
Supplementary Material for Rethinking Value
Function Learning for Generalization in

Reinforcement Learning

A Stiffness Analysis

To quantify how much the number of training environments affects the memorization of the value
network, we train PPG agents using the training levels of seeds from 0 to n for 8M environment steps
on all 16 Procgen games and measure the stiffness of the value network between states while varying
the number of training environments n ∈ {1, 2, 5, 10, 20, 50, 100, 200}. Throughout the training, we
sample trajectories from the training levels, which consist of 214 (=16,384) states, and compute the
individual gradient of the value objective for each state using BackPACK [4]. Then, we calculate the
mean stiffness of the value network across all state pairs and report its average computed over all
training epochs.

The green lines in Figure 1 demonstrate that the stiffness decreases as the number of training levels
increases in most of the Procgen games. This implies that a value network trained on more training
environments is more likely to memorize training data and cannot extrapolate values of unseen states
from the training environments.

We also conduct stiffness experiments for DCPG agents under the same experimental setting as PPG
to evaluate how the delayed critic update mitigates the memorization problem. The blue lines in
Figure 1 show that DCPG achieves higher stiffness than PPG for all n in 12 of 16 Procgen games.
This suggests that the delayed critic update effectively alleviates the memorization problem.

B Training Value Function with Explicit Regularization

We train PPG agents with discount regularization (PPG+DR) and activation regularization (PPG+AR)
using 200 training levels for 25M environment steps on all 16 Procgen games and report the PPO-
normalized training and test scores. For PPG+DR, we sweep the new discount factor γ′ in a range of
{0.98, 0.99, 0.995} and find γ′ = 0.995 performs best. For PPG+AR, we sweep the regularization
coefficient α within {0.01, 0.05, 0.1} and find α = 0.05 works best. Table 1 shows that PPG+DR
and PPG+AR improve both the training and test scores of PPG by 10%p.

Table 1: PPO-normalized training and test scores of PPG, PPG+DR, and PPG+AR. Each agent is
trained on 200 training levels for 25M environment steps. The mean and standard deviation are
computed over 10 different runs.

PPG PPG+DR PPG+AR

PPO-norm train score (%) 136.7 ± 4.4 146.8 ± 1.4 146.7 ± 2.6
PPO-norm test score (%) 160.3 ± 6.3 168.0 ± 5.8 169.9 ± 6.9

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1 2 10 50 200
0

0.2

0.4

0.6

training levels

St
iff

ne
ss

BigFish

1 2 10 50 200

0.1

0.2

0.3

training levels

St
iff

ne
ss

BossFight

1 2 10 50 200
0

0.2

0.4

0.6

training levels

St
iff

ne
ss

CaveFlyer

1 2 10 50 200

0.2

0.4

training levels

St
iff

ne
ss

Chaser

1 2 10 50 200

0.2

0.4

training levels

St
iff

ne
ss

Climber

1 2 10 50 200

0.2

0.4

0.6

0.8

training levels

St
iff

ne
ss

CoinRun

1 2 10 50 200
0

0.2

0.4

0.6

training levels

St
iff

ne
ss

Dodgeball

1 2 10 50 200

0.2

0.4

training levels

St
iff

ne
ss

FruitBot

1 2 10 50 200

0.2

0.4

0.6

0.8

training levels

St
iff

ne
ss

Heist

1 2 10 50 200

0.2

0.4

0.6

0.8

1

training levels

St
iff

ne
ss

Jumper

1 2 10 50 200

0.1

0.2

0.3

0.4

training levels

St
iff

ne
ss

Leaper

1 2 10 50 200

0.2

0.4

0.6

0.8

1

training levels
St

iff
ne

ss

Maze

1 2 10 50 200

0.2

0.4

0.6

0.8

training levels

St
iff

ne
ss

Miner

1 2 10 50 200

0.2

0.4

0.6

training levels

St
iff

ne
ss

Ninja

1 2 10 50 200

0.2

0.4

0.6

training levels

St
iff

ne
ss

Plunder

1 2 10 50 200

0.2

0.4

0.6

training levels

St
iff

ne
ss

StarPilot

PPG DCPG

Figure 1: Average stiffness of value networks for PPG and DCPG on all 16 Procgen games while
varying the number of training levels. Each agent is trained for 8M environment steps.

