The First Optimal Acceleration of High-Order
Methods in Smooth Convex Optimization

Dmitry Kovalev Alexander Gasnikov
KAUST* MIPT{IITP RAS} HSE®
dakovalevl@gmail.com gasnikov@yandex.ru
Abstract

In this paper, we study the fundamental open question of finding the optimal high-
order algorithm for solving smooth convex minimization problems. |Arjevani et al.
(2019) established the lower bound Q (6_2/ (31’“)) on the number of the p-th order
oracle calls required by an algorithm to find an e-accurate solution to the problem,
where the p-th order oracle stands for the computation of the objective function
value and the derivatives up to the order p. However, the existing state-of-the-
art high-order methods of |Gasnikov et al.| (2019b); [Bubeck et al.| (2019); Jiang
et al|(2019) achieve the oracle complexity O (e=2/P+1 log(1/e€)), which does
not match the lower bound. The reason for this is that these algorithms require
performing a complex binary search procedure, which makes them neither optimal
nor practical. We fix this fundamental issue by providing the first algorithm with
@) (6’2/ (3”“)) p-th order oracle complexity.

1 Introduction

Let R? be a finite-dimensional Euclidean space and let f(z): R? — R be a convex, p times
continuously differentiable function with L,-Lipschitz p-th order derivatives. Our goal is to solve the
following convex minimization problem:
* = min f(z). 1
f* = min f(2) M
In this work, we assume access to the p-th order oracle associated with function f(x). That is, given

an arbitrary point x € R%, we can compute the function value and the derivatives of function f(z) up
to order p.

First-order methods. When p = 1, first-order methods, such as gradient descent, are typically
used for solving problem (T)). The lower bound Q(e~1/2) on the number of the gradient evaluations
required by these algorithms to find an e-accurate solution was established by |[Nemirovskij and Yudin
(1983)); Nesterov| (2003)), while the optimal algorithm matching this lower bound is called Accelerated
Gradient Descent and was developed by |[Nesterov| (1983).

Second-order methods. In contrast to the first-order methods, the understanding of the second-
order methods (p = 2) was developed relatively recently. Nesterov and Polyak| (2006)) developed
the cubic regularized variant of Newton’s method. This algorithm achieves global convergence with

*King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
TMoscow Institute of Physics and Technology, Dolgoprudny, Russia
Hnstitute for Information Transmission Problems RAS, Moscow, Russia
$National Research University Higher School of Economics, Moscow, Russia

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Table 1: Comparison of the first-order, second-order and high-order methods for smooth convex
optimization in the oracle complexities (see Definition [3)), which depend on the smoothness constant
L, (see Assumption , the distance to the solution R (see Assumption , and the accuracy € (see
Definition [I)).

Algorithm Reference Oracle Complexity Order
Nesterov|(1983) (@] ((Ll R?/e) 1/2> First-Order
I - — - : N Metllods
ower Bound (Nemirovskij and Yudin|[1983) Q ((LlR /e)) =1
; N
Nesterov and Polyak|(2006) (@] ((LQR /e))
Nesterov[(2008) O ((Lg R3/e) 1/3)
Second-Order
Monteiro and Svaiter|(2013) (@] ((L2R3/e)2/7 10g(1/e)> Methods
(=2
Algorithm 4](This Paper) o ((L2R2/e)"")
Lower Bound (Arjevani et al.|[2019) Q ((L2R3/6) 2/7)
] 41 1/p
Nesterov|(2021a) o ((LpRp /€)
Nesterov|(2021a) (@] ((LpRp+1/e) 1/(p+1>)
High-Order
Gasnikov et al.|(2019b) o ((L,,RJD+1 Je) P 10g(1 /e)) Methods
(»=>2)
Algorithm El(This Paper) O ((LpR’”'1 / 6)2/(3p+1))
Lower Bound (Arjevani et al.| 2019) Q ((LyRr+ o))

the oracle complexity O(e~'/2), which cannot be achieved with the standard Newton’s method.
Nesterov| (2008)) also developed an accelerated version of the cubic regularized Newton’s method
with O (e_l/ 3) second-order oracle complexity. A few years later, Monteiro and Svaiter| (2013)
developed the Accelerated Hybrid Proximal Extragradient (A-HPE) framework and combined it with
a trust region Newton-type method. The resulting algorithm, called Accelerated Newton Proximal
Extragradient (A-NPE), achieved the second-order oracle complexity of O (¢=2/7log(1/e)). In 2018,
Arjevani et al.| (2019) established the lower bound (2 (6’2/ 7) on the number of the second-order
oracle calls required by an algorithm to find an e-accurate solutiorﬂ which is almost achieved by the
A-NPE algorithm of Monteiro and Svaiter| (2013)), up to the logarithmic factor log(1/¢). However,
the optimal second-order algorithms for solving smooth convex minimization problems remain to be
unknown.

High-order methods. In the case when p > 2, the situation is very similar to the second-order
case. |[Nesterov|(2021a) developed the generalization of the cubic regularized Newton method to the
high-order case and called them tensor methods. [Nesterov|(2021a) provided both non-accelerated
and accelerated p-th order tensor methods with the oracle complexity O (6’1/ p) and O (6*1/ (p+1)) ,
respectivelyﬂ Later, three independent groups of researchers (Gasnikov et al.,[2019a; Bubeck et al.,
2019} Jiang et al.,2019) used the A-HPE framework to develop the near-optimal tensor methods with
the oracle complexity O (¢=2/(3+1)]og(1/e)). Similarly to the case p = 2, these algorithms match

the lower complexity bound Q2 (e=2/(P+1) of |Arjevani et al.[(2019), up to the logarithmic factor
log(1/e).

SThere is also a work of |Agarwal and Hazan| (2018), which provides the lower complexity bounds for
high-order optimization. However, their lower bounds are worse than the lower bounds of |Arjevani et al.|(2019).

8Nesterov|(2021a) also provided the lower complexity bounds that coincide with the lower bounds of|Arjevani
et al.|(2019).

1.1 Main Contribution: Optimal Second-Order and High Order Methods

The review of the second-order and high-order methods that we made above identifies the following
fundamental open question:

Can we design an optimal p-th order algorithm (p > 2) for solving smooth convex minimization
problems with the oracle complexity matching the lower bounds?

The lack of an answer to this question reveals a significant gap in the understanding of the high-order
optimization compared to the first-order optimization. We give a positive answer to this question.
That is, we provide the first optimal high-order algorithm with the p-th order oracle complexity
o (672/ (3p+1)) that matches the lower bounds of |Arjevani et al.|(2019). This is the main contribution
of our work.

