
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section

A.6
(d) Did you describe the limitations of your work? [Yes] Section A.6

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Please refer to
the TwiBot-22 GitHub repository listed in Section A.6.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please refer to the TwiBot-22 GitHub repository listed in Section
A.6.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] Section B.6

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Section A.6
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide the TwiBot-22 dataset as a new asset and provide URLs in Section A.6.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] We strictly follow the original license of existing datasets
and rules in the Twitter Developer Agreement and Policy.

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [Yes] Our dataset does not contain the informa-
tion of private and protected users. Since TwiBot-22 aims to facilitate bot detection
research and certain bots are designed to be offensive, there might be offensive con-
tent.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

17

Table 4: Entities in the TwiBot-22 heterogeneous graph.

Entity Name Description Main Metadata

User Users are the most important
entity on Twittersphere.

created at, description, entities
location, name, profile image url

protected, url, username
verified, withheld, followers count

following count, tweet count, listed count

Tweet
Users post tweets to share their
thoughts and interact with other
users.

attachments, context annotations, entities
created at, geo, lang, possibly sensitive

referenced tweets, reply settings
source, text, withheld, retweet count
reply count, like count, quote count

List

A list is curated feeds from
selected users that allow you
to listen to relevant discussions
or influencers.

private, created at, description
name, follower count, member count

Hashtag

A hashtag is a metadata tag that
is prefaced by "#".
It is used to link tweets with the
same theme together.

hashtag name

Table 5: Relations in the TwiBot-22 heterogeneous graph.

Relation Source Entity Target Entity Description

following user user user A follows user B
follower user user user A is followed by user B

post user tweet user A posts tweet B
pin user tweet user A pins tweet B
like user tweet user A likes tweet B

mention tweet user tweet A mentions user B
retweet tweet tweet tweet A retweets tweet B
quote tweet tweet tweet A quotes tweet B with comments
reply tweet tweet tweet A replies to tweet B
own user list user A is the creator of list B

member user list user A is a member of list B
follow user list user A follows list B
contain list tweet list A contains tweet B
discuss tweet hashtag tweet A discussed hashtag B

A TwiBot-22 Details

A.1 Entities and Relations

TwiBot-22 collects four types of entities on the Twitter social network: user, tweet, list, and hashtag.
The detailed information of these entities is shown in Table 4 while a complete list of all relation
types in TwiBot-22 is presented in Table 5.

A.2 Data Collection Details

The complete process of data collection. For the first stage of user network collection, we adopt
@NeurIPSConf as the starting user. We use the Twitter API to retrieve 1,000 followers and 1,000 fol-
lowees as the user’s neighborhood for BFS expansion. We randomly adopt one of the two sampling
strategies (distribution diversity or value diversity) and randomly select one metadata from Table 6
to include 6 users from its neighborhood into the TwiBot-22 dataset. We then randomly select one
unexpanded user in TwiBot-22 for a new round of neighborhood expansion. For the second stage
of heterogeneous graph building, we first collect 1,000 tweets for the user in the user network, and

18

Table 6: User metadata adopted in diversity-aware sampling.

Metadata Name Description Type

active days days between user creation time and collected time numerical
following count number of user followings numerical
followers count number of user followers numerical

tweet count number of user tweets numerical
listed count number of user lists numerical

verified whether the user is verified or not true-or-false
homepage url whether user has urls in homepage or not true-or-false

Table 7: Statistics of TwiBot-22.

Item Value Item Value Item Value

entity type 4 post 88,217,457 following 2,626,979
relation type 14 pin 347,131 follower 1,116,655

user 1,000,000 like 595,794 contain 1,998,788
hashtag 5,146,289 mention 4,759,388 discuss 66,000,633

list 21,870 retweet 1,580,643 bot 139,943
tweet 88,217,457 quote 289,476 human 860,057

user metadata 17 reply 1,114,980 entity 92,932,326
hashtag metadata 2 own 21,870 relation 170,185,937

list metadata 8 member 1,022,587 max degree 270,344
tweet metadata 20 follow 493,556 verified user 95,398

