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Abstract

A central problem in online learning and decision making—from bandits to rein-1

forcement learning—is to understand what modeling assumptions lead to sample-2

efficient learning guarantees. With a focus on stochastic environments, a recent3

line of research provides general structural conditions under which sample-efficient4

learning is possible, but robust learning guarantees for agnostic or adversarial5

settings have remained elusive. We consider a general adversarial decision making6

framework that encompasses (structured) bandit problems with adversarial rewards7

and reinforcement learning problems with adversarial dynamics. Our main result8

is to show—via new upper and lower bounds—that the Decision-Estimation Co-9

efficient, a complexity measure introduced by Foster et al. [18] in the stochastic10

counterpart to our setting, is both necessary and sufficient for low regret in the11

adversarial setting. However, compared to the stochastic setting, one must apply12

the Decision-Estimation Coefficient to the convex hull of the class of models (or,13

hypotheses) under consideration. This establishes that the price of accommodating14

adversarial rewards or dynamics is governed by the behavior of the model class15

under convexification, and recovers a number of existing results—both positive and16

negative. En route to obtaining these guarantees, we provide new structural results17

that connect the Decision-Estimation Coefficient to variants of other well-known18

complexity measures, including the Information Ratio of Russo and Van Roy [52]19

and the Exploration-by-Optimization objective of Lattimore and György [34].20

1 Introduction21

We consider the problem of robust data-driven decision making in bandits, reinforcement learn-22

ing, and beyond. The last decade has seen development of data-driven decision algorithms with23

strong empirical performance in domains including robotics [28, 40], dialogue systems [38], and24

personalization [2, 57]. Reliably deploying data-driven decision making methods in safety-critical25

systems requires principled algorithms with provable robustness in the face of dynamic or even26

adversarial environments. Furthermore, for such algorithms to be applicable, they must effectively27

take advantage of problem structure as modeled by the practitioner. In high-dimensional problems,28

this means efficiently generalizing across states and actions while delicately exploring new decisions.29

For decision making in static, stochastic environments, recent years have seen extensive investigation30

into optimal sample complexity and algorithm design principles, and the foundations are beginning to31

take shape. In particular, with an emphasis on reinforcement learning, a burgeoning body of research32

identifies specific modeling assumptions under which sample-efficient interactive decision making33

is possible [13, 60, 22, 44, 6, 29, 15, 39, 14, 63], as well as general structural conditions that aim34

to unify these settings [50, 21, 56, 59, 16, 23, 18]. For dynamic or adversarial settings, however,35

comparatively little is known outside of (i) positive results for special cases such as adversarial bandit36

problems [5, 4, 20, 11, 1, 8, 27, 17, 9, 31], and (ii) a handful of negative results suggesting that online37

reinforcement learning in agnostic or adversarial settings can actually be statistically intractable38
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[53, 41]. These developments raise the following questions: (a) what are the underlying phenomena39

that determine the statistical complexity of decision making in adversarial settings? (b) what are the40

corresponding algorithmic design principles that attain optimal sample complexity?41

Contributions. We consider an adversarial variant of the Decision Making with Structured42

Observations (DMSO) framework introduced in Foster et al. [18], where learner or decision-maker43

interacts with a sequence of models (reward distributions in the case of bandits, or MDPs in the case44

of reinforcement learning) chosen by an adaptive adversary, and aims to minimize regret against the45

best decision in hindsight. The models are assumed to belong to a known model class which reflects46

the learner’s prior knowledge about the problem. The main question we investigate is: How does the47

structure of the model class determine the minimax regret for adversarial decision making? We show:48

1. For any model class, one can obtain high-probability regret bounds based on a convexified version49

of the Decision-Estimation Coefficient (DEC) complexity measure introduced in Foster et al. [18].50

2. For any algorithm with reasonable tail behavior, the optimal regret for adversarial decision making51

is lower bounded by (a suitably localized version of) the convexified DEC.52

In the process, we draw new connections to several existing complexity measures.53

1.1 Problem Setting54

We adopt an adversarial variant of the DMSO framework of Foster et al. [18]. The protocol consists55

of T rounds, where at each round t = 1, . . . , T :56

1. The learner selects a decision π(t) ∈ Π, where Π is the decision space.57

2. Nature selects a model M (t) ∈M, whereM is a model class.58

3. The learner receives a reward r(t) ∈ R ⊆ R and observation o(t) ∈ O sampled via (r(t), o(t)) ∼59

M (t)(π(t)), where O is the observation space. We abbreviate z(t) := (r(t), o(t)) and Z := R×O.60

Here, each model M = M(·, · | ·) ∈ M is a conditional distribution M : Π → ∆(R × O) that61

maps the learner’s decision to a distribution over rewards and outcomes. This setting subsumes62

(adversarial) bandit problems, where models consist of reward functions/distributions, as well as63

adversarial reinforcement learning, where models correspond to Markov decision processes (MDPs).64

In both cases, the model classM encodes prior knowledge about the decision making problem such65

as structure of rewards or dynamics (e.g., linearity or convexity), and might be parameterized by linear66

models, neural networks, or other rich function approximators depending on the problem domain.67

For a model M ∈ M, EM,π[·] denotes expectation under the process (r, o) ∼ M(π). We define68

fM(π) := EM,π[r] as the mean reward function and πM := arg maxπ∈Π f
M(π) as the decision with69

greatest reward for M . We let FM = {fM |M ∈M} denote the induced class of reward functions.70

We measure performance via regret to the best fixed decision in hindsight:71

RegDM := sup
π?∈Π

T∑
t=1

Eπ(t)∼p(t)
[
fM

(t)
(π?)− fM(t)

(π(t))
]
. (1)

This formulation generalizes Foster et al. [18], who considered the stochastic setting where M (t) =72

M? is fixed across all rounds. Examples include:73

• Adversarial bandits. With no observations (O = {∅}), the adversarial DMSO framework is74

equivalent to the adversarial bandit problem with structured rewards. In this context, π(t) is75

typically referred to as an action or arm and Π is referred to as the action space. The most basic76

example here is the adversarial finite-armed bandit problem with A actions [5, 4, 20], where77

Π = {1, . . . , A} and FM = RA. Other well-studied examples include adversarial linear bandits78

[11, 1, 8], bandit convex optimization [27, 17, 9, 31], and nonparametric bandits [27, 7, 43].179

• Reinforcement learning. The adversarial DMSO framework encompasses finite-horizon, episodic80

online reinforcement learning, with each round t corresponding to a single episode: π(t) is a81

policy (a mapping from state to actions) to play in the episode, r(t) is the cumulative reward in the82

1Typically, these examples are formulated with deterministic rewards, which we encompass by restricting
models inM to be deterministic. Our formulation is more general and allows for, semi-stochastic adversaries.
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episode, and the observation o(t) is the episode’s trajectory (sequence of observed states, actions,83

and rewards). Online reinforcement learning in the stochastic setting where M (t) = M? is fixed84

has received extensive attention [21, 56, 22, 59, 16, 23, 18], but the adversarial setting we study has85

received less investigation. Examples include the setting in which the adversary chooses a sequence86

of tabular MDPs, which is known to be intractable [41], and the easier setting in which there is a87

fixed (known) MDP but rewards are adversarial [45, 64, 46, 24]. See Appendix D for more details.88

We refer to Appendix B for additional measure-theoretic details and background, and to Foster et al.89

[18] for further examples and detailed discussion.290

Understanding sample complexity for the DMSO setting at this level of generality is a challenging91

problem. Even if one restricts only to bandit-type problems (with no observations), any complexity92

measure must capture the role of structural assumptions such as convexity or smoothness in determin-93

ing the optimal rates. To go beyond bandit problems and handle the general setting, one must accom-94

modate problems with rich, structured feedback such as reinforcement learning, where observations95

(as well as subtle features of the noise distribution) can reveal information about the underlying model.96

1.2 Overview of Results97

For a model classM, reference model M ∈M, and scale parameter γ > 0, the Decision-Estimation98

Coefficient [18] is defined via99

decγ(M,M) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
, (2)

where we recall that for probability measures P and Q with a common dominating measure ν,100

(squared) Hellinger distance is given by D2
H(P,Q) =

∫ (√
dP/dν −

√
dQ/dν

)2
. We define101

decγ(M) = supM∈M decγ(M,M), and let co(M) denote the convex hull of M, which can102

equivalently be viewed as the set of all mixtures of models inM. Our main results show that the103

convexified Decision-Estimation Coefficient decγ(co(M)) leads to upper and lower bounds on the104

optimal regret for adversarial decision making.105

Theorem (informal). For any model classM, Algorithm 1 ensures that with high probability,106

RegDM . decγ(co(M)) · T, (3)

where γ satisfies the balance decγ(co(M)) ∝ γ
T log|Π|. Moreover, for any algorithm with “rea-107

sonable” tail behavior (Section 2.2), regret must scale with a localized version of the same quantity.108

As a consequence, there exists an algorithm for which E[RegDM] ≤ õ(T ) if and only if109

decγ(co(M)) ∝ γ−ρ for some ρ > 0.110

For the stochastic version of our setting, Foster et al. [18] give upper and lower bounds that scale with111

decγ(M) (under appropriate technical assumptions; cf. Section 2.3). Hence, our results show that in112

general, the gap between optimal regret for stochastic and adversarial settings (or, “price of adversarial113

outcomes”) is governed by the behavior of the DEC under convexification. For example, multi-armed114

bandits, linear bandits, and convex bandits are convex model classes (where co(M) =M), which115

gives a post-hoc explanation for why these models are tractable in the adversarial setting. Finite116

state/action Markov decision processes are not a convex class, and have decγ(co(M)) exponentially117

large compared to decγ(M); in this case, our results recover lower bounds of Liu et al. [41].118

Beyond these results, we prove that the convexified Decision-Estimation Coefficient is equivalent to:119

1. a “parameterized” variant of the generalized information ratio of Lattimore and György [34].120

2. a novel high-probability variant of the Exploration-by-Optimization of Lattimore and György [34].121

Overall, while our results heavily draw on the work of Foster et al. [18] and Lattimore and György [34],122

we believe they play a valuable role in bridging these lines of research and formalizing connections.123

Our techniques. On the lower bound side, we strengthen the lower bound from Foster et al. [18]124

with an improved change-of-measure argument (leading to improved results even in the stochastic125

2We mention in passing that the upper bounds in this paper encompass the more general setting where
rewards are not observed by the learner (i.e., z(t) does not contain the reward), thus subsuming the partial
monitoring problem. Our lower bounds, however, require that rewards are observed. See Appendix A.
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setting), and combine this with the simple idea of choosing a static mixture model as the adversary.126

On the upper bound side, we extend the powerful Exploration-by-Optimization machinery of127

Lattimore and György [34] to the DMSO setting, and give a novel high-probability variant of the128

technique. We show that the performance of this method is controlled by a complexity measure129

whose value is equivalent to the convexified DEC, as well as parameterized variant of the information130

ratio (we present results in terms of the former to draw comparison to the stochastic setting).131

Organization. Section 2 presents our main results, including upper and lower bounds on regret and132

a characterization of learnability. In Section 3, we provide new structural results connecting the DEC133

to Exploration-by-Optimization and the information ratio. We close with future directions (Section 4).134

Additional comparison to related work is deferred to Appendix A. The appendix also contains proofs135

and additional results, including examples (Appendix D) and further structural results (Appendix E).136

2 Main Results137

We now present our main results. First, using a new high-probability variant of the Exploration-by-138

Optimization technique [37, 34], we provide an upper bound on regret via the (convexified) Decision-139

Estimation Coefficient (Section 2.1). Next, we present a lower bound that scales with a localized140

version of the same quantity (Section 2.2), and use these results to give a characterization for learn-141

ability (Section 2.3). Finally, we discuss the gap between stochastic and adversarial decision making.142

For the sake of keeping presentation as simple as possible, we make the following assumption.143

Assumption 2.1. The decision space Π has |Π| <∞, and we haveR = [0, 1].144

This assumption only serves to facilitate the use of the minimax theorem, and we expect that our results145

can be generalized substantially (e.g., with covering numbers as in Section 3.4 of Foster et al. [18]).146

2.1 Upper Bound147

In this section we give regret bounds for adversarial decision making based on the (convexified)148

Decision-Estimation Coefficient. A-priori, it is not obvious why the DEC should bear any relevance149

to the adversarial setting: The algorithms and regret bounds based on the DEC that Foster et al. [18]150

introduce for the stochastic setting heavily rely on the ability to estimate a static underlying model,151

yet in the adversarial setting the learner may only interact with each model a single time. This renders152

any sort of global estimation (e.g., for dynamics of an MDP) impossible. In spite of this difficulty, we153

show that regret bounds can be achieved by building on the powerful Exploration-by-Optimization154

technique of Lattimore and Szepesvári [37], Lattimore and György [34], which provides an elegant155

approach to estimating rewards while exploiting the structure of the model class under consideration.156

Exploration-by-Optimization—which was introduced in Lattimore and Szepesvári [37] and substan-157

tially expanded in Lattimore and György [34]—can be thought of as a generalization of the classical158

EXP3 algorithm [5], which we recall applies the exponential weights method for full-information159

online learning to a sequence of unbiased estimators for the rewards (formed via importance weight-160

ing). The naive reward estimator used by EXP3 is unsuitable for general model classes because it161

does not exploit the structure of the decision space. Consequently, the regret scales linearly with |Π|162

rather than with, e.g., dimension, as one might hope for linear bandits. The idea behind Exploration-163

by-Optimization is to solve an optimization problem at each round to find a reward estimator and164

modified sampling distribution that better exploit the structure of the model classM for improved re-165

gret. Lattimore and György [34] showed that for a general partial monitoring setting (cf. Appendix A),166

the expected regret of this method—for exponential weights and a more general family of algorithms167

based on Bregman divergences—is bounded by a generalization of the information ratio [51, 52].168

Our development builds on that of Lattimore and György [34], but we pursue high-probability guaran-169

tees rather than in-expectation guarantees.3 While high-probability guarantees are useful in their own170

right, our motivation for studying such guarantees comes from the lower bound in the sequel (Sec-171

tion 2.2), which shows that the convexified Decision-Estimation Coefficient lower bounds the regret172

for algorithms with “reasonable” tail behavior. To develop high-probability regret bounds and com-173

plement this lower bound, we use a novel high-probability variant of the Exploration-by-Optimization174

objective and a specialized analysis which goes beyond the Bregman divergence framework.175

3In general, in-expectation regret bounds do not imply high-probability bounds. For example, in adversarial
bandits, the EXP3 algorithm can experience linear regret with constant probability [36].