1.2 Related Work

High-order and second-order methods have attracted a lot of interest recently. Relevant works include
but are not limited to superfast second-order methods (Nesterov, [2021c), second-order methods
with gradient regularization (Mishchenkol 2021} |Doikov et al.,[2022} Doikov and Nesterov, 2021)),
high-order methods for non-smooth optimization via smoothing technique (Bullins, |2020), and
ball-constrained optimization Carmon et al.| (2020l 2021). A more detailed review of recent advances
in high-order optimization can be found in the work of |Kamzolov et al.| (2022).

High-order methods for variational inequalities. Monteiro and Svaiter| (2012) also developed
second-order methods for solving monotone variational inequalities and inclusions problems for
operators with Lipschitz continuous derivatives, which were generalized to the high-order setting by
Bullins and Lai| (2022); Jiang and Mokhtari| (2022)). However, similarly to the near-optimal high-order
methods for minimization problems (Monteiro and Svaiter, 2013} |Gasnikov et al.| 2019b), these
algorithms have additional logarithmic factors in the complexity that appear due to the requirement
of performing the binary search procedure.

Recently, |Lin et al.|(2022); |Adil et al.|(2022) removed the extra logarithmic factors and provided
high-order methods for solving monotone variational inequalities and inclusions problems without
any binary search procedures. Moreover, [Lin et al.[(2022) established lower complexity bounds that
matched the proposed algorithms. Hence, the problem of finding optimal high-order algorithms for
solving variational inequalities and inclusions problems is solved.

In our paper, we solve a similar problem of finding optimal high-order methods for solving smooth
convex minimization problems. Note that this problem is much more challenging because optimal
algorithms for solving variational inequalities and inclusion problems are typically much simpler and
do not require utilising acceleration techniques.

Concurrent work of |Carmon et al.| (2022). The question of finding optimal high-order methods
for solving smooth convex minimization problems was solved recently in the concurrent work of
Carmon et al.| (2022). However, their approach is substantially different from the approach used in
this work, and their paper appeared on arXiv 11 days later than ours.

1.3 Paper Organization

Our paper is organized as follows: (i) in Section[2} we briefly introduce the tensor approximations and
provide necessary assumptions and definitions; (ii) in Section 3} we describe the existing near-optimal
high-order methods and identify their main flaws that prevent them from being optimal and practical
algorithms; (iii) in Sectiond] we describe the development of our optimal high-order algorithm and
provide its theoretical convergence analysis.

2 Preliminaries

By |- ||: R - Rand (,-): R? x R? — R, we denote the standard Euclidean norm and scalar
product on R?. Given a p times continuously differentiable function g(z): R? — R and index

i€{1,2,...,p}, by Vig(z)[h]': R? — R we denote the following homogeneous polynomial:

d .
. . azg
g(I)[} ; Zji aleaxJL (IE) J1 Jio ()
Logi=
where 2 = (21,...,24) € R%, h = (hy,...,hg) € R and
dig
— 3
Oxzj, - - Oxj, ())
is the -th order partial derivative of function g(x) at point with respect to variables x;,, ..., x;,.

For instance, if i = 1, then V1g(x)[h] = (Vg(x), h), where Vg(z) € R? is the gradient of function
g(x);if i = 2, then V2g(z)[h] = (V2 f(x)h, h), where V2 f(z) € R?*? is the Hessian of function
f(). We can write the p-th order Taylor approximation of function g(x) at point z € R%:

B(a:2) = 9(2) + Y 7 Vig()le —) @

It is well known that the Taylor polynomial @b (x; 2) approximates function g(x), if point z is close
enough to point z:

9(x) = Py (z; 2) + Ry (w; 2)[|w — =",)
where RE(-; 2): R? — R is a function that satisfies lim,,_, , R (x;2) = 0.

As mentioned earlier, we assume that the objective function f(z) of the main problem (T)) is p times
continuously differentiable and has L,-Lipschitz p-th order derivatives. It is formalized via the
following definition.

Assumption 1. Function f(x) is p-times continuously differentiable, convex, and has L,,-Lipschitz
p-th order derivatives, i.e., for all x,,xo € RY the following inequality holds:

max{|[V? f(z1)[h] = VP f(22)[h]] : h € RY [|h]| < 1} < Ly — 2.

Theorem 1 of Nesterov|(2021a) implies that under Assumption function f(z) has the following
convex upper bound:

pM
(p+1)!
where M > L, and z € R<. Hence, an obvious approach to solving problem (T is to perform the
minimization of this upper bound instead of minimizing the function f(z). This approach naturally
leads to the following iterative process:

fz) < @p(w;2) + Iz — 2|+, (6)

M
2F1 € Argmin @?(x;xk) + piﬂx — x|P L ™

zERd (p + 1)'
In the case p = 2, this iterative process is known as the cubic regularized Newton’s method of
Nesterov and Polyak] (2006)), and in the case p > 2, it is known as the tensor method of Nesterov
(2021a)). Minimization procedures similar to (/) are widely used in high-order optimization methods.
It will also be used in the development of our optimal algorithm.

We also have the following assumption which requires problem (TJ) to have at least a single solution
x* € R%. It is a standard assumption for the majority of works on convex optimization.
Assumption 2. There exists a constant R > 0 and at least a single solution z* to problem (1)),
such that ||2° — *|| < R, where x° € R is the starting point that we use as an input for a given
algorithm for solving the problem.

Finally, we have the following definitions that formalize the notions of e-accurate solution of a
problem, p-th order oracle call, and oracle complexity of an algorithm.

Definition 1. We call vector & € R? an e-accurate solution of problem (1)), if for a given accuracy
e > 0 it satisfies f(&) — f* <e.

Definition 2. Given an arbitrary vector x € R? by the p-th order oracle call at x, we denote the
computation of the function value f(x) and the derivatives V1 f(z)[-], ..., VP f(z)[].

Definition 3. By the p-th order oracle complexity of a p-th order algorithm for solving problem (1)),
we denote the number of p-th order oracle calls required by the algorithm to find an e-accurate
solution of the problem for a given accuracy € > (.

Algorithm 1 A-HPE Framework
I: input: 2° = 2§ € RY
2: parameters: o0 € [0,1], K € {1,2,...}
3: 6_1 =0
4: for k=0,1,2,...,K —1do
5 compute xl}’"’l € R, \; > 0 such that

IVF(@T) + A @ =)l < oxt 2t =2k, (8)

where x]g“ € R? and oy, € (0,1] are defined as

zy = opr® + (1= ap)af, o =mi/Br, ©)
and 7, > 0 and S; > 0 are defined by the following system:
Be-1+ 0k = Br, Brde =13 (10)
6: ahtl = gk — nka(x’;H)

7: end for
8: output: '

3 Near-Optimal Tensor Methods

In this section, we revisit the state-of-the-art high-order optimization algorithms that include the
A-NPE method of [Monteiro and Svaiter| (2013)) in the p = 2 case and the near-optimal tensor methods
of |Gasnikov et al.[(2019a); Bubeck et al.|(2019); Jiang et al.|(2019)) in the general p > 2 case. We
start with describing the key ideas behind the development of these algorithms to understand how
they work. Then, we identify the main flaws of the algorithms that prevent them from being optimal
and practical.

