
A Hardness of General Distribution

We first recall the following definitions:

Counting. Given input polynomial-time computable weight function w(·) and query function Q(·),
parameters α, a real number ϵ > 0, a COUNTING oracle outputs a real number Z such that

1− ϵ ≤ Z

E[σ ∼ πα]Q(σ)
≤ 1 + ϵ.

Robustness. Given input polynomial-time computable weight function w(·) and query function Q(·),
parameters α, two real numbers ϵ > 0 and δ > 0, a ROBUSTNESS oracle decides, for any α′ ∈ P [m]

such that ∥α− α′∥∞ ≤ ϵ, whether the following is true:

|E[σ ∼ πα]Q(σ)− E[σ ∼ πα′ ]Q(σ)| < δ.

Proof of Theorem 1

Theorem 1 (COUNTING ≤t ROBUSTNESS). Given polynomial-time computable weight function
w(·) and query function Q(·), parameters α and real number ϵ > 0, the instance of COUNTING,
(w,Q, α, ϵ) can be determined by up to O(1/ε2c) queries of the ROBUSTNESS oracle with input
perturbation ϵ = O(εc).

Proof. Let (w,Q, α, ϵ) be an instance of COUNTING. Define a new distribution τβ over X with a
single parameter β ∈ R such that τβ(σ) ∝ t(σ;β), where t(σ;β) = w(σ;α) exp(βQ(σ)). Since Q
is polynomial-time computable, τβ is accessible for any β. We will choose β later. For i ∈ {0, 1},
define Zi :=

∑
σ:Q(σ)=i w(σ;α). Then we have

E[σ ∼ πα]Q(σ) =
Z1

Z0 + Z1
, E[σ ∼ τβ ]Q(σ) =

eβZ1

Z0 + eβZ1
.

We further define

Y +(β, x) := E[σ ∼ τβ+x]Q(σ)− E[σ ∼ τβ ]Q(σ)

=
exeβZ1

Z0 + exeβZ1
− eβZ1

Z0 + eβZ1

=
(ex − 1)eβZ0Z1

(Z0 + exeβZ1)(Z0 + eβZ1)
=

(ex − 1)eβ

R+ (ex + 1)eβ + exe2β

R

,

where R := Z0

Z1
, and similarly

Y −(β, x) := E[σ ∼ τβ ]Q(σ)− E[σ ∼ τβ−x]Q(σ)

=
eβZ1

Z0 + eβZ1
− e−xeβZ1

Z0 + e−xeβZ1

=
(1− e−x)eβZ0Z1

(Z0 + e−xeβZ1)(Z0 + eβZ1)
=

(ex − 1)eβ

exR+ (ex + 1)eβ + e2β

R

.

Easy calculation implies that for x > 0, Y +(β, x) > Y −(β, x) if and only if R > eβ . Note that

Y +(β, x) =
ex − 1

Re−β + ex + 1 + ex+β

R

≤ ex/2 − 1

ex/2 + 1
;

Y −(β, x) =
ex − 1

Rex−β + ex + 1 + eβ

R

≤ ex/2 − 1

ex/2 + 1
.

The two maximum are achieved when R = eβ±x/2. We will choose x = O(ϵ). Define

Y (β) :=max{Y +(β, x), Y −(β, x)}

=


ex−1

Re−β+ex+1+ ex+β

R

if eβ < R;
ex−1

Rex−β+ex+1+ eβ

R

if eβ ≥ R.
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This function Y is increasing in [0, logR− x/2], decreasing in [logR− x/2, logR], increasing in
[logR, logR+ x/2] again, and decreasing in [logR+ x/2,∞) once again.

Our goal is to estimate R. For any fixed β, we will query the ROBUSTNESS oracle with parameters
(t, Q, β, x, δ). Using binary search in δ, we can estimate the function Y (β) above efficiently with
additive error ϵ′ with at most O(log 1

ϵ′ ) oracle calls. We use binary search once again in β so that it

stops only if Y (β0) ≥ ex/2−1
ex/2+1

− ε0 for some β0 and the accuracy ε0 ≤ ex/2−1
2(ex/2+1)

is to be fixed later.

In particular, Y (β0) ≥ ex/2−1
2(ex/2+1)

. Note that here ε0 is the accumulated error from binary searching
twice.

We claim that β0 is a good estimator for logR. First assume that eβ0 < R, which implies that

ex/2 − 1

ex/2 + 1
− Y (β0) =

ex/2 − 1

ex/2 + 1
− ex − 1

Re−β0 + ex + 1 + ex+β0

R

=
(ex − 1)

(ex/2 + 1)2(Re−β0 + ex + 1 + ex+β0

R )
×(

√
Re−β0 −

√
ex+β0

R

)2

=
Y (β0)

(ex/2 + 1)2

(
√
Re−β0 −

√
ex+β0

R

)2

≤ ε0.

Thus, ∣∣∣∣∣√Re−β0 −
√

ex+β0

R

∣∣∣∣∣ ≤
√

2ε0(ex/2 + 1)3

ex/2 − 1
.

Let ρ := Re−β0 . Note that ρ > 1. We choose ε0 := 1
2

(
ex/2−1
ex/2+1

)3
. Then

∣∣∣√ρ−
√
ex/ρ

∣∣∣ < ex/2− 1.

If ρ ≥ ex, then
∣∣∣√ρ−

√
ex/ρ

∣∣∣ ≥ ex/2 − 1, a contradiction. Thus, ρ < ex. It implies that

1 < R
eβ0

< ex. Similarly for the case of eβ0 > R, we have that e−x < R
eβ0

< 1. Thus in both cases,
we have our estimator e−x < R

eβ0
< ex.

Finally, to estimate E[σ ∼ πα]Q(σ) = 1
1+R with multiplicative error ϵ, we only need to pick

x := log(1 + ϵ) = O(ϵ).

B Robustness of MLN

Lagrange multipliers

Before proving the robustness result of MLN, we first briefly review the technique of Lagrange
multipliers for constrained optimization: Consider following problem P,

P: max
x1,x2

f(x1) + g(x2), s.t., x1 = x2, h(x1), k(x2) ≥ 0.

Introducing another real variable λ, we define following problem P’,

P’: max
x1,x2

f(x1) + g(x2) + λ(x1 − x2), s.t., h(x1), k(x2) ≥ 0.

For all λ, let (x∗
1, x

∗
2) be the solution of P and let (x̄1, x̄2) be the solution of P’, we have

f(x∗
1) + g(x∗

2) ≤ f(x∗
1) + g(x∗

2) + λ(x∗
1 − x∗

2) ≤ f(x̄1) + g(x̄2) + λ(x̄1 − x̄2)

Proof of Lemma 4.1

Lemma 4.1 (MLN Robustness). Given access to partition functions Z1({pi(X)}i∈[n]) and
Z2({pi(X)}i∈[n]), and a maximum perturbations {Ci}i∈[n], ∀ϵ1, ..., ϵn, if ∀i. |ϵi| < Ci, we have

17



that ∀λ1, ..., λn ∈ R,

max
{|ϵi<Ci|}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≤ max
{|ϵi|<Ci}

Z̃1({ϵi}i∈[n])

− min
{|ϵ′i|<Ci}

Z̃2({ϵ′i}i∈[n])

min
{|ϵi<Ci|}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≥ min
{|ϵi|<Ci}

Z̃1({ϵi}i∈[n])

− max
{|ϵ′i|<Ci}

Z̃2({ϵ′i}i∈[n])

where
Z̃r({ϵi}i∈[n]) = lnZr({pi(X) + ϵi}i∈[n]) +

∑
i

λiϵi.