4



Algorithm 1 High-Probability Exploration-by-Optimization (ExO+)
1: parameters: Learning rate η > 0.
2: for t = 1, 2, · · · , T do
3: Define q(t) ∈ ∆(Π) via exponential weights update:

q(t)(π) = exp
(
η
∑t−1
i=1 f̂

(i)(π)
)
/
∑
π′∈Π exp

(
η
∑t−1
i=1 f̂

(i)(π′)
)
. (4)

4: Solve high-probability exploration-by-optimization objective: // See Eq. (7)

(p(t), g(t))← arg min
p∈∆(Π),g∈G

sup
M∈M,π?∈Π

Γq(t),η(p, g ;π?,M). (5)

5: Sample decision π(t) ∼ p(t) and observe z(t) = (r(t), o(t)).
6: Form reward estimator:

f̂ (t)(π) =
g(t)(π;π(t), z(t))

p(t)(π(t))
. (6)

Our algorithm, ExO+, is displayed in Algorithm 1. At each round t, the algorithm proceeds by176

forming a reference distribution q(t) ∈ ∆(Π) by applying the standard exponential weights update177

(with learning rate η > 0) to a sequence of reward estimators f̂ (1), . . . , f̂ (t−1) from previous rounds178

(Line 3). Next, for the main step of the algorithm (Line 4), we obtain a sampling distribution179

p(t) ∈ ∆(Π) and an estimation function g(t) ∈ G := (Π × Π × X → R) by solving a minimax180

optimization problem based on a new objective we term high-probability exploration-by-optmization:181

Γq,η(p, g ;π?,M) := Eπ∼p[fM(π?)− fM(π)] (7)

+ η−1 · Eπ∼p,z∼M(π) Eπ′∼q
[
exp

(
η

p(π)
(g(π′;π, z)− g(π?;π, z))

)
− 1

]
.

Finally (Lines 5 and 6), the algorithm samples π(t) ∼ p(t), observes z(t) = (r(t), o(t)), and then forms182

an importance-weighted reward estimator via f̂ (t)(π) := g(t)(π;π(t), z(t))/p(t)(π(t)).183

The interpretation of the high-probability Exploration-by-Optimization objective (7) is as follows: For184

a given round t, the model M ∈M and decision π? ∈ Π should be thought of as a proxy for the true185

model and optimal decision, respectively. By solving the minimax problem in (5), the min-player aims186

to—in the face of an unknown/worst-case model—find a sampling distribution that minimizes instan-187

taneous regret, yet ensures good tail behavior for the importance-weighted estimator g(·;π, z)/p(π).188

Here, tail behavior is captured by the MGF-like term in (7), which penalizes the learner for over-189

estimating rewards under the reference distribution q or under-estimating rewards under π?.190

We show that this approach leads to a bound on regret that scales with the convexified DEC.191

Theorem 2.1 (Main upper bound). For any choice of η > 0, Algorithm 1 ensures that for all δ > 0,192

with probability at least 1− δ,193

RegDM ≤ dec(8η)−1(co(M)) · T + 2η−1 · log(|Π|/δ). (8)

In particular, for any δ > 0, with appropriate η, the algorithm has that with probability at least 1− δ,194

RegDM ≤ O(1) · inf
γ>0
{decγ(co(M)) · T + γ · log(|Π|/δ)}. (9)

This should be compared to the upper bound for the stochastic setting in Foster et al. [18] (e.g., Theo-195

rem 3.3), which takes a similar form, but scales with the weaker quantity supM∈co(M) decγ(M,M).4196

See also Appendix A for a comparison to Lattimore and Szepesvári [37], Lattimore and György [34].197

Equivalence of Exploration-by-Optimization and Decision-Estimation Coefficient. We now198

discuss a deeper connection between Exploration-by-Optimization and the DEC. Define the minimax199

value of the high-probability Exploration-by-Optimization objective via200

exoη(M, q) := inf
p∈∆(Π),g∈G

sup
M∈M,π?∈Π

Γq,η(p, g ;π?,M), (10)

4If a proper estimator is available, Foster et al. [18] (Thm. 4.1) gives tighter bounds scaling with decγ(M).
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and let exoη(M) := supq∈∆(Π) exoη(M, q). This quantity can be interpreted as a complexity201

measure forM whose value reflects the difficulty of exploration. The following structural result202

(Corollary 3.1 in Section 3), which is critical to the proof of Theorem 2.1, shows that this complexity203

measure is equivalent to the convexified Decision-Estimation Coefficient:204

dec(4η)−1(co(M)) ≤ exoη(M) ≤ dec(8η)−1(co(M)), ∀η > 0. (11)

As we show, the regret of Algorithm 1 is controlled by the value of exoη(M), and thus Theorem 2.1205

follows. This result builds on, but goes beyond the Bregman divergence-based framework in Lattimore206

and György [34], and exploits a somewhat obscure connection between Hellinger distance and the207

moment generating function (MGF) for the logarithmic loss. In particular, we use a technical lemma208

(proven in Appendix C), which shows that up to constants, the value of Hellinger distance between209

two probability distributions can be expressed as variational problem based on the associated MGFs.210

Lemma 2.1. Let P and Q be probability distributions over a measurable space (X ,F ). Then211

1

2
D2

H(P,Q) ≤ sup
g:X→R

{
1− EP

[
eg
]
· EQ

[
e−g
]}
≤ D2

H(P,Q). (12)

212 The lower inequality in Lemma 2.1 is proven using a trick similar to one used by Zhang [62] to prove213

high-probability bounds for maximum likelihood estimation based on Hellinger distance. In the214

process of proving (11), we also establish equivalence of the Exploration-by-Optimization objective215

and a parameterized version of the information ratio, which is of independent interest (cf. Section 3).216

Further remarks. The main focus of this work is sample complexity, and the runtime and memory217

requirements of Algorithm 1—which are linear in |Π|—are not practical for large decision spaces.218

Improving the computational efficiency is an interesting question for future work. We mention in219

passing that Theorem 2.1 answers a question raised by Foster et al. [18] of obtaining in the frequentist220

setting a regret bound matching the Bayesian regret bound in their Theorem 3.6.221

2.2 Lower Bound222

We now complement the regret bound in the prequel with a lower bound based on the convexified223

DEC. Our most general result shows that for any algorithm, either the expected regret or its (one-sided)224

second moment must scale with a localized version of the convexified DEC.225

To state the result, we define the localized model class around a model M via226

Mε(M) =
{
M ∈M : fM(πM) ≥ fM(πM)− ε

}
,

and let decγ,ε(M) := supM∈M decγ(Mε(M),M) be the localized Decision-Estimation Coefficient.227

Let (x)+ := max{x, 0} and V (M) := supM,M ′∈M supπ∈Π supA∈R⊗O

{ M(A|π)
M ′(A|π)

}
∨ e.5228

Theorem 2.2 (Main lower bound). Let C(T ) := c · log(T ∧V (M)) for a sufficiently large numerical229

constant c > 0. Set εγ := γ
4C(T )T . For any algorithm, there exists an oblivious adversary for which230

E[RegDM] +
√
E(RegDM)2

+ ≥ Ω(1) · sup
γ>
√

2C(T )T

decγ,εγ (co(M)) · T −O(T 1/2). (13)

Theorem 2.2 implies that for any algorithm with “reasonable” tail behavior beyond what is granted by231

control of the first moment (such as Algorithm 1), the regret in Theorem 2.1 cannot be substantially232

improved. In more detail, consider the notion of a sub-Chebychev algorithm.233

Definition 2.1 (Sub-Chebychev Algorithm). We say that a regret minimization algorithm is sub-234

Chebychev with parameter R if for all t > 0,235

P((RegDM)+ ≥ t) ≤ R2/t2. (14)

For sub-Chebychev algorithms, both the mean and (root) second moment of regret are bounded by236

the parameter R (cf. Appendix F.4), which has the following consequence.237

5Recall (Appendix B) that M(·, · | π) is the conditional distribution given π; finiteness of V (M) is not
necessary, but removes a log(T ) factor from Theorem 2.2.
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Corollary 2.1. Any regret minimization algorithm with sub-Chebychev parameter R > 0 must have238

R ≥ Ω̃(1) · sup
γ>
√

2C(T )T

decγ,εγ (co(M)) · T −O(T 1/2). (15)

To interpret this result, suppose for simplicity that decγ(co(M)) and decγ,εγ (co(M)) are continuous239

with respect to γ > 0, and that decγ,εγ (co(M)) & γ−1, which is satisfied for all non-trivial classes.6240

In this case, one can show (cf. Proposition F.2 for a proof) that by setting δ = 1/T 2, Theorem 2.1241

implies that Algorithm 1 is sub-Chebychev with parameter242

R = Õ
(

inf
γ>0
{decγ(co(M)) · T + γ · log(|Π|)}

)
= Õ(decγu(co(M)) · T ), (16)

where γu satisfies the balance decγu(co(M)) ∝ γu
T log|Π|. On the other hand, the lower bound in243

(15) can be shown to scale with244

R ≥ Ω̃
(
decγ`,εγ` (co(M)) · T

)
, (17)

where γ` satisfies the balance decγ`,εγ` (co(M)) ∝ γ`
T . We conclude that the upper bound from245

Theorem 2.1 cannot be improved beyond (i) localization and (ii) dependence on log|Π|.246

As an example, we show in Appendix D.3 that for the multi-armed bandit problem with Π =247

{1, . . . , A}, the upper bound in (16) yieldsR = O(
√
AT logA), while the lower bound in (17) yields248

R = Ω(
√
AT ). See Appendix D for additional examples which further illustrate the scaling above.249

The dependence on log|Π| cannot be removed from the upper bound or made to appear in the lower250

bound in general (cf. Section 3.5 of Foster et al. [18]). As shown in Foster et al. [18], localization is251

inconsequential for essentially all model classes commonly studied in the literature, and the same is252

true for the examples we consider here (Appendix D), where Theorem 2.2 leads to the correct rate up253

to small polynomial factors. However, improving the upper bound to achieve localization (which254

Foster et al. [18] show is possible in the stochastic setting) is an interesting future direction.255

See Appendix A for further discussion and for comparison to a related lower bound in Lattimore [33].256

Why convexity? At this point, a natural question is why the convex hull co(M) plays a fundamental257

role in the adversarial setting. For the lower bound, the intuition is simple: Given a model classM,258

the adversary can pick any mixture distribution µ ∈ ∆(M), then choose the sequence of models259

M (1), . . . ,M (T ) by sampling M (t) ∼ µ independently at each round. This is equivalent to playing a260

static mixture model M? = EM∼µ[M ] ∈ co(M), which is what allows us to prove a lower bound261

based on the DEC for the set co(M) of all such models. In view of the fact that the lower bound is262

obtained through this static, stochastic adversary, we believe the more surprising result here is that263

good behavior of the convexified DEC is also sufficient for low regret.264

2.3 Learnability and Comparison to Stochastic Setting265

Building on the upper and lower bounds in the prequel, we give a characterization for learnability266

(i.e., when non-trivial regret is possible) in the adversarial setting. This extends the learnability result267

for the stochastic setting in Foster et al. [18], and follows a long tradition of such characterizations in268

learning theory [58, 3, 54, 49, 12]. To state the result, we define the minimax regret as269

M(M, T ) = inf
p(1),...,p(T )

sup
M(1),...,M(T )

E[RegDM],

where p(t) : (Π × Z)t−1 → ∆(Π) and M (t) : (Π × Z)t−1 →M are policies for the learner and270

adversary, respectively. Our characterization is as follows.271

Theorem 2.3. Suppose there exists M0 ∈M such that fM0 is a constant function, and that |Π| <∞.272

1. If there exists ρ > 0 s.t. limγ→∞ decγ(co(M)) · γρ = 0, then limT→∞
M(M,T )

Tp = 0 for p < 1.273

2. If limγ→∞ decγ(co(M)) · γρ > 0 for all ρ > 0, then limT→∞
M(M,T )

Tp =∞ for all p < 1.274

6Note that the dominant term decγ,εγ (co(M)) ·T in (13) scales with
√
T any “non-trivial” class that embeds

the two-armed bandit problem, so that the −O(T 1/2) term can be discarded.
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The same conclusion holds when Π = ΠT grows with T , but has log|ΠT | = O(T q) for any q < 1.7275

Theorem 2.3 shows that polynomial decay of the convexified DEC is necessary and sufficient for low276

regret. We emphasize that this result is complementary to Theorem 2.2, and does not require local-277

ization or any assumption on the tail behavior of the algorithm. This is a consequence of the coarse,278

asymptotic nature of the result, which allows us to perform rescaling tricks to remove these conditions.279

Comparison to stochastic setting. Having shown that the convexified Decision-Estimation280

Coefficient plays a fundamental role in determining the optimal regret for the adversarial DMSO281

setting, now is a good time to make comparisons to the stochastic setting. There, Foster et al. [18]282

obtain upper bounds on regret that have the same form as (9), but scale with the weaker quantity283

maxM∈co(M) decγ(M,M).8 For classes that are not convex, but where “proper” estimators are284

available (e.g., tabular MDPs), the upper bounds in Foster et al. [18] can further be improved to scale285

with decγ(M). Hence, our results show that in general, the price of adversarial outcomes can be as286

large as decγ(co(M))/decγ(M). Examples (see Appendix D for details and more) include:287

• For tabular MDPs with horizon H , S states, and A actions, Foster et al. [18] show that decγ(M) =288

poly(H,S,A)/γ, and use this to obtain regret
√

poly(H,S,A) · T . Tabular MDPs are not a289

convex class, and co(M) is equivalent to the class of so-called latent MDPs, which are known to290

be intractable [30, 41]. Indeed, we show (Appendix D) that decγ(co(M)) ≥ Ω(Amin{S,H}). This291

example highlights that in general, the gap between stochastic and adversarial can be quite large.292

• For many common bandit problems, one has co(M) = M, leading to polynomial bounds on293

regret in the adversarial setting. For example the multi-armed bandit problem with A actions has294

decγ(co(M)) ≤ O(A/γ), leading to
√
AT logA regret from Theorem 2.1, and the linear bandit295

problem in d dimensions has decγ(co(M)) ≤ O(d/γ), leading to regret
√
dT log|Π|.296

3 Connections Between Complexity Measures297

The Decision-Estimation Coefficient bears a resemblance to the notion of generalized information298

ratio introduced by Lattimore and György [34], Lattimore [32] which extends the original information299

ratio of Russo and Van Roy [51, 52]. In what follows, we establish deeper connections between these300

complexity measures. All of the results in this section are proven in Appendix E.301

Let us recall the definition of the generalized information ratio from Lattimore [32], which we state302

here for a general divergence-like function D(· ‖ ·) → R+ (typically, KL divergence or another303

Bregman divergence). For a distribution µ ∈ ∆(M×Π) and decision distribution p ∈ ∆(Π), define304

µpr(π
′) := P(π? = π′) and µpo(π′;π, z) := P(π? = π′ | (π, z)), where P is the law of the process305

(M,π?) ∼ µ, π ∼ p, z ∼ M(π). µpr should be thought of as the prior over π?, and µpo as the306

posterior having observed (z, π); note that the law µpo does not depend on the distribution p. For307

parameter λ > 1, Lattimore [33] defines the generalized information ratio for a classM via9
308

Ψλ(M) = sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
(E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)])λ

Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)]

}
. (18)

Here, we have slightly generalized the original definition in Lattimore [33] by incorporating models in309

M rather than placing an arbitrary prior over observations z directly. We also use a general divergence,310

while Lattimore [33] uses KL divergence and Lattimore and György [34] use Bregman divergences.311

To understand the connection to the Decision-Estimation Coefficient, it will be helpful introduce312

another variant of the information ratio that we call the parameterized information ratio.313

Definition 3.1. For a divergence D(· ‖ ·), the parameterized information ratio is given by314

infDγ (M) (19)

= sup
µ∈∆(M×Π)

inf
p∈∆(Π)

Eπ∼p
[
E(M,π?)∼µ[fM(π?)− fM(π)]− γ · Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)]

]
.