Note that the A-NPE method and near-optimal tensor methods have the following substantial similar-
ities: (i) both the A-NPE and near-optimal tensor methods are based on the A-HPE framework of
Monteiro and Svaiter| (2013); (ii) the oracle complexity of the near-optimal tensor methods recovers
the oracle complexity of the A-NPE method in the case p = 2; (iii) these algorithms have the same
issue: the requirement to perform the complex binary search procedure at each iteration which
makes them neither optimal nor practical. Hence, we will further leave out the description of the
A-NPE method of Monteiro and Svaiter| (2013)) and consider only the near-optimal tensor methods of
Gasnikov et al.|(2019a); Bubeck et al.| (2019); Jiang et al.| (2019).

3.1 A-HPE Framework

The main component in the development of the near-optimal tensor methods of |Gasnikov et al.
(2019a); Bubeck et al.|(2019); Jiang et al.| (2019) is the Accelerated Hybrid Proximal Extragradient
(A-HPE) framework of Monteiro and Svaiter] (2013). This algorithmic framework can be seen
as a generalization of the Accelerated Gradient Descent of |Nesterov| (1983). It is formalized as
Algorithmm Next, we recall the main theorem by Monteiro and Svaiter| (2013)), which describes the
convergence properties of Algorithm [T}

Theorem 1 (Monteiro and Svaiter| (2013)). The iterations of Algorithm |l| satisfy the following
inequality:

K-—1
28k 1 (f(xf) =)+ (1=07) Y a2 —af|® < B2, (11
k=0

Note that Algorithmrequires finding x?"’l satisfying condition (8) on line This condition can be
rewritten as follows:

IV AN, (255 2| < ox 2 = 2, (12)

Algorithm 2 Near-Optimal Tensor Method
I: input: 2° = 24 € RY

2: parameters: M >0, K € {1,2,...}

3: _1=0

4: for k=0,1,2,...,K —1do
A >0 satisfying

k+1 R tisfvi

5: compute x£ Ed sa %s y¥ng IR
rg € R oy € (0,1] satistying @)
M, B > 0 satisfying

6: phtl =gk — nka(ml;H)

7: end for

8: output: '

where function Ay (+; z): RY — R for A > 0 and 2 € R? is defined as
1
Ax(z; 2) :f(x)+ﬁ||x—z||2. (13)

3.2 Application to High-Order Minimization

In order to perform the computation on line |5 of Algorithm , we need to find x?“ € RY that
satisfies condition (§). As we mentioned earlier, condition (§) is equivalent to (I2)), which involves
the gradient norm ||V Ay, (; x’;)|| at point x’}“. Function Ay, (+; x’;) has L,-Lipschitz p-th order
derivatives for p > 2 due to its definition and Assumption Hence, it has the following upper
bound, thanks to Theorem 1 of Nesterov|(2021a)):

pM
Ax, (x;x’;) < @i/\k(_;ms)(az;x];) + 7(19 1! |z — z’;”lﬂrl, (14)
It turns out that J:’;H can be obtained by minimizing this upper bound:
M
k+1: . (PP .k p _ o kyp+1 15
Ty Taemn A Gy (73 79) g e = g I >

where M > L,,E] Indeed, by Lemma 1 of Nesterov|(2021a), we have

pM + L .
IV Ay (5 sl < == =2yt = g (16)

Hence, to satisfy condition (T2), we choose A, in the following way:

op! op!
2(pM + Ly) (pM + Ly)
Here, the upper bound on A, ensures condition (T2)), while the lower bound prevents stepsize Ay from

being too small, which would hurt the convergence rate. The resulting near-optimal tensor method is
formalized as Algorithm 2] It has the following convergence rate:

T — k| P < A < |l — kP (17)

. _ const - Lp||z® — x*|P+!
flaf) -1 < ;’(” . (18)

where K is the number of iterations. The proof of this convergence rate involves condition and
Theorem It is given in the works of |Gasnikov et al.| (2019a)); Bubeck et al.| (2019); Jiang et al.
(2019).

'VP A(x; x8)[h] = VP f(x)[h] when p > 2, and VZA(z; 28)[h] = V2 f(2)[h] + A7 ||R|)%.
8We require the strict inequality to ensure the uniform convexity of upper bound (T4), which implies the
uniqueness and the existence of the minimizer in (T3).

3.3 The Problems with the Existing Algorithms

Algorithm [2|requires finding \j satisfying condition at each iteration. According to line[5]of
Algorithm , A depends on :c’;ﬁ'l via (T7), which depends on % via (T3), which depends on 7y, Sk
via (9), which depend on A, via (TI0). Hence, computation of stepsize \;, depends on)y itself and
there is no explicit way to perform the computation on line 3]

The algorithms of (Gasnikov et al.|(2019a)); Bubeck et al.|(2019); Jiang et al.|(2019) use various binary
search procedures to find \j, and perform the computation on line[5] However, such procedures are
costly and require many iterations to converge. For instance, Bubeck et al.| (2019) show that their
variant of binary search requires the following number of p-th order oracle calls to find A\, satisfying

condition (I7):

+1
LB) . (19)

@ <10g

€
The same complexity (up to constant factors) for similar binary search procedures was established in
the works of |[Nesterov| (2021b)); Jiang et al.|(2019), and in the work of Monteiro and Svaiter| (2013)
for the p = 2 case. Hence, the total oracle complexity of Algorithm [2[is O (e=%/3P*1) log(1/¢))
which does not match the lower bound of |Arjevani et al.| (2019).

The additional logarithmic factor in the oracle complexity of Algorithm [2]raises the question whether
it is superior to the accelerated tensor method of Nesterov| (2021a) in practice. On the one hand,
Gasnikov et al.| (2019a) provided an experimental study that showed the practical superiority of
Algorithm [2| over the algorithm of [Nesterov| (2021a). However, this experimental comparison is
utterly unfair because it considers only the iteration complexity of the algorithms, which does not
take into account the oracle complexity of the binary search procedure.

4 The First Optimal Tensor Method

In the previous section, we described the main issues with the existing high-order methods that
prevent them from being optimal and practical algorithms for solving problem (I)). In this section,
we will show how to construct an algorithm that does not have those issues. More precisely, we will
develop the first optimal p-th order algorithm (p > 2) for solving main problem ().