Proof. Consider the upper bound, we have

max
{|ϵi<Ci|}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] = max
{|ϵi<Ci|}

ln

(
Z1({pi(X) + ϵi}i∈[n])

Z2({pi(X) + ϵi}i∈[n])

)
= max

{ϵi},{ϵ′i}
lnZ1({pi(X) + ϵi}i∈[n])

− lnZ2({pi(X) + ϵ′i}i∈[n])

s.t., ϵi = ϵ′i, |ϵi|, |ϵ′i| ≤ Ci.

Introducing Lagrange multipliers {λi}. Note that any choice of {λi} corresponds to a valid upper
bound. Thus ∀λ1, ..., λn ∈ R, we can reformulate the above into

max
{|ϵi<Ci|}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≤ max
{ϵi},{ϵ′i}

lnZ1({pi(X) + ϵi}i∈[n])

− lnZ2({pi(X) + ϵ′i}i∈[n])

+
∑
i

λi(ϵi − ϵ′i),

s.t., |ϵi|, |ϵ′i| ≤ Ci.

Define

Z̃1({ϵi}i∈[n]) = lnZ1({pi(X) + ϵi}i∈[n]) +
∑
i

λiϵi;

Z̃2({ϵ′i}i∈[n]) = lnZ1({pi(X) + ϵ′i}i∈[n]) +
∑
i

λiϵ
′
i,

We have the claimed upper-bound,

max
{|ϵi<Ci|}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≤ max
{|ϵi|<Ci}

Z̃1({ϵi}i∈[n])

− min
{|ϵ′i|<Ci}

Z̃2({ϵ′i}i∈[n]).

Similarly, the lower-bound can be written in terms of Lagrange multipliers, and ∀λ1, ..., λn ∈ R, we
have

min
{|ϵi<Ci|}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≥ min
{ϵi},{ϵ′i}

lnZ1({pi(X) + ϵi}i∈[n])

− lnZ2({pi(X) + ϵ′i}i∈[n])

+
∑
i

λi(ϵi − ϵ′i),

s.t., |ϵi|, |ϵ′i| ≤ Ci.

Hence we have the claimed lower-bound,

min
{|ϵi|<Ci}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≥ min
{|ϵi|<Ci}

Z̃1({ϵi}i∈[n])

− max
{|ϵ′i|<Ci}

Z̃2({ϵ′i}i∈[n]).
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C Supplementary Results for Algorithm 1

Proposition (Monotonicity). When λi ≥ 0, Z̃r({ϵi}i∈[n]) monotonically increases w.r.t. ϵi; When
λi ≤ −1, Z̃r({ϵi}i∈[n]) monotonically decreases w.r.t. ϵi.

Proof. Recall that by definition we have
Zr({pi(X) + ϵi}i∈[n]) =∑
σ∈Ir

exp

{∑
Gi∈G

wGi
(pi(X) + ϵi)σ(xi) +

∑
H∈H

wHfH(σ(v̄H))

}
where wGi(pi(x)) = log[pi(X)/(1 − pi(X))] and I1 = Σ ∧ {σ(v) = 1} and I2 = Σ. We can
rewrite the perturbation on pi(X) as a perturbation on wGi : wGi(pi(X) + ϵi) = wGi + ϵ̃i,

where

ϵ̃i = log

[
(1− pi(X))(pi(X) + ϵi)

pi(X)(1− pi(X)− ϵi)

]
.

Note that ϵ̃i is monatomic in ϵi. We also have
lnE[RMLN ({pi(X) + ϵi}i∈[n])] = lnE[RMLN ({wGi

(X) + ϵ̃i}i∈[n])]

We can hence apply the same Lagrange multiplier procedure as in the above proof of Lemma 6 and
conclude that

Z̃r({ϵi}i∈[n]) := lnZr({pi(X) + ϵi}i∈[n]) +
∑
i

λiϵi

= lnZr({wGi(X) + ϵ̃i}i∈[n]) +
∑
i

λiϵ̃i,

where ϵi ∈ [−Ci, Ci] ϵ̃i ∈ [−C ′
i, C

′
i] with C ′

i = log
[
(1−pi(X))(pi(X)+Ci)
pi(X)(1−pi(X)−Ci)

]
. We are now in the

position to rewrite Z̃r as a function of ϵ̃i and obtain
Z̃r({ϵ′i}i∈[n])

= ln
∑
σ∈Ir

exp

∑
Gi∈G

(wGi + ϵ̃i)σ(xi) +
∑
H∈H

wHfH(σ(v̄H))

+
∑
i

λiϵ̃i

= ln
∑
σ∈Ir

exp

∑
Gi∈G

wGiσ(xi) +
∑
i

(σ(xi) + λi)ϵ̃i +
∑
H∈H

wHfH(σ(v̄H))


Since σ(xi) ∈ {0, 1}, when λi ≥ 0, σ(xi)+λi ≥ 0 and Z̃r monotonically increases in ϵ̃i and hence
in ϵi. When λi ≤ −1, σ(xi) + λi ≤ 0 and Z̃r monotonically decreases in ϵ̃i and hence in ϵi.

Proposition (Convexity). Z̃r({ϵ̃i}i∈[n]) is a convex function in ϵ̃i,∀i with

ϵ̃i = log

[
(1− pi(X))(pi(X) + ϵi)

pi(X)(1− pi(X)− ϵi)

]
.

Proof. We take the second derivative of Z̃r with respect to ϵ̃i,
∂2Z̃r

∂ϵ21

=

∑
σ∈Ir

(σ(xi) + λi)
2 exp

{∑
Gj∈G wGj

σ(xj) +
∑

j(σ(xj) + λj)ϵ̃j +
∑

H∈H wHfH (σ(v̄H ))

}
∑

σ∈Ir
exp

{∑
Gj∈G wGj

σ(xj) +
∑

j(σ(xj) + λj)ϵ̃j +
∑

H∈H wHfH (σ(v̄H ))

}
−

∑
σ∈Ir

(σ(xi) + λi) exp

{∑
Gj∈G wGj

σ(xj) +
∑

j(σ(xj) + λj)ϵ̃j +
∑

H∈H wHfH (σ(v̄H ))

}
∑

σ∈Ir
exp

{∑
Gj∈G wGj

σ(xj) +
∑

j(σ(xj) + λj)ϵ̃j +
∑

H∈H wHfH (σ(v̄H ))

}

2

.

The above is simply the variance of σ(xi) + λi, namely E
[
(σ(xi) + λi)

2
]
− E [σ(xi) + λi]

2 ≥ 0.
The convexity of Z̃r in ϵ̃i follows.