C Value Network Analysis of Delayed Critic Update

To verify whether the delayed critic update acts as a value network regularizer, we train DCPG agents
using 200 training levels for 25M environment steps on all 16 games of Procgen and compare the
true and predicted values for the initial states of the training levels. More specifically, we collect 100
training episodes throughout the training and evaluate the value network prediction for the initial
state of each trajectory. We estimate the true value of each initial state by computing the discounted
return of the corresponding trajectory. We also conduct the same experiments with PPG+DR and
PPG+AR for comparison with explicit value function regularization.

The red curves in Figure 2 show that the value network of DCPG consistently underestimates the true
values when the number of environment steps is small. In addition, the value predictions of DCPG
become less biased as training progresses and reach the true values in most games. It implies that the

2

delayed value update can serve as implicit regularization that slowly diminishes in strength, which
can be beneficial both in the early and late stages of training. In contrast, the value network trained
with discount and activation regularization fails to make unbiased predictions even at the end of the
training, as shown in Figures 3 and 4.

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

BigFish

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

BossFight

0 5 10 15 20 25

0

5

Environment step (106)

V
al

ue

CaveFlyer

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

Chaser

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

Climber

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

CoinRun

0 5 10 15 20 25

0

2

4

6

Environment step (106)

V
al

ue

Dodgeball

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

FruitBot

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

Heist

0 5 10 15 20 25

0

5

Environment step (106)

V
al

ue

Jumper

0 5 10 15 20 25

0

2

4

6

Environment step (106)

V
al

ue

Leaper

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

Maze

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

Miner

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

Ninja

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

Plunder

0 5 10 15 20 25

0

5

Environment step (106)

V
al

ue

StarPilot

True Predicted

Figure 2: True and predicted values measured at the initial states of training environments for DCPG
on all 16 Procgen games. The mean is computed over 10 different runs.

3

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

BigFish

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

BossFight

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

CaveFlyer

0 5 10 15 20 25

5

10

Environment step (106)

V
al

ue

Chaser

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

Climber

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue
CoinRun

0 5 10 15 20 25
0

2

4

6

Environment step (106)
V

al
ue

Dodgeball

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

FruitBot

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

Heist

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

Jumper

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue
Leaper

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)
V

al
ue

Maze

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

Miner

0 5 10 15 20 25
0

2

4

6

Environment step (106)

V
al

ue

Ninja

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

Plunder

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

StarPilot

True Predicted

Figure 3: True and predicted values measured at the initial states of training environments for PPG
with discount regularization (PPG+DR) on all 16 Procgen games. The mean is computed over 10
different runs.

4

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

BigFish

0 5 10 15 20 25

0

2

4

6

8

Environment step (106)

V
al

ue

BossFight

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

CaveFlyer

0 5 10 15 20 25

5

10

Environment step (106)

V
al

ue

Chaser

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

Climber

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue
CoinRun

0 5 10 15 20 25
0

2

4

6

Environment step (106)
V

al
ue

Dodgeball

0 5 10 15 20 25

0

5

10

Environment step (106)

V
al

ue

FruitBot

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

Heist

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

Jumper

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue
Leaper

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)
V

al
ue

Maze

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

Miner

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)

V
al

ue

Ninja

0 5 10 15 20 25

2

4

6

8

Environment step (106)

V
al

ue

Plunder

0 5 10 15 20 25
0

5

10

Environment step (106)

V
al

ue

StarPilot

True Predicted

Figure 4: True and predicted values measured at the initial states of training environments for PPG
with activation regularization (PPG+AR) on all 16 Procgen games. The mean is computed over 10
different runs.