200 tweets for the user expanded from the user network. We collect the pinned tweet and the recent
100 liked tweet of each user in TwiBot-22. For each tweet we collect now, we collect the tweets
it retweets, quotes, or replies and the users it mentions. We collect a user’s recent 100 lists with
the newest 100 members, followers, and tweets. We collect all hashtags in the tweets and search
for more tweets related to a hashtag using Twitter API. Finally, we make sure that the creator of
each tweet is collected and collect 40 tweets of these users according to Ng et al. [2022] for stable
benchmarking

Data collection time. The first stage of user network collection is conducted from January 20th,
2022 to February 1st, 2022. The second stage of heterogeneous graph building is conducted from
February 1st, 2022 to March 15th, 2022.

A.3 Expert Annotation Details

We invite 17 researchers in our group who are active Twitter users, are familiar with bot detection
literature, and have conducted experiments with the TwiBot-20 datasets. We then assign each Twitter
user in TwiBot-22 to 5 different experts and ask them to evaluate whether the user is a human, a bot,
or not sure. We use majority voting to obtain the expert annotations of these 1,000 users, which are
then leveraged to guide the weak supervision leaning process.

A.4 Dataset Statistics

Table 7 presents important statistics about the TwiBot-22 benchmark.

A.5 Annotation Quality Study Details

To compare the annotation quality of TwiBot-22 and TwiBot-20, we ask 6 researchers to participate
in an expert study. They are familiar with Twitter bot detection research and most of them have
previously published on this topic. Specifically, we randomly select 500 users from TwiBot-20 and
TwiBot-22 respectively and assign each user to 3 experts. We then ask them to evaluate each user
as "definitely bot", "likely bot", "not sure", "likely human", and "definitely human". Based on their
evaluations, we calculate the accuracy and F1-score between expert opinions and dataset labels. We

19

also report the Randolph’s Kappa Coefficient [Randolph, 2005], which models agreement between
experts in Figure 2(c).

A.6 Other TwiBot-22 Details

Dataset documentation. We encourage the readers to refer to the TwiBot-22 evaluation
framework (https://github.com/LuoUndergradXJTU/TwiBot-22) for the documentation of
TwiBot-22 and the TwiBot-22 evaluation framework.

Intended use. TwiBot-22 should be used for research in Twitter bot detection and social network
analysis.

Relevent URLs. We list all TwiBot-22 URLs in the following.

• Official TwiBot-22 website (https://twibot22.github.io/) is the main reference of TwiBot-
22, presenting our dataset, paper, evaluation framework, and contact information.

• TwiBot-22 repository (https://github.com/LuoUndergradXJTU/TwiBot-22) hosts imple-
mented codes for dataset preprocessing and 35 Twitter bot detection methods. The repository is
well documented to facilitate reproducible research.

• TwiBot-22 dataset will be permanently hosted on our group Google Drive account
(https://drive.google.com/drive/folders/1YwiOUwtl8pCd2GD97Q_WEzwEUtSPoxFs?
usp=sharing).

Hosting and maintenance. The TwiBot-22 dataset will be hosted via Google Drive and regularly
maintained by our research group. The TwiBot-22 evaluation framework will be hosted on GitHub.
Our team will continue to add new datasets and baselines with the help of the research community.

Licensing. The TwiBot-22 dataset uses the CC BY-NC-ND 4.0 license. Implemented code in the
TwiBot-22 evaluation framework uses the MIT license.

Author statement. We bear all responsibility in case of violation of rights, etc., and confirmation
of the data license.

Limitations. One minor limitation of TwiBot-22 is that we do not download and store user media
(images and videos) in TwiBot-22, while these multimedia content might be useful for bot detec-
tion. However, if researchers do deem multimedia content as necessary for bot detection, they can
download with media links in TwiBot-22 by themselves.

Potential negative societal impact. Although TwiBot-22 and the TwiBot-22 evaluation frame-
work are designed to facilitate bot detection research and improve bot detection models, it might
be abused by bot operators to examine the characteristics of bots that evade detection, and thus de-
signing bot algorithms that are more evasive. We need to make sure that the TwiBot-22 dataset and
evaluation framework should not be abused to design advanced Twitter bots.