19



D Image Classification on Road Sign Dataset

All the experiments shown in Appendix D - I are run on 4 RTX 2080 Ti GPUs.

Task and Dataset. For road sign classification task, the whole dataset can be viewed as a subset
of GTSRB dataset [44], which contains 12 types of German road signs {"Stop”, "Priority Road”,
"Yield”, "Construction Area”, "Keep Right”, "Turn Left”, "Do not Enter”, "No Vihicles”, "Speed
Limit 20”, "Speed Limit 50”, "Speed Limit 120”, "End of Previous Limitation”}, with 14880 training
samples, 972 validation samples and 3888 testing samples in total. Besides the road sign classes, we
construct 13 attribute classes as follows:

• Border shape classes: "Octagon”, "Square”, "Triangle”, "Circle”.
• Border color classes: "Red”, "Blue”, "Black”.
• Digit classes: "Digit 20”, "Digit 50”, "Digit 120”.
• Content classes: "Left”, "Right”, "Blank”.

Based on the indication direction from road sign classes to attribute classes, and the exclusive
relationship between attribute classes with the same type, we develop the following two types of
knowledge rules as follows:

• Indication rules (u, v): Road sign class u indicates attribute v.
• Exclusion rules (u, v): Attribute classes u and v with the same type ("Shape”, "Color”,

"Digit” or "Content”) are naturally exclusive. (e.g., One road sign can not have "Octagon”
shape and "Triangle” shape at the same time.)

Knowledge. We construct our first-order logical rules based on our predefined indication and
exclusion knowledge as follows:

• Indication edge u =⇒ v: if one object belongs to road sign class u, it should have attribute
u:

xu ∧ ¬xv = False (1)

• Exclusion edge u⊕ v: On object can not have attribute u and v at the same time:

xu ∧ xv = False (2)

Intuitive Example. Following the HEX graph-based knowledge structure and rules, we will show
several adversary scenarios which could be mitigated through the inference reasoning phase. For
instance, if the “Construction Area" object is attacked to be “Stop Sign" while other sensing nodes
remain unaffected, like the border shape is still detected as the “Triangle” shape. Then the indication
knowledge rule (The “Stop Sign" object should have the “Octagon” border shape) and the exclusive
knowledge rule (No class can have the “Triangle” border shape and “Octagon” shape at the same time)
would be violated. Such violation of the knowledge rules would discourage our pipeline to predict
“Stop Sign" as what the attacker wants. However, the sensing-reasoning pipeline may not distinguish
the “Yield", and “Construction Area" classes if the attacker fooled the “Construction Area" sensing
completely, which shows the limitation of such structural knowledge, and more knowledge would be
required in this case to help improve the robustness.
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Figure 4: PrimateNet. The knowledge structure of PrimateNet dataset. The Blue arrows represent the
Hierarchical rules between different classes, and the Red arrows represent the Exclusive rules. Some exclusive
rules are omitted due to the space limit.

E Information Extraction on Stock News

To further evaluate the certified robustness of the reasoning component, in this section we will focus
on the perturbation directly added to the reasoning component (e.g. CS in Figure 1).

Tasks and Dataset. We consider information extraction tasks in NLP based on a stock news dataset
— HighTech dataset which consists of both daily closing asset price and financial news from 2006
to 2013 [12]. We choose 9 companies with the most news, resulting in 4810 articles related to 9
stocks filtered by company name. We split the dataset into training and testing days chronologically.
We define three information extraction tasks as our sensing models: StockPrice(Day, Company,
Price), StockPriceChange(Day, Company, Percent), StockPriceGain(Day, Company).
The domain knowledge that we integrate depicts the relationships between these relations. We
describe the three information extraction tasks in details below:

• StockPrice(day, company, price) In this task, we aim to extract the daily closing price of the stock
from the article. We first extract numbers in every sentence from the article as candidate relations.
Then we label every relation by the given daily closing asset price: label the relation whose number
starts with "$" and has the minimum difference with the given closing price as positive and label
others as negative. We train a BERT-based classifier [11] as the sensing model to judge the relation
of whether the number was the closing price of the stock on that day and output the confidence.

• StockPriceChange(day, company, percent) In this task, we want to extract the percentage that
the closing price of the stock changed from the collected news articles. We first extract numbers in
every sentence from the articles as candidate relations. Then we label every relation via yesterday’s
and today’s closing asset price. We train a BERT-based classifier as the sensing model to judge the
relations of whether the number was the change rate of the closing price of the stock on that day and
output the confidence.

• StockPriceGain(day, company, gain) In this task, we want to extract information about whether
the closing price of the stock rose or fell on the day based on the news article. We treat each sentence
with the stock name and the numbers which start with "$" as a candidate. Then we judge each
relationship by whether it indicates the stock price rose or fell by counting the positive and negative
words in the sentence. We label the relation as positive: when Count(positive word) > Count(negative
words); and negative: when Count(positive word) < Count(negative words). We train a BERT-based
classifier as the sensing model and output the confidence.

• StockPriceGain(day, company, gain) In this task, we want to extract information about whether
the closing price of the stock rose or fell on the day based on the news article. We treat each sentence
with the stock name and the numbers which start with "$" as a candidate. Then we judge each
relationship by whether it indicates the stock price rose or fell by counting the positive and negative
words in the sentence. We label the relation as positive: when Count(positive word) > Count(negative
words); and negative: when Count(positive word) < Count(negative words). We train a BERT-base
classifier as the sensing model and output the confidence.

Implementation Details. To train BERT classifiers, we use the final hidden state of the first
token [CLS] from BERT as the representation of the whole input and we apply dropout with
probability p = 0.5 on this final hidden state. A fully connected layer is added to the top of BERT
for classification. To fine-tune the BERT classifiers for three information tasks, we use Adam
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optimization with a learning rate of 10−5 and weight decay of 10−4. We train our classifiers for 30
epochs with the batch size of 32.

Knowledge. We construct a new test set for the above three tasks. Specifically, for each news article,
given the current date d and company name, we extract stock price p1 on the current date, and stock
price p0 on the date before the current date. We also predict whether the stock price goes up or down
y (y = 0 if the prediction is “down” otherwise y = 1) and extract the percentage of stock price
change β. The extracted information forms a 4-tuple (p0, p1, y, β) that satisfies the following rules
(knowledge):

• Rule 1: The extracted stock price p0 and p1 (sensing model StockPrice) should be consistent
with the stock price change prediction (sensing model StockPriceGain).

y = I[p1 − p0 > 0] (3)

• Rule 2: The extracted stock price p0 and p1 (sensing model StockPrice) should be consistent
with the percentage change of stock price prediction (sensing model StockPriceChange).

p1 ≈ p0 × [1 + (−1)I[p1−p0>0] × β] (4)

Threat Model. We attack sensing models by adding perturbations on a sensing group’s top-1
confidence value P without change other choices’ confidence value on the perturbed sensing position:
P ′ = clip(P − CS , 10

−5, 1− 10−5), where CS is the perturbation scale on the confidence output of
sensing models. In our attack setting, we add perturbations to all sensing groups.

