
Transformer-based Working Memory for Multiagent
Reinforcement Learning with Action Parsing

Yaodong Yang1, Guangyong Chen2,3∗, Weixun Wang4, Xiaotian Hao4, Jianye Hao4, Pheng Ann Heng1,5

1Department of Computer Science and Engineering, The Chinese University of Hong Kong
2Zhejiang Lab 3Zhejiang University 4Tianjin University

5Institute of Medical Intelligence and XR, The Chinese University of Hong Kong
yydapple@gmail.com, gychen@zhejianglab.com,

{wxwang,xiaotianhao,jianye.hao}@tju.edu.cn, pheng@cse.cuhk.edu.hk

Abstract

Learning in real-world multiagent tasks is challenging due to the usual partial
observability of each agent. Previous efforts alleviate the partial observability by
historical hidden states with Recurrent Neural Networks, however, they do not
consider the multiagent characters that either the multiagent observation consists
of a number of object entities or the action space shows clear entity interactions.
To tackle these issues, we propose the Agent Transformer Memory (ATM) network
with a transformer-based memory. First, ATM utilizes the transformer to enable
the unified processing of the factored environmental entities and memory. Inspired
by the human’s working memory process where a limited capacity of information
temporarily held in mind can effectively guide the decision-making, ATM updates
its fixed-capacity memory with the working memory updating schema. Second, as
agents’ each action has its particular interaction entities in the environment, ATM
parses the action space to introduce this action’s semantic inductive bias by binding
each action with its specified involving entity to predict the state-action value or
logit. Extensive experiments on the challenging SMAC and Level-Based Foraging
environments validate that ATM could boost existing multiagent RL algorithms
with impressive learning acceleration and performance improvement.

1 Introduction

Multiagent reinforcement learning (MARL) is a way of learning how to make sequential decisions
when multiple agents interact with the environment given the constraints of partial observability
[25]. There are many representative real-world applications of MARL including wireless network
optimization [7], autonomous driving [5] and energy distribution [29]. Partial observability has been
a long-standing challenge for reinforcement learning (RL) since the real environment state can be
partially hidden from the agent [2], and this issue becomes even worse for MARL as the involving
dynamics are more complex than single-agent RL with teammates concurrently exploring.

Typically, to tackle the partial observability, most previous efforts propose to summarize the historical
observation trajectories to provide additional information for the current local observation. For
instance, in a navigation task, the only way to distinguish two T-junctions that look identical is to
remember the past key observations before entering into either T-junction [2]. Among them, gated
Recurrent Neural Networks (RNNs) [33] serve as the most popular mechanism to represent memory
for RL [19, 10, 13] and so does for MARL [26, 31]. Given the superior performance achieved
by the transformer on sequential modeling tasks over RNNs [34], some pioneer efforts have been

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



contributed to replace RNNs with transformer as the memory structure in single-agent RL, resulting
in superior performance especially on tasks that require the long horizon reasoning ability with
sequential memory [17, 28, 3]. However, the transformer-based methods remain limited because the
computational complexity increases quadratically with the length of historical observation trajectories.
Meanwhile, these RNN-based and transformer-based works seldom consider the multiagent system
characters that the multiagent observation consists of a number of object entities and the action space
contains meaningful and clear entity interactions. In this paper, we make the first attempt to leverage
the transformer as a memory processing structure to facilitate MARL algorithms under the partially
observable setting through carefully considering the above multiagent system characters.

Our first contribution is to introduce the transformer-based working memory [17, 23] into MARL. For
the first time, we develop a unique transformer-based multiagent memory structure with the help of
the working memory updating mechanism by explicitly considering the allied agents for the factorized
multiagent observation space. Specifically, we dynamically maintain a fixed-capacity memory for
each agent and update it with the imitated human working memory process where a small amount of
information is stored in mind while working with it for effective decision making [22]. Furthermore,
considering the factored multiagent environment, we leverage the transformer to generate new
memory by uniformly processing the sequential memory slots and observed environment entities.
Additionally, with the fixed-capacity memory, the computational complexity of the transformer keeps
the same when agents continuously interact within the environment.

Our second contribution is to introduce an action semantic inductive bias and implement it with a
technique named Entity-Bound Action Layer. The main insight behind the Entity-Bound Action
Layer is that each action in the action space interacts with particular involved environment entities
according to its semantic meaning [36]. For example, in one battle scenario, an attack action mainly
causes impacts on the targeted specific enemy. Thus, we are motivated to parse the action space to
explicitly model the interaction, so that each action is uniquely bound to its targeted entity to predict
the state-action value or logit. Entity-Bound Action Layer brings lots of benefits, including increase
the computational flexibility of the policy network and making the agent’s action more explainable.

Furthermore, we find that the above contributions can be seamlessly integrated into a compact model,
what we term as Agent Transformer Memory (ATM) network, with simultaneously processing the
sequential working memory and the spatial entities, and binding unique entity embeddings to actions
by the action semantic inductive bias. Extensive experiments on the challenging SMAC and Level-
Based Foraging environments validate that ATM could be easily plugged in many existing MARL
algorithms with impressive learning acceleration and performance improvement across various tasks.