4.1 The Key Idea

Gasnikov et al.[(2019a); [Bubeck et al.|(2019); Jiang et al.| (2019) used the following approach while

creating their near-optimal algorithms: they fixed the procedure of computing x’}*l on line (5| of

Algorithm|I]using formula (T3)) and then developed the procedure for computing Ay, which turned
out to be inefficient. We will go the opposite way. That is, we choose parameters \j in advance in
such a way that they ensure the optimal convergence rate and then provide an efficient procedure for

finding :c’}“ satisfying condition (8). Let 7, be defined as follows:

3p—1
ne=nl+k) =, (20)
where 7 > 0 is a parameter. Using (I0), we can compute §), and Ay, as follows:
k
3p—1 14 k)3p—1
Br=n) (1+1)"7, Ak:%- @1)
1=0 Dol
The following lemma provides a lower bound on S and an upper bound on A.
Lemma 1. Parameters By, and)i, defined by (21)) satisfy the following inequalities:
2n 3pt1 n(Bp+1) 3(p—1)
> —(k+1) 2, M < ———(1+k) = . 22

Lemma and Theorem immediately imply the convergence rate O(1/ EGr1)/ 2), which matches
the lower bound of |Arjevani et al.|(2019). Hence, the only remaining question is how to compute
x’}“ satisfying (B) efficiently. To be precise, we need to develop a procedure that can perform this

computation using O(1) of p-th order oracle calls.

Algorithm 3 Tensor Extragradient Method
L input: 250 = 2% € RY, AF(-) = Ay, (5 2F)

2: parameters: M >0
3:t=-1
4: repeat
5: t=t+1
6: compute z*t+1/2 € R? as follows:
2Ft1/2 = argmin P (z; ™) + pM il — zhot| P+ (23)
rcRd (p + 1)
kt4+1/2 _ktpp—1\ —1
7. phttl — gkt (Ml H(;_UT et VAR (ght+1/2)
8: until |V AF(zF1H1/2)|| < g ok tH1/2 = gk0)|
9: Tk =t+1

10: output: x’}“ — kT =172

4.2 Tensor Extragradient Method for Gradient Norm Reduction

In this subsection, we develop an efficient procedure for computing x’}“ satisfying condition (8). As
we mentioned earlier, condition (8) is equivalent to (12), which is an upper bound on the gradient
norm ||V Ay, (; z})]| at point x’}“. Hence, we need an algorithm for the gradient norm reduction in
the following smooth high-order convex minimization problem:

o = argminAAk(x;x};). (24)

z€R?

In this subsection, we provide such an algorithm. We call the algorithm Tensor Extragradient Method.
It is formalized as Algorithm[3] In the case p = 1, this algorithm recovers the extragradient method
of [Korpelevich| (1976). Algorithm [3|can be seen as a generalization of the extragradient method for
high-order optimization.

One can observe that due to lineof Algorithrn ot = 2mT"=1/2 gatisfies condition (T2), where

2% T*=1/2 is the output of Algorithm [3| This is exactly what we need. The following theorem

provides an upper bound on the number of iterations 7% required by Algorithm to terminate and

produce the output m’fc“.

Theorem 2. Let M satisfy
M>L, (25)

Then step (23) on line@of Algorithm is well defined and the number of iterations T* performed by
Algorithm 3)is upper-bounded as follows:

TF < (MCy(M,)|zt — &b P17 4 1, (26)

where C,, is defined as
PMP(1+ oY)
pl(pM — Ly)P/2(pM + Ly)P/2=1

Cp(M,0) = (27)

Algorithm (3| and Theorem [2| will further be used for the construction of the optimal high-order
algorithm for solving problem (). It is worth mentioning the potential alternatives to Algorithm 3]
that we could use for gradient norm reduction. For instance, we could use the tensor method of
Nesterov| (2021a). However, the upper bound on the number of iterations for this method would
involve the diameter of the level set of function Ay, (+; x’;) rather than the distance to the solution

||k — 2%*||. This would be an obstacle towards development of the optimal algorithm. Alternatively,
we could use the accelerated tensor method of Nesterov| (2021a). It turns out that it would work
as we need. Moreover, the upper bound on the number of iterations would be even better than
@]). However, we find the accelerated tensor method of Nesterov| (2021a) to be too complicated,
which could make the resulting optimal high-order method hard to implement. On the other hand, it
would not give us any benefits for the construction of the optimal high-order method compared to
Algorithm

Algorithm 4 Optimal Tensor Method
1: input: 20 = 2% € R
2: parameters: 7 > 0,M > 0,0 € (0,1), K € {1,2,...}

3: 1=0
4: fork=0,1,2,..., K —1do

50 e =n(l+k)GrD/2 ,

6: Br=Br—1+ Mk A = M/ Brs o = i/ Bre

7: b = ok 4 (1 - a;g)x;‘;

8: k0 = x’;, t=-1

9: repeat

10: =t+1 o

e T A e Rl e o
Mgk t+1/2_ kot p—1 —1

12: pRt+l — kit llz (p—l):f Il VA, (l,k,t+1/2; $Ig)

13: until |V Ay, (28125 28) || < oA |2k tH2 — 2RO

14 Th=t+1

1wyt =gk

16: Pl =gk — nka(xl;ﬁ'l)

17: end for

18: output: zf

4.3 Modification of the Analysis of A-HPE Framework

Unfortunately, we cannot use Theorem|I] for the analysis of our optimal algorithm. This is because
inequality (TT) involves the distances ||z} — x’Jﬁ“ || on the right-hand side. Hence, inequality (TT))
does not allow us to estimate the iteration complexity 7% of Algorithmusing Theorem Further,
we provide a new theorem that includes the analysis of the A-HPE framework and provides an upper
bound on the distances ||x’; — k.

Theorem 3. The iterations of Algorithm[]satisfy the following inequality:

K-1

1 _

1+Z Y ap?lak — 2| < B2, (28)
k=0

28k -1(f(zf) — f*) +

4.4 The First Optimal Tensor Method

Now, we are ready to provide the first optimal high-order algorithm for solving problem (I). In
order to construct this algorithm, we use our Tensor Extragradient Method (Algorithm [3) to perform
the computations on line [5] of the A-HPE Framework (Algorithm [I)). We also use our choice of
parameters 7, S5 and Ay which is provided by (20) and (Z1). The resulting algorithm is formalized
as Algorithm 4]

Now, we are ready to prove that Algorithm [d]is an optimal algorithm. First, we need to establish an
upper bound on the number of iterations 7' performed by the inner repeat-loop of Algorithm E} This
is done by the following theorem.

Theorem 4. Let M satisfy 23). Then, the following inequality holds for Algorithm {}

K1 P p—1 et %
ZTk§K+(1+K) n@Bp +1)PCp(M, o) R~ <1+U) ’ (29)
Pt 2r\/p 1—0

where C), is defined by @7).