Intuitive Example. Here we show an intuitive example of how our knowledge can help improve
the ML robustness under adversarial attacks. Assume our sensors extract the correct stock price
information (p∗0, p

∗
1, y

∗, β∗), where price p∗0 > p∗1 and the stock price change is “down" (y = 0) by
β%. Now if the first stock price extraction sensor is attacked to output an incorrect prediction p′0
such that p′0 < p∗1 while other sensors remain intact; p′0 will violate our knowledge rules 1 and 2.
Specifically, the stock price change p′0 − p∗1 < 0 is inconsistent with stock price change prediction
y = 0, i.e., p′0 − p∗1 > 0. As a result, our reasoning component will reduce the confidence of
the wrong prediction p′0 and increase the confidence of the ground truth p∗0 as it is consistent with
knowledge rules, therefore potentially recovering the correct prediction of p∗0.

F Image Classification on PrimateNet Dataset

Task and Dataset. We aim to evaluate the certified robustness of our sensing-reasoning pipeline on
large-scale dataset such as ImageNet ILSVRC2012 [9]. In particular, to obtain domain knowledge
for the images, we select 18 Primate animal categories to form a PrimateNet dataset, containing
{Orangutan, Gorilla, Chimpanzee, Gibbon, Siamang, Madagascar cat, Woolly indris, Guenon, Baboon,
Macaque, Langur, Colobus, Marmosets, Capuchin monkey, Howler monkey, Titi monkey, Spider
monkey, Squirrel monkey}. Moreover, we create 7 internal classes {Greater ape, Lesser ape, Ape,
Lemur, Old-world monkey, New-world monkey, Monkey} to construct the hierarchical structure
according to the WordNet [14]. With such a hierarchical structure, we can build the Primate-class
Hierarchy and Exclusion(HEX) graph based on the concepts from [10] as shown in Fig 4. Within the
HEX graph, we develop two types of knowledge rules described as follows:

• Hierarchy rules (u, v): class u subsumes class v (e.g. Great Ape subsumes Gorilla);

• Exclusion edge (u, v): class u and class v are naturally exclusive (e.g. Gorilla cannot belong
to Great Ape and Lesser Ape at the same time).

We consider each class in the HEX graph as the prediction of one sensing model in the sensing-
reasoning pipeline, and we construct 25 sensing models as the leaf and internal nodes in the HEX
graph. Here we use the MLN as our reasoning component connecting to these sensing models.

Implementation details. For each leaf sensing model, we utilize 1300 images from the ILSVRC2012
training set and 50 images from the ILSVRC2012 dev set. We split the 1300 images into 1000 images
for training and 300 for testing. For each internal node, we uniformly sample the training images
from all its children nodes’ training images to form its training set with the same size 1300, since
there are no specific instances belonging to internal nodes’ categories in PrimateNet.
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During training, we utilize the sensing DNN model for each node in the knowledge hierarchy to output
the probability value given the input images. The models consist of a pre-trained ResNet18 feature
extractor concatenated by two Fully-Connected layers with ReLU activation. In order to provide the
certified robustness of the end-to-end sensing-reasoning pipeline, we adapt the randomized smoothing
strategy mentioned in [8] to certify the robustness of sensing models, and then compose it with the
certified robustness of the reasoning component. Specifically, we smoothed our sensing models by
adding the isotropic Gaussian noise ϵ ∼ N (0, σ2I) to the training images during training. We train
each sensing model for 80 epochs with the Adam optimizer (initial learning rate is set to 2× 10−4)
and evaluate the sensing models’ performance on the validation set containing 50 images after every
training epoch to avoid over-fitting. During testing, we certify the robustness of trained sensing
models with the same smoothing parameter σ used during model training.

Knowledge. The knowledge used in this task includes the hierarchical and exclusive relationships
between different categories of the sensing predictions. For instance, the category “Ape" would
include all the instances classified as “Greater ape, Lesser ape" (hierarchical); and there should not be
any intersection for instances predicted as “Monkey" or “Lemur" (exclusive). Thus, we build our
knowledge rules based on the structural relationships such as hierarchy and exclusion knowledge:

• Hierarchy edge u =⇒ v: If one object belongs to class u, it should belong to class v as well:

xu ∧ ¬xv = False (5)

• Exclusion edge u⊕ v: One object should not belong to class u and class v at the same time:

xu ∧ xv = False (6)

Threat Model. In this paper, we consider a strong attacker who has access to perturbing several
sensing models’ input instances during inference time. To perform the attack, the attacker will add
perturbation δ, bounded by CI under the ℓ2 norm, onto the test instance against the victim sensing
models: ||δ||2 < CI . In particular, we consider the attacker to attack α percent of the total sensing
models.

Since we apply randomized smoothing to sensing models during training, for each sensing model,
we can certify the output probability p′ as a function of the original confidence p, the bound of the
perturbation CI , and smoothing parameter σ according to Corollary 2 as below:

p′ ∈ [Φ(Φ−1(p)− CI/σ),Φ(Φ
−1(p) + CI/σ)].

Evaluation Metrics. To evaluate the certified robustness of sensing-reasoning pipeline, we focus on
the standard certified accuracy on a given test set, and the certified ratio measuring the percentage of
instances that could be certified within a certain perturbation magnitude/radius.

Based on the previous analysis, given the ℓ2 based perturbation bound CI , we can certify the output
probability of the sensing-reasoning pipeline as [L,U ]. In order to evaluate the certified robustness
of sensing-reasoning pipeline, we define the Certified Robustness, measuring the percentage of
instances that could be certified to make correct prediction within a perturbation radius, to evaluate
the certified robustness following existing work [8], which is formally defined as:∑N

i=1 I(([Ui < 0.5] ∧ [yi = 0]) ∨ ([Li > 0.5] ∧ [yi = 1]))

N
,

where N refers to the number instances and yi the ground truth label of the given instance i. I(·) is
an indicator function which outputs 1 when its argument takes value true and 0 otherwise.

Moreover, we report the Certified Ratio to measure the percentage of instances that could be certified
as a consistent prediction within a perturbation radius (even the consistent prediction might be wrong).
The Certified Ratio is defined as:

∑N
i=1 I([Ui < 0.5] ∨ [Li > 0.5])

N
.

Here the lower and upper bounds of the output probability Li and Ui indicate the binary prediction of
each sensing model. We assume when the output probability is less than 0.5, it outputs 0.
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Table 3: Benign accuracy (i.e. CI = 0, α = 0) of models with and without knowledge under different
smoothing parameters σ evaluated on PrimateNet.

σ With knowledge Without knowledge
0.12 0.9670 0.9638
0.25 0.9612 0.9554
0.50 0.9435 0.9371

Table 4: Certified Robustness and Certified Ratio under different perturbation magnitude CI and sensing model
attack ratio α on PrimateNet. The sensing models are smoothed with Gaussian noise ϵ ∼ N (0, σ̂2Id) with
different smoothing parameter σ.