7Allowing Π to grow with T can be used to handle infinite decision spaces using covering arguments.
8Theorem 3.1 of Foster et al. [18] attains RegDM . infγ>0

{
maxM∈co(M) decγ(M,M) + γ · log|M|

}
.

9Lattimore and György [34] give a slightly different but essentially equivalent definition; cf. Appendix E.
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The parameterized information ratio is always bounded by the generalized information ratio in (18); in315

particular, we have infDγ (M) ≤ (Ψλ(M)/γ)
1

λ−1 ∀γ > 0. All of the regret bounds based on the gen-316

eralized information ratio that we are aware of [34, 33] implicitly bound regret by the parameterized317

information ratio, and then invoke the inequality above to move to the generalized information ratio.318

In general though, it does not appear that these notions are equivalent. Informally, this is because319

the notion in (18) is equivalent to requiring that a single distribution p certify a certain bound on the320

value in (19) for all values of the parameter γ simultaneously, while the parameterized information321

ratio allows the distribution p to vary as a function of γ > 0 (hence the name); see also Appendix E.322

Letting infHγ (M) denote the parameterized information ratio with D = D2
H(·, ·), we show that this323

notion is equivalent to the convexified Decision-Estimation Coefficient.324

Theorem 3.1. For all γ > 0, infHγ (M) ≤ decγ(co(M)) ≤ infHγ/4(M).325

This result is a special case of Theorem E.1 in Appendix E, which shows that a similar equivalence326

holds for a class of “well-behaved” f -divergences that includes KL divergence (but not necessarily327

for general Bregman divergences). The basic idea is to use Bayes’ rule to move from the Decision-328

Estimation Coefficient, which considers distance between distributions over observations, to the329

information ratio, which considers distance between distributions over decisions.330

In light of this characterization, the results in this paper could have equivalently been presented in331

terms of the parameterized information ratio. We chose to present them in terms of the Decision-332

Estimation Coefficient in order to draw parallels to the stochastic setting, where guarantees that scale333

with decγ(M) (without convexification) are available. It is unclear whether the information ratio334

can accurately reflect the complexity for both stochastic and adversarial settings in the same fashion,335

because—unlike the DEC—it is invariant under convexification.10
336

Proposition 3.1. For any divergence-like function D(· ‖ ·) : ∆(Π)×∆(Π)→ R+, we have337

infDγ (M) = infDγ (co(M)), ∀γ > 0.

For a final str uctural result, we show that up to constants, the parameterized information ratio is338

equivalent to the high-probability Exploration-by-Optimization objective.339

Theorem 3.2. For all η > 0, infHη−1(M) ≤ exoη(M) ≤ infH(8η)−1(M).340

This result is proven through a direct argument, and the equivalence of the DEC and Exploration-341

by-Optimization in (11) is proven by combining with Theorem 3.1. Summarizing the equivalence:342

Corollary 3.1. For all η > 0,343

dec(4η)−1(co(M)) ≤ infHη−1(M) ≤ exoη(M) ≤ infH(8η)−1(M) ≤ dec(8η)−1(co(M)).

Since this equivalence depends of the value of the parameter γ > 0 in the parameterized information344

ratio, it seems unlikely that a similar equivalence can be established using the generalized information345

ratio in (18). We note in passing that one can use similar techniques to lower bound the Bregman346

divergence-based Exploration-by-Optimization objective in Lattimore and György [34] by the param-347

eterized information ratio for the Bregman divergence of interest, complementing their upper bound.348

4 Discussion349

We have shown that the convexified Decision-Estimation Coefficient is necessary and sufficient350

to achieve low regret for adversarial interactive decision making, establishing that convexity351

governs the price of adversarial outcomes. Our results elucidate the relationship between the DEC,352

Exploration-by-Optimization, and the information ratio, and we hope they will find broader use.353

Our results add to a growing body of research which shows that online reinforcement learning with354

agnostic or adversarial outcomes can be statistically intractable [53, 41]. A promising future direction355

is to extend our techniques to natural semi-adversarial models in which reinforcement learning is356

tractable (for example, the so-called adversarially corrupted setting [42, 19]). Other interesting ques-357

tions include (i) extending our lower bounds beyond the observable-reward setting and to directly han-358

dle expected regret, and (ii) developing computationally efficient algorithms for large decision spaces.359

10The variants in Lattimore and György [34], Lattimore [33] are also invariant under convexification.
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A Detailed Discussion of Related Work570

Beyond Foster et al. [18], which was the starting point for this work, our results build on a long line571

of research on partial monitoring and the information ratio [51, 52, 35, 31, 32, 34, 33, 25, 26]; most572

closely related are the works the works of Lattimore and György [34] and Lattimore [33]. Below we573

discuss and compare to these results in greater detail.574

Comparison to partial monitoring setting. Lattimore and György [34], Lattimore [33] and other575

works in this sequence consider a general partial monitoring setting in which each outcome z(t) is576

directly chosen by an adversary, and need not contain a reward signal.577

• In terms of reward signal, our setting is more restrictive because we assume that r(t) is578

observed. Our upper bounds in fact paper encompass the more general setting where rewards579

are not observed by the learner, thus subsuming the partial monitoring problem, but our580

lower bounds that require that rewards are observed.581

• In terms of data generation process, our setting is more general because we restrict to models582

in a known class inM. This setup recovers the case where z(t) is fully adversarial because583

we can takeM to consist of point masses over Z as a special case. However, the model also584

allows for semi-stochastic adversaries, and for settings like (structured) adversarial MDPs.585

For example, if all models inM place ε probability mass on a particular outcome z, any586

adversary in our model must place ε mass on this outcome as well.587

Upper bounds. On the upper bound side, our results build on the Exploration-by-Optimization588

technique, which was introduced in Lattimore and Szepesvári [37] and generalized significantly in589

Lattimore and György [34]. The latter result shows that for a general family of mirror descent-based590

Exploration-by-Optimization algorithms parameterized by Bregman divergences, the regret can be591

bounded by a certain generalized information ratio based on the associated Bregman divergence (cf.592

Appendix E). This approach yields bounds on expected regret with a similar form to Theorem 2.1593

(with decγ(co(M)) replaced by the generalized information ratio), but does not appear to yield594

high-probability bounds (in general, in-expectation regret bounds do not imply high-probability595

regret bounds; for example, even for multi-armed bandits, the EXP3 algorithm can experience linear596

regret with constant probability [36]). To develop high-probability regret bounds which complement597

our lower bounds, we depart from the Bregman divergence-based framework and exploit refined598

properties of Hellinger distance. We note that the work of Lattimore and Szepesvári [37] also599

proposes a high-probability Exploration-by-Optimization objective, but it is unclear whether this600

objective (which precedes the information ratio-based results of Lattimore and György [34]) can be601

related to the information ratio or Decision-Estimation Coefficient for general models.11
602

Lower bounds. On the lower bound side, we build on the proof strategy from Foster et al. [18].603

Our most important technical result is Theorem F.1, which improves upon Theorem 3.1 from Foster604

et al. [18] even in the stochastic setting, by using a more refined change of measure argument. In605

particular, Theorem 3.1 of Foster et al. [18] gives a lower bound based on the DEC that holds with606

low probability, and therefore only provides a meaningful converse to algorithms with sub-Gaussian607

or sub-exponential tail behavior. Our result provides a meaningful converse to any upper bound608

with sub-Chebychev tail behavior, which is a significantly weaker assumption. We note that while609

Theorem 3.2 of Foster et al. [18] provides lower bounds on expected regret without algorithmic610

assumptions, this result requires a stronger notion of localization than the one we consider here, and611

it is not clear whether this notion can be achieved algorithmically in general. Of course, proving a612

lower bound on expected regret that matches our lower bound remains an interesting open problem.613

Lastly, we mention recent work of Lattimore [33], which provides lower bounds on regret in a general614

partial monitoring setting based on a generalized information ratio (cf. Appendix E). This result is615

somewhat complementary to our lower bound (Theorem 2.2):616

• On the positive side, it leads to lower bounds on expected regret that are always tight in617

terms of dependence on T , while our result only leads to tight dependence on T if one618

restricts to sub-Chebychev algorithms.619

11In particular, this objective is based on a Bernstein-type tail bound, which leads to a requirement of
boundedness for the estimation functions. We avoid explicitly requiring boundedness using a more specialized
tail bound based on Lemma C.1.
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• On the negative side, the lower bound is loose in poly(|Π|) factors, while our lower bound620

is essentially only loose in poly(log|Π|) factors. As a result, only our lower bound leads to621

meaningful dependence on problem-dependence parameters such as dimension for models622

with large action spaces.623

In addition, the lower bound in Lattimore [33] applies to the general partial monitoring setting, while624

our lower bound requires that rewards are observed. An interesting question for future work is to625

investigate whether the techniques of Lattimore [33] can be combined with our own to get the best of626

both worlds.627

Finally, we mention in passing that the results of Lattimore [33] also imply a learnability characteri-628

zation similar to Theorem 2.3. However, because these results are polynomially loose in |Π|, they629

cannot handle the case in which log|Π| grows polynomially in T .630

B Preliminaries631

Basic notation. For a set X , we let ∆(X ) denote the set of all Radon probability measures over X .632

We let co(X ) denote the set of all finitely supported convex combinations of elements in X . We use633

the shorthand x ∨ y = max{x, y} and x ∧ y = min{x, y}.634

We adopt non-asymptotic big-oh notation: For functions f, g : X → R+, we write f = O(g) (resp.635

f = Ω(g)) if there exists a constant C > 0 such that f(x) ≤ Cg(x) (resp. f(x) ≥ Cg(x)) for all636

x ∈ X . We write f = Õ(g) if f = O(g · polylog(T )), f = Ω̃(g) if f = Ω(g/polylog(T )), and637

f = Θ̃(g) if f = Õ(g) and f = Ω̃(g). We write f ∝ g if f = Θ̃(g).638

Probability spaces. We formalize the probability spaces for the DMSO framework in the same fash-639

ion as Foster et al. [18], which we briefly summarize here. decisions are associated with a measurable640

space (Π,P), rewards are associated with the space (R,R), and observations are associated with641

the space (O,O). The history up to time t is denoted byH(t) = (π(1), r(1), o(1)), . . . , (π(t), r(t), o(t)).642

We define643

Ω(t) =

t∏
i=1

(Π×R×O), and F (t) =

t⊗
i=1

(P ⊗R ⊗ O)

so thatH(t) is associated with the space (Ω(t),F (t)).644

Formally, a model M = M(·, · | ·) ∈M is a probability kernel from (Π,P) to (R×O,R ⊗ O);645

we use the convention M(π) = M(·, · | π) throughout the paper.12 An algorithm for horizon T is a646

sequence p(1), . . . , p(T ), where p(t)(· | ·) is a probability kernel from (Ω(t−1),F (t−1)) to (Π,P).647

Divergences.648

For probability distributions P and Q over a measurable space (Ω,F ) with a common dominating649

measure, we define the total variation distance as650

DTV(P,Q) = sup
A∈F
|P(A)−Q(A)| = 1

2

∫
|dP− dQ|.

Hellinger distance is defined as651

D2
H(P,Q) =

∫ (√
dP−

√
dQ
)2

,

and Kullback-Leibler divergence is defined as652

DKL(P ‖Q) =

{ ∫
log
(
dP
dQ
)
dP, P� Q,

+∞, otherwise.

For a convex function f : (0,∞) → R, the associated f -divergence for measures P and Q with653

P� Q is given by654

Df (P ‖ Q) := EQ

[
f

(
dP
dQ

)]
(20)

12For measurable spaces (X ,X ) and (Y,Y ) a probability kernel P (· | ·) from (X ,X ) to (Y,Y ) has
the property that (i) For all x ∈ X , P (· | x) is a probability measure, (ii) for all Y ∈ Y , x 7→ P (Y | x) is
measurable.
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whenever P� Q. More generally, defining p = dP
dν and q = dQ

dν for a common dominating measure655

ν, we have656

Df (P ‖ Q) :=

∫
q>0

qf

(
p

q

)
dν + P(q = 0) · f ′(∞), (21)

where f ′(∞) := limx→0+ xf(1/x).657

C Technical Tools658

C.1 Tail Bounds659

Lemma C.1 (e.g., Lemma A.4 of Foster et al. [18]). For any sequence of real-valued random660

variables (Xt)t≤T adapted to a filtration (Ft)t≤T , we have that with probability at least 1− δ,661

T∑
t=1

Xt ≤
T∑
t=1

log
(
E
[
eXt | Ft−1

])
+ log(δ−1). (22)

C.2 Minimax Theorem662

Lemma C.2 (Sion’s Minimax Theorem [55]). Let X and Y be convex sets in linear topological663

spaces, and assume X is compact. Let F : X ×Y → R be such that (i) F (x, ·) is concave and upper664

semicontinuous over Y for all x ∈ X and (ii) F (·, y) is convex and lower semicontinuous over X for665

all y ∈ Y . Then666

inf
x∈X

sup
y∈Y

F (x, y) = sup
y∈Y

inf
x∈X

F (x, y). (23)

C.3 Information Theory667

C.3.1 Basic Results668

Proposition C.1. For any f -divergence Df (· ‖ ·), one has that for any pair of random variables669

(X,Y ) with joint law PX,Y ,670

EX∼PX
[
Df

(
PY |X ‖ PY

)]
= EY∼PY

[
Df

(
PX|Y ‖ PX

)]
.