2 Background

2.1 Markov Games

Markov games are a multi-agent extension of Markov Decision Processes [16]. They are defined by
a state transition function, T : S×A1 × ...×AN → P(S), which defines the probability distribution
over all possible next states, P(S), given the current global state S and the action Ai produced by the
i-th agent. Note that the reward is usually given based on the global state and actions of all agents
Ri : S×A1 × ...×AN → R. If all agents receive the same rewards, i.e. R1 = ...= RN , Markov games
are fully-cooperative: a best-interest action of one agent is also a best-interest action of others [18].

We use the partially observable Markov games as our settings, in which each agent i receives a
local observation oi : Z(S, i)→ Oi. Thus, each agent learns a policy π i : Oi → P(Ai), which maps
each agent’s observation to a distribution over its action set, to maximize its expected discounted
returns, Ji(π i) = Ea1∼π1,...,aN∼πN ,s∼T [∑

∞
t=0 γ tri

t(st ,a1
t , ...,a

N
t )] with γ ∈ [0,1] as the discounted factor.

To help address the partial observability issue, we record the historical experience of agent i’s action-
observation τ i to provide extra information. Traditionally, an RNN such as a GRU is used in the
agent’s individual policy or Q-value function network for abstracting its historical experience [30].

2.2 Transformer

Harnessing the transformer to handle the partial observability has been investigated in RL [32, 17,
28]. The core of the transformer is the self-attention mechanism [34]. The self-attention adopts
three matrices, Q = TinWq,K = TinWk,V = TinWv representing a set of queries, keys and values

2



respectively where Tin ∈ Rne×de is the input of transformer and Wq ∈ Rde×dk , Wk ∈ Rde×dk and
Wv ∈ Rde×dv are learnable weight matrices. ne is the number of input entities while de, dk, dv denote
the dimensions of input entities, keys (or queries) and values. The attention output is computed as

Att(Q,K,V) = so f tmax(
QKT
√

dk
)V, (1)

where dk also behaves as a scaling factor. In practice, a multi-head structure is employed to allow the
model to focus on different representation sub-spaces. The multi-head attention in transformer uses
H different sets of learned projections as

Tmha =MHA(Q,K,V) = concat(head1, ...,headH)WMHA,

where headi = Att(Q,K,V;Wq
i ,W

k
i ,W

v
i ).

(2)

WMHA is the learnable matrix for the concatenated vectors from each attention head. After the
multi-head self-attention, two Add & Norm operations with residual layers are applied to compute
the transformer’s output Tout .

Tres = LN(Tmha +Tin),

Tout =LN(Tres +ReLU(Linear(Tres))),
(3)

where LN is the layer normalization and ReLU represents the ReLU activation function. Linear is a
linear layer. The transformer block outputs Tout with inputting Tin.

3 Agent Transformer Memory Network

In this section, we give a detailed description of the ATM framework as shown in Figure 1. To
handle the partial observability, ATM provides each agent with a slot-based memory to store the
past key information in τ i, which is updated by the working memory mechanism. To restrict the
computational complexity of applying the transformer on the whole trajectories, ATM uses a fixed-
capacity memory buffer M. Next, ATM embeds all the spatial entities and memory slots with relative
positional embeddings as Tin and inputs them into the transformer block. Using spatio-temporal
embeddings Tout outputted from transformer, ATM calculates individual Q-values or policy logits
with Entity-Bound Action Layer by semantically binding unique entity embeddings in Tout to actions.

3.1 Agent Transformer Memory

Here we give the detailed design of the ATM network with the compartmentalized slot-based memory
mechanism. Formally, each agent maintains its own memory buffer matrix M ∈ RnM×dM . Each row
of M is a memory slot m j with size dM where j ∈ [1,2, ...,nM], which stores the agent’s memory on
the past timesteps. There are fixed nM slots in M and the memory buffer is updated at each timestep.

When applying the transformer to handle the various observation space, we take advantage of the
rich-entity character of the multiagent environment. As shown in Figure 1’s left part, we divide
entities in the agent observation space into three spatial entity sets: oi

sel f , oi
ally and oi

ent . The self
entity oi

sel f contains agent i’s individual features and is embedded as ei
sel f via an embedding layer.

Similarly, the entities of other allied agents oi
ally contain agent i’s observation to each other agents

and are embedded as ei
ally via another embedding layer. Then the remaining entities (such as enemies

or environmental objects) oi
ent are embedded as ei

ent via another embedding layer. Besides feeding
these spatial entities into the transformer block, to enable the agent memory, we also regard agent i’s
sequential memory slots mi,1, ...,mi,nM as memory entities and input them into the transformer block
after being embedded into ei

m via an embedding layer. With the embedded sequential entities from
memory and spatial entities from the local observation, the transformer block’s input is built as

T i
in = [ei

sel f ;ei
ally;ei

ent ;ei
m]. (4)

After the transformer block updating all entity embeddings, the resulting outputting embeddings are

T i
out = T RM(T i

in) = [ei,out
sel f ;ei,out

ally ;ei,out
ent ;ei,out

m ], (5)