(a) σ̂ = 0.12

With knowledge Without knowledge
CI α Cert. Robustness Cert. Ratio Cert. Robustness Cert. Ratio

0.12

10% 0.8849 0.9419 0.5724 0.5724
20% 0.8078 0.8609 0.5717 0.5717
30% 0.7508 0.7988 0.5706 0.5706
50% 0.6236 0.6647 0.5706 0.5706

0.25

10% 0.7888 0.8428 0.2342 0.2342
20% 0.6226 0.6657 0.2320 0.2320
30% 0.5225 0.5596 0.2309 0.2309
50% 0.3594 0.3824 0.2268 0.2268

(b) σ̂ = 0.25

With knowledge Without knowledge
CI α Cert. Robustness Cert. Ratio Cert. Robustness Cert. Ratio

0.25

10% 0.8498 0.9499 0.5314 0.5314
20% 0.7608 0.8952 0.5302 0.5302
30% 0.7217 0.8048 0.5294 0.5294
50% 0.6026 0.6747 0.5235 0.5235

0.50

10% 0.7622 0.8489 0.2024 0.2024
20% 0.5988 0.6467 0.2024 0.2024
30% 0.5324 0.5541 0.2010 0.2010
50% 0.3417 0.3615 0.2000 0.2000

(c) σ̂ = 0.50

With knowledge Without knowledge
CI α Cert. Robustness Cert. Ratio Cert. Robustness Cert. Ratio

0.50

10% 0.8288 0.9449 0.4762 0.4762
20% 0.7407 0.8488 0.4749 0.4749
30% 0.6907 0.7968 0.4736 0.4736
50% 0.5581 0.6395 0.4635 0.4635

1.00

10% 0.7307 0.8448 0.1679 0.1679
20% 0.5285 0.6336 0.1615 0.1615
30% 0.4347 0.5375 0.1612 0.1612
50% 0.2624 0.3318 0.1584 0.1584

Intuitive Example. Following the HEX graph-based knowledge structure and rules, we will show
several adversary scenarios which could be mitigated through the inference reasoning phase. For
instance, based on Figure 4, if one “Gorilla" object is attacked to be “Siamang" while other sensing
nodes remain unaffected, the hierarchical knowledge rule (An object belongs to “Great Ape" class
cannot belong to “Siamang" class) and the exclusive knowledge rule (No object could belong to “Great
Ape" and “Siamang" classes at the same time) would be violated. Such violation of the knowledge
rules would discourage our pipeline to predicting “Siamang" as what the attacker wants. However, the
sensing-reasoning pipeline may not distinguish the “Orangutan", “Gorilla", and “Chimpanzee" classes
if the attacker fooled the “Gorilla" sensing completely, which shows the limitation of such structural
knowledge, and more knowledge would be required in this case to help improve the robustness.

Evaluation Results. We evaluate the robustness of the sensing-reasoning pipeline compared with the
baseline which is consist of 25 randomized smoothed sensing models for each Primate categories
(without knowledge). We evaluate the average certified robustness of both under benign and adversar-
ial scenarios with different smoothing parameter σ̂ ∈ {0.12, 0.25, 0.50} and ℓ2 perturbation bound
CI = {σ̂, 2σ̂}. The evaluation results are shown in Table 4 and Table 3.

First, we evaluate both the sensing-reasoning pipeline and the smoothed ML model with benign test
data as shown in Table 3. It is interesting that the sensing-reasoning pipeline with knowledge even
outperforms the single model without knowledge about 0.7% over different randomized smoothing
parameter σ. It shows that even without attacks, the knowledge could help to improve the classification
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Figure 5: (PrimateNet) Histogram of the robustness margin (difference between the probability of the correct
class (lower bound) and the top wrong class (upper bound)) under perturbation. If such a difference is positive, it
means that the classifier makes the right prediction under perturbation. Evaluation is made under smoothing
parameter σ = 0.25 with ℓ2 perturbation scale CI = {σ, 2σ}. The ratio of the attacked sensors α equals to
10%, 20%, 30%, 50%.

accuracy slightly, indicating that the domain knowledge integration can help relax the tradeoff between
benign accuracy and robustness.

Next, we evaluate the certified robustness of sensing-reasoning pipeline and the smoothed ML model
considering different smoothing parameters σ̂ = {0.12, 0.25, 0.50} and the input perturbation bound
CI = {σ̂, 2σ̂} in Table 4. We can see that when the attack ratio of sensing models α is small, both
the Certified Robustness and Certified Ratio of sensing-reasoning pipeline are significantly higher
than that of the baseline smoothed ML model. In the meantime, when the sensing attack ratio α is
large (e.g. 50%) both the sensing-reasoning pipeline and baseline smoothed ML model obtain low
Certified Robustness and Certified Ratio, and their performance gap becomes small.

This is interesting and intuitive, since if a large percent of sensing models are attacked, such structure-
based knowledge, for which the solution to a given regular expression is not unique, would have
higher confidence to prefer the other (wrong) side of the prediction. As a result, it is interesting for
future work to identify more “robust" knowledge which is resilient against the large attack ratio of
sensing models, in addition to the hierarchical structure knowledge.

We also find that when CI/σ̂ is small (CI = σ̂), the model with knowledge can perform consistently
better than the baseline ML models. When CI/σ̂ is large (CI = 2σ̂), the performance gap becomes
even larger. This phenomenon indicates that sensing-reasoning pipeline could demonstrate its strength
of robustness compared to the traditional smoothed DNN against an adversary with stronger ability.

To further evaluate the strength of our certified robustness, we calculate the robustness margin — the
difference between the lower bound of the true class probability and the upper bound of the top wrong
class probability under different perturbation scales — to inspect the robustness certification (larger
difference infer stronger certification). Figure 5 shows the histogram of the robustness margin for the
model with and without knowledge under smoothing parameter σ̂ = 0.25 and different perturbation
scale CI . We leave histogram figures under other σ settings in Appendix.

From Figure 5, we can see that under different adversary scenarios, more instances could receive the
positive margin (i.e correct prediction) with sensing-reasoning pipeline, which indicates its robustness.
Moreover, we find that the sensing-reasoning pipeline could output a large margin value with high
frequency under various attacks. That means, it can certify the robustness of the ground truth class
with high confidence, which is challenging for current certified robustness approaches for single ML
models.

In addition, to evaluate the utility of different knowledge, we also develop sensing-reasoning pipeline
by using only one type of knowledge (hierarchical or exclusive relationship only) and the results are
shown in Appendix I. We observe that using partial knowledge, the robustness of sensing-reasoning
pipeline would decrease compared with that using the full knowledge.
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G Image Classification on Word50 Dataset

Task and Dataset. In addition, we also conduct experiments on Word50 dataset [6], which is
created by randomly selecting 50 words and each consisting of five characters. Here we only
pick 10 words from it to reduce the computation complexity, and the goal is to classify these
10 words. All the character images are of size 28 × 28 and perturbed by scaling, rotation, and
translation. The background of the characters is blurry by inserting different patches, which makes
it a quite challenging task. For reference, Some word images sampled from the dataset are shown
in Figure 6. The interesting property of this dataset is that the character combination is given as
the prior knowledge, which can be integrated into our sensing-reasoning pipeline. The training,
validation, and test sets contain 2, 049, 408, and 423 variations of word styles respectively.