Proof of Proposition C.1. Recalling that Df (P ‖ Q) = EQ

[
f
(
dP
dQ

)]
for P� Q, we have671

EX∼PX
[
Df

(
PY |X ‖ PY

)]
= EX∼PX EY∼PY

[
f
(
dPY |X
dPY

)]
= EX∼PX EY∼PY

[
f
(

dPX,Y
d(PX⊗PY )

)]
= EY∼PY EX∼PX

[
f
(
dPX|Y
dPX

)]
= EY∼PY

[
Df

(
PX|Y ‖ PX

)]
,

where we have used that PY |X � PY , PX|Y � PX , and PX,Y � PX ⊗ PY .672

C.3.2 Change of Measure673

Lemma C.3 (Donsker-Varadhan (e.g., Polyanskiy and Wu [48])). Let P and Q be probability674

measures on (X ,F ). Then675

DKL(P ‖Q) = sup
h:X→R

{EP[h(X)]− log(EQ[exp(h(X))])}. (24)

Lemma C.4. Let P and Q be probability distributions over a measurable space (X ,F ). Then for676

all functions h : X → R,677

|EP[h(X)]− EQ[h(X)]| ≤
√

2−1(EP[h2(X)] + EQ[h2(X)]) ·D2
H(P,Q). (25)
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Proof of Lemma C.4. From Polyanskiy and Wu [48], we have that for all functions h : X → R, if678

P� Q,679

|EP[h(X)]− EQ[h(X)]| ≤
√
VQ[h(X)] ·Dχ2(P ‖ Q) ≤

√
EQ[h2(X)] ·Dχ2(P ‖ Q), (26)

where Dχ2(P ‖ Q) :=
∫ (dP−dQ)2

dQ and VQ denotes the variance under Q. The result follows by using680

that Dχ2

(
P ‖ P+Q

2

)
≤ D2

H(P,Q).681

Lemma 2.1. Let P and Q be probability distributions over a measurable space (X ,F ). Then682

1

2
D2

H(P,Q) ≤ sup
g:X→R

{
1− EP

[
eg
]
· EQ

[
e−g
]}
≤ D2

H(P,Q). (12)

683 Proof of Lemma 2.1. We first show that Hellinger distance is lower bounded by the quantity in (12).684

Recall that Hellinger distance is the f -divergence associated with f(x) = (1−
√
x)2 (cf. (21)). Let685

f?(y) := supx≥0{xy − f(x)} be the Fenchel dual of f , which has the form686

f?(y) =

{ y
1−y , y < 1,
∞, y ≥ 1.

Using Theorem 7.14 of Polyanskiy [47], we express Hellinger distance as a following variational687

problem based on the dual:688

D2
H(P,Q) = sup

h:X→(−∞,1)

{EP[h(X)]− EQ[f?(h(X))]} = sup
h:X→(−∞,1)

{
EP[h(X)]− EQ

[
h(X)

1− h(X)

]}
.

Reparameterizing via h(X) = 1− h′(X) for h′ : X → (0,∞), this gives689

D2
H(P,Q) = sup

h:X→(0,∞)

{
2− EP[h(X)]− EQ

[
1

h(X)

]}
.

To conclude, we observe that for any test function g : X → R, by setting h(x) = eg(x) ·EQ[e−g], we690

have691

2− EP[h(X)]− EQ

[
1

h(X)

]
= 2− EP

[
eg
]
· EQ

[
e−g
]
− EQ

[
e−g
]
/EQ

[
e−g
]

= 1− EP
[
eg
]
· EQ

[
e−g
]
,

so that692

D2
H(P,Q) ≥ sup

g:X→R

{
1− EP

[
eg
]
· EQ

[
e−g
]}
.

We now prove the other direction of the inequality in (12). Let ν be a common dominating measure693

for P and Q, and set p = dP
dν and q = dQ

dν . We first consider the case where p, q > 0 everywhere.694

Set g(x) = 1
2 log(q(x)/p(x)). Then we have EP

[
eg
]

=
∫ √

pqdν = 1− 1
2D

2
H(P,Q), and likewise,695

EQ
[
e−g
]

=
∫ √

pqdν = 1− 1
2D

2
H(P,Q). As a result,696

sup
g:X→R

{
1− EP

[
eg
]
· EQ

[
e−g
]}
≥ 1− (1− 1

2D
2
H(P,Q))2 ≥ 1

2
D2

H(P,Q),

where we have used that D2
H(P,Q) ∈ [0, 2]. For the general case, one can appeal to Lemma C.5697

below and take ε→ 0.698

The following result is generalization of Lemma 2.1 which shows that up to small approximation699

error, the lower bound in (12) can be obtained using test functions with small magnitude.700

Lemma C.5. Let P and Q be probability distributions over a measurable space (X ,F ). Then for701

any α ≥ 1, we have702

1

2
D2

H(P,Q) ≤ sup
g∈Gε

{
1− EP[eg] · EQ

[
e−g
]}

+ 4e−α, (27)

where Gα := {g : X → R | ‖g‖∞ ≤ α}.703
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Proof of Lemma C.5. Fix α ≥ 1 and let ε := e−2α. Note that ε ∈ (0, e−2). Given measures P and704

Q, set Pε = (1− ε)P + εQ and Qε = (1− ε)Q + εP. Consider the test function g = 1
2 log(dQεdPε ),705

which has the following properties:706

• ‖g‖∞ ≤
1
2 log

(
1−ε
ε + ε

1−ε

)
≤ 1

2 log(ε−1), where we have used that ε ≤ 1/2. This707

establishes that g ∈ Gα.708

• EP
[
eg
]
≤ (1− ε)−1/2

∫ √
dPdQε = (1− ε)−1/2

(
1− 1

2D
2
H(P,Qε)

)
.709

• EQ
[
e−g
]
≤ (1− ε)−1/2

∫ √
dPεdQ = (1− ε)−1/2

(
1− 1

2D
2
H(Pε,Q)

)
.710

Using these bounds, we have711

sup
g:X→R

{
1− EP

[
eg
]
· EQ

[
e−g
]}
≥ 1− (1− ε)−1(1− 1

2D
2
H(Pε,Q))(1− 1

2D
2
H(P,Qε))

≥ 1− (1− ε)−1(1− 1
2D

2
H(Pε,Q))

≥ (1− ε)−1 · 1

2
D2

H(Pε,Q)− 2ε.

Finally, we note that by the triangle inequality for Hellinger distance and convexity of squared712

Hellinger distance,713

DH(P,Q) ≤ DH(Pε,Q) +DH(P,Pε) ≤ DH(Pε,Q) + ε1/2DH(P,Q),

so that D2
H(Pε,Q) ≥ (1− ε1/2)2D2

H(P,Q), and714

sup
g:X→R

{
1− EP

[
eg
]
· EQ

[
e−g
]}
≥ (1− ε1/2)2

1− ε
1

2
D2

H(P,Q)− 2ε ≥ 1

2
D2

H(P,Q)− 4ε1/2,

where we have used that ε ∈ (0, 1) and D2
H(P,Q) ∈ [0, 2].715

716

C.4 Online Learning717

Lemma C.6 (e.g., Cesa-Bianchi and Lugosi [10]). Let Π be a finite set. Consider the exponential718

weights method with learning rate η > 0 and initial point q(1) = unif(Π), which has the update:719

q(t+1)(π) =
exp(η

∑
i≤t f

(i)(π))∑
π′ exp(η

∑
i≤t f

(t)(π′))
,

for an arbitrary (potentially adaptively selected) sequence of reward vectors f (1), . . . , f (T ) in RΠ.720

This strategy ensures that with probability 1,721

T∑
t=1

〈q − q(t), f (t)〉 ≤
T∑
t=1

〈q(t+1) − q(t), f (t)〉 − 1

η

T∑
t=1

DKL(q(t+1) ‖ q(t)) +
DKL(q ‖ q(1))

η
,

for all q ∈ ∆(Π).722

D Examples723

D.1 Structured Bandits724

In this section we consider adversarial (structured) bandit problems, which correspond to the special725

case of the adversarial DMSO setting in which there are no observations (i.e., O = {∅}). We726

consider three examples: finite-armed bandits, linear bandits, and convex bandits. For each example,727

we takeR = [0, 1], fix a reward function class F ⊆ (Π→ [0, 1]), and takeMF = {M | fM ∈ F}728

to be the induced model class. Conceptually, MF should be thought of as the set of all reward729

distributions over [0, 1] with mean rewards in F .730
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Example D.1 (Finite-armed bandit). In the finite-armed bandit problem, we take Π = {1, . . . , A} as731

the decision space, where A ∈ N, then let F = [0, 1]
A and takeM = MF as the induced model732

class. For this setting, whenever A ≥ 2, it holds that733

decγ(co(M)) ≤ A

γ
∀γ > 0, and decγ,εγ (co(M)) ≥ 2−6 · A

γ
∀γ ≥ A

3
, (28)

where εγ = A
12γ . /734

This result follows from Foster et al. [18, Proposition 5.2 and 5.3], noting that co(M) =M. Plugging735

(28) into Theorem 2.1 yields a O(
√
AT logA) upper bound on regret, and plugging into Theorem 2.2736

gives a Ω̃(
√
AT ) lower bound for sub-Chebychev algorithms.13

737

Example D.2 (Linear bandit). In the linear bandit problem, we have Π ⊆ Rd. We take738

F = {f : Π→ [0, 1] | f is linear},

and takeM =MF as the induced model class. For this setting, it holds that14
739

decγ(co(M)) ≤ d

4γ
∀γ > 0, and decγ,εγ (co(M)) ≥ d

12γ
∀γ ≥ 2d

3
, (29)

where εγ := d
3γ . /740

This result follows from Foster et al. [18, Proposition 6.1 and 6.2], again noting that co(M) =M.741

Plugging (28) into Theorem 2.1 yields a O(
√
dT log |Π|) upper bound on regret, and plugging into742

Theorem 2.2 gives a Ω̃(
√
dT ) lower bound for sub-Chebychev algorithms.743

Example D.3 (Convex bandit). In the convex bandit problem, we have Π ⊆ Rd. We take744

F = {f : Π→ [0, 1] | f is convex},

and takeM =MF as the induced model class. For this setting, it holds that for all γ > 0,745

decγ(co(M)) ≤ O
(
d4

γ
· polylog(d,diam(Π), γ)

)
. (30)

/746

This result follows from Foster et al. [18, Proposition 6.3] (which itself is a restatement of Lattimore747

and Szepesvári [36, Theorem 3]), and by noting once more that co(M) =M.748

Remark D.1. The adversarial bandit literature [5, 4, 20, 11, 1, 8, 27, 17, 9, 31, 27, 7] typically749

considers a slightly different formulation in which the adversary selects a deterministic reward750

function. This can be captured by restrictingM to deterministic models. It is clear that the upper751

bounds on decγ(co(M)) in the examples above lead to upper bounds for this model. The lower752

bounds in Examples D.1 and D.2 easily extend as well.753

D.2 Reinforcement Learning754

We now consider examples in reinforcement learning. We begin by recalling how to view the episodic755

reinforcement learning problem under the DMSO framework.756

Model class. For episodic reinforcement learning, we fix a horizon H and let the model class757

M consist of a set of non-stationary Markov Decision Processes (MDP). Each model M ∈ M is758

specified by759

M =
{
{Sh}H+1

h=1 ,A, {P
M

h }
H
h=1, {R

M

h }
H
h=1, d1

}
,

where Sh is the state space for layer h, A is the action space, PM

h : Sh × A 7→ ∆(Sh+1) is the760

probability transition kernel for layer h, RM

h : Sh × A 7→ ∆([0, 1]) is the reward distribution for761

layer h and d1 ∈ ∆(S1) is the initial state distribution. This formulation allows reward distribution762

13For this example and Example D.2, the lower bound on decγ,εγ (co(M)) in Foster et al. [18] is witnessed
by a subfamilyM′ ⊆M with V (M′) = O(1). As a result, we can take C(T ) = O(1) in Theorem 2.2.

14The upper bound here holds for all Π, while the lower bound holds for a specific choice for Π.
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and transition kernel to vary across models inM, but keeps the initial state distribution is fixed. We763

adopt the convention that SH+1 = {sH+1} where sH+1 is a deterministic terminal state.764

Before an episode, the learner selects a non-stationary policy, π = (π1, . . . , πH) where πh : Sh 7→ A;765

we let ΠNS denote the set of all such policies. For a given MDP M ∈ M, an episode proceeds by766

first sampling s1 ∼ d1, then for h = 1, . . . ,H:767

• ah = πh(sh).768

• rh ∼ RM

h (sh, ah) and sh+1 ∼ PM

h (· | sh, ah).769

The value of the policy π under M is given by fM(π) := EM,π[
∑H
h=1 rh], where EM,π[·] denotes770

expectation under the process above.771

Adversarial protocol. Within the adversarial DMSO framework, model classes above lead to the772

following adversarial reinforcement learning protocol. At each time t, the learner plays selects a773

policy π ∈ ΠNS and the adversary chooses an MDP M (t) ∈M. The policy π(t) is then executed in774

the MDP M (t), resulting in a trajectory τ (t) = (s(t)1 , r(t)

1 , r(t)

1 ), . . . , (s(t)H , r
(t)

H , r
(t)

H ). The learner then775

observes feedback (r(t), o(t)), where r(t) :=
∑H
h=1 r

(t)

H is the cumulative reward of the episode, and776

o(t) = τ (t) is the trajectory.777

With this setting in mind, we give our main example.778

Example D.4 (Tabular MDP). LetM be the class of finite-state/action (tabular) MDPs with horizon779

H , S ≥ 2 states, A ≥ 2 actions, and
∑H
h=1 rh ∈ [0, 1]. Then, for any γ ≥ Amin{S−1,H}/6,780

decγ,εγ (co(M)) ≥ Amin{S−1,H}

24γ
,

where εγ := Amin{S−1,H}/24γ. /781

Using this result with Theorem 2.2 leads to a lower bound on regret that scales with Ω(AminS−1,H),782

which recovers existing intractability results for this setting [30, 41]. Note that we have decγ(M) =783

poly(S,A,H)/γ for this setting [18], so this is a case where there is a separation between the784

stochastic and adversarial setting.785

We briefly mention that the set co(M) can be interpreted as the set of latent MDPs [30]. In the latent786

MDP setting, each model is a mixture of MDPs. At the beginning of each episode, the underlying787

MDP from the mixture (the identity is not observed), and then run the MDP for the duration of the788

episode. This setting is also known to be intractable.789

D.3 Proofs for Examples790

D.3.1 Preliminaries791

Our lower bounds on the Decision-Estimation Coefficient involve a constructing hard sub-family of792

models. Recall the following definition from [18].793

Definition D.1 ((α, β, δ)-family). A reference model M ∈M and collection {M1, . . . ,MN} with794

N ≥ 2 are said to be an (α, β, δ)-family if the following properties hold:795

1. Regret property. There exist functions uM : Π 7→ [0, 1], with
∑
M∈M uM(π) ≤ N

2 for all π796

such that797

fM(πM)− fM(π) ≥ α · (1− uM(π))

for all M ∈M.798

2. Information property. There exist functions vM : Π 7→ [0, 1], with
∑
M∈M vM(π) ≤ 1 for799

all π, such that800

D2
H

(
M(π),M(π)

)
≤ β · vM(π) + δ.

