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Abstract

Bayesian Optimization is a very effective tool for optimizing expensive black-box
functions. Inspired by applications developing and characterizing reaction chem-
istry using droplet microfluidic reactors, we consider a novel setting where the
expense of evaluating the function can increase significantly when making large in-
put changes between iterations. We further assume we are working asynchronously,
meaning we have to select new queries before evaluating previous experiments.
This paper investigates the problem and introduces ‘Sequential Bayesian Opti-
mization via Adaptive Connecting Samples’ (SnAKe), which provides a solution
by considering large batches of queries and preemptively building optimization
paths that minimize input costs. We investigate some convergence properties and
empirically show that the algorithm is able to achieve regret similar to classical
Bayesian Optimization algorithms in both synchronous and asynchronous settings,
while reducing input costs significantly. We show the method is robust to the choice
of its single hyper-parameter and provide a parameter-free alternative.

1 Introduction

We introduce a method for black-box optimization that keeps step-wise input variations as small as
possible. A black-box function is expensive to evaluate (with respect to time or resources), and we do
not have access to gradients. Classically, black-box optimization finds an optimum by sequentially
querying the function. We study a variation of this problem, with two important differences. First,
we introduce the idea that large changes in inputs, between iterations, cause the function to become
more expensive to evaluate. Second, we do not assume observations are available immediately: delay
between querying the function and getting a result leads to asynchronous decision making.

As a motivating example, consider a droplet microfluidic reactor [49] (see Figure 6 in Appendix). In
such a reactor, we can quickly pump in chemicals, expose them to certain conditions, and collect the
results of our experiments as they exit. However, large changes in temperature mean that the reactor
is no longer in steady-state, and this makes the evaluations unreliable until the system stabilizes.
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Smaller changes can maintain a “quasi-steady state”, as the system is easier to stabilize. Further, we
have to wait for droplets to exit the reactor before obtaining observations.

More broadly, consider optimization requiring spatially continuous exploration. Black-box optimiza-
tion has been investigated for optimal placement of pollution sensors [17], and machine learning
methods for detecting the sources of pollution have been developed [30]. Mobile pollution readers,
such as those used by AirQo [https://www.airqo.net/about], would face similar challenges if
black-box optimizers were used to track the pollution sources. Samaniego et al. [41] show a more
concrete example where autonomous vehicles use black-box optimizers to monitor and track water
contamination sources in the Ypacarai lake in Paraguay.

Classical Bayesian Optimization (BO) [20, 42] provides effective solutions to black-box optimization;
however, physics-based limitations are usually not taken into account [50]. Typically BO follows a
myopic approach, in that BO chooses the next query based only on the current state of the surrogate
model. Classical BO reduces uncertainty in unexplored areas and then returns to promising areas
with no regard for the distance between consecutive query points. This means that BO will incur very
high input costs.

However, having zero changes in input space is obviously not a good solution. After all we want to
explore the search space to find the optimum point. We seek an algorithm that preserves the essence
of Bayesian Optimization. Consider a scenario where we know a large number of inputs we want
to query. In this case, we could simply order the queries to attain the smallest input cost. A good
solution would simply require selecting a large number of queries, creating an ordering, and then
following the path defined by the ordering. Once we start obtaining new information, we could
update our beliefs and update our optimization path.

This paper proposes Sequential Bayesian Optimization via Adaptive (K)Connecting Samples (SnAKe).
Just as the snake grows by carefully eating items in the classic arcade game, a SnAKe optimization
path grows from carefully adding queries to the evaluation path.

2 Related Work

‘Process-constrained Batch Bayesian Optimization’ [51], is the closest analog to our setting of BO
with input costs. Vellanki et al. [51] navigate the physical limitations in changing the input space
by fixing the complicated inputs for every batch. Rather than fixing the difficult-to-change inputs,
we penalize large input variations in line with the costs (time and resources) of changing conditions.
SnAKe decides when to make expensive input changes. Recently, Ramesh et al. [39] consider a
similar cost setting to ours, inspired by applications to wind energy systems. Waldron et al. [52]
compare the use of transient variable ramps (small input changes in a pre-determined manner) against
a full steady-state design of experiments approach for learning parameters of chemical kinetic models.
They show that the transient approaches give less precise estimates, but much faster. SnAKe combines
the best of both worlds, automatically designing experiments while keeping input changes small.