5

D Implementation Details & Hyperparameters

For all experiments, we implement policy and value networks using the ResNet architecture proposed
in IMPALA [5] and train the networks using Adam optimizer [6], following the standard practice in
the prior works [2, 3]. We conduct all experiments using Intel Xeon Gold 5220R CPU, 64GB RAM,
and NVIDIA RTX 2080 Ti GPU. We use PyTorch as a deep learning framework [8].

PPO We use the implementation of PPO by Kostrikov [7]. Unless otherwise specified, we use the
same hyperparameter setting provided in Cobbe et al. [2] to reproduce PPO and PPO-based methods.
The values of the hyperparameters used are shown in Table 2.

Table 2: PPO hyperparameters.
Hyperparameter Value

Discount factor (γ) 0.999
GAE smoothing parameter (λ) 0.95
timesteps per rollout 256
epochs per rollout 3
minibatches per epoch 8
Entropy bonus 0.01
PPO clip range (ϵ) 0.2
Reward normalization? Yes
Learning rate 5e-4
workers 1
environments per worker 64
Total timesteps 25M
LSTM? No
Frame stack? No

UCB-DrAC We use the official implementation by the authors1. We use the best hyperparameter
setting provided in the original paper. More specifically, we use regularization coefficient αr = 0.1,
exploration coefficient c = 0.1, and sliding window size K = 10 for all Procgen games.

PLR We reproduce the reported results of PLR using the implementation released by the authors2.
We use the recommended hyperparameter setting presented in the original paper and use L1 value loss
as the scoring function, rank prioritization, temperature β = 0.1, and staleness coefficient ρ = 0.1
for all Procgen games.

PPG We build PPG on top of the implementation of PPO. For PPO hyperparameters, we use the
default hyperparameter setting in Table 2, except for the number of PPO epochs. For PPG-specific
hyperparameters, we use the best hyperparameter setting provided in Cobbe et al. [3]. The values of
the PPG-specific hyperparameter are shown in Table 3. The policy regularizer coefficient βπ denotes
the weight for the policy regularizer Cπ when jointly optimized with the auxiliary objective Jaux.
We also provide the pseudocode of PPG in Algorithm 1.

DAAC For DAAC and IDAAC, which adds an auxiliary regularizer to the DAAC policy network,
we use the official code released by the authors3. We find that some hyperparameters should be set
differently for each Procgen game to reproduce the results reported in the original paper. For a fair
comparison with other methods, we use the same set of hyperparameters for all Procgen games with
the best overall performance provided by the authors. More specifically, we use Eπ = 1, EV = 9,
Nπ = 1, αa = 0.25, and αi = 0.001. We also find that the performance of DAAC is better than
IDAAC when using a single set of hyperparameters, as shown in Table 4. Therefore, we compare our
methods with DAAC.

1https://github.com/rraileanu/auto-drac
2https://github.com/facebookresearch/level-replay
3https://github.com/rraileanu/idaac

6

https://github.com/rraileanu/auto-drac
https://github.com/facebookresearch/level-replay
https://github.com/rraileanu/idaac

Algorithm 1 Phasic Policy Gradient (PPG)
Require: Policy network πθ , value network Vϕ, auxiliary value head Vθ

1: for phase = 1, 2, . . . do
2: Initialize buffer B
3: for iter = 1, 2, . . . , Nπ do ▷ Policy phase
4: Sample trajectories τ using πθ and compute value function target R̂t for each state st ∈ τ
5: for epoch = 1, 2, . . . , Eπ do
6: Optimize policy objective Jπ(θ) and value objective JV (ϕ) with τ
7: end for
8: Add (st, R̂t) to B
9: end for

10: for iter = 1, 2, . . . , Eaux do ▷ Auxiliary phase
11: Optimize value objective JV (ϕ), auxiliary objective Jaux(θ), and policy regularizer Cπ(θ) with B
12: end for
13: end for

Table 3: PPG-specific hyperparameters.
Hyperparameter Value

policy phases per auxiliary phase (Nπ) 32
policy epochs (Eπ) 1
value epochs (EV) 1
auxiliary epochs (Eaux) 6
Policy regularizer coefficient (βπ) 1.0
minibatches per auxiliary epoch per Nπ 16

Table 4: PPO-normalized train and test scores of DAAC and IDAAC. Each agent is trained on 200
training levels for 25M environment steps. The mean and standard deviation are computed over 10
different runs.