Similar to the classification task on Road Sign dataset, we develop the following two types of
knowledge rules as follows:

• Deduction rules (u, vi): word u contains character vi on the ith position of the word.
• Exclusion rules (ui, vi): character ui and character vi are naturally exclusive on the ith

position of the word.

Implementation details. Multi-layer perceptrons (MLPs) are used as the main model architecture
for the main task that the classification of the 10 words, which is the same to [6], and the input is the
concatenation of the images of 5 characters which consist of a full word. As for the extra knowledge,
we train another five MLP models for the classification of the character on each position of the input
word, then the corresponding output dimensions for each such character classifier is 26. While during
the inference, we will only pick the top2 of the output from each character classifier, so the final input
dimension to the MLN is 10 + 5× 2 = 20 dimensions. Thus, to keep the certification probability the
same as the baseline, the ζ0 here will be set to 1− (1− 0.001)(1/20) = 5.002× 10−5.

For these sensing models, we adapt the randomized smoothing strategy [8] to give the certified
robustness guarantee of their output confidence under the ℓ2-norm bounded perturbation. The
wH is set to 2 for the deduction rules, and the corresponding fH is the identity function; while
for the exclusion rules, the wH is set to −∞, and the fH here is the negation function, namely,
fH(v) = 1− v.

Knowledge. We construct our first-order logical rules based on our predefined Deduction and
Exclusion knowledge rules:

• Deduction edge u =⇒ vi:

xu ∧ ¬xvi
= False (7)

• Exclusion edge ui ⊕ vi:

xui
∧ xvi = False (8)

Threat Model. Same to the setting of the experiments on the Stop Sign dataset, here we consider
a stronger attack scenario where the attacker can attack the main task model and all the attribute
sensors with different ℓ2-norm bounded perturbation δ : ||δ||2 < CI at the same time. Later on,
we can see our sensing-reasoning pipeline could still achieve higher end-to-end certified robustness
under even harder cases.

Given the ℓ2-norm bound CI , for each sensing model, we can bound its output probability p′ under
such perturbation, given the original probability p and the certification smoothing parameter σ
according to Corollary 2 as below:

p′ ∈ [Φ(Φ−1(p)− CI/σ),Φ(Φ
−1(p) + CI/σ)].

Evaluation Metrics. We adopt the standard certified accuracy as our evaluation metric, defined by the
percentage of instances that can be certified under any ℓ2-norm bounded perturbation δ : ||δ||2 < CI .
Specifically, given the input x with ground-truth label y, we can certify the bound of confidence on
predicting label y as [L,U ] for either a vanilla randomize smoothing-based model or our sensing-
reasoning pipeline. After that, the certified accuracy can be defined by: 1

N

∑N
i=1 I([Li > 0.5]) where

I(·) denotes the indicator function.
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Table 5: Certified accuracy under different per-
turbation magnitude CI on Word10 dataset. The
sensing models are smoothed with Gaussian noise
ϵ ∼ N (0, σ̂2Id) with different smoothing param-
eter σ̂. Rows with ∗ denote the best certified ac-
curacy among all the σ̂ ∈ {0.12, 0.25, 0.50}. (All
certificates holds with 99.9% confidence)

Methods σ CI = 0.12 CI = 0.25 CI = 0.50 CI = 1.00
0.12 58.2 49.2 0.0 0.0

Vanilla Smoothing 0.25 51.8 42.3 25.3 0.0
(w/o knowledge) 0.50 42.6 33.1 19.1 2.6

∗ 58.2 49.2 25.3 2.6
0.12 88.7 77.8 30.7 0.0

Sensing-Reasoning Pipeline 0.25 95.0 90.8 52.5 2.8
(w/ knowledge) 0.50 91.5 86.8 69.3 6.4

∗ 95.0 90.8 69.3 6.4

snack

macaw

riven
Figure 6: Several word images sampled from
Word50 dataset.

Intuitive Example. To make the example more clear, here we use pos(’a’, i) to represent that the
character ’a’ is in the ith position of the word. Then during the inference, given an input word
image, we assume the top2 characters returned from the character classifiers for each position is

’s,m’, ’n,b’, ’a,o’, ’q,a’, ’k,c’, which are shown in the order of the position. Now, for word ’snack’,
the corresponding first-order logical form of its deduction rules would be ’snack’ =⇒ pos(’s’, 1),

’snack’ =⇒ pos(’n’, 2), ’snack’ =⇒ pos(’a’, 3) and ’snack’ =⇒ pos(’k’, 5); while for other
words like ’macaw’, the corresponding rules would be ’macaw’ =⇒ pos(’m’, 1) and ’macaw’ =⇒
pos(’a’, 4). Notice, if the character of the specific word is not shown in the top2 returned characters of
its corresponding position, then there will be no deduction rule built for this word and this character.
At the meantime, when we consider the possible worlds that satisfy σ(xsnack) ∧ σ(vpos(’q’,4) = 1, we
will still consider it as a violation of the exclusive rules. In other words, even if the character ’c’ is
not shown in the top2 characters returned from the knowledge classifier in fourth position and thus
we do not build the deduction rule ’snack’ =⇒ pos(’c’, 4) explicitly at this time as said above, this
rule is still assumed to be true underlyingly.

Evaluation Results. We evaluate the robustness of the sensing-reasoning pipeline and compare
it to the baseline as a vanilla randomized smoothed main task model (without knowledge). We
train our models under different smoothing parameters σ̂ = {0.12, 0.25, 0.50} and evaluate our
sensing-reasoning pipeline under various ℓ2 perturbation magnitude CI = {0.12, 0.25, 0.50, 1.00}.
Results are show in Table 5, and as we can see, with extra knowledge, the performance is improved
tremendously which strongly demonstrates the potential of the sensing-reasoning pipeline.

H Image Classification with Constructed Knowledge Rules

For natural image datasets with no apparent knowledge rules, we can still apply our sensing-reasoning
pipeline based on some generated simple knowledge rules such as redundancy rules. For instance, we
test on MNIST and CIFAR10 dataset by constructing basic rules as follows: for MNIST, we construct
five pseudo attributes and randomly assign them to four different digits, so that each digit will exactly
contain two pseudo attributes; for CIFAR10, we randomly generate ten pseudo attributes, and each
pseudo attribute will be randomly assigned to 3 to 7 different categories. We build the indication
rules between each pseudo attribute and its corresponding digits, and the exclusion rules between
different digit classes.

During the training, we adopt the SOTA Consistency training [19] as our sensing model training
method, and build our sensing-reasoning pipeline on top of these pretrained sensing models.

