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Appendix

A Broader Impact

To study the vulnerabilities of federated learning, we propose a model-based reinforcement learning
attack framework. Our work shows that non-myopic attacks can break federated learning systems
even when they are equipped with sophisticated defense rules. This reveals the urgent need of
developing more advanced defense mechanisms for federated learning systems. While we have
focused on adversarial attacks against federated learning in our work, we note that one possible
solution to defending RL-based attacks would be to dynamically adjust FL parameters such as the
subsampling rate or the aggregation rule. Future work is needed to identify how best to do so.

B Algorithms

Algorithm 1 gives the framework of a standard federated learning algorithm where the aggregation
function, Aggrp¨q, can be either a simple average or a robust aggregation rule. Algorithm 2 gives
the details of our distribution learning procedure. The algorithm first initializes Dreconstructed with
attackers’ local data. A synthetic noisy dataset is built by adding Gaussian noise to Dreconstructed.
A denoising autoencoder is then learned using paired clean data and noisy data. In each FL epoch,
a batch of dummay data samples are first generated randomly, which are then updated iteratively
by matching their average gradient with the aggregated gradient estimated from received model
parameters. When no attacker is sampled in an FL epoch, the same process is applied by reusing the
most recent model parameters received from the server. Due to the randomness of the algorithm, new
data samples are generated and added (after denoising) to Dreconstructed in each FL epoch during
distribution learning.

C Discussion on Gradient Inversion Attacks and Defenses

Although federated learning is expected to protect clients’ local data, it has been recently observed
that sensitive information can still be inferred from the gradients or model updates shared by
clients [16, 38]. In particular, it is shown in [38, 37] that using an optimization based approach,
a curious server can extract both the training inputs and labels from the gradients shared by a
client for a small batch size (ď 8). This approach is further improved in [13], where it is shown
that by exploiting a magnitude-invariant loss, the proposed inverting gradients (IG) method can
reconstruct images in deep non-smooth architectures even in batches of 100 images. More recently,
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Algorithm 1 Federated Learning
Input: Initial weight θ0, K workers indexed by k, size of subsampling w, local minibatch size B,
step size η, number of global training steps T
Output: θT
Server executes:

for t “ 0 to T ´ 1 do
St Ð randomly select w workers from K workers
for each worker j P St in parallel do

gt`1
j Ð WorkerUpdate(j, θt)

end for
gt`1 Ð Aggrpgt`1

k1
, ..., gt`1

kw
q, ki P St

θt`1 Ð θt ´ ηgt`1

end for
WorkerUpdatepj, θq:

Sample a minibatch b of size B
g Ð 1

B

ř

zPb ∇θℓpθ, zq

return g to server

Algorithm 2 Distribution Learning
Input: number of steps for distribution learning τE , number of iterations for each step max iter,
learning rate for FL η learning rate for inverting gradients η1, number of reconstructed data per
epoch B1, and model parameters tθtpτqu

Output: Dreconstructed

DReconstructed Ð M attackers’ local data
DNoisy Ð Add Gaussian noise to Dreconstructed and clip data to the valid range
Train a denoising autoencoder Adenoise using Dreconstructed and Dnoisy

for τ “ 0 to τE do
Generate Ddummy with B1 random data and label pairs
Compute aggregated gradient ḡτ Ð pθtpτ´1q ´ θtpτqq{pηptpτq ´ tpτ ´ 1qqq

for i “ 0 to max iter ´ 1 do
Fdummypθq Ð 1

B1

ř

pxj ,yjqPDdummy
ℓpθ; pxj , yjqq

L Ð 1 ´
x∇θFdummypθtpτq

q,ḡτ
y

||∇θFdummypθtpτqq||¨||ḡτ ||
`

β
B1

ř

pxj ,yjqPDdummy
TV pxjq

xj Ð xj ´ η1∇xj
L, yj Ð yj ´ η1∇yj

L, @pxj , yjq P Ddummy

end for
Denoise the dummy batch Ddummy using Adenoise and add it to Dreconstructed

end for

the GradInversion method [35] and gradient inversion with a trained generative model [17] are capable
of reconstructing individual images with high fidelity from averaging gradients even for complex
datasets like ImageNet [10], deep networks, and large batch sizes. Several approaches have been
proposed to counter inference attacks. This includes methods that inject a limited amount of statistical
noise into model updates [1, 14] and approaches that learn to perturb data representation [27] such
that the data reconstructed from the perturbed representation is dissimilar to the raw data, while FL
performance is maintained. However, it is unclear if these defenses can provide sufficient protection
in the face of more advanced attacks. Further, they introduce extra overhead on the client side. On the
other hand, our attack framework only requires a rough estimate of the joint distribution of clients’
local data and can tolerate a certain level of inaccuracy in the learned dataset, which provides the
attacker with extra flexibility.

D Proof of Theorem 1

D.1 Preliminaries

Our theoretic analysis relies on the following definitions and results. First, we formally define the
Wasserstein distance [30], which will be used to measure the distance between the estimated and true
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data distributions as well as the distance between the corresponding transition dynamics introduced
by different data distributions.
Definition 1. (Wasserstein distance) Let pM, dq be a metric space and PppMq the set of all probabil-
ity measures on M with finite pth moment, then the pth Wasserstein distance between two probability
distributions µ1 and µ2 in PppMq is defined as:

Wppµ1, µ2q :“

ˆ

inf
jPJ

ż ż

dps1, s2qpjps1, s2qds1ds2

˙1{p

where J is the collection of all joint distributions j on M ˆ M with marginals µ1 and µ2.

In the following, we focus on 1-Wasserstein distance and denote W pµ1, µ2q :“ W1pµ1, µ2q. Wasser-
stein distance is also known as “Earth Mover’s distance” and measures the minimum expected distance
between two sets of points where the joint distribution is constrained to match their corresponding
marginals. Compared with Kullback-Leibler (KL) divergence and Total Variation (TV) distance,
Wasserstein distance is more sensitive to how far the points are from each other [4].

We will also need the following special form of Lipschitz continuity from [4].
Definition 2. (Lipschitz Continuity) Given two metric spaces pM1, d1q and pM2, d2q, a function
f : M1 Ñ M2 is Lipschiz continuous if the Lipschiz constant, defined as

Kd1,d2
pfq :“ sup

s1PM1,s2PM2

d2pfps1q, fps2qq

d1ps1, s2q

is finite. Similarly, a function f : M1 ˆ A Ñ M2 is uniformly Lipschitz continuous in A if:

KA
d1,d2

pfq :“ sup
aPA

sup
s1,s2

d2pfps1, aq, fps2, aqq

d1ps1, s2q

is finite.