Theorem implies that with a proper choice of the parameter 7, AlgorithmE]performs O(1) p-th
order oracle calls per iteration on average. Indeed, let n be chosen as follows:
-1

- ((3p+1)Pcp(M,a)Rp1 | <1+a>”21> | 50

2°\/p 1—-0

Then, Theorem @] immediately implies

K—
> TH<2K +1. 31)
k=0

[y

Finally, the following theorem establishes the total p-th order oracle complexity of Algorithm 4]

Theorem 5. Let M = L, and 0 = 1/2. Let 1 be defined by (30). Then, to reach precision
f (x]}i) — f* <g Algorithmrequires no more than the following number of p-th order oracle calls:

2
5Dy, - (LyRPT Je) 7T 47, (32)
where Dy, is defined as follows:
2
Do 355 (3p+ VP HlpP(p+1)) 7 @3)
P 2p+2\/§p!(p2 _ 1)% ’

_2
Theoremshows that the total p-th order oracle complexity of AlgorithmHis @ ((LpRp+1 / e) st) .
This oracle complexity matches the lower bounds of |Arjevani et al.[(2019) up to a universal constant

that does not depend on R, L, and e. Hence, Algorithm [4]is indeed the first optimal high-order
algorithm for solving smooth convex minimization problems.

4.5 Practical Performance

In this paper we provide an experimental comparison of the proposed optimal high-order algorithm
for solving smooth convex minimization problems (Algorithm) with the existing near-optimal
high-order method of (Gasnikov et al.| (2019a); Bubeck et al.|(2019); Jiang et al.| (2019) (Algorithm E])
In summary, the experiments show that the proposed optimal Algorithm [4] is indeed a practical
algorithm which significantly outperforms the existing near-optimal Algorithm[2} The details can be
found in Appendix[H

Acknowledgments

The work of Alexander Gasnikov was supported by the strategic academic leadership program
‘Priority 2030’ (Agreement 075-02-2021-1316 30.09.2021).

10

References

Adil, D., Bullins, B., Jambulapati, A., and Sachdeva, S. (2022). Line search-free methods for
higher-order smooth monotone variational inequalities. arXiv preprint arXiv:2205.06167.

Agarwal, N. and Hazan, E. (2018). Lower bounds for higher-order convex optimization. In Conference
On Learning Theory, pages 774—792. PMLR.

Arjevani, Y., Shamir, O., and Shiff, R. (2019). Oracle complexity of second-order methods for smooth
convex optimization. Mathematical Programming, 178(1):327-360.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations
of Python+NumPy programs.

Bubeck, S., Jiang, Q., Lee, Y. T,, Li, Y., and Sidford, A. (2019). Near-optimal method for highly
smooth convex optimization. In Conference on Learning Theory, pages 492-507. PMLR.

Bullins, B. (2020). Highly smooth minimization of non-smooth problems. In Conference on Learning
Theory, pages 988—1030. PMLR.

Bullins, B. and Lai, K. A. (2022). Higher-order methods for convex-concave min-max optimization
and monotone variational inequalities. STAM Journal on Optimization, 32(3):2208-2229.

Carmon, Y., Hausler, D., Jambulapati, A., Jin, Y., and Sidford, A. (2022). Optimal and adaptive
monteiro-svaiter acceleration. arXiv preprint arXiv:2205.15371.

Carmon, Y., Jambulapati, A., Jiang, Q., Jin, Y., Lee, Y. T., Sidford, A., and Tian, K. (2020).
Acceleration with a ball optimization oracle. Advances in Neural Information Processing Systems,
33:19052-19063.

Carmon, Y., Jambulapati, A., Jin, Y., and Sidford, A. (2021). Thinking inside the ball: Near-optimal
minimization of the maximal loss. In Conference on Learning Theory, pages 866—882. PMLR.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1-27.

Doikov, N., Mishchenko, K., and Nesterov, Y. (2022). Super-universal regularized newton method.
arXiv preprint arXiv:2208.05888.

Doikov, N. and Nesterov, Y. (2021). Gradient regularization of newton method with bregman
distances. arXiv preprint arXiv:2112.02952.

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., and Uribe,
C. A. (2019a). Optimal tensor methods in smooth convex and uniformly convexoptimization. In
Conference on Learning Theory, pages 1374—1391. PMLR.

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., Uribe, C. A., Jiang,
B., Wang, H., Zhang, S., Bubeck, S., et al. (2019b). Near optimal methods for minimizing convex
functions with lipschitz p-th derivatives. In Conference on Learning Theory, pages 1392-1393.
PMLR.

Jiang, B., Wang, H., and Zhang, S. (2019). An optimal high-order tensor method for convex
optimization. In Conference on Learning Theory, pages 1799-1801. PMLR.

Jiang, R. and Mokhtari, A. (2022). Generalized optimistic methods for convex-concave saddle point
problems. arXiv preprint arXiv:2202.09674.

Kamzolov, D., Gasnikov, A., Dvurechensky, P., Agafonov, A., and Taka¢, M. (2022). Exploiting
higher-order derivatives in convex optimization methods. arXiv preprint arXiv:2208.13190.

Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems.
Matecon, 12:747-756.

Lin, T., Jordan, M., et al. (2022). Perseus: A simple high-order regularization method for variational
inequalities. arXiv preprint arXiv:2205.03202.

11

Mishchenko, K. (2021). Regularized newton method with global O(1/k?) convergence. arXiv
preprint arXiv:2112.02089.

Monteiro, R. D. and Svaiter, B. F. (2012). Iteration-complexity of a newton proximal extragra-
dient method for monotone variational inequalities and inclusion problems. SIAM Journal on
Optimization, 22(3):914-935.

Monteiro, R. D. and Svaiter, B. F. (2013). An accelerated hybrid proximal extragradient method for
convex optimization and its implications to second-order methods. SIAM Journal on Optimization,
23(2):1092-1125.

Nemirovskij, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimiza-
tion.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Nesterov, Y. (2008). Accelerating the cubic regularization of newton’s method on convex problems.
Mathematical Programming, 112(1):159-181.

Nesterov, Y. (2021a). Implementable tensor methods in unconstrained convex optimization. Mathe-
matical Programming, 186(1):157-183.

Nesterov, Y. (2021b). Inexact high-order proximal-point methods with auxiliary search procedure.
SIAM Journal on Optimization, 31(4):2807-2828.

Nesterov, Y. (2021c¢). Superfast second-order methods for unconstrained convex optimization. Journal
of Optimization Theory and Applications, 191(1):1-30.

Nesterov, Y. and Polyak, B. T. (2006). Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177-205.