‘Cost-aware Bayesian Optimization’ [28, 31, 44] optimizes regret with respect to cost per iteration.
These costs, which are fixed throughout the BO process, arise when some regions of the input domain
are more expensive to evaluate than others. Similar ideas appear in Multi-fidelity BO [21, 37] where
cheap approximations for the objective function are used. Bogunovic et al. [6] combines cost-aware
and level-set estimation approaches to solve environmental monitoring problems. Diverging from
prior works, our setting does not assume that different regions incur different costs. Instead, SnAKe
addresses the setting where the difference between adjacent inputs defines costs. The query order
changes the cost, therefore we focus on optimization paths instead of optimization sets.

The baseline of Cost-aware BO, Expected Improvement per unit Cost (EIpu), defined as
EI(x)/Cost(x), is not directly applicable to our setting because the cost of not changing inputs, i.e.,
choosing xt = xt�1, is zero. We can instead use:

�EIpu(x) = EI(x)/(� +Cost(x, xt�1)) (1)
Three main issues: (a) Eq. (1) introduces new hyper-parameter � with no obvious way to choose it,
(b) Eq. (1) effectively penalizes the acquisition function far away from the data, so near local optima
we only penalize exploration and may over-exploit, (c) asynchronous extensions have a tendency to
encourage batch diversity, so we introduce a new trade-off between penalizing locally and far away.
As we shall see, SnAKe shows robust results with just one hyper-parameter.

2

https://www.airqo.net/about


Look ahead Bayesian Optimization [12, 15, 26] considers possible future queries to make the current
choice less myopic. We could use it to select the inputs to query, as we could simply look-ahead at
what any classical BO would choose and then order the queries accordingly. However, one is only
able to look ahead for a few iterations, due to the computational complexity of looking far ahead into
the future [5, 54]. For example, Lee et al. [29] combines Markov Decision Processes [38], look-ahead
and cost-aware ideas, but is limited by the short time horizons rollout can handle. Reinforcement
Learning [48] can be used, but it requires access to a dedicated training environment. Mutnỳ et al.
[34] show how similar ideas can be used for trajectory optimization in environmental monitoring.

A computationally cheaper alternative that allows us to select many inputs to query is Batch Bayesian
Optimization (BBO) [2, 14]. BBO is the setting where we are able to parallelize function evaluations,
and as such we want to select multiple queries simultaneously. González et al. [15] and Jiang
et al. [19] link BBO with look-ahead BO, using a Local Penalization method [14] and Expected
Improvement (q-EI) [13], respectively. Unfortunately, they restrict themselves to smaller batch sizes
(q  15) due to computational expense. Asynchronous Bayesian Optimization [1, 22] addresses the
problem of choosing queries while waiting for delayed observations.

3 Methods

3.1 Problem Set-up

We consider finding the maximum, x⇤ = argmaxx2X f(x), of a black-box function, f , where X is
a compact subset of Rd. We assume f is continuously differentiable and expensive to evaluate. We
seek the optimum point while keeping the number of evaluations small. We evaluate the function
sequentially, over a discrete and finite number of samples, t = 1, ..., T . For every query, xt, we
obtain a noisy observation of the objective, yt = f(xt) + ⌘t, where ⌘t ⇠ N (0, s2) is Gaussian noise.

We assume there is delay, tdelay, between choosing a query and getting an observation. So our
data-set at iteration t is given by Dt = {(xi, yi) : i = 1, ..., t� tdelay � 1}. If we set tdelay = 0, we
revert to classical sequential Bayesian Optimization, otherwise we are in an asynchronous setting.

Finally, we assume there is a known cost to changing the inputs to our evaluation, C(xt, xt+1). We use
simple regret, SRt = f(x⇤)�maxi=1,...,t f(xi) as the performance metric. We want to minimize
regret, or equivalently, maximize f , for the smallest possible cumulative cost,

PT�1
t=1 C(xt, xt+1).

We note that the problem definition is invariant to cost scaling relative to the objective, because an
optimal trajectory will be defined solely by the shape of the function. Current cost-aware methods
are not scale invariant, and as we shall see, SnAKe first chooses which points to query and then finds
the most cost-efficient way of selecting them, making the method invariant to scaling of the cost.

As is common in Bayesian Optimization, we will model the black-box function by putting a Gaussian
Process (GP) prior on f ⇠ GP(µ0,�2

0). Since we have Gaussian noise, the posterior, f |Dt is also a
GP, whose mean function, µt(·), and covariance function, t(·, ·), can be calculated analytically [40].