Any (α, β, δ)-family leads to a difficult decision making problem because a given decision can have801

low regret or large information gain on (roughly) one model in the family. This is formalized through802

the following lemma.803
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Lemma D.1 (Lemma 5.1, [18]). LetM = {M1, . . . ,MN} be an (α, β, δ)-family with respect to M .804

Then, for all γ ≥ 0,805

decγ(M,M) ≥ α

2
− γ
(
β

N
+ δ

)
.

The following technical lemma bounds Hellinger distance for Bernoulli distributions.806

Lemma D.2 (Lemma A.7, [18]). For any ∆ ∈ (0, 1/2),807

D2
H

(
Ber
(1

2
+ ∆

)
,Ber

(1

2

))
≤ 3∆2.

D.3.2 Proof for Example D.4 (Tabular MDP)808

In this section, we prove the lower bound in Example D.4. We first derive an intermediate result809

which gives a lower bound on the Decision-Estimation Coefficient when the model classM consists810

of mixtures of K MDPs; this is equivalent to the subset of co(M) where we restrict to support size811

K, as well as the so-called latent MDP setting [30].812

Lemma D.3. Let K ≥ 1 be given. LetM be the class of mixtures of K MDPs with horizon H ,813

S ≥ 2 states, A ≥ 2 actions, and
∑H
h=1 rh ∈ [0, 1]. Then there exists M ∈ M such that for all814

γ ≥ Amin{S−1,H,K}/6,815

decγ(Mεγ

(
M
)
,M) ≥ Amin{S−1,H,K}

24γ
,

where εγ := Amin{S−1,H,K}

24γ .816

The proof of this result proceeds by constructing a hard sub-family of models and appealing to817

Lemma D.1. Our construction is based of the lower bound for latent MDPs in Kwon et al. [30].818

Proof of Lemma D.3. Let S and A be arbitrary sets with |S| = S and |A| = A. Let ∆ ∈ (0, 1/2)819

be a parameter to be chosen later, and define K := min{S − 1,K,H}. Partition the state space820

S into sets S ′ and S \ S ′ such that |S ′| = K + 1, and label the states in S ′ as {s(1), . . . , s(K+1)}.821

Additionally, define sets via Sh = {s(h), s(K+1)} for h ≤ K and Sh = {s(K+1)} ∪ (S \ S′) for822

K < h ≤ H + 1. Recall that the decision space ΠNS is the set of all deterministic non-stationary823

policies π = (π1, . . . , πH) where πh : Sh 7→ A.824

We construct a classM′ ⊆M in which each model M ∈M′ is specified by825

M =
{
{Sh}H+1

h=1 ,A, {M
M

k }Kk=1, {aMk }Kk=1

}
,

where for each k ∈ [K], aMk ∈ A, and where MM

k is a tabular MDP specified by826

MM
k =

{
{Sh}H+1

h=1 ,A,
{
PM

h,k

}H
h=1

,
{
RM

h,k

}H
h=1

, δs(1)
}
.

Here, d1 = δs(1) , so that the initial state s1 is s(1) deterministically. The transitions PM

h,k and rewards827

RM

h,k are constructed as follows.828

• Construction of MM
1 .829

(i) For all h ≤ H , the dynamics PMh,k are deterministic. For an action ah in the state sh, the830

next state sh+1 is831

sh+1 =


s(h+1), if h ≤ K, sh = s(h), and ah = aMi ,

s(K+1), if h ≤ K, sh = s(h), and ah 6= aMi ,

sh, otherwise.

(ii) The reward distribution is given by832

RM

h,k(sh, ah) =


Ber
(

1
2 + ∆

)
, if h = K, sh = s(K), and ah = aM

K
,

Ber
(

1
2

)
, if h = K, sh = s(K), and ah 6= aM

K
,

0, otherwise.
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• Construction of MM
j for 2 ≤ j ≤ K.833

(i) For each h ≤ H , the dynamics PMh,k are deterministic. For action ah in state sh, the next834

state sh+1 is835

sh+1 =



s(h+1) if sh = s(h) and h < j

s(K+1) if sh = s(h), h = j and ah = aMh
s(h+1) if sh = s(h), h = j and ah 6= aMh
s(h+1) if sh = s(h), h > j and ah = aMh
s(K+1) if sh = s(h), h > j and ah 6= aMh
s(K+1) if h = K − 1 or h = K

sh otherwise

.

(ii) The reward distribution is given by836

RM

h,k(sh, ah) =

{
Ber
(

1
2

)
, if h = K,

0, otherwise.

Each model M ∈ M′ is a uniform mixture of K MDPs {MM
1 , . . . ,MM

K
} as described above,837

parameterized by the action sequence aM
1:K

. The model classM′ is defined as the set of all such838

mixture models (one for each sequence in AK , so that |M′| = AK .839

At the start of each episode, an MDP MM
z is chosen by sampling z ∼ Unif([K]). The trajectory is840

then drawn by setting s1 = s(1), and for h = 1, . . . ,H:841

• ah = πh(sh).842

• rh ∼ RM

h,z(sh, ah) and sh+1 ∼ PM

h,z(· | sh, ah).843

Note that rewards can be non-zero only at layer h = K. We receive a reward from Ber
(

1
2 + ∆

)
only844

when z = 1 and the first K actions match aM
1:K

, i.e. a1:K = aM
1:K

. For every other action sequence,845

the reward is sampled from Ber
(

1
2

)
. Thus, for any policy π,846

fM(π) = 1
2 + ∆I{π(s1:K) = aM

1:K
},

which implies that847

fM(πM)− fM(π) = ∆(1− I{π(s1:K) = aM
1:K
}). (31)

Finally, we define the reference model M . The model M is specified by
{
{Sh}H+1

h=1 ,A,MM
}

where848

MM is a tabular MDP given by849

MM =
{
{Sh}H+1

h=1 ,A, P
M

h , R
M

h , δs(1)
}
.

Here, the initial state s1 is s(1) deterministically, and the transitions PM

h,k and rewards RM

h,k are as850

follows:851

(i) Transitions are stochastic and independent of the chosen action. In particular, for each852

h ≤ H , the dynamics PM

h are given by853

PM

h (sh+1 | sh, ah) =



K−h
K−h+1

if h ≤ K, sh = s(h) and sh+1 = s(h+1)

1
K−h+1

if h ≤ K, sh = s(h) and sh+1 = s(K+1)

1 if h ≤ K, sh 6= s(h) and sh = sh+1

1 if h > K and sh = sh+1

0 otherwise

.

(ii) The reward distribution is given by854

RM

h (sh, ah) =

{
Ber
(

1
2

)
, if h = K,

0, otherwise.
.
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Note thatM can be thought of as a mixture ofK identical tabular MDPs each given by MM . Note that855

for any policy π, the rewards for any trajectory in M are sampled from Ber
(

1
2

)
, and thus fM(π) = 1

2856

which implies that857

fM(πM)− fM(π) = 0. (32)

We define M′′ = M′ ∪ {M} ⊆ M, and note that for any policy π, the distribution over the858

trajectories is identical in all mixture models inM′′. However, as mentioned before, the rewards in859

M are sampled from Ber
(

1
2

)
and for any M ∈ M′, the rewards in M are sampled from Ber

(
1
2 +860

∆
M I
{
π(s1:K) = aM

1:K

})
. Thus, for any policy π and M ∈M′,861

D2
H

(
M(π),M(π)

)
= D2

H

(
Ber
(

1
2 + ∆

K
I
{
π(s1:K) = aM

1:K

})
,Ber

(
1
2

))
≤ 3

∆2

K
2 · I{π(s1:K) = aM

1:K
}, (33)

where the last line uses Lemma D.2.862

The bounds in (31), (32) and (33) together imply that the model classM′′ is a ( ∆
K
, 3 ∆2

K
2 , 0)-family in863

the sense of Definition D.1, where for each π ∈ Π andM ∈M′′ we take864

uM(π) := I{π(s1:K) = aM
1:K
} and vM(π) := I{π(s1:K) = aM

1:K
},

with uM(π) := 1 and vM(π) := 0. As a result, Lemma D.1 implies that865

decγ(M,M) ≥ ∆

2K
− 3γ∆2

K
2
N
,

for N := AK + 1. Setting ∆ = KN
12γ leads to the lower bound decγ(M,M) ≥ N

24γ . We conclude by866

noting that all M ∈M′′ have M ∈Mεγ

(
M
)

with εγ = N
24γ , and thus the lower bound on the DEC867

also applies to the classMεγ

(
M
)
.868

Proof for Example D.4. letM be the class of all tabular MDPs, and letM(K) denote the set of all869

mixture models in which each M ∈M(K) is a mixture of K MDPs fromM. Additionally, define870

M̃ = co(M), and note thatM(K) ⊆ M̃ for all K ≥ 1. For any ε > 0 and M ∈ M(K), we have871

thatM(k)
ε (M) ⊆ M̃ε(M), which implies that872

decγ(M̃ε(M),M) ≥ decγ(M(K)

ε (M),M),

because decγ(·,M) is a non-decreasing function with respect to inclusion. Using Lemma D.3, we873

have that for any K ≥ 1 and γ ≥ Amin{S−1,H,K}/6, with εγ := Amin{S−1,H,K}/24γ,874

decγ(M̃ε(M),M) ≥ decγ(M(K)

ε (M),M) ≥ Amin{S−1,H,K}

24γ
.

Setting K = S above gives the desired lower bound.875

E Structural Results876

This section is organized as follows.877

• In Appendix E.1, we recall existing variants of the information ratio and state some basic878

properties.879

• In Appendix E.2, we prove equivalence of the Decision-Estimation Coefficient and the880

parameterized information ratio with Hellinger distance (Theorem 3.1), as well as a general-881

ization of this result (Theorem E.1).882

• In Appendix E.3, we prove equivalence of the parameterized information ratio with Hellinger883

distance and the high-probability exploration-by-optimization objective.884
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E.1 Background on Complexity Measures885

For a measurable space (X ,F ), let us call any function D : ∆(X )×∆(X )→ R+ a divergence-like886

function.887

Generalized information ratio. Below we recall two notions of generalized information ratio888

introduced by Lattimore and György [34] and Lattimore [33], which extend the original definition of889

Russo and Van Roy [51, 52].890

For a given prior µ ∈ ∆(M×Π), define µpr(π
′) := P(π? = π′) and µpo(π′;π, z) := P(π? = π′ |891

(π, z)) under the process (M,π?) ∼ µ, π ∼ p, z ∼M(π).892

1. Lattimore and György [34] define a classM to have generalized information ratio (α, β, λ)893

(where α, β ≥ 0, λ > 1) if for each prior µ ∈ ∆(M× Π), there exists a distribution894

p ∈ ∆(Π) such that895

E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)] ≤ α+ β1−1/λ
(
Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)]

)1/λ
.

(34)

2. Lattimore [33] define the generalized information ratio for a classM (for λ > 1) via896

Ψλ(M) = sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
(E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)])λ

Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)]

}
. (35)

As mentioned in Section 3, the formulations above slightly generalize the original versions in897

Lattimore and György [34], Lattimore [33] by incorporating models M ∈ M and considering898

general distances.899

The following proposition shows that boundedness of the generalized information ratio implies900

boundedness of the parameterized information ratio (Definition 3.1).901

Proposition E.1. Fix α, β ≥ 0 and λ > 1. If a classM has generalized information ratio (α, β, λ)902

in the sense of (34), then903

infDγ (M) ≤ α+
β

γ
1

λ−1

∀γ > 0.

Likewise, the generalized information ratio in (35) satisfies904

infDγ (M) ≤ (Ψλ(M)/γ)
1

λ−1 ∀γ > 0.

Proof of Proposition E.1. SupposeM has generalized information ratio (α, β, λ). Then there exists905

p ∈ ∆(Π) such that for all µ ∈ ∆(M×Π), we have906

E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)] ≤ α+ β1−1/λ
(
Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)]

)1/λ
≤ α+

β

γ
1

λ−1

+ γ · Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)],

where we have applied Young’s inequality, which gives that xy ≤ λ−1
λ x

λ
λ−1 + 1

λy
λ for x, y ≥ 0.907

For the second result, we use that the definition of Ψλ(M) implies generalized information ratio908

(0, (Ψλ(M))
1

λ−1 , λ).909

This results show that an upper bound in terms of the parameterized information ratio in Definition 3.1910

implies an upper bound in terms of either version of the generalized information ratio. It is also911

straightforward to see that generalized information ratio (0, β, λ) in (34) implies that Ψλ(M) ≤ βλ−1
912

and vice-versa. Note that α = 0 is the most interesting regime, as the regret bounds in Lattimore and913

György [34] scale with α · T when α > 0.914

Another important property of the parameterized information ratio (as well both generalized informa-915

tion ratios) is that it is invariant under convexification.916

Proposition 3.1. For any divergence-like function D(· ‖ ·) : ∆(Π)×∆(Π)→ R+, we have917

infDγ (M) = infDγ (co(M)), ∀γ > 0.
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Proof of Proposition 3.1. Fix µ ∈ ∆(co(M)×Π). We can represent any M ∈ co(M) as a mixture918

ν ∈ ∆(M), so that M = EM∼ν [M ]. Let µ̃ ∈ ∆(∆(M)×Π) be such that the process (ν, π?) ∼ µ̃,919

M = EM∼ν [M ] has the same law as (M,π?) ∼ µ̃. Finally, let µ′ ∈ ∆(M× Π) be the law of920

(M,π?) induced by sampling (ν, π?) ∼ µ̃ and M ∼ ν.921

We observe that for any distribution p ∈ ∆(Π),922

E(M,π?)∼µ Eπ∼p
[
fM(π?)− fM(π)

]
= E(ν,π?)∼µ̃ Eπ∼p EM∼ν [fM(π?)− fM(π)]

= E(M,π?)∼µ′ Eπ∼p[fM(π?)− fM(π)].