Let M “ pS,A, T, rq be a generic MDP, where S and A denote the state space and the action space
respectively, T ps1|s, aq denotes the probability of reaching a state s1 from the current state s and
action a, and rps, a, s1q denotes the reward given the current state s, action a, and the next state s1.
We then introduce the concept of Lipschiz model class from [4], which allows us to represent the
stochastic transition dynamics of an MDP as a distribution over a set of deterministic transitions.
Definition 3. (Lipschitz model class) Given a metric state space pS, dSq and an action space A, let
Fg be a collection of functions: Fg “ tf : S Ñ Su distributed according to gpf |aq where a P A. We
say that Fg is a Lipschitz model class if

KF :“ sup
fPFg

KdS ,dS
pfq

is finite. We say that a transition function T is induced by a Lipschitz model class Fg if T ps1|s, aq “
ř

f 1pfpsq “ s1qgpf |aq for any s, s1 P S and a P A.

We will later show that the transition dynamics of our MDP model for attackers is induced by a
Lipschitz model class.

Finally we give a formal definition of finite-horizon value functions [29].
Definition 4. Given an MDP M and a stationary policy π, the value function of π at time l is defined
as V π

M,lpsq :“ Eπ,T r
řH´1

t“l rpst, atq|sl “ ss, where rps, aq :“ Es1„T p¨|s,aqrrps, a, s1qs. V π
M,lp¨q

satisfies the following backward recursion form:

V π
M,lpsq “ Ea„πpsqrrps, aq `

ÿ

s1PS

T ps1|s, aqV π
M,l`1ps1qs

with V π
M,H´1psq “ Ea„πpsqrrps, aqs. The optimal value function is defined as V ˚

M,lpsq :“

maxπ V
π
M,lpsq for any s.

To analyze the impact of inaccurate transition probabilities on the value function, we also make use
of the following lemmas [4].
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Lemma 1. Given two distributions µ1 and µ2 over states S, a transition function T induced by a
Lipschitz model class Fg is uniformly Lipschitz continuous in action space A with a constant:

KA
W,W pT q :“ sup

aPA
sup
µ1,µ2

W pT p.|µ1, aq, T p.|µ2, aqq

W pµ1, µ2q
ď KF

Lemma 2. Given a Lipschiz function f : S Ñ R with constant KdS ,dRpfq:

KA
dS ,dR

ˆ
ż

fps1qT ps1|s, aqds1

˙

ď KdS ,dRpfqKA
dS ,W pT q

Below we state the assumptions needed for establishing Theorem 1. The first assumption models the
inaccuracy of distribution learning as well as the heterogeneity of benign workers’ local data.

Assumption 1. W p rP , pPkq ď δ for any benign worker k.

We further need the following standard assumptions on the loss function.

Assumption 2. Let Z denote the domain of data samples across all the workers. For any s1, s2 P S
and z1, z2 P Z, the loss function ℓ : S ˆ Z Ñ R satisfies:

1. |ℓps1, z1q ´ ℓps2, z2q| ď L}ps1, z1q ´ ps2, z2q}2 (Lipschitz continuity w.r.t. s and z);
2. }∇sℓps1, z1q ´ ∇sℓps1, z2q}2 ď Lz}z1 ´ z2}2 (Lipschitz smoothness w.r.t. z);
3. ℓps2, z1q ě ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y ` α

2 }s2 ´ s1}22 (strong convexity w.r.t. s);
4. ℓps2, z1q ď ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y `

β
2 }s2 ´ s1}22 (strong smoothness w.r.t. s);

5. ℓp¨, ¨q is twice continuously differentiable with respect to s.

where }ps1, z1q ´ ps2, z2q}22 :“ }s1 ´ s2}22 ` }z1 ´ z2}22.

For simplicity, we further make the following assumption on the FL environment, although our
analysis can be readily applied to more general settings.

Assumption 3. The server adopts FedAvg without subsampling (w “ K). All workers have same
amount of data (pk “ 1

K ) and the local minibatch size B “ 1. In each epoch of federated learning,
each normal worker’s local minibatch is sampled independently from the local empirical data
distribution pPk.

D.2 Measuring the uncertainty: from data distributions to total returns

Let M “ pS,A, T, r,Hq denote the true MDP for attacking the federated learning system, and
ĂM “ pS,A, T 1, r1, Hq the estimated MDP used in the policy learning stage, where T 1 and r1 are
derived from the estimated joint data distribution t rPku where rPk “ pPk when k is an attacker and
rPk “ rP otherwise. Our main goal is to compare the optimal attack performance that can be obtained
from the true MDP M and that derived from the simulated MDP ĂM. We will focus on understanding
the impact of inaccurate data distributions (obtained from distribution learning) and assume that other
system parameters are known to the attackers.

Without loss of generality, we assume that the M attackers’ indexes are from K ´ M ` 1 to K. Let
rM s “ tK ´ M ` 1, ...,Ku denote the set of attackers and ϵ “ K´M

M the fraction of benign nodes.
We consider the idealized setting where the M attackers are perfectly coordinated by a single leading
attacker. Because of these simplifications, the state st in each epoch t is completely defined by the
current model parameters θt. With a slight abuse of notation, we assume S “ Θ in the following.

Let JMpπq :“ Eπ,T,µ0r
řH´1

t“0 rpst, at, st`1qs denote the expected return over H attack steps under
the MDP M, policy π and initial state distribution µ0. Let π˚ be an optimal policy of M that
maximizes JMpπq. Define J

ĂMpπq similarly and let rπ˚ be an optimal policy for ĂM, with the same
initial state distribution µ0.

Our analysis is built upon the following lemma that compares the performance of π˚ and that of rπ˚

with respect to the true MDP M. It extends a similar result in [36] to a finite-horizon MDP where the
reward in each step depends on not only the current state and action but also the next state. Note that
the lemma relies on the key assumption that both V ˚

M,lp¨q and V ˚
ĂM,l

p¨q are Lv-Lipschitz continuous
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(with respect to the l2 norm of states) for all l. That is, |V ˚
M,lps1q ´ V ˚

M,lps2q| ď Lv}s1 ´ s2}2 for
any s1, s2 P S where Lv is a constant independent of l. A similar requirement holds for V ˚

ĂM,l
p¨q. Let

W pT, T 1q :“ sup
aPA

sup
sPS

W pT p¨|s, aq, T 1p¨|s, aqq.

