg.) 8 5× 5 5 100 10

COCO (instance seg.) 12 11× 11 5 100 60

SwinV2-L + HTC++ [4] SwinV2-L COCO (object det.) 12 22 2 24 32× 32 23× 23 5× 5 5 33 20

Table 3: Illustrating the hyper-parameter settings used for measuring FPS and GFLOPs.

Method Backbone with Head Dataset Input resolution

Segmenter [8] ViT-L/16 ✓

ADE20K 640× 640

Cityscapes 768× 768

PASCAL-Context 480× 480

DPT [5] R50+ViT-B/16 ✓
KITTI 1216× 352

NYUv2 640× 480

SWAG [7]
ViT-H/14

✓ ImageNet-1K
518× 518

ViT-L/16 512× 512

Mask2Former [1] Swin-L ✗

COCO (panoptic seg.) 1152× 1152

ADE20K (semantic seg.) 1152× 1152

COCO (instance seg.) 1152× 1152

SwinV2-L + HTC++ [4] SwinV2-L ✗ COCO (object det.) 1024× 1024

Table 4: Comparison to parametric methods based on Segmenter [8].

Dataset Method Parametric Fine-Tuning GFLOPs mIoU

ADE20K

Dynamic ViT (ρ = 0.7) ✓ ✓ 455.6 45.62
Dynamic ViT (ρ = 0.8) ✓ ✓ 513.3 47.89
Dynamic ViT (ρ = 0.9) ✓ ✓ 583.0 50.42
Ours (h× w = 16× 16) ✗ ✗ 315.1 48.21
Ours (h× w = 20× 20) ✗ ✗ 347.2 50.17
Ours (h× w = 24× 24) ✗ ✗ 388.2 51.32

Table 5: Illustrating the differences between clustered
attention [9], ACT [10], SMRF [2], and our approach.

Cluster method query key-value FFN #clustering layers
Clustered Attention [9] ✓ ✗ ✗ # MHSA layers
ACT [10] ✓ ✗ ✗ # MHSA layers
SMRF [2] ✓ ✓ ✗ # MHSA layers
Ours ✓ ✓ ✓ 1

Table 6: Comparison results with ACT [10].

Cluster method FPS GFLOPs mIoU
Segmenter+ViT-B/16 6.2 659.0 51.82
Segmenter+ViT-B/16+Ours(h×w=24× 24) 9.1 388.2 51.32
Segmenter+ViT-B/16+Ours(h×w=28× 28) 8.8 438.9 51.56
Segmenter+ViT-B/16+ACT(#query-hashes=16) 5.8 578.7 48.12
Segmenter+ViT-B/16+ACT(#query-hashes=24) 5.3 614.7 51.38
Segmenter+ViT-B/16+ACT(#query-hashes=32) 5.0 638.2 51.64

5



(a) Adapting EViT for Dense Prediction

(b) Adapting DynamicViT for Dense Prediction

Figure 2: Illustrating how to adapt the EViT [3] and DynamicViT [6] for dense prediction based on ViT-L/16
with 24 transformer layers. Following the proposed token reconstruction scheme, we estimate the semantic
relations based on the representations before each token identification layer [3] or token sparsification layer [6].

400 500 600 700

42

44

46

48

50

52

GFLOPs↓

m
Io

U
(%

)↑

Proportion of agents in households

Segmenter + Ours
Segmenter + EViT
Segmenter

(a) mIoU vs. GFLOPs on ADE20K

6 7 8 9 10 11 12

42

44

46

48

50

52

FPS↑

m
Io

U
(%

)↑

Proportion of agents in households

Segmenter + Ours
Segmenter + EViT
Segmenter

(b) mIoU vs. FPS on ADE20K

200 250 300 350

52

54

56

58

GFLOPs↓

m
Io

U
(%

)↑

Proportion of agents in households

Segmenter + Ours
Segmenter + EViT
Segmenter

(c) mIoU vs. GFLOPs on PASCAL-Context

14 16 18 20 22

52

54

56

58

FPS↑

m
Io

U
(%

)↑

Proportion of agents in households

Segmenter + Ours
Segmenter + EViT
Segmenter

(d) mIoU vs. FPS on PASCAL-Context

Figure 3: Comparison with EViT [3] on ADE20K and PASCAL-Context semantic segmentation task based on
Segmenter with ViT-L/16. ↑ and ↓ represent higher is better and lower is better respectively.

6



(a) ADE20K example segmentation results of our approach with h× w as 8× 8, 16× 16, 24× 24 on the left
three columns, respectively. The right-most column shows the results of the original Segmenter+ViT-L/16. We
can see that our approach achieves consistently better segmentation results with increasing clustered output
resolutions from left to right.

(b) ADE20K example visualization of the original feature maps (2-ed row) and the clustering feature maps
(3-rd row). We can see that the clustering feature maps still maintain the structure information presented in the
original high-resolution feature maps, thus showing the potential benefits of our token clustering scheme.

Figure 4: Visualizations of segmentation results in (a) and feature maps in (b). We choose Segmenter+ViT-L/16
on ADE20K to generate the above segmentation results and the feature map visualizations.

7



Figure 5: Visualizations of the attention maps of neighboring sampled positions. We mark the sampled positions
with red point markers. We can see that the neighboring positions share highly similar attention maps, which
matches the redundancy observation in the Adaptive Clustering Transformer (ACT) [10].

8