Next, observe that(π, π?, z) are identically distributed under the processes π ∼ p, (M,π?) ∼ µ,923

z ∼M(π) and π ∼ p, (M,π?) ∼ µ′, z ∼M(π). As a result, we have µpr = µ′pr and µpo = µ′po, so924

Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)] = Eπ∼p Ez|π
[
D
(
µ′po(·;π, z) ‖ µ′pr

)]
.

This establishes that infDγ (co(M)) ≤ infDγ (M); the other direction is trivial.925

E.2 Decision-Estimation Coefficient and Information Ratio (Theorem 3.1)926

Theorem 3.1. For all γ > 0, infHγ (M) ≤ decγ(co(M)) ≤ infHγ/4(M).927

Theorem 3.1 is a special case of the following theorem, which concerns general divergence-like928

functions.929

Theorem E.1. Let ∆(Π) × ∆(Π) → R+ be any divergence-like function for which there exist930

constants c1, c2 ≥ 1 such that:931

1. For all Q ∈ ∆(Π), P 7→ D(P ‖ Q) is convex.932

2. For all pairs of random variables (X,Y ),933

EX∼PX
[
D
(
PY |X ‖ PY

)]
≤ c1 · EY∼PY

[
D
(
PX|Y ‖ PX

)]
3. For all pairs of random variables (X,Y ),934

EX∼PX
[
D
(
PY |X ‖ PY

)]
≤ c2 · inf

Q
EX∼PX

[
D
(
PY |X ‖ Q

)]
.

4. For all ε > 0 sufficiently small, and all Q ∈ ∆(Π), there exists Q′ ∈ ∆(Π) such that935

D(P ‖ Q) ≥ D(P ‖ Q′)− ε and supP∈∆(Π)D(P ‖ Q′) <∞.936

Then we have937

infDc1γ(M) ≤ decDγ (co(M)) ≤ infD(c1c2)−1γ(M). (36)

All f -divergences satisfy Property 2 with c1 = 1, but may not satisfy Property 3. On the other hand,938

Bregman divergences15 satisfy Property 3 with c2 = 1, but may not satisfy Property 2 (consider939

squared euclidean distance). KL-divergence, being both an f -divergence and a Bregman divergence,940

satisfies both properties with c1 = c2 = 1 (this fact has been used tacitly in many prior works).941

Squared Hellinger distance is an f -divergence but not a Bregman divergence, yet satisfies Property 3942

with c2 = 4 as a consequence of the triangle inequality.943

Proof of Theorem E.1. We first bound the DEC by the information ratio, then proceed to bound the944

information ratio by the DEC.945

Bounding the DEC by the information ratio. Fix M ′ ∈M, and ε > 0 and let M ′′ be such that946

D2
H(·,M ′(π)) ≥ D2

H(·,M ′′(π))− ε and D2
H(·,M ′′(π)) <∞ (as guaranteed by Property 4). Using947

15Recall that for a convex setX and regularizerR : X → R,DR(x ‖ y) := R(x)−R(y)−〈∇R(y), x− y〉
is the associated Bregman divergence.
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the minimax theorem (Lemma C.2), we have948

decDγ (M,M ′) ≤ inf
p∈∆(Π)

sup
M∈M

Eπ∼p[fM(πM)− fM(π)− γ ·D(M(π) ‖M ′′(π))] + γε

= inf
p∈∆(Π)

sup
ν∈∆(M)

Eπ∼p EM∼ν [fM(πM)− fM(π)− γ ·D(M(π) ‖M ′′(π))] + γε

= sup
ν∈∆(M)

inf
p∈∆(Π)

Eπ∼p EM∼ν [fM(πM)− fM(π)− γ ·D(M(π) ‖M ′′(π))] + γε.

Note that the application of the minimax theorem is admissible here, since ∆(Π) is compact (a949

consequence of finiteness of Π) and the objective value is bounded (a consequence of the choice of950

M ′′ and the fact that fM ∈ [0, 1]).951

Fix ν ∈ ∆(M), and let µ ∈ ∆(M × Π) be the induced law of (M,πM). Let Mπ′(π) =952

EM∼ν [M(π) | πM = π′] and M(π) = EM∼µ[M(π)] = Eπ?∼µ[Mπ?(π)]. Then for any p ∈ ∆(Π),953

we have954

EM∼ν Eπ∼p[fM(πM)− fM(π)− γ ·D(M(π) ‖M ′′(π))]

= E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)− γ ·D(M(π) ‖M ′′(π))]

≤ E(M,π?)∼µ Eπ∼p
[
fM(π?)− fM(π)− γ ·D

(
Mπ?(π) ‖M ′; (π)

)]
≤ E(M,π?)∼µ Eπ∼p

[
fM(π?)− fM(π)− γc−1

2 ·D
(
Mπ?(π) ‖M(π)

)]
,

where the first inequality uses convexity of P 7→ D(P ‖ Q) (Property 1), and the second inequality955

uses Property 3. To proceed, let P be the law of the process π ∼ p, (M,π?) ∼ µ, z ∼ M(π).956

Observe that Mπ?(π) = Pz|π,π? and M(π) = Pz|π . Hence, using Property 2, we have that for all π,957

Eπ?∼ν
[
D
(
Mπ?(π) ‖M(π)

)]
≥ c−1

1 Ez|π
[
D
(
Pπ?|π,z ‖ Pπ?|π

)]
= c−1

1 Ez|π
[
D
(
Pπ?|π,z ‖ Pπ?

)]
,

where the last equality uses that π and π? are independent (marginally). Since D
(
Pπ?|π,z ‖ Pπ?

)
=958

D(µpo(·;π, z) ‖ µpr), if we choose p to attain the minimum in (19) for µ we are guaranteed that959

EM∼ν Eπ∼p[fM(πM)− fM(π)− γ ·D(M(π) ‖M ′(π))]

≤ E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− γ(c1c2)−1 · Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)] + γε

≤ infD(c1c2)−1γ(M) + γε.

Taking ε → 0, we conclude that decDγ (M) ≤ infD(c1c2)−1γ(M). By Proposition 3.1, infDγ (M) =960

infDγ (co(M)), so applying the result to co(M) yields961

decDγ (co(M)) ≤ infD(c1c2)−1γ(M).

Bounding the information ratio by the DEC. We now consider the opposite direction. Fix a prior962

µ ∈ ∆(M×Π) and consider the value for the parameterized information ratio:963

E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− γ · Eπ∼p Ez|π[D(µpo(·;π, z) ‖ µpr)].

Define Mπ′(π) := Eµ[M(π) | π? = π′] and M(π) = EM∼µ[M(π)]. Using that (π?, π) are inde-964

pendent, along with Property 3, we have965

Ez|π[D(µpo(·;π, z) ‖ µpr)] = Ez|π
[
D
(
Pπ?|π,z ‖ Pπ?

)]
= Ez|π

[
D
(
Pπ?|π,z ‖ Pπ?|π

)]
≥ c−1

1 Eπ?∼µ
[
D
(
Mπ?(π) ‖M(π)

)]
.

Next, observe that we have966

E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)] = Eπ∼p Eπ?∼µ E[fM(π?)− fM(π) | π?]
= Eπ∼p Eπ?∼µ

[
fMπ? (π?)− fMπ? (π)

]
≤ Eπ?∼µ Eπ∼p

[
max
π′

fMπ? (π′)− fMπ? (π)
]
.
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Recall that the definition of decγ(co(M)) implies the following: For any κ ∈ ∆(M) there exists967

a distribution p ∈ ∆(Π) such that for all ν ∈ ∆(M), defining Mκ(π) := EM∼κ[M(π)] and968

Mν(π) := EM∼ν [M(π)], we have969

Eπ∼p
[
max
π′

fMν (π′)− fMν (π)− γ·D
(
Mν(π) ‖Mκ(π)

)]
≤ decγ(co(M)). (37)

By invoking (37) with Mκ = M and Mν = Mπ? , we are guaranteed that for every draw of π?970

Eπ∼p
[
max
π′

fMπ? (π′)− fMπ? (π)
]
≤ γc−1

1 · Eπ∼p
[
D
(
Mπ?(π) ‖M(π)

)]
+ decc−1

1 γ(co(M)).

Taking the expectation over π? ∼ µ, we conclude that971

infDγ (M) ≤ decc−1
1 γ(co(M)).

972

E.3 High-Probability Exploration-By-Optimization and Information Ratio (Theorem 3.2)973

Theorem 3.2. For all η > 0, infHη−1(M) ≤ exoη(M) ≤ infH(8η)−1(M).974

Proof of Theorem 3.2. We first state the following basic result, which is proven in the sequel.975

Lemma E.1. For any fixed M ∈ M and π? ∈ Π, the map (p, g) 7→ Γq,η(p, g ;π?,M) is jointly976

convex with respect to (p, g) ∈ ∆(Π)× G, where G := (Π×Π×Z → R).977

Upper bound: Minimax theorem. We first use the minimax theorem to move to a Bayesian coun-978

terpart to the Exploration-by-Optimization objective. This requires some care to ensure boundedness979

and compactness, but otherwise is conceptually straightforward. To begin, observe that we can write980

the Exploration-by-Optimization objective as981

exoη(M) = sup
q∈∆(Π)

inf
p∈∆(Π),g∈G

sup
M∈M,π?∈Π

[Γq,η(p, g ;π?,M)]

= sup
q∈∆(Π)

inf
p∈∆(Π),g∈G

sup
µ∈∆(M×Π)

E(M,π?)∼µ[Γq,η(p, g ;π?,M)].

Fix α ≥ 1 ∨ η−1 and ε ∈ (0, 1), and define982

Gα = {g ∈ G | ‖g‖∞ ≤ α}, and Pε =
{
p ∈ ∆(Π) | p(π) ≥ ε|Π|−1 ∀π

}
.

Then, by restricting to these classes, we have16
983

exoη(M) ≤ sup
q∈∆(Π)

inf
p∈Pε,g∈Gα

sup
µ∈∆(M×Π)

E(M,π?)∼µ[Γq,η(p, g ;π?,M)]

We verify that the conditions required to apply the minimax theorem are satisfied.984

• The map µ 7→ E(M,π?)∼µ[Γq,η(p, g ;π?,M)] is linear. Furthermore, by Lemma E.1, the map985

(p, g) 7→ E(M,π?)∼µ[Γq,η(p, g ;π?,M)] is convex.986

• Since we have restricted to p ∈ Pε and g ∈ Gα, the value Γq,η(p, g;π?,M) is uniformly bounded,987

as well as continuous with respect to p and g (so long as ε > 0 and α <∞).988

• The set ∆(M× Π) is convex. Since |Π| < ∞, the set Pε × Gα is convex and compact (for Pε989

equipped with the usual topology and Gα equipped with the product topology; see Lattimore and990

György [34] for details).991

Hence, using Lemma C.2 we can bound by the value of the Bayesian game as follows:992

exoη(M) ≤ sup
q∈∆(Π)

sup
µ∈∆(M×Π)

inf
p∈Pε,g∈Gα

E(M,π?)∼µ[Γq,η(p, g ;π?,M)]. (38)

16Restricting to these sets allows us to enforce boundedness and continuity of the Exploration-by-Optimization
objective, which is necessary to appeal to the minimax theorem. The parameters α and ε will not enter the final
bound quantitatively.

28



Upper bound: Moving to Hellinger distance. For any q ∈ ∆(Π), µ ∈ ∆(M×Π), and p ∈ Pε993

the value of the game in (38) is994

E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]

+ η−1 inf
g∈Gα

E(M,π?)∼µ

[
Eπ∼p,z∼M(π) Eπ′∼q exp

(
η

p(π)
(g(π′ ;π, z)− g(π? ;π, z))

)
− 1

]
.

Using Bayes’ rule, we can rewrite the second term above as995

inf
g∈Gα

Eπ∼p Ez|π
[
Eπ′∼q

[
exp

(
η
g(π′ ;π, z)

p(π)

)]
· Eπ?∼µpo(· ;π,z)

[
exp

(
−η g(π? ;π, z)

p(π)

)]
− 1

]
By reparameterizing via g(π′ ;π, z)← p(π)

η g(π′ ;π, z), the value is upper bounded by996

inf
g∈Gαη

Eπ∼p Ez|π
[
Eπ′∼q[exp(g(π′ ;π, z))] · Eπ?∼µpo(· ;π,z)[exp(−g(π? ;π, z))]− 1

]
.

Furthermore, by skolemizing, we can rewrite this as997

V (p, q, µ) := Eπ∼p Ez|π inf
g:Π→R,‖g‖∞≤αη

{
Eπ′∼q[exp(g(π′))] · Eπ?∼µpo(· ;π,z)[exp(−g(π?))]− 1

}
.

We now appeal to Lemma C.5, which grants that998

V (p, q, µ) ≤ − 1

2
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]

+ 4e−αη. (39)

Using (39), we have999

exoη(M)

≤ sup
q∈∆(Π)

sup
µ∈∆(M×Π)

inf
p∈Pε

{
E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− 1

2η
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]}

+ 4η−1e−αη.

In addition, since fM ∈ [0, 1] and D2
H(·, ·) ∈ [0, 2], we can further upper bound by1000

sup
q∈∆(Π)

sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− 1

2η
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]}

+O(η−1e−αη + ε · (1 + η−1)).

Since this expression only depends on α and ε through the additive approximation terms, taking the1001

limit as α→∞ and ε→ 0 yields1002

exoη(M) ≤ sup
q∈∆(Π)

sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− 1

2η
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]}
.