Lemma 3. Assume Assumption 1 and Assumption 2.1 holds and both V ˚
M,lp¨q and V ˚

ĂM,l
p¨q are

Lv-Lipschitz continuous for all l. Then,

|JMpπ˚q ´ JMprπ˚q| ď 2HrpL ` LvqW pT, T 1q ` 2Lϵδs

Proof. Let Fl be the expected return when π˚ is applied to ĂM for the first l steps, then switching to
M for l to H ´ 1. That is,

Fl “ E
at

„π˚
pstq

tăl:st`1
„T 1

pst,at
q,rt“r1

těl:st`1
„T pst,at

q,rt“r

«

H´1
ÿ

t“0

rtpst, at, st`1q

ff

By the definition of Fl, we have JM pπ˚q “ F0 and J
ĂMpπ˚q “ FH , which implies that JMpπ˚q ´

J
ĂMpπ˚q “

řH´1
l“0 pFl ´ Fl`1q. Note that

Fl “ Rl´1 ` Esl,al„T 1,π˚ rEsl`1„T psl,alqrrpsl, al, sl`1q ` V ˚
M,l`1psl`1qss

Fl`1 “ Rl´1 ` Esl,al„T 1,π˚ rEsl`1„T 1psl,alqrr1psl, al, sl`1q ` V ˚
M,l`1psl`1qss

where Rl´1 is the expected return of the first l ´ 1 steps, which are taken with respect to ĂM. Thus,

Fl ´ Fl`1 “ Esl,al„T 1,π˚ rEsl`1„T psl,alqrrpsl, al, sl`1qs ´ Esl`1„T 1psl,alqrr1psl, al, sl`1qss

` Esl,al„T 1,π˚ rEsl`1„T psl,alqrV ˚
M,l`1psl`1qs ´ Esl`1„T 1psl,alqrV ˚

M,l`1psl`1qss

Define G˚
ĂM,l

psl, alq :“ Esl`1„T psl,alqrV ˚
M,lps

l`1qs ´ Esl`1„T 1psl,alqrV ˚
M,lps

l`1qs. We have

JMpπ˚q ´ J
ĂMpπ˚q “

H´1
ÿ

l“0

pFl ´ Fl`1q

“

H´1
ÿ

l“0

Esl,al„T 1,π˚

´

Esl`1„T psl,alqrrpsl, al, sl`1qs ´ Esl`1„T 1psl,alqrr1psl, al, sl`1qs

¯

`

H´1
ÿ

l“0

Esl,al„T 1,π˚ rG˚
ĂM,l

psl, alqs

“

H´1
ÿ

l“0

Esl,al„T 1,π˚

ˆ

Esl`1„T psl,alqr
1

K

K
ÿ

k“1

pℓkpsl`1q ´ ℓkpslqqs

´ Esl`1„T 1psl,alqr
1

K

K
ÿ

k“1

ℓ1
kpsl`1q ´ ℓ1

kpslqqs

˙

`

H´1
ÿ

l“0

Esl,al„T 1,π˚ rG˚
ĂM,l

psl, alqs

“

H´1
ÿ

l“0

Esl,al„T 1,π˚

˜

Esl`1„T psl,alqr
1

K

K
ÿ

k“1

ℓkpsl`1qs ´ Esl`1„T 1psl,alqr
1

K

K
ÿ

k“1

ℓ1
kpsl`1qs

¸

`

H´1
ÿ

l“0

Esl,al„T 1,π˚

˜

1

K

K
ÿ

k“1

ℓ1
kpslq ´

1

K

K
ÿ

k“1

ℓkpslq

¸

`

H´1
ÿ

l“0

Esl,al„T 1,π˚ rG˚
ĂM,l

psl, alqs

where ℓkpsq :“ Ezk„ pPk
rℓps, zkqs, ℓ1

kpsq :“ Ezk„ rPk
rℓps, zkqs and the third equality follows from

the definition of reward function rps, a, s1q “ 1
K

řK
k“1 ℓkps1q ´ 1

K

řK
k“1 ℓkpsq, and r1ps, a, s1q “

1
K

řK
k“1 ℓ

1
kps1q ´ 1

K

řK
k“1 ℓ

1
kpsq.
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Since V ˚
M,l is Lv-Lipschitz, we have |G˚

ĂM,l
ps, aq| ď LvW pT ps, aq, T 1ps, aqq from the definition of

1-Wasserstein distance. We further have
ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

k“1

ℓ1
kpsq ´

1

K

K
ÿ

k“1

ℓkpsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

|ℓ1
kpsq ´ ℓkpsq|

“
1

K

K
ÿ

k“1

ˇ

ˇ

ˇ
Ezk„ rPk

ℓkps, zkq ´ Ezk„ pPk
ℓkps, zkq

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

LW p rPk, pPkq

ď Lϵδ,

where the second inequality follows from the definition of 1-Wasserstein distance and Assumption 2.1,
and the last inequality follows from Assumption 1 and the fact that rPk “ pPk for any attacker k.
Similarly, we have

ˇ

ˇ

ˇ

ˇ

ˇ

Es1„T ps,aq

«

1

K

K
ÿ

k“1

ℓkps1q

ff

´ Es1„T 1ps,aq

«

1

K

K
ÿ

k“1

ℓ1
kps1q

ffˇ

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

ˇ

ˇEs1„T ps,aqrℓkps1qs ´ Es1„T 1ps,aqrℓ1
kps1qs

ˇ

ˇ

“
1

K

K
ÿ

k“1

ˇ

ˇ

ˇ
Es1„T ps,aq,zk„ pPk

rℓkps1, zkqs ´ Es1„T 1ps,aq,zk„ rPk
rℓkps1, zkqs

ˇ

ˇ

ˇ

ďLpW pT, T 1q ` ϵδq,

where the last inequality follows Assumption 1, Assumption 2.1, and the property of 1-Wasserstein
distance with respect to product measures. Combining the above results, we have

JMpπ˚q ´ J
ĂMpπ˚q ď HpLv ` LqW pT, T 1q ` 2HLϵδ.

A similar argument shows that

J
ĂMprπ˚q ´ JMprπ˚q ď HpLv ` LqW pT, T 1q ` 2HLϵδ.

Let U :“ HpLv ` LqW pT, T 1q ` 2HLϵδ. We have

JMpπ˚q ď J
ĂMpπ˚q ` U ď J

ĂMprπ˚q ` U ď JMprπ˚q ` 2U.

As indicated in [36], an important obstacle to applying Lemma 3 to real reinforcement learning
problems is to bound the Lipschitz constant Lv for optimal value functions. Further, we need to
bound W pT, T 1q, the 1-Wasserstein distance between two transition functions. We study these two
problems in the following two subsections, respectively.