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence
rate O(1/k?). In Dokl. akad. nauk Sssr, volume 269, pages 543-547.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work?

(c) Did you discuss any potential negative societal impacts of your work? This is a
theoretical work with no forseeable negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumption
(b) Did you include complete proofs of all theoretical results? [Yes] see Appendix.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [IN/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Appendix

A Proof of Lemma/(ll

The lower bound on 3, can be obtained in the following way

Z / 141)° dt>Z/

=g

I+1 3 k+1 3p—1 2n 3pt1
= —dt = / t7r dt=—"—(k+1) 2
/ 7 0 (Bp+1) ()
Upper bound on Ay is obtained using the lower bound on S, and (T0). O

B Proof of Theorem

”xk,t+1 o ;Z:k’*||2

— ka,t + 2<xk,t+1 o :L'k’t,:L'k’t o Ik’*> + ||zk,t+1 o xk’t||2

k,*H2 + 2<$k,t+1 _ Z‘k’t,l‘k’t+1/2 _ .Tk’*>

= okt 2
+ 2<$k’t+1 _ l‘k’t,l‘k’t _ xk,t+1/2> + ka,t—l—l _ .Z‘k’t||2

_ ka,t + 2<xk-,t+1 . xk,t7$k,t+1/2 _ mk,*>

+ ”xk,t—&-l _ xk,t+1/2”2 _ fk’t+1/2”2.

[P

From (23) online[6]of Algorithm [3] we have

M||zht+1/2 _ ghit|p-1
(p—1)!

Plugging this into the previous equation and using line[7]of Algorithm 3] we get

1
Rt t/2 — gkt (> V‘I)Zk (ik’t+1/2;xk’t).

ka,t+1 _ .”L'k’* ‘2 _ ||:Ek’t _ xk,*||2 _ 27k,t<VAk($k’t+1/2),xk’t+1/2 _ CL'k’*>
+ ’Vl%,tnvq)ik (.’Ek’t+1/2; mk,t) _ vAk(xk,t+l/2)||2 _ ”xk,t _ $k’t+1/2|‘27
ot +1/2_ - . .
where i+ = (M””k tt;jl)‘fk il 1) . Using the convexity of function A*(z), we get

||(Ek’t+1 _ l‘k’*||2 _ ||ajk’t _ .’L'k’*”Q _ Q,Yk’t(Ak(xk,t—i-l/Z) _ Ak(mk’*))
+ P)/lz,t”V(Pik (wk’t+1/2;$k’t) _ VAk(xk’t+1/2)||2 _ ||(Ek’t _ xk,t+l/2”2

<[l — B[P R VR (2) - AR (2 2

_ ka,t .’L‘k’t+1/2H2.

Using inequality (1.6) of Nesterov|(2021a), we get

Hl’k’tJrl 7 mk’*HQ < ||£L'k’t k *”2 (l)/k tL > ” k,t+1/2 :L'k’tHQp 7 ||:Ck’t o $k,t+1/2”2

= ot -

N2
_ ||:L‘k’t (1))) ||£Uk’t o xk,t+l/2”2

1— > ||.’E xk,t+l/2”2.

2
1_ %t p” kt+1/2 k,th—l)) ka,t_xk,t+1/2||2

_ ||£Ck’t k*||2

14

Using Lemma 1 of Nesterov|(2021a), we get

”xk,t-&-l . $k7*”2 < ”xk,t . xk,*”2 (11— ﬂ ? p ”VAk(kt+1/2)” 2/
- pM pM + L, '

After telescoping and rearranging, for T' < T* we get

T min (pM — Lp)(pM + Lp)

2/p
te{0,1,...,7—1} p2M2 (pM+L HVA’“(kt+1/2)”> < ||xk70—xkv*”2,

Taking both sides of the inequality in the power of p/2 gives

M = L)2(pM + L)
kO _ ok p > /2 : (p p p AR (Rt +1/2
L P L IVA)]
l(pM — L,)P/?(pM + Ly,)P/?>~! .
— Tp/2 min pl(p p) (pM + p) HVAk(SCk’H_l/Q)H.
te{0,1,...,T—1} pPMP
After rearranging, we get
pMp”xk,O _ Ik’*”p 1
. VAR (gFt+1/2))] < p))
tG{O,{I,l‘?.I,lel} H (Jf)H — p'(pM _Lp)p/Q(pM+Lp)p/2—l Tp/2

Now, let us prove upper bound (26)) by a contradiction. Suppose that (26) is not true. Hence,

18 2
" > AepP MP(1 + o= 1|20 — gk |[p-1 /p+1
p!(pM—Lp)p/2(pM+Lp)p/2—1 ’

This implies

min (IVAS @) - a0 — 2h)) <o,
te{0,1,...,T—1}

where ¢ = (1 +07!)"' and T = T* — 1. Using the \; ' -strong convexity of A*(x), we get

0> (IvA* s 12 = eng a0 — 2]
te{o, 1 T 1}
min (”vAk(k, t+1/2)H . c/\?ka,o . xk,t+1/2” _ C)\?”xk,* _ xk,t+1/2||)

te{O,l7 LT — 1}

> min (HvAk(xk,tJrl/Q)H _ C/\]:1H$k’0 _ mk,t+1/2” _ CHVAk(IEk’tJrl/Q)H)
te{0,1,...,T—1}

_ : 1— AR (R tHL/2Y [)[R0 _ phitH1/2))
o min (= I TAR)| = eag ok - he

Dividing by 1 — ¢ gives

~ te{0,1,...,T—-1}

)\71
02 min (VAR - ko - gz,
——

Plugging c = (1 + o~ 1)~! gives

0> min (VAR | = oagt ok - gR))
te{0,1,...,.7—1}

This means that the inner repeat-loop of Algorithm [3]terminated after no more than T’ iterations,
which contradicts with 7% = T+ 1. This concludes the proof. O

C Proof of Theorem

Here we also provide the proof of Theorem [I] for completeness. Using line [f]of Algorithm[I] we get
2"+ — 2|2 = la* = 2*|* = 20 (V f (@), 2 =) + g [V (.