3.2 General Approach

For our general approach, we will seek to create a large batch of queries that we want to evaluate,
and then plan-ahead a whole optimization path. This is useful for three reasons: (1) it allows us
to order the queries in a way that reduces input cost. (2) It allows us to deal with any delay in
getting observations, because we can pre-select future queries. (3) It remains computationally feasible
to plan-ahead even for very large time horizons. We can follow this ordering or path until new
information is available, after which we will update our path.

While we will provide a specific way of creating, planning and updating the paths, we note that the
general ideas can be extended to suit different settings. For example, Appendix C shows how to alter
SnAKe to simultaneously optimize multiple, independent, black-box functions.

3.3 Creating a Batch Through Thompson Sampling

We need to produce batches that are representative of the current state of the surrogate model. In
addition, the method should allow for big batch sizes, since we want to produce batches as big as our
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budget (which is usually much larger than the batch size most methods consider). For example, in a
micro-reactor, we might be interested in batches that contain hundreds of points [49].

Kandasamy et al. [22] offers a promising solution where every point in the batch is independent. The
method is based on Thompson Sampling, which uses the GP’s inherent randomness to create a batch.
Each batch point is chosen by drawing a realization of the GP, and optimizing it. The queries will fill
out the space, and they are more likely to be on promising, and unexplored areas. It should work very
well in our context given we expect our initial batch sizes to be very large, so the sample should be
representative of the current state of our surrogate model.

3.4 Creating a Path via the Travelling Salesman Problem

After selecting a batch of queries, Pt = {x(i)
t }T̃i=1, we order them. We do this by embedding a graph

into the batch, where the edge weights are the cost for changing one input to another. We then find
the shortest path that visits every point, i.e., we solve the Travelling Salesman Problem (TSP) [4, 8].
Section 3.9 discusses the computational cost.

Mathematically, we define the graph G = (V, E, W ), with V = {i 2 1, ..., T̃ : x(i)
t 2 Pt},

E = {(i, j) : i, j 2 1, ..., T̃}, and W = {wij = C(x(i)
t , x(j)

t ) : (i, j) 2 E}, where T̃ is the number
of batch samples. We solve the TSP in G to obtain our latest optimization path. A simple example
would be to try to minimize the total distance travelled in input space, by selecting the Euclidean
norm as cost C(xt, xt+1) = ||xt � xt+1||.

3.5 Naively Updating the Optimization Path

After updating the GP with new observations, we want to use this information to update our path. We
propose updating our strategy by creating a new batch of points.

At iteration t, the remaining budget has size T � t. We first propose sampling T � t queries through
Thompson Sampling, and then solving the Travelling Salesman Problem. However, we show this
leads to the algorithm getting ‘stuck’ in local optima. This is because every time we re-sample, we
naturally include some exploitation in the batch, and this exploitation will always be the next point
chosen by the TSP–we will never reach the exploration algorithm steps. Figure 1a shows an example.

(a) Naively Resampling (b) With Point Deletion (c) Optimization paths.

Figure 1: Effect of Point Deletion for ordering-based BO. (a) and (b) show the maximization objective
and the underlying surrogate model, with black crosses representing queries and observations. (c)
shows the optimization paths. Naive resampling gets stuck in the local optimum (x = 0.16) whereas
Point Deletion escapes the local solution. We also show the predicted escape iteration, Tp (after
estimating p ⇡ 0.74 in Appendix D.1), which accurately predicts the algorithm behavior in this
simple example.

3.6 Escape Analysis

To try and solve the convergence problem introduced by naive resampling, we briefly analyze it.
This analysis assumes we receive noise-less observations. However, all sampling can be done in
the presence of noise by calculating the corresponding posterior. We note that this section will
provide intuition for the next step of the algorithm, however, we are not providing rigorous theoretical
justification for the step or proving any type of regret bounds. We focus on Thompson Sampling.

Definition 3.1. (Thompson Sample) We say x(i)
t is Thompson Sampled, and we write x(i)

t ⇠ ⌧t, if:

x(i)
t = argmax

x2X
f (i)
t (x), where f (i)

t (·) ⇠ GP(µt, t|Dt)

4



Note that the sampling distribution GP(µt, t|Dt) changes at each iteration.