B Experiment Details

B.1 Baseline Details

We briefly describe each of the 35 Twitter bot detection baseline methods:

• SGBot [Yang et al., 2020]. SGBot is proposed to address the scalability and generalization prob-
lem in Twitter bot detection. SGBot leverages 8 types of user metadata such as status count and
12 derived features such as tweet frequency and adopts random forest to identify bot.

• Kudugunta et al. [Kudugunta and Ferrara, 2018]. The baseline addresses two challenges,
account-level classification and tweet-level classification. In the task of account-level classifica-
tion, the baseline introduces a technique that combines synthetic minority oversampling (SMOTE)
with undersampling techniques. In the task of tweet-level classification, the baseline introduces
an architecture called contextual LSTM.

20

https://github.com/LuoUndergradXJTU/TwiBot-22
https://twibot22.github.io/
https://github.com/LuoUndergradXJTU/TwiBot-22
https://drive.google.com/drive/folders/1YwiOUwtl8pCd2GD97Q_WEzwEUtSPoxFs?usp=sharing
https://drive.google.com/drive/folders/1YwiOUwtl8pCd2GD97Q_WEzwEUtSPoxFs?usp=sharing

• Hayawi et al. [Hayawi et al., 2022]. DeeProBot, which is short for Deep Profile-based Bot detec-
tion Framework, utilizes different types of features including user’s numerical or binary metadata
and user’s description, making the model more comprehensive. DeeProBot uses GLoVe word em-
beddings to get the embedding of the textual information. LSTM and dense layers are then used
to learn user representations for bot detection.

• BotHunter [Beskow and Carley, 2018]. In this work, the features are composed of user attributes,
network attributes, contents, and timing information. After extracting the above features, random
forest is exploited as the classifier.

• NameBot [Beskow and Carley, 2019]. NameBot utilizes twitter username as the only classifi-
cation basis and extracts numerical features such as TF-IDF. The extracted numeric features are
then exploited as input of a linear regression classifier. While achieving great good accuracy on
training set, this basline shows poor transferbility on new datasets.

• Abreu et al. [Abreu et al., 2020]. This model chooses five essential Twitter user features to
conduct relative experiments. They calculated accuracy, AUC, recall and F1-score on several
existing datasets with four machine learning algorithms.

• Cresci et al. [Cresci et al., 2016]. This method encodes different action types with different
characters, thus representing usernames by strings. Users who share the longest common substring
are considers as bots have similar behaviors.

• Wei et al. [Wei and Nguyen, 2019]. This paper use pre-trained GloVe word vectors on Twitter as
word embedding. Multiple layers of bidirectional LSTMs are used for bot detection.

• BGSRD [Guo et al., 2021a]. This model utilizes BERT and GCN to achieve social bots detection.
In specific, this paper use word and user description as graph nodes, there are no connection
within users and words. In training steps, BGSRD first uses BERT (Roberta) to process users’
description, the output of BERT layer is the initial feature of graph nodes, and the initial feature
of words node is zeros. The final prediction is the combination of BERT and GAT output.

• RoBERTa [Liu et al., 2019]. This baseline leverages pre-trained language model RoBERTa to
encode user tweets and descriptions, then feed them to an MLP to distinguish bots from human.

• T5 [Raffel et al., 2020]. In this baseline, we use pretained language model T5-small to encode
tweets and descriptions, then feed them into an MLP classifier.

• Efthimion et al. [Efthimion et al., 2018]. This paper leverages a wide range of users’ features
including length of user names, reposting rate, temporal patterns, sentiment expression, followers-
to-friends ratio, and message variability for bot detection. Logistic regression and support vector
machine are applied successively for profile and account activity analysis. Levenshtein distance
is applied for text mining.

• Kantepe et al. [Kantepe and Ganiz, 2017]. This paper explores the importance of features by com-
paring sixty-two different features related to Twitter account properties and tweet contents, and
selects the most important eleven features through experimental comparison. The classification
task was then performed using 62 or 11 features as input with classifier like GBDT or SVM.