DAAC IDAAC

PPO-norm train score (%) 104.4 ± 4.1 99.7 ± 5.4
PPO-norm test score (%) 136.7 ± 7.6 129.9 ± 7.8

DCPG We build DCPG on top of the implementation of PPG. DCPG introduces one additional
hyperparameter compared to PPG, named the value regularizer coefficient. The value regularizer
coefficient βV denotes the weight for the value regularizer CV when jointly optimized with the policy
objective Jπ . We use the default hyperparameter setting in Table 3 for PPG hyperparameters. We set
the value regularizer coefficient to βV = 1.0 without any hyperparameter tuning.

DDCPG We implement the discriminator for the dynamics learning using a fully-connected layer
of hidden sizes [256, 256] with ReLU activation. DDCPG introduces two additional hyperparameters
compared to DCPG. First, the dynamics objective coefficient βf denotes the weight of the dynamics
objective Jf when jointly optimized with the value objective JV and the policy regularizer Cπ. We
set the dynamics objective coefficient to βf = 1.0 without any hyperparameter tuning. Second, the
inverse dynamics coefficient η is the hyperparameter that controls the strength of the inverse dynamics
learning relative to the forward dynamics learning. We sweep the inverse dynamics coefficient within
a range of η ∈ {0.5, 1.0} and choose η = 0.5. We use the same hyperparameter setting as DCPG for
the other hyperparameters.

7

E More Results on Procgen Benchmark

The training and test performance curves of DCPG, DDCPG, and baseline methods for all 16 Procgen
games are shown in Figures 5 and 6, respectively. The results of UCB-DrAC and PLR are omitted in
the figures for better visibility. The average training returns of DCPG, DDCPG, and all baselines are
presented in Table 5. Our methods also achieve better training performance and sample efficiency
than all baselines.

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

BigFish

0 5 10 15 20 25

0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

BossFight

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

CaveFlyer

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Chaser

0 5 10 15 20 25

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Climber

0 5 10 15 20 25
2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

CoinRun

0 5 10 15 20 25
0

5

10

15

Environment step (106)

A
ve

ra
ge

re
tu

rn

Dodgeball

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

FruitBot

0 5 10 15 20 25
2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Heist

0 5 10 15 20 25

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Jumper

0 5 10 15 20 25

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Leaper

0 5 10 15 20 25

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn
Maze

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Miner

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Ninja

0 5 10 15 20 25

5

10

15

20

Environment step (106)

A
ve

ra
ge

re
tu

rn

Plunder

0 5 10 15 20 25
0

20

40

60

Environment step (106)

A
ve

ra
ge

re
tu

rn

StarPilot

PPO DAAC PPG DCPG DDCPG

Figure 5: Training performance curves of each method on all 16 Procgen games. Each agent is
trained on 200 training levels for 25M environment steps and evaluated on the same training levels.
The mean and standard deviation are computed over 10 different runs.

8

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

BigFish

0 5 10 15 20 25

0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

BossFight

0 5 10 15 20 25

2

4

6

8

Environment step (106)

A
ve

ra
ge

re
tu

rn

CaveFlyer

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Chaser

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Climber

0 5 10 15 20 25
2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn
CoinRun

0 5 10 15 20 25
0

5

10

Environment step (106)
A

ve
ra

ge
re

tu
rn

Dodgeball

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

FruitBot

0 5 10 15 20 25

2

4

6

Environment step (106)

A
ve

ra
ge

re
tu

rn

Heist

0 5 10 15 20 25

2

4

6

Environment step (106)

A
ve

ra
ge

re
tu

rn

Jumper

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn
Leaper

0 5 10 15 20 25

4

6

Environment step (106)
A

ve
ra

ge
re

tu
rn

Maze

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Miner

0 5 10 15 20 25
2

4

6

8

Environment step (106)

A
ve

ra
ge

re
tu

rn

Ninja

0 5 10 15 20 25

5

10

15

Environment step (106)

A
ve

ra
ge

re
tu

rn

Plunder

0 5 10 15 20 25
0

20

40

Environment step (106)

A
ve

ra
ge

re
tu

rn

StarPilot

PPO DAAC PPG DCPG DDCPG

Figure 6: Test performance curves of each method on all 16 Procgen games. Each agent is trained on
200 training levels for 25M environment steps and evaluated on 100 unseen test levels. The mean and
standard deviation are computed over 10 different runs.