One particular concern, diagrammed in Figure 1a, is the possibility of the method being stuck in
a certain area. Let B�(a) be a Euclidean �-ball centered at a, and assume that xt�1 2 B�(a). We
further assume two more things: (a) we resample the batch at every iteration, and (b) the TSP solution,
or any approximation, will always choose a point in B�(a) to be the next step, if there are any. These
assumptions represent the worst-case scenario for trying to escape a local optima.
Definition 3.2. (Non-escape Probability) We define the non-escape probability, pt, at iteration t, as
the probability of a Thompson Sample falling into B�(a). That is, for x(i)

t ⇠ ⌧t:

pt = P(x(i)
t 2 B�(a)) = P(||x(i)

t � a||  �) (2)

Let Pt = (x(1)
t , ..., x(T�t)

t ) ⇠ ⌧t i.i.d.. Of particular interest to us, is the number of ‘non-escapes’ in
the sample, Nt = |Pt \B�(a)|. We are guaranteed to escape if no sample falls in B�(a), so we say
we have fully escaped if x(i)

t /2 B�(a) 8i.
Remark 3.3. Note that Nt ⇠ Binomial(T � t, pt) as all the samples are mutually independent,
therefore the probability of fully escaping is P(Nt = 0) = (1 � pt)T�t. This means we can only
expect to fully escape if pt is very small.

Therefore we are interested in the behavior of pt as we gain more information about f in B�(a). We
now consider the circumstances under which pt becomes very small:

Areas without stationary points: Consider the case when our objective f does not contain a
stationary point in B�(a). Then the maximum of f on the closure of the ball, B̄�(a), must lie on
the boundary of the ball. In particular, if we assume that our GP model has no error in B�(a), and
assuming continuity of sample paths, then the non-escape probability must be zero, pt = 0.

Intuitively, the area itself contains enough information to ensure, with complete certainty, that the
global optimum does not lie in the area. We hope that, as we collect information inside areas without
stationary points, pt ! 0, and we will eventually leave them with small probability of returning.
Appendix D.2 shows an example of this happening very fast.

Areas with stationary points: Areas with stationary points pose a much bigger problem. We will
restrict our arguments to local maxima, since this is where we have observed the problem. Assume
that f has a local optimum in B�(a), higher than any other we have observed before. In this case,
any sample taken from a Gaussian Process with no error in B�(a) will have a local maximum inside
B�(a), and therefore it is possible that this local maximum is the global solution.

As we increase the information inside the area, pt is not guaranteed go down to zero. This makes
intuitive sense; the only way of knowing if a local optimum is not a global optimum is by sampling
away from it–therefore with limited information we will allocate a certain probability to the global
optimum being inside B�(a). We include a clear example where pt ! p > 0 in Appendix D.1.

Sampling consistently in a promising area is not necessarily a bad thing, indeed we want to exploit
near possible global optimum candidates. However, the question then becomes, how long will it take
us to leave a local optimum? Recall the probability of fully escaping is (1� pt)T�t, and therefore it
will be increasing as t increases, even if pt is (almost) constant.
Remark 3.4. Assume that pt ! p > 0, and that we have a high escape probability after te iterations,
i.e., (1�p)T�te is large, leaving us T�te iterations to explore the rest of the space. If we increase our
budget from T to T 0, we will not have a high probability of escape until (1� p)T

0�t = (1� p)T�te ,
i.e., t = T 0 � T + te. This leaves us with T 0 � (T 0 � T + te) = T � te iterations to explore the
rest of the space. Note that this is independent of T 0, meaning that increasing our budget does not

increase our budget after leaving B�(a)! Rather, it only means we will be stuck in B�(a) for a longer
time. This is very concerning as the method will be very myopic; if it finds a local optimum, it is
likely that it will spend a very large amount of the budget exploiting it.

3.7 Escaping with ✏-Point Deletion

Intuitively, the convergence problem stems from the constant resampling, because in every iteration
resampling is reintroducing exploitative points. We seek a way of making sure that the samples
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used by the algorithm to create paths take into account the previously evaluated designs. Penalizing
the samples via distances to previous queries seems like a simple solution, e.g., similar to local
penalization [14]. However, penalization introduces the need to carefully tune the strength of the
penalization so that we can still exploit optima and remain cost-effective – the parameterization is
nontrivial.