• Miller et al. [Miller et al., 2014]. Miller et al. proposed a clustering based method to detect spam
accounts in twitter. Specifically, they exploit classic clustering algorithms such as DBSCAN and
K-MEANS on human accounts to obtain human clusters. In test phase, users whose clusters can
not be filed under any of the existing human clusters are consider as bots.

• Varol et al. [Varol et al., 2017]. User metadata, tweet content, friends, sentiment and network
statistics are adapted as user’s features, then the extracted features are utilized as inputs of a
random forest model.

• Kouvela et al. [Kouvela et al., 2020]. This baseline leverages user features and content features
from each user and classifies users with random forest. Specifically, it uses 36 features from each
account and the content features are extracted from the latest 20 tweets.

• Santos et al. [Ferreira Dos Santos et al., 2019]. This baseline extracts 16 features from users’
tweets and descriptions and feed the features into a decision tree for classification.

• Lee et al. [Lee et al., 2011]. This method introduces the social honeypots to attract bot users by
manipulating the honeypot users’ tweets frequency and social network structure. After analyzing
the data collected by social honeypots, 18 features are selected and fed into the random forest
classifier.

21

• LOBO [Echeverrï£¡ a et al., 2018]. This baseline extracts 19 features (26 on Twibot-22) from
each user and adopts random forest for classification.

• Moghaddam et al. [Moghaddam and Abbaspour, 2022]. This model combines profile-based
features and friendship preference features, which compares the distribution of followers’ features
and sub-population of accounts.

• Alhosseini et al. [Ali Alhosseini et al., 2019]. This model uses age, statuses_count, account
length name, followers_count, friends_count and favourites_count as user features and feed them
into a GCN layer to identify bot users.

• Knauth et al. [Knauth, 2019]. This paper extracts features from user’s meta data, tweets, user
behavior, and feeds these features into Adaboost classifier.

• FriendBot [Beskow and Carley, 2020]. This paper introduces network metrics into twitter bot
detection tasks. Specifically, they construct a 2-hop ego network for each twitter account based on
four types of relations: following, retweet, mention, and reply. They collect account features based
on metrics of these ego networks. Finally, they exploit random forest algorithm for classification.

• SATAR [Feng et al., 2021a]. SATAR is a self-supervised representation learning framework of
Twitter users. SATAR jointly uses semantic, property, and neighborhood information and adopts
a co-influence module to aggregate these information. SATAR considers the follower count as
self-supervised label to pre-train parameters and fine-tune parameters in bot detection task.

• Botometer [Yang et al., 2022]. Botometer (formerly BotOrNot) is a public website to check the
activity of a Twitter account and give it a score, where higher scores mean more bot-like activity.
Botometer’s classification system leverages more than 1,000 features using available meta-data
and information extracted from interaction patterns and content.

• Rodriguez-Ruiz et al. [Rodríguez-Ruiz et al., 2020]. This paper designs a one-class classification
model, which uses the social network and tweet information of Twitter users to extract 13 features
for feature engineering, and the model has also achieved good classification results.

• GraphHist [Magelinski et al., 2020]. The authors design a new graph classifier based on his-
togram and customized backward operator. By exploiting the ego-graph of twitter users, bot
detection can be solved by utilizing the proposed graph-level classifier.

• EvolveBot [Yang et al., 2013]. This method designs 11 robust features, together with 7 efficient
features to combat evasion tatics of spammers.

• Dehghan et al. [Dehghan et al., 2022]. This baseline combines the profile features, text features,
and graph features for bot detection. After obtaining account representations through Deepwalk
and struc2vec, XGBclassifier is applied to identify bot users.

• GCN [Kipf and Welling, 2016]. GCN aggregates features from neighbors equally and learns
representation for each user. These representations are passed to an MLP for classification. The
initial user features are identical with BotRGCN.

• GAT [Veličković et al., 2018]. Graph Attention Network (GAT) introduces attention mechanism
to GNN models, making it capable of distinguishing the importance of neighboring users in ag-
gregation. Same as GCN, it can learn user representations and feed them into an MLP for classifi-
cation. The initial user features are identical with BotRGCN.