15

Using @), we get 2¥ = oy 'k — oy ' (1 — ag)a, which implies

2"+ —a*|? = fla* = a*|? = 20u(V (25, o g — o N (1 — aw)af — @) +]|V F (252

g9
= [lz* — & |* + 0| V()12

+2(Bk = m)(Vf (), &) — 286V (25T, Z>+2nk<Vf($’}“)7x*>
Ty

k+1) Jf*
)

= [la* = 2| + 2(8, — m)(VF (@), — ™) + 20(V f (2
=286 (Vf (@), 2 —) +f |V (2512
Using the convexity of f(z) and (I0), we get
la* =2t < |2 — 2P+ 2085 —) (f (@) — f(25T)) + 20 (f* —
= 2B (Vf (™), 2y — ™) + |V ()]
= [la* = &*|* = Be(F(25T) = £*) + Br- 1(f(x'fc) [
)12

= 266 (VF (@), 2 — &) + 0|V (5%
Using (@), we get

[— 2% < Jla® — 2% = Be(F (@) =) + Be-a (fF(2) — £7)
=2V (&), Brmy, N — 2TD) + g1V £ (21
= [lz* — 2*|* = B(f (=) = £*) + Bea (f(2f) — f7)

+ 20V f (@), o (@t —) IV 5.
Using the parallelogram rule, we get

[= 2|2 < [|l2* = 2*|? = Br(f (=) =) + Breoa (f (=) =)
eV (@) + o @t = 2P - ol - g
= [la* — 2| = Be(F () =) + Bra (F () =)
RNV @) 4 e @ = 2|1 - e ey — g,
Using (©) and (I0), we get
"+ — 2| < fla® = 2 (? = Br(f(@f) =) + Bea (f @) =)
Fl| V@) A @ =)P — a2l — gl
Using (), we get
2 = | < Jla® = 2P = Be(F (@) = £ + Broa (F(2f) = f7)
T L A R A

= [lz* = 2*)|* = Br(f (@) —) + Beoa (f(2f) — f7)

— o2 (1= o?) | —ag?.
Now, let us bound [|zf — 2% || using A, -strong convexity of Ay, (-;z¥) and ():
lzg — &) < llag — U]+ [l — 2t

< log — 23+ Ml VAN, (s 2g) |
< (L4 o)t —ag).
Plugging this into the previous inequality gives
28+ =2 ||? < fla® = 2P = Br(f (@) = f*) + Buoa (faf) —)
0472(1_ 2)” k k,*||2
F (14 0)2
= |l2* — &> = Be(f () = F*) + Broa (F (&) — f7)

(1-0) k k|2
Qe (1+0_)||g ”

16

)

Rearranging and telescoping concludes the proof.

D Proof of Theorem d

Using Theorem 2] we get
K—1 o1 K-1 , o1
<Z<T’“ - U) - (Z (MG (M,) — 1) m) |
k=0 k=0
Let us choose parameters 7, ..., 7x—1 as follows:
K—1 -1
= (Z(m)p-l) 1+
1=0
Then, we have

k=0
Note that parameters 7y, satisfy
K—1
7 =0, T0y .-, TK—1 = 0.
k=0
Hence, using the convexity of function (-)?/(?=1) we get

P

k=0

—1

= (M)71 Y 77T ()T ||k — 22,

Using Lemmal[T] we get

D

k=0

3p+1)C,(M, o = = *
_ (77() P()> T (1—|—k)3HJL‘Ig€—1‘k’ ”2

Using the definition of 7, we get

p 1

<K§:1(T’f—l)> a < (”(3p+1)20 p(M 0) <Kzl 141y)

k=0

K-1

N R R E i

k=0

Using the inequality
142
Z / trLdt
I+1

K-1
e 1<z/ (141 +tptdt =
=0 =0

K+1
1+K)P -1 1
:/ tp_ldt:%Sf(l—FK)p,
1 p p

17

K-—1 p— p—1
(Z(T’“l)> (zmk (MCy(M, o)l — k’*npl)””) .

K-1 p—1 K-1 P
(Z (- 1)) < (7 Gl — b))
k=

= T 2 o~ =L n(3p+1) 3p—1)\ P—1
(Z(Tk—l)) <0t Y (M) ok -

k,*”Z

P

(Sreo) = (g™ ()

k=0
K—1
Y (AR — b
k=0
2 K—1
- (”(3p+1)CP(M"’))p)7 Y (L4 k)b — ah 2
2Vp =
From (9) and Lemmal[I] we get
3p+1
04121:&227](1_'_]{:) : L 3p T 2 (1+k)
u BGp+1) pA+k) (3p+1)
Hence,
K—1 T 2 K—1
3p+1)C,(M, P (3 + 1)? _ .
(Z@k_l)) < (Mt DAL)™ 1+KPIZ TR
k=0 VP
2 »_ K-1
_ (77(319 + 1)CP(M7 U)) =1 (3p + 1) (1+K)»1 anHmk . xk,*HQ
= |)
2,/p 4 —
Using Theorem 3] we get
K-1 ol »
S| < (K DGOL))T @+ 11+ K)FT o g
= - 2,/p 4 1—0
After taking both sides of the inequality in the power of pp%l we get
K-1 2 2-1) p=1
Z(Tk*1)< nBp+1)Cp(M,0)\? 3p+1) (1+K) 1+0R2 v
k=0 a 2vp o 1-o
2
a4 g (1B DGOLORT (1to =\
B 20, /p l-o '
After rearranging, we get
= by (M)Rl (140) T
— 2v./p l1-o '
O

E Proof of Theorem 3

Theorem [3|implies
Flaf) = f* < R?/(2Bx-1).
Using Lemmal[I] we get
2
< Bp+1R® 1

3p+1 °
2

18

Choosing K = RW) SPH—‘ implies f(z}") — f* < e. Hence, we have the following upper

bound on the total iteration complexity of Algorithm [4}

K< RW)W

2
2\ 3»p
_(BpryRHTT
- 4dne

Plugging n defined by (30) gives

2

2 P p—1 BZE FFT
KS<(3p+1)R (3p + 1)PC,(M,)R .<1—|—a>) o

4e 2r\/p l-0
poiN\ T
3p + PO, (M, o) RPH! 1+0o) 2
B 202, /pe l-o '
Using the definition of C,, (M, o), we get
2
oo (Gpr PR (140 =R PPMP(1+ o) i
- 2012, /pe 1—0 pl(pM — L,)P/2(pM + L,)p/2~1
+ 1.
Using M = L,, we get
2
< (3p+ 1)p+1Rp+1 . 1+0o pTl . ppr(l +U_1) 3p+1 o
> 2P+2\/ﬁe 1—0o pl(p — 1)p/2(p + 1)p/2—1
2
(LR Gp)PHpPp+ 1) (L)t \ T 1
TN IV s

' 1
€

2
_ <LpRp+1>3P2+1 Bp+ e+l (+o)= VT
= 2p+2\/ﬁp!(p2 _ 1)% 0(1 _ U)p% .

Using o = 1/2, we get

2 2
p+1\ 3pF1 p+1,p Spt+l
€ 202 /ppl(p* — 1)2

2
L. Rp+1\ 3p+1
=D,- (P) +1.

€

Finally, we have that Algorithm performs (1 4 2T"%) of p-th order oracle calls at each iteration.
Hence, using (31)), we get following upper bound on the total oracle complexity:

K-1
> (1 +2T%) < K+ 202K +1) = 5K +2

k=0
2

L RP+1 3p+1
i) +7.