Finally, recall that since Hellinger distance satisfies the triangle inequality, we have1003

Eπ∼p Ez|π
[
D2

H(µpo(· ;π, z), µpr)
]
≤ 2Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]

+ 2D2
H(µpr, q).

Using that µpr(π
′) = Eπ∼p Ez|π[µpo(π′ ;π, z)] and that squared Hellinger distance is convex, we1004

have D2
H(µpr, q) ≤ Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]
, and so1005

Eπ∼p Ez|π
[
D2

H(µpo(· ;π, z), µpr)
]
≤ 4 · Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]
.

It follows that1006

exoη(M) ≤ sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− 1

8η
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), µpr)
]}

= infH(8η)−1(M).

Lower bound. It is immediate (without having to invoke the minimax theorem) that1007

exoη(M) = sup
q∈∆(Π)

inf
p∈∆(Π),g∈G

sup
µ∈∆(M×Π)

E(M,π?)∼µ[Γq,η(p, g ;π?,M)]

≥ sup
q∈∆(Π)

sup
µ∈∆(M×Π)

inf
p∈∆(Π),g∈G

E(M,π?)∼µ[Γq,η(p, g ;π?,M)].
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Performing the same sequence of calculations as in the upper bound, we have that for any q ∈ ∆(Π),1008

µ ∈ ∆(M×Π), and p ∈ ∆(Π),1009

inf
g∈G

E(M,π?)∼µ[Γq,η(p, g ;π?,M)]

= E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]

+ η−1 inf
g∈G

E(M,π?)∼µ

[
Eπ∼p,z∼M(π) Eπ′∼q exp

(
η

p(π)
(g(π′ ;π, z)− g(π? ;π, z))

)
− 1

]
= E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)] + η−1 Eπ∼p Ez|π inf

g∈G

{
Eπ′∼q[exp(g(π′))] · Eπ?∼µpo(· ;π,z)[exp(−g(π?))]− 1

}
.

Using Lemma 2.1, we have1010

Eπ∼p Ez|π inf
g∈G

{
Eπ′∼q[exp(g(π′))] · Eπ?∼µpo(· ;π,z)[exp(−g(π?))]− 1

}
≥ − Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]
.

We conclude that1011

exoη(M) ≥ sup
q∈∆(Π)

sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− 1

η
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), q)
]}

≥ sup
µ∈∆(M×Π)

inf
p∈∆(Π)

{
E(M,π?)∼µ Eπ∼p[fM(π?)− fM(π)]− 1

η
Eπ∼p Ez|π

[
D2

H(µpo(· ;π, z), µpr)
]}

= infHη−1(M).

1012

Proof of Lemma E.1. Let M ∈M and π? ∈ Π be fixed. The map p 7→ Eπ∼p[fM(πM)− fM(π)]1013

is linear, so our main task is to show that the function1014

(p, g) 7→
∑
π

p(π)Ez∼M(π)

[∑
π′

q(π′) exp

(
η

p(π)
(g(π′ ;π, z)− g(π? ;π, z))

)]
is jointly convex. We can rewrite this as1015 ∑

π

q(π′)
∑
π

p(π)Ez∼M(π)

[
exp

(
η

p(π)
(g(π′ ;π, z)− g(π? ;π, z))

)]
.

Since convexity is preserved under summation with non-negative weights, it suffices to show that for1016

any fixed (π, π′), the map1017

(p(π), g) 7→ p(π)Ez∼M(π)

[
exp

(
η

p(π)
(g(π′ ;π, z)− g(π? ;π, z))

)]
(40)

is convex. Since the function g 7→ Ez∼M(π)[exp(η(g(π′ ;π, z)− g(π? ;π, z)))] is convex over G,1018

convexity for (40) follows from the following standard result.1019

Proposition E.2 (Convexity of perspective transformation). Let f : Rd → (−∞,∞) be a convex1020

function. Then the function1021

(x, t) 7→ t · f(x/t)

is convex over Rd × R+.1022

1023

F Proofs for Main Results (Section 2)1024

F.1 Proof of Theorem 2.11025

Theorem 2.1 (Main upper bound). For any choice of η > 0, Algorithm 1 ensures that for all δ > 0,1026

with probability at least 1− δ,1027

RegDM ≤ dec(8η)−1(co(M)) · T + 2η−1 · log(|Π|/δ). (8)

In particular, for any δ > 0, with appropriate η, the algorithm has that with probability at least 1− δ,1028

RegDM ≤ O(1) · inf
γ>0
{decγ(co(M)) · T + γ · log(|Π|/δ)}. (9)
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Proof of Theorem 2.1. Let us adopt convention 〈p, f〉 =
∑
π p(π) · f(π) and let eπ denote the πth1029

standard basis vector in RΠ. For each π? ∈ Π, we write regret as1030

RegDM(π?) =

T∑
t=1

Eπ∼p(t)
[
fM

(t)
(π?)− fM(t)

(π)
]

=

T∑
t=1

〈
eπ? − p(t), fM

(t)〉
.

Adding and subtracting
∑T
t=1

〈
eπ? − q(t), f̂ (t)

〉
, we rewrite this as1031

T∑
t=1

〈
eπ? − p(t), fM

(t)〉
=

T∑
t=1

〈
eπ? − p(t), fM

(t)〉
+

T∑
t=1

〈
eπ? − q(t), f̂ (t)

〉
−

T∑
t=1

〈
eπ? − q(t), f̂ (t)

〉
.

(41)

The exponential weights update ensures (Lemma C.6) that with probability 1,1032

T∑
t=1

〈
eπ? − q(t), f̂ (t)

〉
≤

T∑
t=1

〈
q(t+1) − q(t), f̂ (t)

〉
− 1

η

T∑
t=1

DKL(q(t+1) ‖ q(t)) +
DKL(eπ? ‖ q(1))

η

≤
T∑
t=1

〈
q(t+1) − q(t), f̂ (t)

〉
− 1

η

T∑
t=1

DKL(q(t+1) ‖ q(t)) +
log|Π|
η

.

In addition, using Lemma C.3, we have that for all t,1033

〈
q(t+1), f̂ (t)

〉
− 1

η
DKL(q(t+1) ‖ q(t)) ≤ 1

η
log

(∑
π

q(t)(π) exp
(
η · f̂ (t)(π)

))
.

Hence, combining this with (41), we have1034

RegDM(π?) ≤
T∑
t=1

〈
eπ? − p(t), fM

(t)〉− 〈eπ? , f̂ (t)
〉

+
1

η

T∑
t=1

log

(∑
π

q(t)(π) exp
(
η · f̂ (t)(π)

))
+

log|Π|
η

.

Let Ft := σ(π(1), z(1), . . . , π(t), z(t)) be a filtration, and let Et[·] := E[· | Ft]. For each π ∈ Π,1035

define a sequence of random variables {Xt(π)}Tt=1 via1036

Xt(π) =
1

η
log

(∑
π′

q(t)(π′) exp
(
η · f̂ (t)(π′)

))
−
〈
eπ, f̂

(t)
〉
.

Using Lemma C.1 and a union bound, we have that for any η > 0, with probability at least 1− δ, for1037

all π ∈ Π1038

T∑
t=1

Xt(π) ≤ 1

η

T∑
t=1

log(Et−1[exp(ηXt(π))]) +
log(|Π|/δ)

η
.

Since this bounded holds uniformly for all π, we have that with probability at least 1 − δ, for all1039

π? ∈ Π,1040

RegDM(π?) ≤
T∑
t=1

〈
eπ? − p(t), fM

(t)〉
+

1

η

T∑
t=1

log(Et−1[exp(ηXt(π
?))]) + 2

log(|Π|/δ)
η

.

We compute that for any π? ∈ Π,1041

log(Et−1[exp(ηXt(π
?))])

= log

(
Eπ∼p(t) Ez∼M(t)(π) Eπ′∼q(t)

[
exp

(
η

p(t)(π)
·
(
g(t)(π′ ;π, z)− g(t)(π? ;π, z)

))])
≤ Eπ∼p(t) Ez∼M(t)(π) Eπ′∼q(t)

[
exp

(
η

p(t)(π)
·
(
g(t)(π′ ;π, z)− g(t)(π? ;π, z)

))]
− 1,
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where we have used that log(x) ≤ x − 1 for x > 0. Hence, with probability at least 1 − δ, for all1042

π? ∈ Π,1043

RegDM(π?) ≤
T∑
t=1

〈
eπ? − p(t), fM

(t)〉
+ 2

log(|Π|/δ)
η

+
1

η

(
Eπ∼p(t) Ez∼M(t)(π) Eπ′∼q(t)

[
exp

(
η

p(t)(π)
·
(
g(t)(π′ ;π, z)− g(t)(π? ;π, z)

))]
− 1

)
=

T∑
t=1

Γq(t),η(p(t), g(t) ;π?,M (t)) + 2
log(|Π|/δ)

η

≤ exoη(M) · T + 2
log(|Π|/δ)

η
,

where the last line uses that (p(t), g(t)) are chosen to minimize the Exploration-By-Optimization1044

objective. Finally, using Corollary 3.1, we have that exoη(M) ≤ dec(8η)−1(co(M)).1045

1046

F.2 Proof of Theorem 2.21047

In this section we prove Theorem 2.2. Most of the work consists of proving an improved lower1048

bound for the stochastic setting in which M (t) = M? is fixed across t (Theorem F.1). We then1049

appeal to this stochastic lower bound with the class co(M). Since co(M) is equivalent to the set of1050

mixtures of models inM, this establishes existence of distribution µ ∈ ∆(M) and mixture model1051

Mµ = EM∼µ[M ] for which regret in the stochastic setting must scale with decγ,εγ (co(M)). The1052

proof concludes by arguing that this yields a lower bound for the adversarial setting when we sample1053

M (t) ∼ µ.1054

Throughout this section, we define the one-sided variance for a random variable Z as1055

V+[Z] := E
[
(Z − E[Z])2

+

]
.

Theorem 2.2 (Main lower bound). Let C(T ) := c · log(T ∧V (M)) for a sufficiently large numerical1056

constant c > 0. Set εγ := γ
4C(T )T . For any algorithm, there exists an oblivious adversary for which1057

E[RegDM] +
√
E(RegDM)2

+ ≥ Ω(1) · sup
γ>
√

2C(T )T

decγ,εγ (co(M)) · T −O(T 1/2). (13)

We also have the following slight variant of Theorem 2.2.1058

Theorem 2.2a. Let C(T ) := c · log(T ∧ V (M)) for a sufficiently large numerical constant c > 0.1059

Set εγ := γ
4C(T )T . For any algorithm, there exists an oblivious adversary for which E[RegDM] ≥ 01060

and1061

E[RegDM] +
√
E[RegDM] · T ≥ Ω(1) · sup

γ>
√

2C(T )T

decγ,εγ (co(M)) · T, (42)

Proof of Theorem 2.2. We invoke Theorem F.1 with the model class co(M), which implies that1062

there exists a distribution µ ∈ ∆(M) for which1063

E
[
R̃egDM

]
+

√
V+

[
R̃egDM

]
≥ L := 8−1 · sup

γ>
√

2C(T )T

decγ,εγ (co(M)) · T,

where1064

R̃egDM :=

T∑
t=1

Eπ(t)∼p(t) EM∼µ[fM(πµ)− fM(π(t))],

and πµ := arg maxπ∈Π EM∼µ[fM(π)], with the data generating process is (for each t = 1, . . . , T ):1065

• The learner samples π(t) ∼ p(t).1066
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• Nature samples z(t) ∼ EM∼µ[M(π(t))].1067

Observe that this is equivalent in law to the following data-generating process, which constitutes an1068

admissible adversary (with M (t) ∈M):1069

• The learner samples π(t) ∼ p(t).1070

• Nature samples M (t) ∼ µ and z(t) ∼M (t)(π(t)).1071

Likewise, we can equivalently write1072

R̃egDM =

T∑
t=1

EM(t)∼µ Eπ(t)∼p(t)
[
fM

(t)
(πµ)− fM(t)

(π(t))
]
.

Hence, all that remains is to relate the quantity R̃egDM to the realized regret RegDM for the sequence1073

M (1), . . .M (T ), which entails removing the conditional expectation over M (t) ∼ µ. To this end, we1074

first observe that1075

E
[
R̃egDM

]
= E

[
T∑
t=1

Eπ(t)∼p(t)
[
fM

(t)
(πµ)− fM(t)

(π(t))
]]

≤ E

[
max
π?∈Π

T∑
t=1

Eπ(t)∼p(t)
[
fM

(t)
(π?)− fM(t)

(π(t))
]]

= E
[
RegDM

]
.

Next, note that since R̃egDM is non-negative, V+

[
R̃egDM

]
≤ E

[
(R̃egDM)2

+

]
. Define1076

R̂egDM :=

T∑
t=1

Eπ(t)∼p(t)
[
fM

(t)
(πµ)− fM(t)

(π(t))
]
.

Then we have1077

E
[
(R̃egDM)2

+

]
≤ 2E

[
(R̂egDM)2

+

]
+ 2E

[
(R̃egDM − R̂egDM)2

]
≤ 2E

[
(RegDM)2

+

]
+ 2E

[
(R̃egDM − R̂egDM)2

]
≤ 2E

[
(RegDM)2

+

]
+ 2T,

where the first inequality uses that R̂egDM ≤ RegDM almost surely, and the second inequality uses (i)1078

fM ∈ [0, 1], and (ii) for any sequence of random variables (Zt)
T
t=1 with E

[
Zt | Z1, . . . , Zt−1

]
= 0,1079

E
[
(
∑T
t=1 Zt)

2
]

=
∑T
t=1 E

[
Z2
t

]
. Putting everything together, we conclude that1080

E
[
RegDM

]
+
√

2E
[(
RegDM

)2
+

]
≥ L−

√
2T .

This proves Theorem 2.2. To prove Theorem 2.2a, we use that since R̃egDM ∈ [0, T ],1081

V+

[
R̃egDM

]
≤ T · E

[
R̃egDM

]
≤ T · E[RegDM].