9

Table 5: Average training returns of each method on all 16 Procgen games. Each agent is trained on
200 training levels for 25M environment steps and evaluated on the same training levels. The mean
and standard deviation are computed over 10 different runs.

Environment PPO UCB-DrAC PLR DAAC PPG DCPG DDCPG

BigFish 11.0 ± 1.7 12.2 ± 3.1 13.6 ± 3.0 18.4 ± 3.3 24.1 ± 1.6 32.8 ± 2.0 31.8 ± 2.1
BossFight 7.9 ± 0.7 8.2 ± 0.7 8.8 ± 0.7 9.9 ± 0.7 11.1 ± 0.3 10.7 ± 0.6 11.0 ± 0.5
CaveFlyer 7.1 ± 0.9 6.0 ± 0.9 7.3 ± 0.5 6.8 ± 0.8 10.0 ± 0.5 9.0 ± 0.5 9.0 ± 0.3
Chaser 6.4 ± 0.8 7.3 ± 0.7 8.0 ± 0.6 6.4 ± 1.0 10.0 ± 0.7 10.4 ± 0.6 10.6 ± 0.5
Climber 8.4 ± 0.5 8.4 ± 0.6 8.6 ± 0.6 9.3 ± 0.6 10.9 ± 0.4 11.3 ± 0.5 11.9 ± 0.4
CoinRun 9.6 ± 0.1 9.5 ± 0.2 9.4 ± 0.3 9.9 ± 0.1 10.0 ± 0.1 9.9 ± 0.1 9.9 ± 0.1
Dodgeball 5.5 ± 0.7 8.0 ± 1.2 5.1 ± 0.8 6.4 ± 0.9 7.9 ± 0.7 11.9 ± 1.4 14.1 ± 1.1
FruitBot 29.9 ± 0.5 29.1 ± 1.3 28.3 ± 1.3 29.8 ± 1.1 31.9 ± 0.4 31.9 ± 0.4 31.1 ± 0.8
Heist 7.6 ± 0.6 7.2 ± 0.6 8.0 ± 0.5 4.9 ± 0.8 7.4 ± 0.6 8.6 ± 0.4 9.4 ± 0.4
Jumper 8.7 ± 0.3 8.4 ± 0.5 8.6 ± 0.3 8.8 ± 0.3 9.1 ± 0.3 8.6 ± 0.4 8.9 ± 0.3
Leaper 5.8 ± 1.5 3.6 ± 1.1 7.0 ± 0.6 8.8 ± 1.0 8.2 ± 2.9 8.4 ± 2.3 8.4 ± 2.3
Maze 9.3 ± 0.3 8.5 ± 0.5 9.2 ± 0.4 5.7 ± 0.4 9.5 ± 0.3 9.6 ± 0.2 9.7 ± 0.2
Miner 12.8 ± 0.2 12.4 ± 0.3 11.4 ± 0.6 4.7 ± 0.7 11.6 ± 0.4 12.7 ± 0.1 12.8 ± 0.1
Ninja 7.8 ± 0.4 7.5 ± 1.0 8.2 ± 0.4 9.0 ± 0.2 9.8 ± 0.2 9.6 ± 0.1 9.6 ± 0.2
Plunder 6.2 ± 0.7 9.2 ± 1.3 11.0 ± 1.1 5.9 ± 0.6 14.5 ± 2.1 15.7 ± 1.8 16.0 ± 2.3
StarPilot 29.9 ± 3.6 30.2 ± 2.4 26.3 ± 3.2 39.0 ± 2.5 48.4 ± 3.4 50.5 ± 1.8 50.8 ± 4.0