3



Entity-Bound 

Action Layer

Temporal Memory

𝑜𝑒𝑛𝑡
𝑖,1 𝑜𝑒𝑛𝑡

𝑖,2
𝑜𝑒𝑛𝑡
𝑖,𝑘

𝑜𝑠𝑒𝑙𝑓
𝑖

𝑜𝑎𝑙𝑙𝑦
𝑖,1 𝑜𝑎𝑙𝑙𝑦

𝑖,𝑛−1

Spatial Observation

attacked

𝑡

Memory

Self

Allies

Entities

d
u

p
licatin

g
 w

ith
 id

M
L

P
M

L
P

M
L

P

M
u

lti-H
ead

 A
tten

tio
n

A
d

d
 &

 N
o

rm

F
eed

 F
o

rw
ard

A
d

d
 &

 N
o

rm

Transformer BlockRelative Positional Embedding

…

Memory Updating

𝑄𝑖 𝜏𝑡
𝑖 ,∙

or 

π𝑖 𝜏𝑡
𝑖,∙

× 𝐿

M
L

P

𝑇𝑜𝑢𝑡

𝑇𝑖𝑛

𝑴

Figure 1: Agent Transformer Memory Network. The left part illustrates an example of an agent’s
local observation with the sequential memory M and spatial entities including itself oi

sel f , allies
oi

ally and enemies oi
ent . The right part is the network architecture of ATM. All memory slots and

observed entities are first encoded with relative sequential or spatial positions (grey squares) and
then embedded via a multi-layer perceptron (MLP). For memory or duplicated self entities, the grey
square is a one-hot ID. For allies or other entities (such as enemies), the grey square is a relative
distance between the central self entity and the allies or other entities. Next, all entity embeddings
denoted as Tin are inputted into the transformer block. Then the outputting entity embeddings Tout are
used to compute the Q-values or action probabilities with the Entity-Bound Action Layer. Meanwhile,
the working memory mechanism continuously upgrades the agent’s memory with the transformer’s
output at each timestep. "×L" means that there are L layers for the transformer block.

where T RM indicates the standard transformer block of Eq. (1), (2) and (3). Then each agent’s Tout is
used to update its memory buffer M and compute the state-action value or policy.

As the transformer processes these embedded memory and spatial entities as a set, the spatial or
sequential order information of entities would be lost if we do not encode it into the entity features.
Therefore, we treat the agent’s self entity as the central entity and encode the relative positional
embeddings into all other entities related with it. For the sequential memory entities, we perform
the one-hot embedding M = [M,I] where I is the identity matrix to indicate the passing timesteps
compared with the current timestep t. For the spatial entities, we encode the relative distances (i.e.,
the x-coordinate distance and y-coordinate distance) with the central self entity into the entity features.
Next, we elaborate the working memory updating schema with Tout of each agent.

3.2 Working Memory Updating Schema

To facilitate agents to hold past information, we imitate the working memory process in cognitive
science, which describes a cognitive system with a limited capacity that can hold information
temporarily [21, 22]. Holding information in mind and manipulating it, such a theoretical concept
has been utilized in single-agent deep reinforcement learning to alleviate the partial observability
problem and has shown to surprisingly increase the reasoning ability of agents [17, 23]. In detail,
working memory drops the oldest memory slot mnM

t and add the newest memory slot updated from
the transformer block’s output. The new memory Mt+1 is updated as

mt+1 = tanh(htWM +bM),

Mt+1 = [mt+1;Mt [: −1]],
(6)

where ht = Tout [0; ] is the self entity embedding outputted by the transformer and tanh is the tanh
activation. WM is a weight matrix and bM is a bias vector. The working memory mechanism behaves
as a first-in-first-out queue to manage the agent’s memory of the past timesteps.

4



There are two benefits of ATM compared with RNN-based networks. First, ATM effectively utilizes
the factorized structure existing in the agent observation space and employs the powerful transformer
block to handle these various meaningful entities to extract internal concurrent relations such as
coordination of teammates. Second, ATM’s multi-slot memory mechanism could provide the short-
cut recurrence to focus on longer sequential information, replacing a gated RNN’s single path of
information flow with a network of shorter self-attention paths [17].

3.3 Parsing Action by Entity-Bound Action Layer

After ATM outputting Tout , we need to calculate individual state-action values Qi or the action
probabilities of the agent’s policy π i. One common way is using linear layers to map the self entity
embedding h = Tout [0; ] to all action nodes’ values [17] (similar for the policy probability logits) of
the output layer such as

Qi = Qi(h,a),∀a ∈ A. (7)
However, mapping the self entity to all actions does not effectively utilize the aggregated spatio-
temporal embeddings from transformer as different actions may require different information. When
designing the action space, each action is given its own semantic meaning to interact with different
involved entities in the environment. Such an inductive bias of actions naturally requires to bind the
involved relevant entity embedding from Tout to the semantically corresponding actions such that

Qi = Qi(ha,a),
where ha ∈ Tout and hab ̸= hac if b ̸= c.