D.3 Lipschitz constants of value functions

In this section, we show that the Lipschitz constant Lv can be upper bounded for any optimal value
function in our setting. We first rewrite the update of model parameters in each epoch of FedAvg as
follows:

fzps, tg̃iuiPrMsq :“ s ´ η
1

K

«

K´M
ÿ

k“1

∇sℓps, zkq `

K
ÿ

k“K´M`1

g̃k

ff

(1)

where s denotes the parameters of the current global model, z “ tzku denotes the set of data points
sampled by each worker. Note that the above equation gives the one-step deterministic transition
when the data samples are fixed. An important observation is that the transition function T is induced
by a Lipschitz model class Fg “ tfz : z P ZKuwith gpfz|aq equal to the probability that z is
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sampled according to the joint distribution
ś

kPrKs
pPk. Similarly, T 1 is induced by Fg1 “ tfz :

z P ZKu with g1pfz|aq equal to the probability that z is sampled according to the joint distribution
rPK´M

śK
k“K´M`1

pPk. This observation allows us to apply the techniques in [4] to bound the
Lipschitz constant Lv of an optimal value function once we bound the Lipschitz continuity of
individual fz .

We first show that for any joint action a “ tg̃iuiPrMs, the deterministic transition fzp¨, aq is Lipschitz
continuous with a Lipschitz constant KdS ,dS

pfzp¨, aqq that can be upper bounded independent of z.

Lemma 4. Assume Assumptions 2.3, 2.4, and 2.5 hold. For any Lipschitz model class Fg “ tfz :
z P ZKu, we have KF ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u.

Proof. It suffices to show that for any action a, KdS ,dS
pfzp¨, aqq ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u. By

(1), we have for any s1, s2 P S,

}fzps1, aq ´ fzps2, aq}2 “

›

›

›

›

›

s1 ´ η
1

K

K´M
ÿ

k“1

∇sℓps1, zkq ´ ps2 ´ η
1

K

K´M
ÿ

k“1

∇sℓps2, zkqq

›

›

›

›

›

2

paq

ď
1

K

K´M
ÿ

k“1

}s1 ´ η∇sℓps1, zkq ´ ps2 ´ η∇sℓps2, zkqq}2

pbq
“

1

K

K´M
ÿ

k“1

›

›

›

›

ˆ

I ´ η
B2ℓps̄, zkq

Bs2

˙

ps1 ´ s2q

›

›

›

›

2

pcq

ď
1

K

K´M
ÿ

k“1

›

›

›

›

I ´ η
B2ℓps̄, zkq

Bs2

›

›

›

›

2

}s1 ´ s2}2

where (a) follows from the triangle inequality, (b) follows from the fact that ℓps, zq is twice contin-
uously differentiable with respect to s and the mean value theorem, where s̄ is a point on the line
segment connecting s1 and s2, and I is the identity matrix with its dimension equal to the dimension
of the model parameters, and (c) is due to the Cauchy–Schwarz inequality.

By the strong convexity and smoothness of ℓps, zq with respect to s, the eigenvalues of B
2ℓps̄,zkq

Bs2 are
between α and β [22]. It follows that

›

›

›

›

I ´ η
B2ℓps̄, zkq

Bs2

›

›

›

›

2

ď maxt|1 ´ ηα|, |1 ´ ηβ|u, @k

Therefore, for any s1, s2,

}fzps1, aq ´ fzps2, aq}2

}s1 ´ s2}2
ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u

By Definition 2, we then have

KdS ,dS
pfzp¨, aqq :“ sup

s1,s2

}fzps1, aq ´ fzps2, aq}2

}s1 ´ s2}2

ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u

Note that by using a small enough learning rate η, KF can be made less than 1 so that the one-step
deterministic transition becomes a contraction. We next show that the optimal value function V ˚

M,lp¨q

has a bounded Lipschitz constant. Note that the bound is independent of M; hence it also applies to
V ˚

ĂM,l
p¨q

Lemma 5. Assume Assumptions 2.1, 2.3, 2.4, and 2.5 hold. The optimal value function V ˚
M,lp¨q is

Lipschitz continuous with a Lipschitz constant bounded by
řH´l´1

t“0 pKF qtpL ` LKF q.
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Proof. The proof is adapted from the proof of Theorem 3 in [4]. Let Qπ
M,lps, aq :“

rps, aq `
ř

s1PS T ps1|s, aqV π
M,l`1ps1q denote the state-action value function, where rps, aq “

Es1„T ps1|s,aqrrps, a, s1qs. We have for the optimal state-action value function

Q˚
M,lps, aq “ rps, aq `

ÿ

s1PS

T ps1|s, aqmax
a1PA

Q˚
M,l`1ps1, a1q

with Q˚
M,H´1ps, aq “ rps, aq. The Lipschitz constant of Q˚

M,l is bounded by:

KA
dS ,dR

pQ˚
M,lq ď KA

dS ,dR
prq ` KA

dS ,dR

˜

ÿ

s1PS

T ps1|s, aqmax
a1PA

Q˚
M,l`1ps1, a1q

¸

paq

ď KA
dS ,dR

prq ` KA
dS ,W pT qKA

dS ,dR
pmax
a1PA

Q˚
M,l`1q

pbq

ď KA
dS ,dR

prq ` KA
dS ,W pT qKA

dS ,dR
pQ˚

M,l`1q

ď KA
dS ,dR

prq ` KA
dS ,W pT qrKA

dS ,dR
prq ` KA

dS ,W pT qKA
dS ,dR

pQ˚
M,l`2qs

ď KA
dS ,dR

prq `

H´l´2
ÿ

t“1

pKA
dS ,W pT qqtKA

dS ,dR
prq ` KA

dS ,W pT qH´l´1KA
dS ,dR

pQ˚
M,H´1q

“

H´l´1
ÿ

t“0

pKA
dS ,W pT qqtKA

dS ,dR
prq

ď

H´l´1
ÿ

t“0

pKA
W,W pT qqtKA

dS ,dR
prq

where (a) follows Lemma 2 and (b) is due to the fact that the max operator is 1-Lipschitz, that is,
K}}8,dRpmaxpxqq “ 1 [3]. From the definition of rps, aq, we further have

|rps1, aq ´ rps2, aq| ď
1

K

K
ÿ

k“1

|ℓkps1q ´ ℓkps2q| `
1

K

K
ÿ

k“1

|Es1
1„T ps1,aqrℓkps1

1qs ´ Es1
2„T ps2,aqrℓkps1

2qs|

ď pL ` LKA
W,W pT qq}s1 ´ s2}2

where ℓkpsq :“ Ezk„ pPk
rℓps, zkqs. The first term of the second inequality comes from the

Lipschitz continuity of the loss function ℓ, which gives |ℓkps1q ´ ℓkps2q| ď L}s1 ´ s2}2 for
any k, and the second term follows from Lemma 2 by letting fpsq “ ℓkpsq, which gives
KA

dS ,dR
pEs1„T rℓkps1qsq ď LKA

W,W pT q for all k. Since the above inequality holds for any
a P A, rps, aq is uniformly Lipschitz continuous in action space A with a Lipschitz constant
KA

dS ,dR
prq ď L ` LKA

W,W pT q. Thus, KA
dS ,dR

pQ˚
M,lq ď

řH´l
t“0 pKA

W,W pT qqtpL ` LKA
W,W pT qq.