• HGT [Hu et al., 2020]. Heterogeneous Graph Transformers (HGT) is a dedicated heterogeneous
GNN that mainly consists of two modules, heterogeneous mutual attention and heterogeneous
message passing. Heterogeneous mutual attention considers the edge type and source and target
node type when calculating attention scores. Heterogeneous message passing module incorporates
the source node type and the edge dependency in passed messages. The initial user features are
identical with BotRGCN.

• simpleHGN [Lv et al., 2021]. SimpleHGN is a simple yet effective GNN for heterogeneous graph
inspired by the GAT. SimpleHGN adopts three strategies to enhance GAT, learnable embedding
for each edge-type, node-level and edge-level residual connections as well as the L2 regularization
on output representations. The initial user features are identical with BotRGCN.

• BotRGCN [Feng et al., 2021b]. BotRGCN utilizes the text information from user descriptions and
tweets, as well as numerical and categorical user property information. Then BotRGCN constructs
a heterogeneous graph from the Twitter network based on user relationships and relational graph
convolutional networks (R-GCN) is applied to learn user representations for bot detection tasks.

22

Table 8: Average model performance (F1-score) and standard deviation of 35 baseline methods on 9
datasets. Bold and underline indicate the highest and second highest performance. The F, T, and G in
the "Type" column stands for feature, text, and graph. Cresci et al. and Botometer are deterministic
methods without standard deviation. / indicates that the dataset could not support the baseline. -
indicates that the baseline could not scale to the largest TwiBot-22 dataset.

Method Type C-15 G-17 C-17 M-18 C-S-18 C-R-19 B-F-19 TwiBot-20 TwiBot-22

SGBot F 77.9 (±0.1) 72.1 (±1.2) 94.6 (±0.2) 99.5 (±0.0) 82.3 (±0.1) 82.7 (±1.7) 49.6 (±3.4) 84.9 (±0.4) 36.6 (±0.2)

Kudugunta et al. F 75.3 (±0.2) 49.8 (±2.1) 91.7 (±0.2) 94.5 (±0.3) 50.9 (±0.4) 49.2 (±1.3) 49.6 (±8.2) 47.3 (±1.4) 51.7 (±0.0)

Hayawi et al. F 85.6 (±0.0) 34.7 (±0.1) 93.8 (±0.0) 91.5 (±0.0) 60.8 (±0.1) 60.9 (±0.0) 20.5 (±0.1) 77.1 (±0.0) 24.7 (±0.1)

BotHunter F 97.2 (±1.0) 69.2 (±1.0) 91.6 (±0.1) 99.6 (±0.0) 82.2 (±0.2) 82.9 (±1.9) 49.6 (±3.1) 79.1 (±0.4) 23.5 (±0.1)

NameBot F 83.4 (±0.0) 44.8 (±0.0) 85.7 (±0.0) 91.6 (±0.0) 61.1 (±0.0) 67.5 (±0.0) 38.5 (±0.0) 65.1 (±0.1) 0.5 (±0.0)

Abreu et al. F 76.4 (±0.1) 66.7 (±0.1) 95.0 (±0.1) 97.9 (±0.1) 76.9 (±0.1) 83.5 (±0.1) 53.8 (±0.1) 77.1 (±0.1) 53.4 (±0.1)

Cresci et al. T 1.17 / 22.8 / / / / 13.7 -
Wei et al. T 82.7 (±2.2) / 78.4 (±1.7) / / / / 57.3 (±3.1) 53.6 (±1.3)

BGSRD T 90.8 (±0.6) 35.7 (±32.6) 86.3 (±0.0) 90.5 (±1.0) 58.2 (±12.0) 41.1 (±13.0) 13.0 (±13.0) 70.0 (±2.6) 21.1 (±29.0)

RoBERTa T 95.8 (±0.1) / 94.3 (±0.1) / / / / 73.1 (±0.5) 20.5 (±1.7)