Around a local maximum, if we assume that pt ! p > 0, then we can interpret p as the probability
that the global maximum lies on the ball B�(a), as such, we focus on a method that has the property of
exploiting the promising area for Tp iterations (that is, the total budget weighted by the probability).
To achieve this, we propose creating a total of T samples, and then deleting batch points that are
similar to previously-explored points (i.e., we remove excess exploitation introduced by resampling).
Algorithm 1, which we term ✏-Point Deletion, still allows us to exploit local optima if we sample
many points near them, however, it should eventually move on.

Two points to note: (a) Point Deletion uses the Euclidean norm, and it is independent of the cost
function. This is because we are trying to escape local minima of simple regret. (b) After the
deterministic removals, it is likely the batch size is still larger than our remaining budget, so we
balance it by randomly removing points from the batch.

Algorithm 1 ✏-Point Deletion
input: New proposed batch Pt (size T ), set of already queried points Qt (size t), and deletion
distance ✏
for x 2 Qt do
d̃ minx02Pt ||x� x0||
if d̃ < ✏ then
# find the closest point to the query x in the new batch
x̃ argminx02Pt

||x� x0||
else
# else pick a random sample
x̃ Random(Pt)

end if
# remove said point from the batch
Pt  Pt \{x̃}

end for
output: A batch Pt (size T � t)

✏-Point Deletion allows us to escape local optima by directly increasing the probability of fully
escaping without changing pt. Let qt be the number of previously queried points inside the ball, and
set ✏ � 2�. Indeed, it follows that we will escape if Nt  qt, (as qt samples are guaranteed to be
deleted due to previously queried points) which is much better than requiring Nt = 0.

Due to over-sampling, the expected number of ‘non-escapes’ is given by E[Nt] = ptT . Around a
local maximum, if we assume that pt ! p > 0, and hence, ptT ⇡ pT , then we can reasonably expect
an escape when qt = pT , that is, we will exploit the local maximum for approximately pT iterations.
This time we leave T � qt = T (1� p) extra iterations to explore the remaining space! Increasing the
budget will benefit both the exploitation and the exploration instead of only the former (in contrast
with Remark 3.4).

Figure 1 gives an empirical example where we use Point Deletion, with ✏ = 0.1, to escape a local
optimum. We observe the expected behavior from our brief analysis. For Point Deletion, we calculate
the escape prediction as pT ⇡ 74, using p̂ ⇡ 0.74, which we estimated in Appendix D.1. We can see
that without Point Deletion, we remain stuck in the first local optimum.

3.8 SnAKe

Algorithm 2 which we dub ‘Sequential Bayesian Optimization via Adaptive Connecting Samples’
(SnAKe), combines the ideas of previous sections. Figure 2 diagrams the most important steps of
SnAKe. Section 4 develops an effective, parameter-free alternative to the choice of ✏.
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Note there is no requirement for data to be available immediately following querying. If tdelay > 0,
we can simply stick to the latest path. It works without modification on the asynchronous setting. This
is vital since we were inspired by chemical experiment design which can exhibit asynchronicity. We
also note that the problem is invariant to cost scaling, as the batch creation and point deletion steps are
independent of the cost, and the solution to the Travelling Salesman Problem is also scale-invariant.

Algorithm 2 SnAKe
input: Optimization Budget, T . Deletion constant, ✏.
begin: Create initial batch, P0, uniformly. Choose starting point x0. Q0  {x0}. Create initial
path, S0, by solving TSP on P0.
for t = 1, 2, 3, ..., T do

Check if any running evaluations are finished
if there are new observations then

Update surrogate model
Create batch of size T using Thompson Sampling, Pt�1

Pt�1  ✏-Point Deletion(Pt�1, Qt�1)
S̃  TSP(Pt, source = xt�1) \{xt�1}
S  Qt�1 [ S̃

end if
Choose next query point from schedule: xt  St

Qt  Qt�1 [ {xt}
Evaluate f(xt)

end for

(a) Optimization path at t = 10 (b) Sampling & Deletion Step (c) Optimization path at t = 11

Figure 2: Graphical example of SnAKe behavior in a full iteration if new information is available.
The underlying function is Branin 2D. The feasible set is [0, 1]2, so we do not see all the samples or
the complete path with this zoomed-in view. (a) The red line shows the already-queried path. The
blue path shows our future plans. (b) For each query, we can see the ✏-ball under which the deletion
step is deterministic. We plot the Thompson Samples as dots, the accepted ones in black and the
deleted ones in green. (c) The new path is in blue and the points ignored (due to Point Deletion) are
in green. Note the higher concentration of samples in what the model considers a promising area.