PPO-norm score (%) 100.0 ± 2.5 102.6 ± 3.4 107.9 ± 3.5 104.4 ± 4.1 136.7 ± 4.4 148.9 ± 4.3 152.7 ± 4.4

F Ablation Studies

F.1 Delayed Critic Update

To disentangle the effect of the delayed critic update on learning generalizable representations for the
policy network, we introduce a variant of DCPG that employs an additional value network Vϕ with
a separate encoder, namely Separate DCPG. The separate value network Vϕ is trained in the same
way as PPG without any delayed update and used only for policy optimization. The original value
network Vθ is trained with the delayed update and used only for learning representation for the policy
network.

Algorithm 2 describes the detailed procedure of Separate DCPG (differences with DCPG are marked
in cyan). Note that we compute two bootstrapped value function targets R̂t,θ and R̂t,ϕ for each state
st using the original value network Vθ and the separate value network Vϕ, respectively. Each value
function target is stored in a buffer B and used to train the corresponding value network during the
auxiliary phase.

Algorithm 2 Separate Delayed-Critic Policy Gradient (Separate DCPG)
Require: Policy network πθ , value network Vθ , separate value network Vϕ

1: for phase = 1, 2, . . . do
2: Initialize buffer B
3: for iter = 1, 2, . . . , Nπ do ▷ Policy phase
4: Sample trajectories τ using πθ

5: Compute value function targets R̂t,θ and R̂t,ϕ for each state st ∈ τ
6: for epoch = 1, 2, . . . , Eπ do
7: Optimize policy objective Jπ(θ) and value regularizer CV (θ) with τ
8: Optimize value objective JV (ϕ) with τ
9: end for

10: Add (st, R̂t,θ, R̂t,ϕ) to B
11: end for
12: for iter = 1, 2, . . . , Eaux do ▷ Auxiliary phase
13: Optimize value objective JV (θ) and policy regularizer Cπ(θ) with B
14: Optimize value objective JV (ϕ) with B
15: end for
16: end for

Figures 7 and 8 demonstrate the training and test performance curves of PPG, Separate DCPG, and
DCPG. We find that Separate DCPG achieves better or comparable performance in most games. This
implies that the value network with delayed updates can provide better representations that generalize

10

well to both the training and test environments than those without delayed updates. We also provide
the PPO-normalized training and test scores of PPG, Separate DCPG, and DCPG in Table 6.

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

BigFish

0 5 10 15 20 25

0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

BossFight

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

CaveFlyer

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Chaser

0 5 10 15 20 25

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Climber

0 5 10 15 20 25
2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

CoinRun

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Dodgeball

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

FruitBot

0 5 10 15 20 25
2

4

6

8

Environment step (106)

A
ve

ra
ge

re
tu

rn

Heist

0 5 10 15 20 25

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Jumper

0 5 10 15 20 25

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Leaper

0 5 10 15 20 25

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Maze

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Miner

0 5 10 15 20 25
2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Ninja

0 5 10 15 20 25

5

10

15

Environment step (106)

A
ve

ra
ge

re
tu

rn

Plunder

0 5 10 15 20 25
0

20

40

Environment step (106)

A
ve

ra
ge

re
tu

rn

StarPilot

PPG Separate DCPG DCPG

Figure 7: Training performance curves of PPG, Separate DCPG, and DCPG on all 16 procgen games.
Each agent is trained on 200 training levels for 25M environment steps and evaluated on the same
training levels. The mean and standard deviation are computed over 10 different runs.