(8)

To realize Eq. (8), we propose the Entity-Bound Action Layer to uniquely bind the outputting entity
embeddings in Tout with actions. For each action, we map the most relevant entity embedding to it by
parsing the action (e.g. mapping the enemy entity embedding in Tout to the corresponding attacking
action in A). Then we use the bound entity embedding to compute each action’s state-action value or
probability logit via linear layers. When computing, all used entity embeddings ha ∈ Tout share the
same linear layers. If one entity maps to more than one action, we replicate this entity with one-hot
ID in Tin to make sure that each action has one unique outputting entity embedding in Tout . Figure 1
shows an example of applying the Entity-Bound Action Layer on four moving actions related to the
agent itself. The corresponding self entity in Tin is duplicated four times with ID to make sure that
each moving action could receive its unique entity embedding from Tout . Then the uniquely bound
entity embeddings in Tout are used to calculate the final state-action values or probabilities via the
shared linear layers. Using the unique entity embeddings to calculate the corresponding state-action
values or probabilities allows each action to flexibly focus on the different inputting entities such
as the memory slots or the allies via self-attention, thus improving the computational flexibility
compared with using the same outputting embedding h = Tout [0; ] to compute all actions’ values.

The Entity-Bound Action Layer is based on ATM’s factorized observation space and the compart-
mentalized memory slots, which can not be trivially implemented with RNNs on concatenated
observations. For the working memory updating schema in Section 3.2, if the self entity ei,s

t is
duplicated nsel f times in Tin to map different actions, the new memory slot is computed by averaging
all the output embeddings originated from the self entity. Then the memory is updated as

ht = mean(Tout [0 : nsel f ]),

mt+1 = tanh(htWM +bM),

Mt+1 = [mt+1;Mt [: −1]].
(9)

4 Experiment

4.1 StarCraft Multi-Agent Challenge

In this section, we evaluate our method2 in the StarCraft II decentralized micromanagement tasks and
use StarCraft Multi-Agent Challenge (SMAC) environment [31] as our testbed, which has become
a commonly-used benchmark for evaluating state-of-the-art MARL approaches. At the beginning
of each episode, the enemy units are going to attack the allies. We train multiple agents to control

2Code is available at https://github.com/CNDOTA/NeurIPS22-ATM.

5

https://github.com/CNDOTA/NeurIPS22-ATM


0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 W
in

 R
at

e

4m_vs_5m
atm-qplex
atm-qmix
gru-qplex
gru-qmix

(a) 4m_vs_5m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

5m_vs_6m
atm-qplex
atm-qmix
gru-qplex
gru-qmix

(b) 5m_vs_6m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 W
in

 R
at

e

6h_vs_8z
atm-qplex
atm-qmix
gru-qplex
gru-qmix

(c) 6h_vs_8z

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

0.0

0.2

0.4

0.6

0.8

Te
st

 W
in

 R
at

e

corridor
atm-qplex
atm-qmix
gru-qplex
gru-qmix

(d) corridor

Figure 2: Results on different StarCraft Multi-Agent Challenge scenarios.

allied units respectively to beat the enemy, while a built-in handcrafted AI controls the enemy units.
Training and evaluation schedules such as the testing episode number and training hyper-parameters
are kept unchanged. The version of StarCraft II is 4.6.2. We build ATM based on the pymarl [31] and
ATM is used as the agent network when plugged into MARL algorithms.

First, we describe the features of each entity type. In the SMAC scenarios, the exact observation
of agent i is a set of entities e where e ∈ {oi

sel f ,o
i
ally,o

i
enemy} and d(e, i)< di

sight while d(e, i) is the
distance between the entity e and agent i, and di

sight is agent’s sight range. The self entity oi
sel f

contains each agent’s own health feature, movable features, and the possible type and shield features.
Each ally entity oi

ally contains features such as the health, the distance, relative x coordinate, and
relative y coordinate between this ally and the agent itself. The other entities here are the enemies,
which have similar features as the ally entities. The meta-information such as the agent id and last
action is added into the agent’s self entity. Agents cannot share information such as their first-person
observations among themselves as we assume there is no communication. At the same time, if one
entity is in both agent i and agent j’s sight ranges, then agents i and agent j’s own local observations
include the same seen entity. The discrete set of actions that agents are allowed to take consists of
move[direction], attack[enemy id], stop and no-op. Here we assign actions of move[direction], stop
and no-op to the self entity while actions of attack[enemy id] to corresponding enemy entities. For
the memory part, we use three memory slots and four attention heads with each head having 16
hidden dimensions. Then the embedding layers are of 64 hidden dimensions. For mapping the entity
embeddings in Tout to state-action values, we use one linear layer shared by all actions’ bound entity
embeddings and set the output dimension to 1. More details are provided in the Appendix.