Since the optimal value function V ˚
M,lpsq “ maxaPA Q˚

M,lps, aq and the max operator is 1-

Lipschitz [3], we have KdS ,dRpV ˚
M,lq ď KA

dS ,dR
pQ˚

M,lq ď
řH´l´1

t“0 pKA
W,W pT qqtpL`LKA

W,W pT qq.
We obtain the desired result by applying Lemma 1.

The lemma immediately implies that V ˚
M,lp¨q is Lv-Lipschitz for any l where Lv ď

řH´1
t“0 pKF qtpL`

LKF q.

D.4 Wasserstein distance between transitions

In this section, we bound the 1-Wasserstein distance of transition functions. Recall that the true
transition dynamics T p¨|s, aq depends on the joint distribution

śK
k“1

pPk, while T 1p¨|s, aq depends on
rPK´M

śK
k“K´M`1

pPk. We have the following lemma.

8



Lemma 6. Assume Assumptions 1-3 hold. For any state-action pair ps, aq, the 1-Wasserstein distance
between transition dynamics T p¨|s, aq and T 1p¨|s, aq generated from the real FL environment and the
estimated environment, respectively, is bounded by ηLzϵδ, that is,

W pT p¨|s, aq, T 1p¨|s, aqq ď ηLzϵδ

Proof. Let z1 “ tz1kuk“1,...,K´M and z2 “ tz2kuk“1,...,K´M denote two data sets of normal
workers sampled from

śK´M
k“1

pPk and rPK´M respectively. Let j “
śK´M

k“1 jk denote an arbitrary
coupling between the two joint distributions that is independent across workers where jk denotes a
coupling between pPk and rP . Let J denote the set of all such couplings. Let Js denote the collection
of couplings between T p¨|s, aq and T 1p¨|s, aq generated from the couplings of joint distributions in J .
To simplify the notation, let spzq :“ fzps, aq denote the successive state given the current state-action
pair ps, aq and the sampled data z of normal workers. From the definition of 1-Wasserstein distance,
we have

W pT p¨|s, aq, T 1p¨|s, aqq
paq

ď inf
jsPJs

ÿ

ps1
1,s

1
2q

}s1
1 ´ s1

2}2jsps1
1, s

1
2q

pbq

ď inf
jPJ

ÿ

pz1,z2q

}spz1q ´ spz2q}2jpz1, z2q

“ inf
jPJ

ÿ

pz1,z2q

›

›

›
s ´

1

K
p

K´M
ÿ

k“1

∇sℓps, z1kq ` aq

´ rs ´
1

K
p

K´M
ÿ

k“1

∇sℓps, z2kq ` aqs

›

›

›

2

K´M
ź

k“1

jkpz1k, z2kq

“ inf
jPJ

ÿ

pz1,z2q

›

›

›

›

›

1

K

K´M
ÿ

k“1

∇sℓps, z1kq ´
1

K

K´M
ÿ

k“1

∇sℓps, z2kq

›

›

›

›

›

2

K´M
ź

k“1

jkpz1k, z2kq

pcq

ď
ηLz

K
inf
jPJ

ÿ

pz1,z2q

K´M
ÿ

k“1

}z1k ´ z2k}2

K´M
ź

k“1

jkpz1k, z2kq

pdq

ď
ηLz

K
inf
jPJ

ÿ

pz1,z2q

K´M
ÿ

k“1

}z1k ´ z2k}2jkpz1k, z2kq

ď
ηLz

K

K´M
ÿ

k“1

inf
jk

ÿ

pz1k,z2kq

}z1k ´ z2k}2jkpz1k, z2kq

“
ηLz

K

K´M
ÿ

k“1

W p pPk, rP q

peq

ď
ηLz

K
pK ´ Mqδ

where (a) is due to the fact that we consider a restrictive collection of couplings, (b) is due to the fact
that Js is generated from J , (c) follows from the smoothness of ℓps, zq with respect to z, (d) is due
to jkpz1k, z2kq ď 1,@k, and (e) follows from Assumption ??.

D.5 Difference between expected returns

Combining the results from the previous three sections, we have the following main result.

Theorem 1. Assume Assumptions 1-3 hold. Let JMpπq :“ Eπ,T,µ0r
řH´1

t“0 rpst, at, st`1qs denote
the expected return over H attack steps under MDP M, policy π and initial state distribution µ0.
Let π˚ and rπ˚ be optimal policies for M and ĂM respectively, with the same initial state distribution
µ0. Then,

|JMpπ˚q ´ JMprπ˚q| ď 2HϵδrpL ` LvqηLz ` 2Ls
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where Lv ď
řH´1

t“0 pKF qtpL ` LKF q and KF ď ϵmaxt|1 ´ ηα|, |1 ´ ηβ|u.

Proof. By Lemma 3, |JMpπ˚q ´ JMprπ˚q| ď 2HrpL ` LvqW pT, T 1q ` 2Lϵδs. From Lemma 6,
we have W pT, T 1q ď ηLzϵδ. Thus, |JMpπ˚q ´ JMprπ˚q| ď 2HrpL ` LvqηLzϵδ ` 2Lϵδs. By
Lemma 5 and the comment below it, Lv ď

řH´1
t“0 pKF qtpL ` LKF q where KF ď ϵmaxt|1 ´

ηα|, |1 ´ ηβ|u.

E Experiments

E.1 Experiment setup

Datasets. We consider four real world datasets: MNIST [19], Fashion-MNIST [32], Balanced
EMNIST [9], and CIFAR-10 [18], and a synthetic dataset. Both MNIST and Fashion-MNIST include
60, 000 training examples and 10, 000 testing examples, where each example is a 28ˆ28 grayscale
image, associated with a label from 10 classes. Balanced EMNIST includes 112, 800 training
examples and 18, 800 testing examples, where each example is a 28ˆ28 grayscale image, associated
with a label from 47 classes. CIFAR-10 consists of 60,000 color images in 10 classes of which there
are 50, 000 training examples and 10,000 testing examples. Details about the synthetic data are given
in Appendix E.2. For the i.i.d. setting, we randomly split the dataset into K groups, each of which
consists of the same number of training samples. For the non-i.i.d. setting, we follow the method
of [11] to quantify the heterogeneity of local data distribution across clients. Suppose there are C
classes in the dataset, e.g., C “ 10 for the MNIST, Fashion-MNIST, and CIFAR-10 datasets. We
evenly split the worker devices into C groups, where each group is assigned 1{C of training samples
as follows. A training instance with label c is assigned to the c-th group with probability q ě 1{C
and to every other group with probability p1 ´ qq{pC ´ 1q. Within each group, instances are evenly
distributed. A higher q indicates a higher non-i.i.d. degree. We set q “ 0.5 as the default non-i.i.d.
degree. To demonstrate the power of distribution learning, we assume that the set of attackers share
m true data points sampled from the training instances assigned to them. We set m “ 200 for MNIST
and Fashion-MNIST, m “ 500 for EMNIST, and m P t500, 5000u for CIFAR-10.