1082

The following result concerns the stochastic setting in Foster et al. [18]. Here, there is a (unknown)1083

underlying model M? ∈M. For t = 1, . . . , T , data is generated through the process:1084

• Learner samples π(t) ∼ p(t).1085

• Nature samples z(t) ∼M?(π(t)).1086

In addition, regret simplifies to1087

RegDM =

T∑
t=1

Eπ(t)∼p(t)
[
fM

?
(πM?)− fM?(π(t))

]
(43)

For a fixed algorithm, let PM denote the law ofH(T ) when M? = M , and let EM [·] and V+ supM [·]1088

denote the corresponding expectation non-negative variance. Our main lower bound for the stochastic1089

setting is as follows.1090
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Theorem F.1. Let C(T ) := 29 log(T ∧ V (M)), and set εγ = γ
4C(T )T . For any algorithm, there1091

exists a model inM for which1092

EM [RegDM] +
√
VM

+ [RegDM] ≥ 8−1 · sup
γ≥4
√
C(T )T

sup
M∈M

decγ(Mεγ (M),M) · T.

The general structure of the lower bound follows that of Theorem 3.1 in Foster et al. [18], with1093

the main difference being that we use a more refined change-of-measure argument to move from a1094

“reference” modelM ∈M to a worst-case alternative. Specifically, we replace Lemma A.11 in Foster1095

et al. [18], which requires an almost sure bound on the random variables under consideration (in our1096

case, regret), with Lemma C.4, which requires only boundedness of the second moment. Combining1097

this with a self-bounding argument that takes advantage of the localized model class yields the result.1098

Proof of Theorem F.1. Throughout this proof we will use that RegDM is non-negative in the1099

stochastic setting, which can be seen by inspecting (43) (in the general adversarial setting, it is1100

possible for RegDM to be negative).1101

Let us introduce some additional notation. For M ∈M, define gM(π) = fM(πM)− fM(π), and for1102

p ∈ ∆(Π), let gM(p) = Eπ∼p[gM(π)]. Let p̂ := 1
T

∑T
t=1 p

(t), and pM := EM
[

1
T

∑T
t=1 p

(t)

]
.1103

To begin, fix M ∈M, γ > 0, and ε > 0, and set1104

M = arg max
M∈Mε(M)

Eπ∼pM
[
fM(πM)− fM(π)− γ ·D2

H

(
M(π),M(π)

)]
.

Abbreviate decγ ≡ decγ(Mε(M),M). The definition of the DEC implies that1105

decγ ≤ EpM [gM(π)]− γ · EpM
[
D2

H

(
M(π),M(π)

)]
= EM [gM(p̂)]− γ · EpM

[
D2

H

(
M(π),M(π)

)]
.

(44)
1106

Change of measure. To proceed, we write1107

EM [gM(p̂)] = EM
[
gM(p̂)− gM(p̂)− EM [gM(p̂)]

]
+ EM

[
gM(p̂)

]
+ EM [gM(p̂)]

≤ EM
[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])+

]
+ EM

[
gM(p̂)

]
+ EM [gM(p̂)]. (45)

We recall the following technical lemma.1108

Lemma C.4. Let P and Q be probability distributions over a measurable space (X ,F ). Then for1109

all functions h : X → R,1110

|EP[h(X)]− EQ[h(X)]| ≤
√

2−1(EP[h2(X)] + EQ[h2(X)]) ·D2
H(P,Q). (25)

Defining h(p̂) = (gM(p̂)− gM(p̂)− EM [gM(p̂)])+, Lemma C.4 implies that1111

EM
[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])+

]
≤ EM

[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])+

]
+
√(

EM [h(p̂)2] + EM [h(p̂)2]
)
·D2

H(PM ,PM)

≤ EM [gM(p̂)] +
√(

EM [h(p̂)2] + EM [h(p̂)2]
)
·D2

H(PM ,PM), (46)

where we have used that gM , gM ≥ 0. We proceed to bound the second moment terms. First, we have1112

EM
[
h(p̂)2

]
= EM

[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])2

+

]
≤ EM

[
(gM(p̂)− EM [gM(p̂)])2

+

]
= VM

+ [gM(p̂)]. (47)

where the first inequality uses that gM ≥ 0. For the second variance term, we have1113

EM
[
h(p̂)2

]
= EM

[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])2

+

]
≤ EM

[
(gM(p̂)− gM(p̂))2

+

]
.
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We have1114

EM
[
(gM(p̂)− gM(p̂))2

+

]
= EM

[
(gM(p̂)− gM(p̂))+(fM(πM)− fM(πM) + fM(p̂)− fM(p̂)+

]
≤ EM

[
(gM(p̂)− gM(p̂))+(fM(πM)− fM(πM)+

]
+ EM

[
(gM(p̂)− gM(p̂))+f

M(p̂)− fM(p̂)+

]
.

For the first term above, we have1115

EM
[
(gM(p̂)− gM(p̂))+(fM(πM)− fM(πM)+

]
≤ ε · EM

[
(gM(p̂)− gM(p̂))+

]
≤ ε · EM [gM(p̂)],

where we have used the localization property and the fact that gM , gM ≥ 0. For the second term,1116

using the AM-GM inequality, we have1117

EM
[
(gM(p̂)− gM(p̂))+f

M(p̂)− fM(p̂)+

]
≤ 1

2
EM
[
(gM(p̂)− gM(p̂))2

+

]
+

1

2
EM
[
(fM(p̂)− fM(p̂))2

]
≤ 1

2
EM
[
(gM(p̂)− gM(p̂))2

+

]
+

1

2
Eπ∼pM

[
(fM(π)− fM(π))2

]
≤ 1

2
EM
[
(gM(p̂)− gM(p̂))2

+

]
+

1

2
Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
,

where the last line uses that rewards are observed and bounded in [0, 1]. After combining these results1118

and rearranging, we have1119

EM
[
h(p̂)2

]
≤ EM

[
(gM(p̂)− gM(p̂))2

+

]
≤ 2ε · EM [gM(p̂)] + Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
. (48)

From Lemma A.13 of Foster et al. [18], we have1120

D2
H

(
PM ,PM

)
≤ C(T ) · T · Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
, (49)

where C(T ) ≤ 28 · log(T ∧ V (M)).1121

Combining the variance bounds with (46), we have1122

EM
[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])+

]
≤ EM [gM(p̂)] +

√(
VM

+ [gM(p̂)] + 2ε · EM [gM(p̂)] + Eπ∼pM
[
D2

H

(
M(π),M(π)

)])
·D2

H(PM ,PM)

≤ EM [gM(p̂)] +
√

2VM
+ [gM(p̂)] +

√(
2ε · EM [gM(p̂)] + Eπ∼pM

[
D2

H

(
M(π),M(π)

)])
·D2

H(PM ,PM)

≤ EM [gM(p̂)] +
√

2VM
+ [gM(p̂)] +

√
C(T )T · Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
+
√

2εEM [gM(p̂)] · C(T )T Eπ∼pM
[
D2

H

(
M(π),M(π)

)]
,

where the second inequality uses that D2
H(·, ·) ≤ 2 and the last inequality uses (49). where the second1123

inequality uses that D2
H

(
PM ,PM

)
≤ 2.1124

Now, suppose we restrict to ε ≤ γ
4TC(T ) . Then we have1125 √

2ε · EM [gM(p̂)] · C(T )T Eπ∼pM
[
D2

H

(
M(π),M(π)

)]
≤
√
EM [gM(p̂)] · γ

2
· Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
≤ 1

2
EM [gM(p̂)] +

γ

4
· Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
.

Altogether, we have1126

EM
[
(gM(p̂)− gM(p̂)− EM [gM(p̂)])+

]
≤ EM [gM(p̂)] +

√
2VM

+ [gM(p̂)] + (
√
C(T )T + γ/4) · Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
+

1

2
EM [gM(p̂)]

and, using (45),1127

EM [gM(p̂)] ≤ 2EM [gM(p̂)] + EM
[
gM(p̂)

]
+
√

2VM
+ [gM(p̂)]

+ (
√
C(T )T + γ/4) · Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
+

1

2
EM [gM(p̂)].

35



After rearranging, this implies that1128

EM [gM(p̂)] ≤ 4EM [gM(p̂)] + 2EM
[
gM(p̂)

]
+
√

8VM
+ [gM(p̂)] + 2(

√
C(T )T + γ/4) · Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
.

(50)

Completing the proof. Combining (50) with (44), we have1129

decγ ≤ 4EM [gM(p̂)] + 2EM
[
gM(p̂)

]
+
√

8VM
+ [gM(p̂)] +

(
2(
√
C(T )T + γ/4)− γ

)
· Eπ∼pM

[
D2

H

(
M(π),M(π)

)]
.

In particular, whenever γ ≥ 4
√
C(T )T , this implies that there exists an instance M ′ ∈ {M,M} for1130

which1131

EM′
[
gM
′
(p̂)
]

+
√
VM′

+ [gM′(p̂)] ≥ 8−1 · decγ .

Finally, we observe that gM′(p̂) is identical in law to RegDM under PM′ .1132

1133

F.3 Proof of Theorem 2.31134

Theorem 2.3. Suppose there exists M0 ∈M such that fM0 is a constant function, and that |Π| <∞.1135

1. If there exists ρ > 0 s.t. limγ→∞ decγ(co(M)) · γρ = 0, then limT→∞
M(M,T )

Tp = 0 for p < 1.1136

2. If limγ→∞ decγ(co(M)) · γρ > 0 for all ρ > 0, then limT→∞
M(M,T )

Tp =∞ for all p < 1.1137

The same conclusion holds when Π = ΠT grows with T , but has log|ΠT | = O(T q) for any q < 1.1138

Proof of Theorem 2.3. This proof closely follows that of Theorem 3.5 in Foster et al. [18].1139

Upper bound. Assume that limγ→∞ decγ(co(M)) · γρ = 0 for some ρ > 0, and that log|ΠT | =1140

Õ(T q) for some q < 1. Using Theorem 2.1 with δ = 1/T , we have that for each T , for all1141

adversaries,1142

En[RegDM(T )] ≤ Õ(decγ(co(M)) · T + γ · log|ΠT |) ≤ Õ(decγ(co(M)) · T + γ · T q),

with Õ(·) hiding factors logarithmic in T . For each T , we set γ = γT := T
1−q
1+ρ ; recall that 1− q > 0.1143

The assumption that limγ→∞ decγ(co(M)) · γρ = 0, implies that for all ε > 0, there exists γ′ > 01144

such that decγ(co(M)) ≤ ε/γρ for all γ ≥ γ′. For T sufficiently large, this implies that for all1145

adversaries1146

E[RegDM] ≤ Õ
(
T

γρT
+ γT · T q

)
= Õ(T

1+ρq
1+ρ ).

Defining p′ := 1
2 (p+ 1) < 1, this establishes that1147

lim
T→∞

M(M, T )

T p′
= 0.

Lower bound. Assume that limγ→∞ decγ(co(M)) · γρ = ∞ for all ρ > 0 (this is equivalent1148

to assuming that limγ→∞ decγ(co(M)) · γρ > 0 for all ρ > 0, as in the theorem statement). Let1149

ρ ∈ (0, 1/2) be fixed. Using Theorem 2.2a, we are guaranteed that for any algorithm, there exists an1150

adversary for which E[RegDM] ≥ 0 and1151

E[RegDM] +
√
E[RegDM] · T = Ω̃

(
decγ,ε(γ,T )(co(M)) · T

)
,

for all γ = ω(
√
T log(T )), where ε(γ, T ) := c · γ

T log(T ) for a sufficiently small numerical constant1152

c ≤ 1. Since there exists M0 ∈M such that the function fM0 is constant, Lemma B.1 of Foster et al.1153

[18] further implies that1154

E[RegDM] +
√
E[RegDM] · T = Ω̃(ε(γ, T ) · decγ(co(M)) · T ).
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For each T , set γ = γT := T . By the assumption that limγ→∞ decγ(co(M)) · γρ = ∞, we have1155

that for T sufficiently large, decγT (co(M)) ≥ γ−ρT , which implies that and1156

E[RegDM] +
√
E[RegDM] · T = Ω̃

(
T

γρT

)
,

where we have used that ε(γT , T ) ∝ 1
log(T ) . Rearranging, this implies that1157

E[RegDM] = Ω̃
(
T 1−2ρ

)
.

Hence, for any p ∈ (0, 1), by setting ρ = 1−p
2 ∈ (0, 1/2), we have1158

E[RegDM] = Ω̃(T p).

Applying this argument with p′ = 1
2 (p+ 1) ∈ (1/2, 1) yields1159

lim
T→∞

M(M, T )

T p
=∞.

1160

F.4 Sub-Chebychev Algorithms1161

Proposition F.1. Any random variable with E
[
X2

+

]
≤ R has1162

P(X+ > t) ≤ R2

t2
, ∀t > 0.

Conversely, if X ∈ (−∞, B) and has P(X+ > t) ≤ R2

t2 ∀t > 0, then1163

E
[
X2

+

]
≤ R2(log(B/R) + 1).

Proof of Proposition F.1. For the first direction, note that if E
[
X2

+

]
≤ R, Chebychev’s inequality1164

implies that for all t > 0,1165

P
(
X2

+ > t
)
≤ R2

t2
. (51)

For the other direction, since X+ ∈ [0, B] almost surely, we have1166

E
[
X2

+

]
=

∫ B

0

P(X+ > t)tdt ≤ R2+

∫ B

R

P(X+ > t)tdt ≤ R2+R2

∫ B

R

1

t
dt ≤ R2+R2 log(B/R).

1167

Proposition F.2. Suppose that for any δ > 0, an algorithm (with δ as a parameter) ensures that with1168

probability at least 1− δ,1169

RegDM ≤ R logρ(δ−1)

for some R ≥ 1 and ρ > 0. Then the algorithm, when invoked with parameter δ = 1/T 2, is1170

sub-Chebychev with parameter 51/2R logρ(T ).1171

Proof of Proposition F.2. Set δ = 1/T 2. Then, since |RegDM| ≤ T , the law of total expectation1172

implies that1173

E
[
(RegDM)2

+

]
≤ R2 log2ρ(T 2) + T 2/T 2 ≤ 5R2 log2(T ),

where we have used that R ≥ 1. Chebychev’s inequality now implies that for all t > 01174

P((RegDM)+ ≥ t) ≤
E
[
(RegDM)2

+

]
t2

≤ 5R2 log2ρ(T )

t
.

1175

Corollary 2.1. Any regret minimization algorithm with sub-Chebychev parameter R > 0 must have1176

R ≥ Ω̃(1) · sup
γ>
√

2C(T )T

decγ,εγ (co(M)) · T −O(T 1/2). (15)

Proof of Corollary 2.1. This result immediately follows from Proposition F.1, Proposition F.2, and1177

Theorem 2.2.1178
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