T5 T 89.3 (±0.2) / 92.3 (±0.1) / / / / 70.5 (±0.3) 20.2 (±2.0)

Efthimion et al. FT 94.1 (±0.0) 5.2 (±0.0) 91.8 (±0.0) 95.9 (±0.0) 68.2 (±0.0) 71.7 (±0.0) 0.0 (±0.0) 67.2 (±0.0) 27.5 (±0.0)

Kantepe et al. FT 78.2 (±1.4) / 79.4 (±1.3) / / / / 62.2 (±2.1) 58.7 (±1.6)

Miller et al. FT 83.8 (±0.0) 59.9 (±0.0) 86.8 (±0.1) 91.1 (±0.0) 56.8 (±0.0) 43.6 (±0.0) 0.0 (±0.0) 74.8 (±0.3) 45.3 (±0.0)

Varol et al. FT 94.7 (±0.4) / / / / / / 81.1 (±0.5) 27.5 (±0.3)

Kouvela et al. FT 98.2 (±0.4) 66.6 (±1.7) 99.1 (±0.1) 98.2 (±0.1) 80.4 (±0.2) 81.1 (±1.0) 28.1 (±5.3) 86.5 (±0.3) 30.0 (±0.0)

Santos et al. FT 78.8 (±0.0) 14.5 (±0.0) 83.0 (±0.0) 92.4 (±0.0) 65.2 (±0.0) 75.7 (±0.0) 21.0 (±0.0) 60.3 (±0.0) -
Lee et al. FT 98.6 (±0.1) 67.8 (±1.8) 99.3 (±0.0) 97.9 (±0.1) 82.5 (±0.4) 82.7 (±1.8) 50.3 (±3.2) 80.0 (±0.5) 30.4 (±0.2)

LOBO FT 98.8 (±0.3) / 97.7 (±0.2) / / / / 80.8 (±0.2) 38.6 (±0.2)

Moghaddam et al. FG 73.9 (±0.2) / / / / / / 79.9 (±0.7) 32.1 (±0.0)

Alhosseini et al. FG 92.2 (±0.4) / / / / / / 72.0 (±0.5) 38.1 (±5.9)

Knauth et al. FTG 91.2 (±0.0) 39.1 (±0.0) 93.4 (±0.0) 91.3 (±0.0) 94.0 (±0.0) 54.2 (±0.0) 41.3 (±0.0) 85.2 (±0.0) 37.1 (±0.0)

FriendBot FTG 97.6 (±0.8) / 87.4 (±0.5) / / / / 80.0 (±0.3) -
SATAR FTG 95.0 (±0.3) / / / / / / 86.1 (±0.7) -

Botometer FTG 66.9 77.4 96.1 46.0 79.6 79.0 30.8 53.1 42.8

Rodrifuez-Ruiz et al. FTG 87.7 (±0.0) / 85.7 (±0.0) / / / / 63.1 (±0.1) 56.6 (±0.0)

GraphHist FTG 84.5 (±8.2) / / / / / / 67.6 (±0.3) -
EvolveBot FTG 90.1 (±2.0) / / / / / / 69.7 (±0.5) 14.1 (±0.1)

Dehghan et al. FTG 88.3 (±0.0) / / / / / / 76.2 (±0.0) -
GCN FTG 97.2 (±0.0) / / / / / / 80.8 (±0.0) 54.9 (±0.0)

GAT FTG 97.6 (±0.0) / / / / / / 85.2 (±0.0) 55.8 (±0.0)

HGT FTG 96.9 (±0.2) / / / / / / 88.2 (±0.2) 39.6 (±2.1)

SimpleHGN FTG 97.5 (±0.4) / / / / / / 88.2 (±0.2) 45.4 (±0.4)

BotRGCN FTG 97.3 (±0.5) / / / / / / 87.3 (±0.7) 57.5 (±1.4)

RGT FTG 97.8 (±0.2) / / / / / / 88.0 (±0.4) 42.9 (±0.5)

• RGT [Feng et al., 2022]. Relational Graph Transformers is a GNN framework that uses graph
transformers and semantic attention network to model the intrinsic influence heterogeneity and
relation heterogeneity in Twittersphere. Specifically, RGT first learns users’ representation under
each relation with graph transformers, then it aggregate representations from all relations using
the semantic attention network.