11

0 5 10 15 20 25
0

10

20

Environment step (106)

A
ve

ra
ge

re
tu

rn

BigFish

0 5 10 15 20 25

0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

BossFight

0 5 10 15 20 25

2

4

6

8

Environment step (106)

A
ve

ra
ge

re
tu

rn

CaveFlyer

0 5 10 15 20 25
0

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Chaser

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Climber

0 5 10 15 20 25
2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn
CoinRun

0 5 10 15 20 25
0

2

4

6

8

Environment step (106)
A

ve
ra

ge
re

tu
rn

Dodgeball

0 5 10 15 20 25

0

10

20

30

Environment step (106)

A
ve

ra
ge

re
tu

rn

FruitBot

0 5 10 15 20 25

2

3

4

Environment step (106)

A
ve

ra
ge

re
tu

rn

Heist

0 5 10 15 20 25

2

4

6

Environment step (106)

A
ve

ra
ge

re
tu

rn

Jumper

0 5 10 15 20 25

2

4

6

8

10

Environment step (106)

A
ve

ra
ge

re
tu

rn
Leaper

0 5 10 15 20 25

4

5

6

7

Environment step (106)
A

ve
ra

ge
re

tu
rn

Maze

0 5 10 15 20 25

5

10

Environment step (106)

A
ve

ra
ge

re
tu

rn

Miner

0 5 10 15 20 25
2

4

6

8

Environment step (106)

A
ve

ra
ge

re
tu

rn

Ninja

0 5 10 15 20 25

5

10

15

Environment step (106)

A
ve

ra
ge

re
tu

rn

Plunder

0 5 10 15 20 25
0

20

40

Environment step (106)

A
ve

ra
ge

re
tu

rn

StarPilot

PPG Separate DCPG DCPG

Figure 8: Test performance curves of PPG, Separate DCPG, and DCPG on all 16 procgen games.
Each agent is trained on 200 training levels for 25M environment steps and evaluated on 100 unseen
test levels. The mean and standard deviation are computed over 10 different runs.

Table 6: PPO-normalized training and test scores of PPG, Separate DCPG, and DCPG on all 16
Procgen games. Each agent is trained on 200 training levels for 25M environment steps. The mean
and standard deviation are computed over 10 different runs.

PPG Separate DCPG DCPG

PPO-norm train score (%) 136.7 ± 4.4 147.5 ± 1.9 152.7 ± 4.4
PPO-norm test score (%) 160.3 ± 6.3 174.4 ± 4.9 184.5 ± 5.2

12

F.2 Dynamics Learning

To demonstrate the effectiveness of learning forward and inverse dynamics with a single discriminator,
we conduct experiments for DCPG with forward dynamics learning (DCPG+F), inverse dynamics
learning (DCPG+I), and forward and inverse dynamics learning using two separate discriminators
(DCPG+FI). The dynamics objective Jf of each algorithm is defined as follows:

Jf (θ) = Est,at,st+1∼B [log (fθ (st, at, st+1)) + log (1− fθ (st, at, ŝt+1))] (DCPG+F)
Jf (θ) = Est,at,st+1∼B [log (fθ (st, at, st+1)) + log (1− fθ (st, ât, st+1))] (DCPG+I)
Jf (θ) = Est,at,st+1∼B [log (fθ (st, at, st+1)) + log (1− fθ (st, at, ŝt+1))]

+ η Est,at,st+1∼B

[
log

(
f̃θ (st, at, st+1)

)
+ log

(
1− f̃θ (st, ât, st+1)

)]
. (DCPG+FI)

Note that we use an additional discriminator f̃ for inverse dynamics in DCPG+FI. For each algorithm,
we train agents using 200 training levels for 25M environment steps on 16 Procgen games. We set the
dynamics objective coefficient to βf = 1.0 without any hyperparameter tuning. For DCPG+FI, we
sweep the inverse dynamics coefficient within a range of η ∈ {0.5, 1.0} and choose η = 1.0. Table 7
shows the PPO-normalized training and test scores of each algorithm.

Table 7: PPO-normalized training and test scores of DCPG and DCPG with dynamics learning on
all 16 Procgen games. Each agent is trained on 200 training levels for 25M environment steps. The
mean and standard deviation are computed over 10 different runs.

