APPENDIX

A Additional Technical Results

Extra notations. We let $B_r(z)$ denote an open ball of radius r centered at z, and let $\|M\|_F$ denote the Frobenius norm. $\| \cdot \|_2$ is understood as the spectral norm when it is used with a matrix. Further, for any vector-valued function $h : \mathbb{R}^d \to \mathbb{R}^l$ of arbitrary dimensionality l whose first-order partial derivatives exist, we denote its Jacobian matrix with respect to a variable θ by $J_h(\theta) \in \mathbb{R}^{l \times d_h}$.

Here we present additional notions and results which we will use for proofs.

Definition A.1 (Quadratic growth condition). For each $\beta^* \in s^*(P)$, there exists a neighborhood $B_r(\beta^*)$ with some $r > 0$ and a positive constant κ such that

$$\mathcal{L}(\beta) \geq \mathcal{L}(\beta^*) + \kappa \text{dist}(\beta, s^*(P))$$

for all $\beta \in B_r(\beta^*)$.

The above quadratic growth condition is widely used in nonlinear programming and can be ensured by various forms of second order sufficient conditions [e.g., 51]. Next, we provide the following lemma that underpins the construction of our estimator in Section 3.

Lemma A.1. For some fixed functions $g : \mathcal{Y} \to \mathbb{R}$ and $h : \mathcal{X} \to \mathbb{R}$, let $\mu_{g,a} = \mathbb{E}[g(Y) \mid X, A = a]$, so $\eta = \{\pi_a, \mu_{g,a}\}$. For any random variable T, let

$$\varphi_a(T ; \eta) = \frac{1}{\pi_a(X)} \{T - \mathbb{E}[T \mid X, A]\} + \mathbb{E}[T \mid X, A = a],$$

denote the uncentered efficient influence function for the parameter $\mathbb{E}\{\mathbb{E}[T \mid X, A = a]\}$. Also, define our parameter and the corresponding estimator by $\psi_{g,a} = \mathbb{E}[g(Y)h(X)]$ and $\hat{\psi}_{g,a} = \mathbb{P}_n(\varphi_a(Y ; \eta)h(X))$, respectively. If we assume that:

(D1) either i) $\hat{\eta}$ are estimated using sample splitting or ii) the function class $\{\varphi_a(\cdot ; \eta) : \eta \in \{0,1\}^2 \times \mathbb{R}^2\}$ is Donsker in η

(D2) $\mathbb{P}(\pi_a \in [\epsilon, 1 - \epsilon]) = 1$ for some $\epsilon > 0$

(D3) $\|\varphi_a(\cdot ; \eta) - \varphi_a(\cdot ; \eta)\|_{2,P} = o_P(1)$.

Then we have

$$\|\hat{\psi}_{g,a} - \psi_{g,a}\|_2 = O_P\left(\|\pi_a - \pi_a\|_{2,P}\|\pi_{g,a} - \mu_{g,a}\|_{2,P} + n^{-1/2}\right).$$

If we further assume that

(D4) $\|\hat{\psi}_{g,a} - \psi_{g,a}\|_{2,P}\|\hat{\mu}_{g,a} - \mu_{g,a}\|_{2,P} = o_P(n^{-1/2})$,

then

$$\sqrt{n}(\hat{\psi}_{g,a} - \psi_{g,a}) \xrightarrow{d} N\left(0, \text{var}\left\{\varphi_a(Y ; \eta)h(X)\right\}\right),$$

and the estimator $\hat{\psi}_{g,a}$ achieves the semiparametric efficiency bound, meaning that there are no regular asymptotically linear estimators that are asymptotically unbiased and with smaller variance.

Proof. The proof is indeed very similar to that of the conventional doubly robust estimator for the mean potential outcome, and we only give a brief sketch here.

Let us introduce an operator $\mathcal{L} \mathcal{F} : \psi \to \varphi$ that maps functionals $\psi : \mathbb{P} \to \mathbb{R}$ to their influence functions $\varphi \in L_2(\mathbb{P})$. Then it suffices to show that $\mathcal{L} \mathcal{F}(\psi_{g,a}) = \mathcal{L} \mathcal{F}(\mathbb{E}[\mu_{g,a}(X)h(X)]) = \varphi_a(g(Y ; \eta)h(X))$. In the derivation of the efficient influence function of the general regression

4 This is also a local asymptotic minimax lower bound.
function in Section 3.4 of [23], when \(h \) is known and only depends on \(X \), it is clear to see that pathwise differentiability [23, Equation (6)] still holds when \(h(x) \) is multiplied and thus

\[
\mathcal{IF}(\mu_{g,a}(x)h(x)) = \mathbb{1}(X = x, A = a) \{ g(Y)h(x) - \mu_{g,a}(x)h(x) \} = \mathcal{IF}(\mu_{g,a}(X))h(X).
\]

Hence, \(\mathcal{IF}(\mathbb{E}[\mu_{g,a}(X)h(X)]) = \varphi_a(g(Y); \eta)h(X) \).