B.2 F, T, or G?

We categorize baseline methods into F, T, or G with the following rules:

• If the baseline leverages user metadata and conduct feature engineering, the baseline is F.

• If the baseline leverages the content of tweets and user description texts, the baseline is T.

• If the baseline leverages the network structure of Twitter, the baseline is G.

Baseline methods may check multiple boxes and have multiple types. For exmample, BotRGCN
[Feng et al., 2021b] is F since it selects user metadata and encode users as feature vectors. BotRGCN
is T since it encodes user tweets and description with pre-trained RoBERTa. BotRGCN is G since
it constructs a relational graph and adopts relational graph neural networks for bot detection. As a
result, BotRGCN has the type of FTG.

23

Table 9: Example hashtags in the five hashtag-based sub-communities.

ID Example Hashtags

1 #Christ, #Taliban, #Kabul, #Germany, #EU, #manufacturer, #Manchester, #Covid, #covid, #bitcoin,
#Ukraine, #Kyiv, #Iowa, #farm, #health, #bullying, #Putin, #gerrymandering, #Covid19, #Labour

2 #cybersecurity, #CVE, #GCP, #marketing, #datacenter, #OSINT, #SMEs, #aerospace, #innovation, #science,
#exoplanet, #log4j, #conservation, #farming, #biology, #chemistry, #agriculture, #growth, #aging, #dementia

3 #Curitiba, #Colombia, #inversiones, #emprender, #emprendedor, #negocios, #liderazgo, #bici, #ciclismo, #RRSS,
#correr, #sueños, #metas, #familia, #inversión, #Fortalecimiento, #emprendimiento, #Familia, #éxito, #ventas

4 #Vimeo, #Industry, #Anonymous, #iHeartRadio, #Biomass, #Contest, #Books, #Humor, #Memoir, #Storytelling,
#Butterfly, #Art, #Canvas, #Handbag, #Tshirt, #Kidney, #Passion, #Quarantine, #Whitelist, #PMC

5 #UCL, #coach, #FF, #USMNT, #Coventry, #Orpheus, #CRO, #Sydney, #Houston, #Jordan,
#Buffalo, #UBC, #writer, #Shona, #Christchurch, #Antigua, #Sonny, #Gladstone, #500th, #Philips

Table 10: Statistics of the 10 sub-communities.

Sub-communities 0 1 2 3 4 5 6 7 8 9

Human 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000
Bot 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000
User 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Tweet 969,979 942,020 1,099,962 989,536 1,083,655 1,156,640 1,333,018 1,138,480 1,151,362 1,142,717
Edge 1,116,208 1,120,637 1,245,190 1,167,285 1,249,535 1,535,397 1,924,616 1,508,054 1,511,824 1,526,627

B.3 F1-score Results

We re-implement 35 Twitter bot detection baselines and evaluate them on 9 representative datasets
and benchmarks. We present their detection accuracy in Table 2 and F1-score in Table 8.

B.4 Graph Component Removal Details

We remove the graph component in graph-based methods to examine the role of graphs in Twitter
bot detection and present results in Table 3. We provide details about how graphs are removed from
each baseline as follows:

• Alhosseini et al.. We remove the GCNs while using two MLP layers with user features.
• Moghaddam et al.. We remove 11 graph-based features from the "friend preference" section.
• Knauth et al.. We remove 2 graph-based features, namely friend count and follower count.
• EvolveBot. We remove 4 graph-based feature extracted with the help of neighbor information.
• BotRGCN and RGT. We remove the R-GCN and RGT while using two MLP layers with user

features for bot detection. BotRGCN and RGT use the same user features so that their "w/o graph"
results are identical.