DCPG DCPG+F DCPG+I DCPG+FI DDCPG

PPO-norm train score (%) 148.9 ± 4.3 150.6 ± 3.1 149.1 ± 3.4 150.5 ± 2.5 152.7 ± 4.4
PPO-norm test score (%) 184.5 ± 5.2 195.9 ± 7.7 185.5 ± 6.5 194.6 ± 6.2 202.2 ± 10.2

Our intuition of jointly learning forward and inverse dynamics using a single discriminator is that
naively learning the forward dynamics will discard action information and capture only the proximity
of two consecutive states in the latent space, not the dynamics. Also, additional training of the inverse
dynamics with a separate discriminator cannot completely resolve this problem.

To validate this, we train three types of DCPG agents with dynamics learning, DCPG+F, DCPG+FI,
and DDCPG on BigFish and count the number of OOD actions that the forward dynamics discrim-
inator determines to be valid given a transition (st, at, st+1) from the training environments, i.e.,∑

ât ̸=at
1[f(st, ât, st+1) > 0.5]. Note that there are 9 different actions (8 directional moves and 1

do nothing) in BigFish. Table 8 shows that the discriminators of DCPG+F and DCPG+FI determine
multiple OOD actions to be valid, implying that it does not fully utilize the action information.

Table 8: The number of OOD actions classified as valid for DCPG+F, DCPG+FI, and DDCPG on
BigFish. Each agent is trained on 200 training levels for 25M environment steps.

DCPG+F DCPG+FI DDCPG

OOD actions (↓) 7.05 ± 1.47 2.49 ± 1.38 0.74 ± 0.75

Furthermore, we train PPG agents with our proposed dynamics learning (named DPPG) to check
whether the effect of the delayed critic update and the dynamics learning are complementary. Table 9
shows that dynamics learning is also helpful to PPG, while the extent of performance improvement is
smaller than DCPG. It implies that the effects of the delayed value update and the dynamics learning
are synergistic.

Table 9: PPO-normalized test scores of PPG, DPPG, DCPG, and DDCPG on all 16 Procgen games.
Each agent is trained on 200 training levels for 25M environment steps. The mean and standard
deviation are computed over 10 different runs.

PPG DPPG DCPG DDCPG

PPO-norm score (%) 160.3 ± 6.3 171.7 ± 4.9 184.5 ± 5.2 202.2 ± 10.2

13

0.4 0.5 0.6
PPO
PPG

DCPG
DDCPG

Median

0.40 0.48 0.56 0.64

IQM

0.40 0.48 0.56

Mean

0.48 0.56 0.64

Optimality Gap

Min-Max Normalized ScoreFigure 9: Median/IQM/Mean of Min-Max normalized scores with 95% confidence intervals for PPO,
PPG, DCPG, and DDCPG on all 16 Procgen games. Each statistic is computed over 10 seeds.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P(X > Y)

DDCPG

DCPG

Algorithm X

PPG

PPG

Algorithm Y

Figure 10: Probability of improvement of DCPG and DDCPG compared to PPG on all 16 Procgen
games. Each statistic is computed over 10 seeds.

G Evaluation using RLiable [1]

We also evaluated our experimental results by normalizing the average returns based on the possible
minimum and maximum scores for each game and analyzing the min-max normalized scores using
the RLiable library4. Figure 9 reports the Median, IQM, and Mean scores of PPO, PPG, and our
methods, showing that the performance improvements of our methods are statistically significant in
terms of all evaluation metrics. Figure 10 describes the probability of improvement plots comparing
our methods to PPG, showing that our methods are likely to improve upon PPG.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.

Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, 2021.

[2] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In ICML, 2020.

[3] Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In ICML,
2021.

[4] Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop.
In ICLR, 2020.

[5] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In ICML, 2018.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, 2019.

4https://github.com/google-research/rliable

14

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/google-research/rliable

	Stiffness Analysis
	Training Value Function with Explicit Regularization
	Value Network Analysis of Delayed Critic Update
	Implementation Details & Hyperparameters
	More Results on Procgen Benchmark
	Ablation Studies
	Delayed Critic Update
	Dynamics Learning

	Evaluation using RLiable agarwal2021deep