Federated learning setting. We adopt the following parameters for the federated learning models:
learning rate η “ 0.01 (0.05 for EMNIST and the synthetic data), total number of workers “ 100,
number of attackers “ 20, subsampling rate “ 10%, and number of total epochs “ 1000. For the
MNIST, Fashin-MNIST, and EMNIST datasets, we train a neural network classifier consisting of 8×8,
6×6, and 5×5 convolutional filter layers with ReLU activations followed by a fully connected layer
and softmax output. The cross-entropy loss is used to optimize the model. For CIFAR-10, we use
the ResNet-18 model [15]. We set the local batch size B “ 128. We implement the FL model with
PyTorch [20] and run all the experiments on the same 2.30GHz Linux machine with 16GB NVIDIA
Tesla P100 GPU. We simulate subsampling and local data sampling with different random seeds in
each test run. Error bars are reported in Figure ??(c) in the main paper. We set cross-entropy as our
default loss function, and stochastic gradient descent (SGD) as our default optimizer.

Baselines. We compare our RL-based attack (RL) with no attack (NA), and the state-of-the-
art model poisoning FL attack methods: explicit boosting (EB) [5], inner product manipulation
(IPM) [33], and local model poisoning attack (LMP) [11]. The EB attack [5] is originally proposed
for the targeted setting. We adapt it to the untargeted setting by using empirical loss as the objective,
which is optimized through multi-step gradient ascent using attackers’ local data, where the number
of steps is 5 and the step size equals to the FL learning rate η. The model update is then boosted
by a factor of K

M . We compare our RL-based attack with the full knowledge LMP [11], where the
attackers have access to not only the aggregation rule but also all normal workers’ updates. We use
the LMP attack tailored to Krum when the Krum defense is used, and the LMP attack tailored to
coordinate-wise median when the clipping median defense or the geometric median defense is used.
Further, we implement the adaptive version of LMP introduced in [8], which requires the attackers to
know the server’s updates derived from its root data, as a baseline against the FLTrust defense [8]. In
our implementation of IPM [33], we set the default boosting factor (i.e., ϵ in [33]) as 5.

We consider four representative robust aggregation rules of different types [25]: Krum [6] and
geometric median [21], both of which apply client-wise filterings to model updates, coordinate-wise
median [34], which adopts a dimension-wise filtering, and FLTrust [8], which requires the server to
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collect a small training dataset D0 (called root dataset). In the experiments, we actually consider an
extension of the vanilla coordinate-wise median where a norm clipping step [28] is first applied. This
gives a more powerful defense as we observed in experiments. We set the default clipping threshold
to 2. In geometric median [21], we set the iteration number of the smoothed Weiszfeld algorithm
for computing the geometric median [21] to 10 to balance effectiveness and efficiency. In FLTrust,
the root data is used to calculate a server model update g0 “ 1

|D0|

ř

zPD0
r∇θℓpθ; zqs in each epoch.

The aggregation weight of each received client’ update is then determined through its ReLU-clipped
cosine similarity with g0. Given that the server has no access to the true training data distribution, the
root dataset is often biased in practice. We adopt the approach in [8] to model such bias. Among the
|D0| root data samples, a fraction q0 of them are sampled from a certain class c in the training data,
and the rest are sampled from other classes with equal probabilities. For a dataset with C classes, D0

is unbiased only when q0 “ 1{C. We set the size of root dataset |D0| “ 100 following [8].

Distribution learning setting. In distribution learning, we set the step size for inverting gradients
η1 “ 0.05, the total variation parameter β “ 0.02, optimizer as Adam, the number of iterations for
inverting gradients max iter “ 10, 000, and learn the data distribution from scratch. The number of
steps for distribution learning is set to τE “ 100. 32 images are reconstructed (i.e., B1 “ 32) and
denoised in each FL epoch. If no attacker is selected in the current epoch, the aggregate gradient
estimated from previous model updates is reused for reconstructing data. To build the denoising
autoencoder, a Gaussian noise sampled from 0.3N p0, 1q is added to each dimension of images in
Dreconstructed, which are then clipped to the range of [0,1] in each dimension.

Policy learning setting. In policy learning, we implement our simulated environment with OpenAI
Gym [7] and adopt OpenAI Stable Baseline3 [23] to implement Twin Delayed DDPG (TD3) [12]
and Proximal Policy Optimization (PPO) [24] algorithms. We find that TD3 gives better results in
most cases and report the results for TD3 below. The default parameters are described as follows: the
length of simulating environment = 1, 000 epochs, policy learning rate = 1e ´ 7, the policy model is
MultiInputPolicy, batch size = 256 and gamma = 1 for updating the target networks.

As described in Section 4.3, we compress the MDP state to include the parameters of the last hidden
layer of θtpτq and the number of attackers sampled, mtpτq, where each last hidden layer parameter
is in r´8,`8s and mtpτq is in t0, . . . , 10u. In our experiment, we restrict all attackers to take the
same action in each epoch. In solving the local search problem, we fix the number of trajectories
G “ 1 and the size of minibatch rB “ 200 (except for FLTrust where rB “ 500).

For the Krum, clipping median, and geometric median defenses, the local search objective is F pθq “

Ez„ rP rℓpθ; zqs (i.e., λ “ 0). In this case, the action space becomes pγ,Eq, where γ P r0, 10s and
E P t0, . . . , 20u for the Krum defense, and γ P r0, 10s and E P t0, . . . , 50u for the clipping median
and geometric median defenses. Since TD3 can only be applied to a continuous action space, we
consider a continuous interval for E (e.g., E P r0, 20s for Krum) when updating the policy and round
its value to an integer in the feasible range before the action is applied.