<5D,,.<
€

19

F Experiments

In this section we perform a simple numerical comparison of our Optimal Tensor Method (Algo-
rithm EII) with the Near-Optimal Tensor Method of |Gasnikov et al.| (2019a));|Jiang et al.| (2019); Bubeck
et al|(2019) (Algorithm [2). We focus on the second-order case (p = 2) because it is already a highly
important case. We leave investigating higher-order cases (p > 3) for future work. The main goal of
our experimental comparison is to illustrate the practical benefits of eliminating the binary search
procedure.

We perform our experiment with logistic regression for binary classification. That is, our objective
function f(x) has the form

F() = =3 log(1 + expl(~bia 2)) G4
i=1

where a; € R? and b; € {—1,+1} are data points and labels, and n is the number of data points.
In the experiment, we use the a9a dataset from the LIBSVMﬂ dataset collection. This dataset has
n = 32561 training samples with d = 123 features.

We implement both Algorithm and Algorithm in Python language with the help of JAX APIP;G]
To perform computation on line [of Algorithm 2] we use the variant of the binary search procedure
described by |Bubeck et al.| (2019). To perform the computation of the tensor step in both
algorithms, we use a procedure based on the eigenvalue decomposition of the Hessian matrix.

For a fair comparison, we use the same value of parameter M in both algorithms. Furthermore, we
choose the parameter 7 in Algorithm[4]in such a way that both Algorithm [2]and Algorithm] have
almost identical convergence in the number of iterations k. It is illustrated in Figure|l} It is not a
surprise that both algorithms have very similar convergence curves (with our choice of 1) since they
are based on the A-HPE Framework (Algorithm [T)).

However, the difference between Algorithms [2 and [becomes clear when we compare the number of
oracle calls performed at each iteration k. It is illustrated in Figure [2] from which we can make the
following conclusions:

* One can observe that the number of oracle calls performed at each iteration & by Algorithm4]
slightly oscillates around a constant. This is perfectly aligned with our theory which shows
that the average number of oracle calls performed at each iteration k£ by Algorithm {4]is
bounded by a constant at all times (see, for instance, inequality (31)).

* At the same time, one can observe that the number of oracle calls performed by the binary
search procedure at each iteration k of Algorithm [2| slowly grows with the number of
iterations k. This is also perfectly aligned with the theory of Bubeck et al.| (2019); |Jiang
et al.| (2019); Nesterov| (2021b) which suggests that the number of iterations performed by
the binary search procedure at each iteration k grows as O(log k) (in fact, the blue curve in
Figure [2|resembles this logarithmic dependency).

Overall, Figure [2] shows that Algorithm [2] has to perform substantially more oracle calls at each
iteration k than Algorithm []due to the binary search procedure.

The aforementioned major difference between the algorithms results in a significantly slower conver-
gence of Algorithm 2]in the total number of oracle calls compared to Algorithm 4] It is illustrated
in Figure 3] which shows that Algorithm [2] requires approximately 2 times more oracle calls than
Algorithm] to reach accuracy ||V f(z)||? < 10~!5. This difference becomes even more dramatic if
we compare both algorithms in the wall clock time which is shown in Table[2] One can observe that
Algorithm [d] converges approximately 4 times faster than Algorithm 2]

In summary, our illustrative experiment shows that the proposed Optimal Tensor Method (Algorithm[4)
is indeed a practical algorithm. Moreover, it shows that the necessity to use the binary search procedure
by the Near-Optimal Tensor Method (Algorithm [2)) results in a significantly slower convergence in

°The LIBSVM (Chang and Lin, |2011) dataset collection is available at https://www.csie.ntu.edu.tw/
“cjlin/libsvmtools/datasets/|
"“JAX API (Bradbury et al., 2018) is available at https://github. com/google/jax.

20

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/google/jax

Table 2: Wall clock time taken by both algorithms to reach accuracy ||V f(z)||? < 10715.

Algorith Near-Optimal Tensor Method | Optimal Tensor Method
gorthm (Algorithm [2) Algorithm]
Wall clock time 552 sec. 129 sec.

both the number of oracle calls and the wall clock time, which is perfectly aligned with the existing
theory on the binary search procedure (Bubeck et all, 2019} Jiang et all, 2019} [Nesterov, [2021b) and
our new theory for our new Algorithm 4]

Algorithm
—— Near-Optimal Tensor Method
Optimal Tensor Method

squared gradient norm

0 100 200 300 400 500 600
of iterations

Figure 1: Convergence of the Near-Optimal Tensor Method (Algorithm [2) and Optimal Tensor
Method (Algorithm) in the number of iterations k. We choose parameter 7 of Algorithm[d]in such a
way that both algorithms have very similar convergence curves. It is possible because both algorithms
are based on the A-HPE framework (Algorithm T]).

Algorithm
—— Near-Optimal Tensor Method

10 Optimal Tensor Method I.U_

of oracle calls per iteration
(o]
—]

0 100 200 300 400 500 600
of iterations

Figure 2: The number of oracle calls performed by the Near-Optimal Tensor Method (Algorithm [2)
and Optimal Tensor Method (Algorithm [4) at each iteration k. The number of inner iterations of
Algorithm 2] grows with the number of iterations & due to the binary search procedure and resembles
the logarithmic curve which is perfectly aligned with the existing theory. The number of inner
iterations of Algorithm[4]stays constant (and slightly oscillates) which is perfectly aligned with our
theory.

21

0 Algorithm
—— Near-Optimal Tensor Method
2 ~——— Optimal Tensor Method

squared gradient norm

0 1000 2000 3000 4000 5000
of oracle calls

Figure 3: Convergence of the Near-Optimal Tensor Method (Algorithm [Z)) and Optimal Tensor
Method (Algorithm[) in the total number of oracle calls. Algorithm 2]requires significantly more
number of oracle calls to reach a certain precision than Algorithm4] It is caused by the binary search
procedure used by Algorithm 2}

22

	Introduction
	Main Contribution: Optimal Second-Order and High Order Methods
	Related Work
	Paper Organization

	Preliminaries
	Near-Optimal Tensor Methods
	A-HPE Framework
	Application to High-Order Minimization
	The Problems with the Existing Algorithms

	The First Optimal Tensor Method
	The Key Idea
	Tensor Extragradient Method for Gradient Norm Reduction
	Modification of the Analysis of A-HPE Framework
	The First Optimal Tensor Method
	Practical Performance

	Proof of lem:betalambda
	Proof of eg:thm
	Proof of hpe:thm:2
	Proof of ot:thm
	Proof of ot:thm2
	Experiments