We test ATM with QMIX [30] and QPLEX [35], two of the most representative algorithms on SMAC.
We compare ATM with GRU, which is widely adopted in MARL algorithms in pymarl [31] and is
validated to obtain consistent advantages over MLP in SMAC [30]. We perform the experiments on
four maps: 4m_vs_5m, 5m_vs_6m, 6h_vs_8z, and corridor. The last two maps are almost the most
difficult maps where previous methods fail to learn [31]. Results are averaged over 6 independent
training runs with different random seeds and the resulting plots include the median performance as
well as the 25-75% percentiles. As shown in Figure 2, we can see that ATM consistently improves the
performance of QMIX and QPLEX on these maps. Surprisingly, ATM makes the breakthrough on
6h_vs_8z and corridor where GRU-based QMIX and QPLEX fail. The learned strategies with ATM

6



exhibit the delicate micro-manipulation. For example, in corridor, agents stand in a circle formation
to maximize their attacking damage while avoiding being attacked from behind.

4.1.1 Ablation Study of ATM

4m_vs_5m 5m_vs_6m
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

ATM
w/o EBA
w/o mem
trm

(a) ATM components.

4m_vs_5m 5m_vs_6m
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

working memory
relational memory
amrl
gru
w/o mem

(b) Memory updating schemes.

Figure 3: Ablation Study of ATM.

We also conducted the ablation study of each part of ATM, which is shown in Figure 3(a). All the
results are averaged over 6 independent training runs with different random seeds and we show the
median test win rate. The ’w/o mem’ is ATM without any memory on QMIX by setting the memory
slot number to 0. The ’w/o EBA’ is ATM without Entity-Bound Action Layer on QMIX, which
instead uses linear layers to map the self entity embedding to all action nodes’ values. The ’trm’
means that ATM degenerates to the basic transformer without memory or Entity-Bound Action Layer
on QMIX. We could see that, on this map, the memory contributes a lot to the algorithm performance
while the Entity-Bound Action Layer is also an essential technique for improving the performance. If
without the two key parts of ATM, the model degenerates to the basic transformer and gets the lowest
test win rate, which validates the effectiveness of each component of ATM.

Meanwhile, we study the effect of the memory updating schema. Besides the working memory, we
introduce another two state-of-the-art memory updating schemes from the single-agent RL (details in
Section A.1.2). The first one is relational memory [32], which is first proposed for tasks that require
complex sequential reasoning ability. The most important idea of relational memory is to allow
memory slots to interact with each other to perform complex relational reasoning with the information
they remember. The second one is AMRL [4] which uses standard memory module to summarize
short-term context, and then aggregate all prior states from the standard model without respect to
order to provide advantages both in terms of gradient decay and signal-to-noise ratio over time.
Figure 3(b) shows the results of these memory updating schemes. The working memory performs
better than others while all memory updating methods substantially exceed the ATM without memory.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

2

4

6

8

10

Ep
is

od
ic

 R
et

ur
n

4m_vs_5m

slot 0
slot 1
slot 2
slot 3
slot 4
slot 5

(a) Memory slot number on 4m_vs_5m.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

2

4

6

8

10

12

14

Ep
is

od
ic

 R
et

ur
n

5m_vs_6m

slot 0
slot 1
slot 2
slot 3
slot 4
slot 5

(b) Memory slot number on 5m_vs_6m.

Figure 4: Memory slot number study.

4.1.2 Memory Slot Number

Next, we study the impacts of the memory slot number. We test ATM with memory slot numbers
ranging from 0 to 5. The results are shown in Figure 4. We could see that when the number of

7



memory slots is larger than 0 which means with memory, ATM could obtain similar performance
and achieves best when the slot number is 3. Indeed, if the number of the memory slots increases to
the length of the past timesteps, ATM becomes a transformer over the whole sequential observation
trajectories. But Figure 4 indicates that truncated observation trajectories such as 3 timesteps are
enough while the computational complexity of the transformer increases quadratically with the length
of the historical trajectory. We set slot number at 3 for all tasks in both SMAC and LBF.

4.1.3 Attention Illustration of ATM

s e a m
Agent 1

0

2

4

6

8

10

12

14

16

18

20

22

24

26

St
ep

s e a m
Agent 2

s e a m
Agent 3

Memory Attention Heatmap

s e a m
Agent 4

s e a m
Agent 5

0.0

0.1

0.2

0.3

0.4

(a) Memory Attention

s e a m
Agent 1

0

2

4

6

8

10

12

14

16

18

20

22

24

26

St
ep

s e a m
Agent 2

s e a m
Agent 3

Attack Attention Heatmap

s e a m
Agent 4

s e a m
Agent 5

0.0

0.1

0.2

0.3

0.4

0.5

(b) Attack Action Attention

s e a m
Agent 1

0

2

4

6

8

10

12

14

16

18

20

22

24

26

St
ep

s e a m
Agent 2

s e a m
Agent 3

Move Attention Heatmap

s e a m
Agent 4

s e a m
Agent 5

0.0

0.1

0.2

0.3

0.4

0.5

(c) Move Action Attention

Figure 5: Attention heatmaps, ’s’ is agent itself, ’e’ are enemies, ’a’ are allies, and ’m’ is memory.