For FLTrust, we consider two cases, when the attackers have access to the server’s root data D0 or
equivalently, the model update g0 in each epoch, and when they only know how D0 is sampled from
the true training data distribution. Note that even the former setting is more realistic than the adaptive
LMP setting in [8], which also requires access to normal workers’ updates. In the former case, we
slightly modify the local search method described in Section ?? by fixing γpθtpτqq “ }g0pθtpτqq}2

and considering the same local search objective Lpθq :“ p1 ´ λqF pθq ` λ cospθtpτq ´ θ, g0pθtpτqqq

with the extra constraint that }θtpτq ´ θ}2 ď }g0pθtpτqq}2. This is because FLTrust normalizes
all the local model updates using the magnitude of the root update. In the latter case, we use the
same objective but approximate g0pθtpτqq with E

z
q0
„ rP

r∇θℓpθ
tpτq; zqs, where q0 models the bias of

root data, which is assumed to be known to the attackers. In both cases, the action space is then
pE, λq with E P t0, . . . , 20u and λ P r0, 1s. We further find that when the root data D0 is known
(or can be well approximated), the RL-based attack can be made more efficient by considering an
alternate local search objective Lpθq :“ p1´λqF pθq ´λF0pθq, where F0pθq “ 1

|D0|

ř

zPD0
rℓpθ; zqs

is the empirical loss associated with the root data. Intuitively, the attackers aim to push the model
parameters towards the region that can overfit the root data.

In our experiments, the initial model for all training episodes is set as the first model the attackers
received from the actual FL environment. We assume that the server waits for 72 seconds to receive
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Figure 1: A comparison of global model accuracy on Fashion-MNIST under Krum and clipping median for
both i.i.d. data and non-i.i.d. data. All parameters are set as default.

Figure 2: A comparison of global model accuracy on EMNIST under Krum and clipping median for both i.i.d.
data and non-i.i.d. data. All parameters are set as default.

the updates from the workers before performing a model aggregation, which allows 80, 000 total time
steps (i.e., 80 episodes) of policy learning for Krum, 40, 000 total time steps (i.e., 40 episodes) of
policy learning for clipping median, and 40, 000 total time steps (i.e., 40 episodes) of policy learning
for FLTrust within 400 FL epochs in our experiment setting. It is more time consuming to train
an RL policy for clipping median and FLTrust because large attack bounds need to be considered.
See E.2 for a detailed comparison of the running time of different stages of the RL-based attack under
different defense scenarios.

Attack execution setting. Both the distribution learning and policy learning phases in the RL-based
attack start at the first FL epoch. The former ends at the 100th FL epoch when RL-based attack starts.
All other attacks start at epoch 0. For fair comparisons, we fix all the random seeds for generating the
initial model and the root data (for FLTrust), subsampling, and local data sampling when evaluating
different attacks. We observe that both EB and RL can occasionally produce NaNs in model updates,
which when incorporated by the server, can lead to bad models in all future steps. This produces
unrealistic attack scenarios as NaNs can be easily detected by the server. To have a fair comparison
with other attacks, we use the built-in VecCheckNan Wrapper in OpenAI Stable Baseline3 [23] to
detect abnormal values. We assume that attackers take less ambitious actions (i.e., p0.5γ,E ´ 1q)
in that epoch once they detect a NaN value. If E “ 0 or γ “ 0, the attackers send rgtpτq “ 0 to the
server.

E.2 More experiment results

Attack performance on other datasets. Figures 1 and 2 compare the test accuracy of the global
model under different attacks when the server uses Krum or clipping median as the defense for the
Fashion-MNIST and EMNIST datasets. We consider both i.i.d. and non-i.i.d. (q “ 0.5) settings.
Our RL-based attack constantly outperforms other baselines by a large margin in all the settings.
We observe that in most cases, all attacks are more effective in the non-i.i.d. setting. This is mainly
because a higher degree of local data heterogeneity increases the variance across normal workers’
updates, making it more difficult to filter out adversarial updates. Further, clipping median, which
adopts both dimension-wise filtering and client-wise norm clipping to model updates, provides a
stronger level of defense than Krum, which only applies client-wise filtering to model updates. In
particular, our attack can reduce the model accuracy to an extremely low level under the Krum
defense, depending on the number of classes of the dataset used („10% for Fashion-MNIST and
„2% for EMNIST).

Figure 3 compares the test accuracy of the global model under different attacks for the CIFAR-10
dataset in the i .i .d . setting. Here we assume that our RL-based attack does not perform distribution
learning, and the attackers use their local data to train the attack policy and start to execute attack at
epoch 100. This is mainly due to the fact that image reconstruction for CIFAR-10 takes prohibitive
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Figure 3: A comparison of global model accuracy on CIFAR-10 under the Krum and clipping median defenses.
The RL policy is trained using 500 or 5,000 local samples without distribution learning.

(a) (b) (c) (d)

Figure 4: More results on different defenses. (a) Attack performance on MNIST under the geometric median
defense. (b) Attack performance on MNIST under the clipping median defense and noisy gradients. (c) and (d)
Attack performance on EMNIST under FLTrust defense with unbiased and biased root data.

amount of time in our experiment environment. Further, state-of-the-art gradient inversion attacks
either cannot reconstruct a large batch of images for CIFAR-10 accurately or have not made their
code available yet. We consider two cases where 500 and 5,000 local samples are used to train the
attack policy, respectively. We observe that in both cases, our approach surpasses all the baselines. In
particular, the RL policy trained using only 500 local samples quickly drives the model accuracy to a
very low level („%9.52) under the Krum defense.

Attack performance under geometric median. We compare the attack performance of RL-based
attack and other baselines (i.e., NA, EB, IPM, and LMP) against geometric median [21] on MNIST
dataset in the i.i.d. setting. As shown in Figure 4(a), RL-based attack and LMP significantly
outperform other baselines. Further, although our RL-based attack starts attacking at the 100th epoch,
it quickly drives the model accuracy to a very low level, while LMP takes much longer time to achieve
similar attack performance.

Attack performance under noisy gradients. We also compare the attack performance of our
RL-based attack and other baselines against clipping median aggregation (with the clipping threshold
set to 2) under noisy gradients [31]. In particular, the server injects noise into the global model
parameters shared with clients, where the noise is sampled from a Laplace distribution [2] (i.e., double
exponential distribution) with 0 mean and 1e´ 4 exponential decay. We observe that although adding
noise indeed decreases the quality of reconstructed images, distribution learning is still effective for
the MNIST dataset. Further, our RL-based method still outperforms other baselines in this setting as
shown in Figure 4(b).