3.9 Computational Considerations

We use Wilson et al. [53] to efficiently sample the GP and optimize the samples using Adam [23].
The optimization step may be expensive, but it is highly parallelizable if required. We heuristically
solve the Travelling Salesman Problem with Simulated Annealing [24] and use an adaptive grid
to reduce the number of samples away from our current input. The grid consists of the closest Nl

samples to our current input; the remaining samples are assigned to one of Ng points in a global grid.
Coarsifying the placement of the far-away points effectively ignores detailed paths far away from
our current input. These far-away points are not important to the problem, as long as we resample
frequently enough. We introduce two hyper-parameters (Nl, Ng), but they should not impact the
solutions assuming Nl is reasonably larger than any possible delay. With these modifications, we
were able to comfortably run all experiments in a CPU (2.5 GHz Quad-Core Intel Core i7), where
SnAKe shared a wall-time similar to Local Penalization methods. Appendix E.1 gives more details.
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4 Experimental Results

For all experimental results we report the mean and the standard deviation over 25 experimental runs.
We give the full implementation details and results in Appendix E and F respectively. Classical BO
methods are implemented using BoTorch [3] and GPyTorch [11]. The code to replicate all results is
available online at https://github.com/cog-imperial/SnAKe.

In all experiments, we examine SnAKe for ✏ = 0, 0.1, and 1. We further introduce a parameter-free
alternative by adaptively selecting ✏ to be the smallest length scale from the GP’s kernel, and denote
it `-SnAKe. SnAKe proves to be robust to non-zero choices of ✏. We conjecture this happens because
of Thompson Sampling’s exploitative nature [35], so all excess exploitation is concentrated on a very
small area. For ✏ = 0 we observe very low cost, at the expense of some regret.

Across all experiments we can see how SnAKe can traverse the search space effectively, constantly
achieving good regret at low cost. While other cost-aware methods may also achieve good perfor-
mance, they are very inconsistent, suggesting they require careful tuning. SnAKe achieves good,
robust results with a single hyper-parameter. We do highlight that SnAKe performs best when there
are enough iterations for the samples to adequately fill the search space: this is highlighted by poor
performance in Perm10D and by ordinary performance in low-budget experiments (see Appendix F,
where we include performance comparisons for different budget sizes, T ).

(a) Evolution of regret against input
cost. We can see that SnAKe is able
to achieve the best regret for low
cost.

(b) Evolution of regret with itera-
tion number. SnAKe’s final regret is
comparable with classic BO meth-
ods, and better than EIpuLP.

(c) Evolution of input cost with iter-
ation number. Low cost is achieved
by EIpuLP, SnAKe and the TSP-
ordered Random optimization.

Figure 3: Results of experiments on the SnAr chemistry Benchmark. SnAKe achieves the best regret
out of all low-cost methods. The bounds are created from ± half the standard deviation of all runs.
The best performer, `-SnAKe, is parameter-free.

4.1 Synthetic Functions

Sequential BO This section examines the performance of SnAKe against Classical BO algorithms.
We compare Expected Improvement (EI) [33], Upper Confidence Bound (UCB) [46], and Probability
of Improvement (PI) [25]. We compare against Expected Improvement per Unit Cost [44] (EIpu) as
introduced in Eq. (1), with � = 1, and with Truncated Expected Improvement [41] (TrEI). We also
introduce a simple baseline, where we create a random Sobol sample, and then arrange an ordering by
solving the TSP, and never update the path again. We do this for three classical benchmark functions,
and six total in the Appendix F.1.1. We set the cost function to be the 2-norm distance between the
inputs. Figure 4 shows the results in the top row.

Asynchronous BO We explore the asynchronous setting, comparing Local Penalisation with UCB
(UCBwLP) [1, 14], Thompson Sampling (TS) [22], and the same Random baseline from the sequential
setting. We also test on EIpu with Local Penalisation (EIpuLP), with � = 1. The results are shown in
last two rows of Figure 4.