ATM utilizes the structure information in multiagent environment with self-attention, then the
attention weights of entities could be illustrated to indicate the inner dynamics of ATM. Here we show
how the new memory is generated by attending over entities and how the bound entities of actions
attends over entities. As shown in Figure 5(a), the new generated memory at each timestep absorbs
the enemy entities and ally entities most as the agent need to remember them. On the contrary, the
self entity is less attended to be absorbed into memory as it is never lost in the sight range. Figure 5(b)
indicates that the attack actions attend over the self, ally and enemy entities at the same time, which
is consistent with the key strategy of focused fire. Meanwhile, Figure 5(c) attend most on enemies
and allies, which means that the move actions also needs coordination. Besides, we also provide a
more detailed object-oriented translation of the agent’s decision process with entities in Appendix C.

4.2 Level-Based Foraging

We further test ATM on the classical Level-Based Foraging (LBF) tasks [1], where agents collect
foods scattered randomly in a grid world. Agents and foods are assigned levels, such that a group of
one or more agents can collect the food if the sum of their levels is greater or equal to the food’s level.
Agents can move in four directions, and have an action that attempts to load an adjacent food (the
action will succeed depending on the levels of agents attempting to load the particular food). When
one or more agents load a food, the food level is rewarded to the agents by the agent level. We test
ATM on three distinct partially observable LBF tasks with variable agents and foods. For example,
"15x15_3p_5f" means that the grid has a size 15x15 and there are 3 agents and 5 foods on the grid.
The agent’s observation space includes self entity, ally entities and food entities. We test on three
challenging maps: "15x15_3p_5f", "15x15_4p_5f" and "15x15_4p_6f" and set the sight range of
agents at 7 to introduce partial observability while ensuring that agents observe some object entities.

For the configuration of ATM, the memory slot number is 3 and 4 attention heads are used with each
head having 16 hidden dimensions. The embedding layers for the agent, allies, and food entities
are one-layer linear networks of 64 hidden dimensions. The action space of LBF is [None, North,
South, West, East, Load] and we duplicate the self entity to map each action. To map the action
entities in Tout to state-action probability logits, we use a one-layer linear network shared by all
action entities and set the hidden dimension to 1. Other hyper-parameters such as training and testing
configurations are kept the same as the best parameters reported in the epymarl [27] after a grid
search and could be referred to in Appendix. As MAPPO and MAA2C exhibit excellent performance
on almost all tasks, we plug ATM into MAPPO and MAA2C to test ATM on the two on-policy
algorithms while comparing with GRU-based and MLP-based ones. All the results are averaged over

8



5 independent runs with different random seeds for 5 million steps and the resulting plots include the
median episodic return plus 25-75% percentiles while the highest episodic return is normalized to 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
M Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ep
is

od
e 

Re
tu

rn
15x15_3p_5f

atm_maa2c
atm_mappo

gru-maa2c
gru-mappo

mlp_maa2c
mlp_mappo

(a) 15x15-3p-5f

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
M Steps

0.0

0.2

0.4

0.6

0.8

Ep
is

od
e 

Re
tu

rn

15x15_4p_5f

atm_maa2c
atm_mappo

gru-maa2c
gru-mappo

mlp_maa2c
mlp_mappo

(b) 15x15-4p-5f

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
M Steps

0.0

0.2

0.4

0.6

0.8

Ep
is

od
e 

Re
tu

rn

15x15_4p_6f

atm_maa2c
atm_mappo

gru-maa2c
gru-mappo

mlp_maa2c
mlp_mappo

(c) 15x15-4p-6f

Figure 6: Results on different Level-Based Foraging scenarios with a sight range.

Figure 6 shows the results of the LBF tasks. We could see that, with the help of ATM, the learning
speeds of MAPPO and MAA2C are improved by a large margin compared with GRU and MLP.
Notably, GRU-based MAPPO and MLP-based MAPPO fail on the "15x15_4p_6f". However, with
ATM, MAPPO easily learns from scratch. Meanwhile, ATM-MAA2C exhibits the best performance
in all the scenarios. In the LBF environment where agents have a partial sight window, ATM exhibits
superior learning speed and final performance when plugged into MAPPO and MAA2C.

5 Related Work

One of the most relevant classes of work is the single-agent RL algorithms with recurrent memory to
solve the partially observable Markov decision process (POMDP). For deep reinforcement learning
(DRL), DRQN [19] and RDPG [10] are the first two works to introduce RNNs into DRL to provide
memory for agents. R2D2 [13] then studies the representational drift and recurrent state staleness
phenomena while using LSTM in RL and proposes a "burn-in" updating method to better restore
the initial state. At the same time, the attention mechanism is exploited to help update the memory.
FRMQN [24] utilizes the key-value memory to perform the writing operation and the soft attention to
perform reading operation with the spatio-temporal context vector. As an adapted version of FRMQN,
DCRAC [23] maintains the separate external value and key memory blocks and uses the hidden state
from the LSTM and query to aggregate relevant information from memory. Furthermore, RMC [32]
employs the multi-head self-attention to let each memory attend over all of the other memories, and
update its content based on the attended information to perform sequential relational reasoning. Next,
AMRL [4] uses LSTM to summarize short-term context, and then aggregate all prior states over time
from LSTM to provide advantages both in gradient decay and signal-to-noise ratio.