From the results shown in Table 6 and Table 7, we can see that the sensing-reasoning pipeline
beats the SOTA baselines in terms of the certified robustness even with the simple and generated
knowledge rules. Generally, we should expect higher certified robustness by integrating with natural
and meaningful knowledge rules (e.g., road sign classification and information extraction tasks as
shown in our paper).
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Table 6: (MNIST) Certified accuracy under different input perturbation magnitudes (CI ).
Methods CI = 0.00 CI = 0.25 CI = 0.50 CI = 0.75 CI = 1.00 CI = 1.25 CI = 1.50 CI = 1.75 CI = 2.00

Consistency Training 99.5 98.9 98.0 96.0 93.0 87.8 78.5 60.5 41.7
Sensing-Reasoning Pipeline (Consistency) 99.6 98.2 97.6 96.3 93.5 88.2 78.9 61.2 43.2

Table 7: (CIFAR10) Certified accuracy under different input perturbation magnitudes (CI ).
Methods CI = 0.00 CI = 0.25 CI = 0.50 CI = 0.75 CI = 1.00 CI = 1.25 CI = 1.50 CI = 1.75 CI = 2.00

Consistency Training 77.8 68.8 57.4 43.8 36.2 29.5 22.9 19.7 16.6
Sensing-Reasoning Pipeline (Consistency) 78.4 70.4 56.2 46.0 37.4 29.6 25.2 21.8 18.8

I Ablation Study on Partial Knowledge Enrichment.

In PrimateNet experiments, we also investigate how Hierarchy knowledge and Exclusive knowledge
would affect the End-to-end robustness of our sensing-reasoning pipeline individually. We compare
the certified robustness and certified ratio of our sensing-reasoning pipeline enriched by {No knowl-
edge; Hierarchy knowledge only; Exclusive knowledge only; Hierarchy + Exclusive knowledge} and
the results are shown in Table 8 and 9.

From the results, we can see while partial knowledge enrichment would lead to fragile robustness
under severe scenarios (α = 0.5), complete knowledge enrichment could achieve much better
robustness compared to sensing-reasoning pipeline without knowledge enrichment. This indicates
that incomplete (or weak) knowledge, which is easy to break and hard to recover under severe
adversarial scenarios, could even harm the robustness of our sensing-reasoning pipeline. How to
explore good and robust knowledge to enrich our sensing-reasoning pipeline could be our interesting
future direction.

Table 8: Certified Robustness with different perturbation magnitude CI and sensing model attack ratio α on
PrimateNet. The sensing models are smoothed with Gaussian noise ϵ ∼ N (0, σ̂2Id) with different smoothing
parameter σ. Here “Hierarchy.” refers to the sensing-reasoning pipeline enriched by hierarchy knowledge only
while “Exclusive.” the exclusive knowledge only. “Combined.” shows the sensing-reasoning pipeline enriched
by both domain knowledge.

(a) σ̂ = 0.12

CI α No knowledge Hierarchy. Exclusive. Combined.

0.12

10% 0.5724 0.7912 0.7020 0.8849
20% 0.5717 0.6932 0.6236 0.8078
30% 0.5706 0.6280 0.5624 0.7508
50% 0.5706 0.4868 0.4320 0.6236

0.25

10% 0.2342 0.6670 0.5232 0.7888
20% 0.2320 0.4704 0.3468 0.6226
30% 0.2309 0.3632 0.3158 0.5225
50% 0.2268 0.2122 0.2004 0.3594

(b) σ̂ = 0.25

CI α No knowledge Hierarchy. Exclusive. Combined.

0.25

10% 0.5314 0.7766 0.6998 0.8498
20% 0.5302 0.6810 0.6002 0.7608
30% 0.5294 0.6278 0.5464 0.7217
50% 0.5235 0.4924 0.4126 0.6026

0.50

10% 0.2024 0.6754 0.5196 0.7622
20% 0.2024 0.4636 0.3298 0.5988
30% 0.2010 0.3680 0.2870 0.5324
50% 0.2000 0.2204 0.1652 0.3417

(c) σ̂ = 0.50

CI α No knowledge Hierarchy. Exclusive. Combined.

0.50

10% 0.4762 0.7412 0.6952 0.8288
20% 0.4749 0.6120 0.5884 0.7407
30% 0.4736 0.5410 0.5002 0.6907
50% 0.4635 0.4040 0.3862 0.5581

1.00

10% 0.1679 0.6000 0.4838 0.7307
20% 0.1615 0.3834 0.3184 0.5285
30% 0.1612 0.2920 0.2362 0.4347
50% 0.1584 0.1498 0.1404 0.2624
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Table 9: Certified Ratio with different perturbation magnitude CI and sensing model attack ratio α on
PrimateNet. The sensing models are smoothed with Gaussian noise ϵ ∼ N (0, σ̂2Id) with different smoothing
parameter σ. Here “Hierarchy.” refers to the sensing-reasoning pipeline enriched by hierarchy knowledge only
while “Exclusive.” the exclusive knowledge only. “Combined.” shows the sensing-reasoning pipeline enriched
by both domain knowledge.

(a) σ̂ = 0.12

CI α No knowledge Hierarchy. Exclusive. Combined.

0.12

10% 0.5724 0.8714 0.7320 0.9419
20% 0.5717 0.7586 0.6442 0.8609
30% 0.5706 0.6850 0.5928 0.7988
50% 0.5706 0.5270 0.4642 0.6647

0.25

10% 0.2342 0.7330 0.5482 0.8428
20% 0.2320 0.5150 0.3842 0.6657
30% 0.2309 0.4011 0.3422 0.5596
50% 0.2268 0.2322 0.2262 0.3824

(b) σ̂ = 0.25

CI α No knowledge Hierarchy. Exclusive. Combined.

0.25

10% 0.5314 0.9102 0.7254 0.9499
20% 0.5302 0.7910 0.6226 0.8952
30% 0.5294 0.7322 0.5878 0.8048
50% 0.5235 0.5670 0.4302 0.6747

0.50

10% 0.2024 0.7998 0.5322 0.8489
20% 0.2024 0.5512 0.3490 0.6467
30% 0.2010 0.4440 0.3266 0.5541
50% 0.2000 0.2632 0.1734 0.3635

(c) σ̂ = 0.50

CI α No knowledge Hierarchy. Exclusive. Combined.

0.50

10% 0.4762 0.8924 0.7128 0.9449
20% 0.4749 0.7370 0.6144 0.8488
30% 0.4736 0.6552 0.5462 0.7968
50% 0.4635 0.4938 0.4324 0.6395

1.00

10% 0.1679 0.7374 0.5204 0.8448
20% 0.1615 0.4906 0.3398 0.6336
30% 0.1612 0.3850 0.2926 0.5375
50% 0.1584 0.1996 0.1628 0.3318

J Reasoning Component as Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that represents a set of variables and their
conditional dependencies with a directed acyclic graph. Let us first consider a Bayesian Network
with tree structures, the probability of a random variable being 1 is given by

Pr [X = 1, {pi}] =
∑

x1,...xn

P (1|x1, ..., xn)
∏
i

pxi
i (1− pi)

1−xi .

In the following subsections, we will prove a hardness result of checking robustness in general MLN
and BNs and use the above definition to construct an efficient procedure to certify robustness for
binary tree BNs.

J.1 Hardness of Certifying Bayesian Networks

Analogously with the above reasoning, we can also state the general hardness result for deciding the
robustness of BNs:

Theorem 3 (BN hardness). Given a Bayesian network with a set of parameters {pi}, a set of
perturbation parameters {ϵi} and threshold δ, deciding whether

|Pr [X = 1; {pi}]−Pr [X = 1; {pi + ϵi}] | < δ

is at least as hard as estimating Pr [X = 1; {pi}] up to εc multiplicative error, with ϵi = O(εc).