B.5 Generalization Study Details

To evaluate existing methods and their ability to generalize on unseen data, we identify 10 sub-
communities in the TwiBot-22 network and conduct experiments in Figure 3. Specifically, we
firstly select 5 closely connected sub-communities around @BarackObama, @elonmusk, @CNN,
@NeurIPSConf, and @ladygaga. These five users feature different interest domains and their neigh-
borhood represents different aspects of the Twitter network. In addition, we use K-means to cluster
the word2vec [Mikolov et al., 2013] representations of hashtags and identify users tweeting about
similar hashtags into 5 sub-communities. Examples of these hashtags in these sub-communities are
presented in Table 9. The statistics of the 10 sub-communities are presented in Table 10.

B.6 Computation Details

We ran all experiments on a server with 8 GeForce RTX 2080 Ti GPUs. We run each experiment for
five times and report the average model performance as well as standard deviation.

24

Table 11: We remove labeling functions in the annotation process and compare their results with the
full annotation model.

labeling function bot->bot bot->human human->human human->bot changed percentage

w/o adaboost 77,050 49,965 869,317 3,986 5.36%
w/o random forest 117,191 9,524 841,531 31754 4.13%

w/o MLP 109,152 17,563 796,159 77,126 9.46%
w/o GCN 120,925 5,790 833,776 39,509 4.54%
w/o GAT 123,397 3,318 824,436 48,849 5.22%

w/o RGCN 123,676 3,042 819,293 53,970 5.70%
w/o verify 122,177 4,538 873,101 184 0.47%

w/o keywords 123,880 2,835 840,142 33,143 3.60%

Table 12: We use the training set and validation set in TwiBot-22 while using the expert labels as the
test set. We used 6 baseline methods for a quick evaluation. Test 1 indicates using only the 1,000
manually annotated users in Section 3.2, and test 2 indicates using only the 500 manually annotated
users in Section 3.3.

Model test set 1 test set 2

Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall

Moghaddam et al. 89.41 (±0.30) 24.98 (±2.72) 16.57 (±1.97) 50.79 (±4.25) 83.93 (±0.28) 18.49 (±0.95) 11.58 (±0.59) 45.94 (±3.35)

SGBot 91.87 (±0.11) 47.43 (±1.21) 76.16 (±2.31) 34.48 (±1.56) 87.42 (±0.31) 26.00 (±2.80) 54.55 (±2.80) 17.11 (±2.28)

BotHunter 91.44 (±0.12) 40.39 (±0.32) 78.28 (±3.11) 27.24 (±0.52) 85.63 (±0.31) 23.38 (±1.55) 73.67 (±9.81) 13.95 (±1.18)

GAT 91.14 (±0.45) 47.00 (±2.92) 64.83 (±4.31) 36.95 (±3.04) 84.93 (±0.23) 30.47 (±2.64) 55.64 (±2.02) 21.05 (±2.46)

BotRGCN 88.74 (±0.29) 65.89 (±1.62) 79.82 (±2.53) 56.23 (±3.24) 85.59 (±0.68) 55.45 (±2.77) 67.45 (±2.74) 47.17 (±3.65)

RGT 92.80 (±0.45) 23.39 (±4.61) 58.33 (±11.78) 16.44 (±2.98) 87.10 (±1.19) 38.02 (±7.21) 58.50 (±10.18) 28.57 (±6.68)

B.7 Annotation Bias Test

To study the effect of individual labeling function, we remove each of them and examine how many
labels have changed in the snorkel-based annotation process, as is shown in Table 11.

Experiment results on using the expert labels as the test set is presented in Table 12.

B.8 Implementation Details

The TwiBot-22 evaluation framework is built with help of many valuable scientific artifacts, includ-
ing pytorch [Paszke et al., 2019], pytorch lightning [Falcon and The PyTorch Lightning team, 2019],
pygod [Liu et al., 2022], transformers [Wolf et al., 2020], pytorch geometric [Fey and Lenssen,
2019], sklearn [Pedregosa et al., 2011], gensim [Řehůřek and Sojka, 2010], spacy [Honnibal et al.,
2020], tweepy [Roesslein, 2009], pandas [McKinney et al., 2011], numpy [Harris et al., 2020], vader-
Sentiment [Hutto and Gilbert, 2014], and imbalanced-learn [Lemaître et al., 2017].

25