Some works are also explored to build agent memory with transformer. For example, WMG [17]
uses the transformer to reason over a dynamic set of vectors representing observed and recurrent
states in single-agent DRL. At the same time, GTrXL [28] found that the standard transformer
architecture is difficult to optimize especially pronounced with RL objectives. Then they propose
the modified GTrXL with a gating technique that substantially improves the stability and learning
speed of the original transformer. Following GTrXL, CoBERL [3] and HCAM [14] use integrated
or hierarchical memory structure to help organize the internal state with more than 10 millions of
parameters. Besides online RL, transformers are also investigated in offline RL by treating RL as a
sequence modeling problem such as Decision Transformer [6] and Trajectory Transformer [12].

On the other side, transformers are introduced into MARL for offline and transfer learning. Based
on Decision Transformer, Multiagent Decision Transformer [20] studies the paradigm of offline
pre-training with online fine-tuning in MARL on the SMAC platform. UPDeT [11] utilizes a
transformer-based model to enable multiple tasks transferring in MARL through the transformer’s
strong generalization abilities. Unlike previous works in MARL using the transformer, here we focus
on designing a transformer-based memory structure for agents with local observations to boost online
MARL algorithms in the challenging partially observable environments. There are also some efforts
focusing on the partial observability in the board multiagent domain. For instance, Subramanian et
al. [8] extend the mean-filed method into the partially observable settings specially for the large-

9



scale multiagent system by maintaining a distribution over the mean action parameter. In [15], the
SPARTA Monte Carlo search procedure is proposed to improve the agreed-upon policy for Hanabi, a
cooperative partially observable card game. Besides, a model-based IPOMDP-net is designed for
multi-agent planning under partial observability with an interactive belief update mechanism [9].

6 Conclusion

In this work, we propose the Agent Transformer Memory network to handle partial observability in
MARL by specially considering the multiagent system characters. First, the transformer uniformly
aggregates the agent’s factorized observed entities and sequential memory slots to generate new
internal memory and updates memory with the working memory updating schema. Second, we utilize
Entity-Bound Action Layer to uniquely bind predefined entity with corresponding actions to compute
the state-action values or probability logits. Experiments demonstrate ATM’s excellent ability to
speed up the learning and improve the performance of MARL algorithms on various tasks.

For future works, on the one hand, it is interesting to extend the idea of the Entity-Bound Action
Layer to learn how to automatically map the ATM’s outputting entity embeddings to the unique
actions which are difficult to be configured manually or by simple heuristic rules. On the other hand,
it is promising to introduce more advanced natural language processing techniques into the MARL
framework to boost the performance of MARL algorithms by utilizing the rich semantic meanings
which naturally exist in MARL environments.

ACKNOWLEDGMENTS

The work was supported by National Key R&D Program of China (2022YFE0200700), National
Natural Science Foundation of China (Project No. 62006219), Natural Science Foundation of
Guangdong Province (2022A1515011579), and Hong Kong Innovation and Technology Fund under
Project No. ITS/170/20 and Project No. GHP/080/20SZ.

References
[1] Stefano V. Albrecht and Subramanian Ramamoorthy. A Game-Theoretic Model and Best-

Response Learning Method for Ad Hoc Coordination in Multiagent Systems. In Proceedings of
the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’13, pages 1155–1156, Richland, SC, 2013. International Foundation for Autonomous Agents
and Multiagent Systems.

[2] Bram Bakker. Reinforcement Learning with Long Short-Term Memory. In Advances in Neural
Information Processing Systems, volume 14. MIT Press, 2002.

[3] Andrea Banino, Adrià Puidomenech Badia, Jacob Walker, Tim Scholtes, Jovana Mitro-
vic, and Charles Blundell. CoBERL: Contrastive BERT for Reinforcement Learning. In
arXiv:2107.05431 [cs], July 2021.

[4] Jacob Beck, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng Zhang, and Katja
Hofmann. Amrl: Aggregated memory for reinforcement learning. In International Conference
on Learning Representations, 2020.

[5] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics,
9(1):427–438, 2012.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning
via Sequence Modeling. In Advances in Neural Information Processing Systems, 2021.

[7] Farnaz Derakhshan and Shamim Yousefi. A review on the applications of multiagent sys-
tems in wireless sensor networks. International Journal of Distributed Sensor Networks,
15(5):155014771985076, May 2019.

10



[8] Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, and Pascal Poupart. Partially
Observable Mean Field Reinforcement Learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, pages 537–545,
Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems.

[9] Yanlin Han and Piotr Gmytrasiewicz. IPOMDP-Net: A Deep Neural Network for Partially
Observable Multi-Agent Planning Using Interactive POMDPs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 6062–6069, July 2019.

[10] Nicolas Heess, Jonathan J. Hunt, Timothy P. Lillicrap, and David Silver. Memory-based control
with recurrent neural networks. In arXiv:1512.04455 [cs], December 2015.

[11] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. UPDeT: Universal Multi-agent RL
via Policy Decoupling with Transformers. In International Conference on Learning Representa-
tions, 2021.

[12] Michael Janner, Qiyang Li, and Sergey Levine. Offline Reinforcement Learning as One Big
Sequence Modeling Problem. In Advances in Neural Information Processing Systems, 2021.