29



Proof. Let α = [pi], Q(σ) = X and πα defined by the the probability distribution of a target random
variable. Since X ∈ {0, 1}, we have E[σ ∼ πα]Q(σ) = Pr [X = 1; {pi}]. The proof then follows
analogously from Theorem 1.

Based on the hardness analysis of the reasoning robustness, we can see that it is challenging to
directly certify the robustness of the reasoning component. However, just as we can approximately
certify the robustness of single ML models [25], in the next section, we will present and discuss
how to approximately certify the robustness of the reasoning component, and we show that for some
structures such as BN trees, the certification could even be tight.

J.2 Certifying Bayesian Networks

Apart from MLNs, we also aim to reason about the robustness for Bayesian networks with binary tree
structures, and derive an efficient algorithm to provide the tight upper and lower bounds of reasoning
robustness. Concretely, we introduce the set of perturbation {ϵi} on {pi} and consider the maximum
resultant probability:

max
ϵ1...ϵn

∑
x1,...xn

P (1|x1, ..., xn)
∏
i

(pi + ϵi)
xi(1− pi − ϵi)

1−xi

= max
ϵ1...ϵn

∑
x1,...xn−1

(∏
i<n

(pi + ϵi)
xi(1− pi − ϵi)

1−xi

)
×

(
P (1|x1, ..., xn−1, 0)(1− pn − ϵn) + P (1|x1, ..., xn−1, 1)(pn + ϵn)

)

= max
ϵ1...ϵn

∑
x1,...xn−1

(∏
i<n

(pi + ϵi)
xi(1− pi − ϵi)

1−xi

)
×

(
P (1|x1, ..., xn−1, 0) +

(
P (1|x1, ..., xn−1, 1)− P (1|x1, ..., xn−1, 0)

)
(pn + ϵn)

)
.

In the above we have isolated the last variable in the expression. Without additional structure, the
above optimisation over perturbation is hard as stated in Theorem 3. However, if additionally we
require the Bayesian network to be binary trees, we show that the optimisation over perturbation
and the checking of robustness of the model is trackable. We summarise the procedure for checking
robustness of binary tree structured BNs in the following theorem with the proof.

Lemma J.1 (Binary BN Robustness). Given a Bayesian network with binary tree structure, and the
set of parameters {pi}, the probability of a variable X = 1,

Pr [X = 1, {pi}] =
∑
x1,x2

P (1|x1, x2)
∏
i

pxi
i (1− pi)

1−xi

is δb-robust, where

δb = max

{∣∣∣Pr [X = 1, {pi}]− Fmax

∣∣∣, ∣∣∣Pr [X = 1, {pi}]− Fmin

∣∣∣},
with Fmax = max

y1,y2

A0 +A1(y1 + y2) + (A2 −A1)y1y2,

Fmin = min
y1,y2

A0 +A1(y1 + y2) + (A2 −A1)y1y2,

s.t., yi ∈ [pi − Ci, pi + Ci],

Where A0 = P (1|0, 0), A1 = P (1|0, 1) − P (1|0, 0) and A2 = P (1|1, 1) − P (1|0, 1) are all
pre-computable constants given the parameters of the Bayesian network.
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Proof of Lemma J.1

Proof. We explicitly write out the probability subject to perturbation,

Pr [X = 1, {pi + ϵi}]

=
∑
x1,x2

P (1|x1, x2)
∏
i

(pi + ϵi)
xi(1− pi − ϵi)

1−xi

=(p1 + ϵ1)
∑
x2

P (1|1, x2)(p2 + ϵ2)
x2(1− p2 − ϵ2)

1−x2

+ (1− p1 − ϵ1)
∑
x2

P (1|0, x2)(p2 + ϵ2)
x2(1− p2 − ϵ2)

1−x2

=
∑
x2

P (1|0, x2)(p2 + ϵ2)
x2(1− p2 − ϵ2)

1−x2

+ (p1 + ϵ1)

(∑
x2

(
P (1|1, x2)− P (1|0, x2)

)
(p2 + ϵ2)

x2(1− p2 − ϵ2)
1−x2

)
=
∑
x2

P (1|0, x2)(p2 + ϵ2)
x2(1− p2 − ϵ2)

1−x2

+ (p1 + ϵ1)

((
P (1|1, 1)− P (1|0, 1)

)
(p2 + ϵ2) +

(
P (1|1, 0)− P (1|0, 0)

)
(1− p2 − ϵ2)

)
=P (1|0, 0) +

(
P (1|0, 1)− P (1|0, 0)

)
(p2 + ϵ2) + (p1 + ϵ1)×(

P (1|1, 0)− P (1|0, 0) +
(
P (1|1, 1)− P (1|0, 1)− P (1|1, 0) + P (1|0, 0)

)
(p2 + ϵ2)

)
.

It follows that the robustness problem boils down to finding the maximum and minimum of F =
A0 +A1y2 +A1y1 + (A2 −A1)y1y2, with yi = pi + ϵi.

Specifically, in order to compute Fmax and Fmin, we take partial derivatives of F:

∂F

∂y1
= A1 + (A2 −A1)y2,

∂F

∂y2
= A1 + (A2 −A1)y1.

Setting ∂F
∂y1

= ∂F
∂y2

= 0 leads to y∗1 = y∗2 = A1

A1−A2
. In order to check if y∗i correspond to maximum

or minimum. evaluate ∂2F
∂y2

i
= A2 −A1. We have the following scenarios:

• If y∗i ∈ [pi − Ci, pi + Ci] and A2 −A1 > 0, then y∗i correspond to a minimum.
• If y∗i ∈ [pi − Ci, pi + Ci] and A2 −A1 < 0, then y∗i correspond to a maximum.
• If y∗i /∈ [pi − Ci, pi + Ci], then yi is monotonic in the range of [pi − Ci, pi + Ci] and the

maximum or minimum are found at pi ± Ci.

Having shown the robustness of probability of one node in the Bayesian network, the robustness of
the whole network can be computed recursively from the bottom to the top.

31


	Introduction
	Robust Statistical Learning with Logical Reasoning
	Sensing-Reasoning Pipeline
	Reasoning Component as Markov Logic Networks

	Hardness of Certifying Reasoning Robustness
	Harness of Certifying General Reasoning Model
	Hardness of Certifying Markov Logic Networks

	Certifying the Robustness of Sensing-Reasoning Pipeline
	Certifying Sensing Robustness
	Certifying Reasoning Robustness

	Experiments
	Experimental Setup
	Results of Road Sign Classification
	Results of Information Extraction

	Related Work
	Conclusions
	Hardness of General Distribution 
	Robustness of MLN
	Supplementary Results for Algorithm 1
	Image Classification on Road Sign Dataset
	Information Extraction on Stock News
	Image Classification on PrimateNet Dataset
	Image Classification on Word50 Dataset
	Image Classification with Constructed Knowledge Rules
	Ablation Study on Partial Knowledge Enrichment.
	Reasoning Component as Bayesian Networks
	Hardness of Certifying Bayesian Networks
	Certifying Bayesian Networks