Another way to see this is that since the influence function is basically a (pathwise) derivative (i.e., Gateaux derivative) we can think of multiplying by \(h(x) \) as multiplying by a constant, which does not change the form of the original derivative, beyond multiplying by the "constant" \(h(x) \). We refer the reader to [23] and references therein for more details about the efficient influence function and influence function-based estimators.

B Proofs

For proofs, let us consider the following more general form of stochastic nonlinear programming with deterministic constraints and some finite-dimensional decision variable \(x \) in some compact subset \(S \in \mathbb{R}^k \):

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_j(x) \leq 0, \quad j = 1, \ldots, m
\end{align*}
\]

(\(P_{nl} \))

\[
\begin{align*}
\text{minimize} & \quad \hat{f}(x) \\
\text{subject to} & \quad g_j(x) \leq 0, \quad j = 1, \ldots, m.
\end{align*}
\]

(\(\hat{P}_{nl} \))

We consider the case that \(f, \hat{f} \) are \(C^1 \) functions. In the proofs, the active set \(J_0 \) is defined with respect to \(P_{nl} \).

B.1 Proof of Theorem 4.1

Lemma B.1. Let \(\hat{x} \in s^* (P_{nl}) \) and assume that \(f \) is twice differentiable with Hessian positive definite. Then under Assumption (BJ) we have

\[
\text{dist}(\hat{x}, s^* (P_{nl})) = O \left(\sup_{x'} \| \nabla_x \hat{f}(x') - \nabla_x f(x') \| \right).
\]

Proof. Due to the positive definiteness of the Hessian of \(f \), from the KKT condition at \(x^* \in s^* (P_{nl}) \) with multipliers \(\gamma_j^* \)

\[
\nabla_x L(x^*, \gamma^*) = \nabla_x f(x^*) + \sum_{j \in J_0(x^*)} \gamma_j^* \nabla_x g_j(x^*) = 0,
\]

it follows that the following second order condition holds:

\[
d^T \nabla_x^2 L(x^*, \gamma^*) d > 0 \quad \forall d.
\]

Hence, by Still [51, Theorem 2.4] the quadratic growth condition holds at \(x^* \). Then by Shapiro [47, Lemma 4.1] and the mean value theorem, we have

\[
\text{dist}(\hat{x}, s^* (P_{nl})) \leq \alpha \left(\sup_{x'} \| \nabla_x \hat{f}(x') - \nabla_x f(x') \| \right)
\]

for some constant \(\alpha > 0 \), which completes the proof.

Now, by the fact that both of the objective functions in \(P \) and \(\hat{P} \) are differentiable with respect to \(\beta \), by Lemma A.1 and B.1 we obtain the result.
B.2 Proof of Theorem 4.2

Lemma B.2. Assume that \(f \) is twice differentiable whose Hessian is positive definite. Then under Assumption \((B1), (B2)\) if LICQ and SC hold at \(x^* \), we have

\[
\begin{align*}
 n^{1/2} (\bar{x} - x^*) & \overset{d}{\to} \begin{bmatrix} \nabla^2 f(x^*) + \sum_j \gamma_j^* \nabla^2 g_j(x^*) & B(x^*)^{-1} \{1\}^\top \end{bmatrix} \Upsilon,
\end{align*}
\]

where

\[
 n^{1/2} \left(\nabla_x \bar{f}(x^*) - \nabla_x f(x^*) \right) \overset{d}{\to} \Upsilon.
\]

Proof. First consider the following auxiliary parametric program with respect to \((P_{n1})\) with the parameter vector \(\xi \in \mathbb{R}^k \).

\[
\begin{align*}
\text{minimize} & \quad f(x) + x^\top \xi \\
\text{subject to} & \quad g_j(x) \leq 0, \quad j = 1, \ldots, m.
\end{align*}
\]

\((P_{n1})\) can be viewed as a perturbed program of \((P_{n1})\); for \(\xi = 0 \), \((P_{n1})\) coincides with the program \((P_{n1})\). Here, the parameter \(\xi \) will play a role of medium that contain all relevant stochastic information in \((P_{n1})\) \([48]\). Let \(\bar{x}(\xi) \) denote the solution of the program \((P_{n1})\). Clearly, we get \(\bar{x}(0) = x^* \).