4.2 Reaction Control on SnAr Benchmark

We test our method on a real-world, SnAr chemistry benchmark [18]. We control four variables;
equivalents of pyrrolidine, concentration of 2,4 dinitrofluorobenenze at reactor inlet, reactor tempera-
ture, and residence time. We assume changing temperature, concentration and residence time incur an
input cost, owing to the response time required for the reactor to reach a new steady state. We assume
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(a) Branin2D (b) Hartmann3D (c) Hartmann6D

(d) (async)Hartmann6D (e) (async)Branin2D (f) (async)Ackley4D

(g) (async)Michaelwicz2D (h) (async)Hartmann3D (i) (async)Hartmann4D

Figure 4: Synthetic experimental results. The first row represents three of the synchronous bench-
marks. The last two rows correspond to asynchronous experiments with tdelay = 25. We plot the
average log(regret) achieved against the cost spent. For every experiment, T = 250, and we limit
the x-axis to the maximum cost achieved by SnAKe or Random. `-SnAKe is the parameter-free
version. SnAKe consistently achieves good regret against at cost. The bounds are ± half the standard
deviation of 25 different runs.

the reactor as a first-order dynamic system, where the response to changes in input is given by:

(xs)i = (xt)i + (1� e�s/↵i)(�xt)i (3)

where s denotes the time after experiment xt is finished, (xt)i denotes the ith variable of the tth
experiment, (�xt)i = (xt+1)i � (xt)i, and ↵i is the system time constant. We define quasi-steady
state using an absolute residual �i, i.e., |(xs)i � (xt+1)i|  �i. For input changes smaller than �i,
we assume a linear cost, defined by a parameter �i. Combining with the response time from (3):

Ci(xt, xt+1) = �i min{�i, |�(i)xt|}+max
n
0,↵i log

⇣
|�(i)xt|/�i

⌘o
(4)

We assume that we can change variables simultaneously, so the total input cost is simply the longest
response time within a given set of input changes. That is, C(xt, xt+1) = maxi2Ic Ci(xt, xt+1),
where Ic is the index set of the control variables. We implement the simulation using the Summit
package [10]. More details can be found in Appendix E.7.6. We set a delay of tdelay = 25, and
optimize for T = 100 iterations. The results of the experiment can be seen in Figure 3.

4.3 Finding Contamination Sources in Ypacarai Lake

As a second real-world example that exhibits costly input changes, we investigate an alternative to
the case study introduced by Samaniego et al. [41]. Autonomous boats are used to monitor water
quality in Ypacarai Lake in Paraguay. We consider three different objectives, illustrated in Figure
5, created using the Schekel benchmark function (as in [41]). Each objective could correspond to a
measure of water quality, such as pH, turbidity, CO2 levels, or many more. We consider the problem
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Figure 5: Visualization of Ypacarai Lake, and the objectives we optimize over. We show an example
of a SnAKe optimization path on the simultaneous optimization problem (see Appendix C).

Table 1: Ypacarai results. We present the average regret from 10 runs ± the standard deviation,
multiplied by 103. O1, O2, O3 correspond to the different objectives. All runs are terminated after the
cost exceeds 10 units (approximately 100 km). SnAKe is the best performer in 2 out of 3 objectives.

Regret O1 Regret O2 Regret O3
TrEI 0.475± 0.596 0.118± 0.104 0.076± 0.050
EIpu 0.249± 0.225 0.068± 0.073 0.071± 0.049

SnAKe 0.074± 0.063 0.109± 0.186 0.036± 0.048

of finding the largest source of contamination in the lake by maximizing these objectives. The cost
between queries relates to the boat physically moving from one place to another. We assume that
the boats can travel 10 units, which corresponds to approximately 100km (fuel limitations), and no
observation time delay. We run optimization runs on each objective and shows the results in Table 1.

5 Conclusion and Discussion

This paper introduces and proposes a solution to the problem of optimizing black-box functions under
costs to changes in inputs. We empirically show that the regret achieved by our method is comparable
to those of classical Bayesian Optimization methods and we succeed at achieving considerably lower
input costs, while being particularly well suited to asynchronous problems. Examples of further
work include extending the algorithm so multiple ‘SnAKes’ can run in parallel, or extending it to the
classical multi-objective setting, e.g., using variations of Thompson Sampling [7].

This setting, with input costs penalizing experimental changes, makes a major step towards automating
new reaction chemistry discovery, e.g., in line with the vision of Lazzari et al. [27]. We substantially
decrease experimental cost with respect to classical black-box optimization, e.g., as used by Fath
et al. [9] and McMullen and Jensen [32]. In the real-life SnAR benchmark, SnAKe spends 45-55%
of the cost while making similarly strong predictions to classical BO. The synthetic benchmarks and
Ypacarai Lake example offer similar advantages.
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