[13] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent
Experience Replay in Distributed Reinforcement Learning. In International Conference on
Learning Representations, 2019.

[14] Andrew Kyle Lampinen, Stephanie C. Y. Chan, Andrea Banino, and Felix Hill. Towards mental
time travel: a hierarchical memory for reinforcement learning agents. In arXiv:2105.14039 [cs],
December 2021.

[15] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving Policies via Search in
Cooperative Partially Observable Games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7187–7194, April 2020.

[16] Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings, pages 157–163. Elsevier, 1994.

[17] Ricky Loynd, Roland Fernandez, Asli Celikyilmaz, Adith Swaminathan, and Matthew
Hausknecht. Working Memory Graphs. In Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
6404–6414. PMLR, July 2020.

[18] Laetitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Independent reinforce-
ment learners in cooperative Markov games: a survey regarding coordination problems. The
Knowledge Engineering Review, 27(1):1–31, 2012.

[19] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observable
MDPs. In AAAI Fall Symposium Series; 2015 AAAI Fall Symposium Series, 2015.

[20] Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline Pre-trained Multi-Agent Decision Transformer:
One Big Sequence Model Tackles All SMAC Tasks. In arXiv:2112.02845 [cs], December 2021.

[21] George A. Miller. The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychological Review, 63(2):81–97, March 1956.

[22] Akira Miyake and Priti Shah, editors. Models of Working Memory: Mechanisms of Active
Maintenance and Executive Control. Cambridge University Press, 1 edition, April 1999.

[23] Xiaodong Nian, Athirai A. Irissappane, and Diederik Roijers. DCRAC: Deep Conditioned
Recurrent Actor-Critic for Multi-Objective Partially Observable Environments. In Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’20, pages 931–938, Richland, SC, 2020. International Foundation for Autonomous Agents and
Multiagent Systems.

11



[24] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of Memory,
Active Perception, and Action in Minecraft. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, ICML’16, pages 2790–2799.
JMLR.org, 2016.

[25] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
SpringerBriefs in Intelligent Systems. Springer International Publishing, Cham, 2016.

[26] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
Decentralized Multi-Task Multi-Agent Reinforcement Learning under Partial Observability. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pages 2681–2690. JMLR.org, 2017.

[27] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Bench-
marking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks. In
Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021)
Track on Datasets and Benchmarks, November 2021.

[28] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayaku-
mar, Max Jaderberg, Raphaël Lopez Kaufman, Aidan Clark, Seb Noury, Matthew Botvinick,
Nicolas Heess, and Raia Hadsell. Stabilizing Transformers for Reinforcement Learning. In Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 7487–7498. PMLR, July 2020.

[29] Gauthier Picard. Designing a Marketplace for the Trading and Distribution of Energy in the
Smart Grid. In Proceedings of the 14th International Conference on Autonomous Agents and
Multiagent Systems, pages 1285–1293, 2015.

[30] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning. In Proceedings of the 35th International Conference on
Machine Learning, pages 4292–4301, 2018.

[31] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pages 2186–2188,
Richland, SC, 2019. International Foundation for Autonomous Agents and Multiagent Systems.

[32] Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Théophane Weber,
Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap. Relational Recurrent
Neural Networks. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pages 7310–7321, Red Hook, NY, USA, 2018.

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Net-
works. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, pages 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you Need. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, pages 5998–6008. Curran
Associates, Inc., 2017.

[35] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2021.

[36] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. Action Semantics Network: Considering the Effects of Actions
in Multiagent Systems. In International Conference on Learning Representations, 2020.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We claim that we propose a transformer-based memory
mechanism for MARL with considering the multiagent characters of the factored
multiagent observation and the rich-interaction action space.

(b) Did you describe the limitations of your work? [Yes] We provide the limitations of our
work in Appendix E.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The
discussion is in Appendix D.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] We provide
the environment details and method configurations such as the network structure to
reproduce our results. We implement our method and compare with baselines using
open-sourced pymarl and epymarl framework and will release our code once it is
accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We give the details of the environments and the network structure
configurations both in the Section 4 and the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In both the Figure 2 and the Figure 6, we show the error
bars of the learning curves.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite SMAC [31],

pymarl [31] and epymarl [27], etc.
(b) Did you mention the license of the assets? [Yes] We mention the licenses of SMAC,

pymarl and epymarl in the Appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [Yes] We give the URLs of SMAC, pymarl and epymarl in the
Appendix.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Background
	Markov Games
	Transformer

	Agent Transformer Memory Network
	Agent Transformer Memory
	Working Memory Updating Schema
	Parsing Action by Entity-Bound Action Layer

	Experiment
	StarCraft Multi-Agent Challenge
	Ablation Study of ATM
	Memory Slot Number
	Attention Illustration of ATM

	Level-Based Foraging

	Related Work
	Conclusion
	Additional Materials on SMAC
	Configurations on SMAC
	ATM on Different Algorithms
	Details of Other Memory Mechanism

	Parameter Number

	Configurations on LBF
	Parameter Number

	Translation of Agent's Decision Process with ATM
	Social Impacts
	Limitations