We have already shown that \(\bar{x} \overset{P}{\to} x^* \) at the rate of \(n^{1/2} \) and that the quadratic growth condition holds at \(x^* \) under the given conditions in Theorem 4.1. Further, since the Hessian \(\nabla^2_x f(x^*) \) is positive definite and LICQ holds at \(x^* \), the uniform version of the quadratic growth condition also holds at \(\bar{x}(\xi) \) (see Shapiro \([48]\), Assumption A3)). Hence by Shapiro \([48]\) Theorem 3.1], we get

\[
\bar{x} = \bar{x}(\xi) + o_P(n^{-1/2})
\]

where

\[
\xi = \nabla_x \bar{f}(x^*) - \nabla_x f(x^*).
\]

If \(\bar{x}(\xi) \) is Frechet differentiable at \(\xi = 0 \), we have

\[
\bar{x}(\xi) - x^* = D_\xi \bar{x}(\xi) + o(||\xi||),
\]

where the mapping \(D_\xi \bar{x} : \mathbb{R}^k \to \mathbb{R}^k \) is the directional derivative of \(\bar{x}(\cdot) \) at \(\xi = 0 \). Since \(\bar{x}(0) = x^* \), this leads to

\[
n^{1/2} (\bar{x} - x^*) = D_\xi \bar{x}(n^{1/2} \xi) + o_P(1).
\]

Now we shall show that such mapping \(D_\xi \bar{x}(\cdot) \) exists and is indeed linear. To this end, we will show that \(\bar{x}(\xi) \) is locally totally differentiable at \(\xi = 0 \), followed by applying an appropriate form of the implicit function theorem. Define a vector-valued function \(H \in \mathbb{R}^{(k+m)} \) by

\[
H(x, \xi, \gamma) = \left(\nabla_x f(x) + \sum_j \gamma_j \nabla_x g_j(x) + \xi \right) / \text{diag}(\gamma)(g(x))
\]

where a vector \(g \) is understood as a stacked version of \(g^*_i \). Due to the SC and LICQ conditions, the solution of \(H(x, \xi, \gamma) = 0 \) satisfies the KKT condition for \((P_{n1})\), i.e., \(H(\bar{x}(\xi), \xi, \gamma(\xi)) = 0 \) where \(\gamma(\xi) \) is the corresponding multipliers. Now by the classical implicit function theorem [e.g., \([11]\) Theorem 1B.1] and the local stability result [\([51]\) Theorem 4.4], there always exists a neighborhood \(\mathbb{B}_{\bar{r}}(0) \), for some \(\bar{r} > 0 \), of \(\xi = 0 \) such that \(\bar{x}(\xi) \) and its total derivative exist for \(\forall \xi \in \mathbb{B}_{\bar{r}}(0) \). In particular, the derivative at \(\xi = 0 \) is computed by

\[
\nabla_\xi \bar{x}(0) = -J_{x,\gamma} H(\bar{x}(0), 0, 0, \gamma(0))^{-1} [J_\xi H(\bar{x}(0), 0, 0, \gamma(0))],
\]

where in our case \(\bar{x}(0) = x^*, \gamma(0) = \gamma^* \), and thus

\[
J_{x,\gamma} H(\bar{x}(0), 0, 0, \gamma(0)) = \begin{bmatrix} \nabla^2_x f(x^*) + \sum_j \gamma_j^* \nabla^2 g_j(x^*) & B(x^*)^{-1} \{1\}^\top \\
B(x^*)^{-1} \{x^*\} & 0 \end{bmatrix}.
\]
with $B = [\nabla_x g_j(x^*)^\top, j \in J_0(x^*)]$, and

$$J_\xi H(\bar{x}(0), 0, \bar{\gamma}(0)) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Here the inverse of $J_{x, \gamma} H(\bar{x}(0), 0, \bar{\gamma}(0))$ always exists (see Still [51, Ex 4.5]). Therefore we obtain that

$$D_0 \bar{x}(n^{1/2} \xi) = \begin{bmatrix} \nabla_x^2 f(x^*) + \sum_j \gamma_j^* \nabla_x^2 g_j(x^*) & B(x^*) \\ B^\top(x^*) & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} n^{1/2} \xi.$$

Finally, if $n^{1/2} \xi \xrightarrow{d} \Upsilon$, by Slutsky’s theorem it follows

$$n^{1/2}(\bar{x} - x^*) \xrightarrow{d} \begin{bmatrix} \nabla_x^2 f(x^*) + \sum_j \gamma_j^* \nabla_x^2 g_j(x^*) & B(x^*) \\ B^\top(x^*) & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Upsilon.$$

Then, the desired result for Theorem 4.2 immediately follows by the fact that

$$\nabla_\beta L = -E \{ Y^a(Z; \eta) h_1(V, \beta) + (1 - Y^a) h_0(V, \beta) \}$$

where

$$h_1(V, \beta) = \frac{1}{\log \sigma(\beta^\top b(V))} b(V) \sigma(\beta^\top b(V)) \{1 - \sigma(\beta^\top b(V))\},$$

$$h_0(V, \beta) = -\frac{1}{\log(1 - \sigma(\beta^\top b(V)))} b(V) \sigma(\beta^\top b(V)) \{1 - \sigma(\beta^\top b(V))\},$$

followed by applying Lemma [A.1].