Attack performance under FLTrust. We compare the attack performance of our RL-based attack
with and without access to server’s root data (details are given in E.1 policy learning setting) and other
baselines (i.e., NA, IPM, and adaptive LMP) against the FLTrust defense on the EMNIST dataset. For
RL-based attacks, the attackers use 5,000 local data samples to simulate the environment and skip
the distribution learning phase, and start attacking at FL epoch 100. All the baselines start from the
beginning of FL. We consider both the cases when the root data are unbiased (q0 “ 1{47) and when
they are biased against a single class (q0 “ 0.3). In the former case, our attack with access to root
data leads to a significantly low test accuracy („50%) as shown in Figure 4(c), while other attacks,
including RL-based attack without access to root data, have limited effect against FLTrust. This is
due to the fact that when the root data are unbiased and representative of the true training dataset,
the root update g0 in each epoch provides a good estimate of the right direction for model updates,
making it difficult to reverse the trend. On the other hand, when the root data is biased, which is
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Figure 5: Classification boundaries of the final model on the synthetic data under various attacks and the
clipping median defense. The classification accuracy of the final model: 100% (NA), 96.70% (IPM), 89.04%
(LMP), 88.04% (RL with 2d actions), and 68.90% (RL with 28-dimensional actions). All parameters are set as
default.

likely to happen in practice, the root updates are less representative or even misleading. As shown
in Figure 4(d), our RL-based attack with root data access becomes more effective as expected. Our
RL-based attack without root data also achieves significant although unstable attack performance.
Here we ignore the second term in the local search objective Lpθq by fixing λ “ 0 to minimize the
impact of inaccurate estimate of g0.

Actual runtime comparison. The actual runtime varies across the FL environment, the training
method used, and most importantly, the amount of computational resource available. The tables
below report the numbers from our current experiment settings (see Appendix E.1) and the way the
simulator is implemented (clients are simulated sequentially in each FL epoch).

For MNIST, Fashion-MNIST, and EMNIST, distribution learning takes around 100 seconds to
reconstruct a batch of 32 images and we construct 50 batches within 2 hours. Note that multiple
batches can be generated from a single gradient. We start policy training from the beginning of FL
training, and we set 8 hours limit for policy training. It takes around 0.05 seconds to simulate a single
FL epoch with 10 sampled clients without parallelization. Total training steps vary across defense
policies as stated in Appendix E.1.

With the above numbers, if we assume that each FL epoch takes 72 seconds to finish and there are in
total of 1000 FL epochs during FL training, then distribution learning will end before the 100th FL
epoch and policy training ends by the 400th FL epochs, and the total FL training time is around 20
hours.

Stages FL Epochs Real Time
Distribution Learning 100 ď 2 hours

Policy Learning 400 ď 8 hours
Total FL Training 1000 20 hours

Table 1: The running time of each stage in our RL-based attack in terms of FL epochs and real
running time for small networks.

For CIFAR-10, we do not perform distribution learning in this work and policy learning alone
takes about 20 hours in our experiment environment as we use a much bigger network (i.e., Resnet-
18). However, we expect that once equipped with more powerful devices, the training time can be
significantly reduced by parallelly simulating multiple clients using multiprocessing and multiple
episodes using vectorized environments, which will make it possible to simulate large FL systems.

In terms of attack executing time, for MNIST with clipping median defense, IPM takes around 0.25
seconds to execute an attack in each FL epoch, LMP takes around 7.7 seconds, EB takes around 0.5
seconds. For CIFAR-10 with clipping median defense, IPM takes around 2.55 seconds to execute an
attack in each FL epoch, LMP takes around 30 seconds, EB takes around 5.5 seconds. The execution
time of our RL-based method varies over the action space used and it takes around 5.8 seconds and 6
seconds for MNIST and CIFAR-10 respectively with the default action space described in Section ??.
Given that each FL epoch typically lasts a minute or longer (72 seconds in our experiment), a few
seconds of search time is completely acceptable. We observe that for defenses such as Krum, it
suffices to use the gradients of the last two layers of model parameters as the action. This approach
does not require any online searching and reduces the attack execution time to 0.5s.
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Attacks MNIST CIFAR-10
IPM 0.25s 2.5s
LMP 7.7s 30s
EB 0.5s 5.5s
RL 5.8s 6s

Table 2: Execution time of various attacks against the clipping median defense for the MNIST and
CIFAR-10 datasets.

Figure 6: Classification boundaries of the final model on the synthetic data under various attacks and the
FLTrust defense. The classification accuracy of the final model: 100% (NA), 100% (IPM), 100% (LMP), 100%
(RL with 2d actions), and 68.90% (RL with 28-dimensional actions). All parameters are set as default.

Attacks 5% attackers 10% attackers 20% attackers
NA 99.70% 99.02% 99.86%
IPM 99.66% 88.88% 68.96%
EB 99.68% 84.26% 70.06%

LMP 99.68% 89.38% 69.04%
RL 68.90% 68.90% 68.90%

Table 3: Global model accuracy under various attacks and the Krum defense on the synthetic dataset.

Results for the synthetic data. In addition to the four real datasets discussed above, we also
consider a two-dimensional synthetic dataset and a small network with 28 model parameters to
demonstrate the full potential of our RL-based attack framework (i.e., without state and action
compression). We generate the synthetic data based on the method described in [26]. In particular,
we generate 55, 000 data instances (including 50, 000 training instances and 5, 000 testing instances),
where for each instance z “ px, yq, the data x P R2„N p0, Iq and its label y “ signp}x}2q ´ 2. Each
worker has 500 data instances. We train a multilayer perceptron (MLP) with two hidden layers of
size four and two, respectively, and use ReLU as the activation function. For our RL-based attack,
we consider both the 2-dimensional action space pγ,Eq discussed above as well as the general 28
dimensional action space where the attackers directly decide rgtpτq to be sent to the server in each
epoch. In both cases, the state space includes the full 28 model parameters and the number of
attackers in each epoch. Policy learning takes 8, 000 total time steps (i.e., 8 episodes) to learn the
policy, within 10 FL epochs. The attackers use their local data (10, 000 samples) to build a simulated
environment without using distribution learning, and start attacking at epoch 0. We fix all random
seeds for a fair comparison across different attacks.

Figure 5 and Figure 6 illustrate the classification boundaries at the end of a federated learning episode
for all the attacks when the clipping median defense and the FLTrust defense are applied respectively.
The root dataset D0 for FLTrust is assumed to be known for RL-based attacks. We observe that all
the baseline methods and our RL-based attack with 2d actions have limited effect under clipping
median and completely fail under FLTrust. On the other hand, the RL-based attack with the full
28-dimensional action space reduces the classification accuracy to 68.90% (worst-case accuracy for
the given environment) under both defenses. These results indicate the potential of considering large
state and action spaces in our RL-based attack when equipped with more computational power and
longer training time.
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Table 3 shows how the global model accuracy under different attacks and the Krum defense varies
over the number of attackers. The results show that our approach is effective even when the fraction
of malicious clients is as low as 5%.
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