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Abstract

The audio-visual video parsing task aims to parse a video into modality- and
category-aware temporal segments. Previous work mainly focuses on weakly-
supervised approaches, which learn from video-level event labels. During train-
ing, they do not know which modality perceives and meanwhile which temporal
segment contains the video event. Since there is no explicit grouping in the
existing frameworks, the modality and temporal uncertainties make these meth-
ods suffer from false predictions. For instance, segments in the same category
could be predicted in different event classes. Learning compact and discrimina-
tive multi-modal subspaces is essential for mitigating the issue. To this end, in
this paper, we propose a novel Multi-modal Grouping Network, namely MGN,
for explicitly semantic-aware grouping. Specifically, MGN aggregates event-
aware unimodal features through unimodal grouping in terms of learnable cate-
gorical embedding tokens. Furthermore, it leverages the cross-modal grouping for
modality-aware prediction to match the video-level target. Our simple framework
achieves improving results against previous baselines on weakly-supervised audio-
visual video parsing. In addition, our MGN is much more lightweight, using only
47.2% of the parameters of baselines (17 MB vs. 36 MB). Code is available at
https://github.com/stoneMo/MGN.

1 Introduction

Humans understand the surrounding environment by integrating signals from different senses. In our
daily life, sound and sight are two of the most commonly used modalities, which have drawn much
attention from researchers to explore computational audio-visual scene understanding.

Previous audio-visual work [1, 2] usually assumes audio and visual data are temporally aligned.
However, the alignment does not always exist in real-world videos. For example, sounding objects in
many videos are outside of the field-of-view (FoV). For these non-aligned cases, audio signals become
more reliable in understanding the events of interest. In this work, we address the audio-visual video
parsing (AVVP) task [3] that aims to parse a video into temporal event segments and predict the
audible, visible, or audio-visible event categories.

Existing approaches [3, 4, 5] usually focus on learning to leverage the unimodal and cross-modal
temporal contexts from weak supervisions. HAN [3] introduced a simple Multimodal Multiple
Instance Learning framework with cross-modal and self-modal attention layers to utilize the video-
level labels. Recent state-of-the-art methods usually use the HAN as the baseline and modify it
to further improve parsing performance. Particularly, contrastive learning and label refinement
are proposed in Wu and Yang [4], where they adopted a contrastive loss to enforce the temporal
alignment between the audio and visual features at the same timestamp and augmented training
data with modality-aware event labels generation. Furthermore, Lin ez al. [5] proposed to leverage

*Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://github.com/stoneMo/MGN

audio-visual class co-occurrence to jointly explore the relationship of different categories among all
modality streams.

Our key motivation is to learn compact and discriminative audio and visual representations by explicit
multi-modal grouping for mitigating the modality and temporal uncertainties in the weakly-supervised
audio-visual video parsing problem. During training, segment-wise event labels are unavailable for
audio and visual temporal segments in videos. Thus, the multi-modal temporal modeling in the
above existing methods might aggregate and implicitly group irrelevant semantic information due to
lacking of fine-grained supervisions, which causes false positives for predicting categories of events.
That is, audio or visual temporal segments in the same event category might be far away from the
class center in the embedding space since there are no segment-level and modality-wise constraints
during training. In the meanwhile, there is no constraint for modality category prediction to match
the video-level target at the end.

Different from past approaches, we propose a new Multi-modal Grouping Network, namely MGN, to
explicitly group semantic-aware multi-modal contexts, which enables learning more compact and
discriminative audio and visual representations. Specifically, we first extract event-aware unimodal
features through unimodal grouping in terms of learnable categorical embedding tokens for each
individual modality. Then, we introduce a cross-attention layer with a hard attention mechanism
to aggregate cross-modal temporal contexts. Finally, we utilize a cross-modal grouping module to
predict the modality category from updated class-aware unimodal embeddings.

Experimental results on the LLP [3] dataset validate that our new audio-visual video parsing frame-
work achieves superior results over previous state-of-the-art methods [1, 2, 3, 4]. Empirical results
also demonstrate the generalizability of our approach to contrastive learning and label refinement
proposed in MA [4]. In addition, we substantially reduce the parameters of previous work by using
only 47.2% parameters of baselines (17 MB vs. 36 MB).

Our main contributions can be summarized as follows:

* We propose a new audio-visual video parsing baseline: Multi-modal Grouping Network
(MGN) that enables explicit grouping in a multi-modal network to learn compact and
discriminative audio and visual embeddings.

* We introduce class-aware unimodal grouping and modality-aware cross-modal grouping
modules to aggregate multi-modal temporal contexts.

* The experiments can demonstrate the superiority of our MGN over state-of-the-art AVVP
approaches and its generalizability to contrastive learning and label refinement.

2 Related Work

Audio-Visual Learning. Audio-visual learning has addressed in many previous works [6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16] to learn the audio-visual association between the two distinct yet correlated
modalities. Such audio-visual temporal association is crucial to several tasks, such as audio-visual
spatialization [17, 18, 19, 14], speech/audio separation [13, 20, 21, 11, 12, 22, 23, 24], visual sound
source localization [10, 25, 26, 27, 28, 29]. A comprehensive survey [30] covers recent advances
in audio-visual learning. In this work, we mainly focus on audio-visual video parsing that aims to
parse a video into temporal segments in terms of audio, visual, and audio-visual events with only
video-level annotations for training. In addition, different from existing audio-visual architectures,
we firstly introduce explicit multi-modal grouping into audio-visual learning.

Audio-Visual Video Parsing. Audio-visual video parsing aims at temporally localizing audio, visual,
and audio-visual events in videos and predicting their event categories. Early approaches [1, 2, 31, 32]
tried to localize only audio-visual events by aggregating cross-modal information in each local
segment of the input video. Due to exhaustive labeling costs on segment-wise audio, visual, and
audio-visual events, recent work [3, 4] explored the weakly-supervised audio-visual video parsing
with only video-level activity categories for training. For example, HAN [3] introduced the multi-
modal multiple instance learning mechanism with a hybrid attention network to aggregate segment-
wise representations and video-level features. To alleviate the harm brought by the audio-visual
asynchrony, MA [4] proposed the audio-visual contrastive learning from different frames and refined
modality-aware labels by exchanging audio and visual tracks between unrelated videos. More recently,
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Figure 1: Illustration of our Multi-modal Grouping Network (MGN). The Class-aware Uni-
modal Grouping module takes as input raw features {f*}7_,, {f*}Z_, and learnable class tokens
{c“}c 1 {c“}C 1 of audio and visual events for C' categories to generate class-aware embeddings
{gz Z1 {gl ;—1- The aggregated class-aware representations are fed into the Modality-aware
Cross modal Grouping module to merge all the audio features with video features into new cross-
modal modality-aware features {g?’}$ . Finally, an FC layer and sigmoid function are used to
predict the video-level target of audio-visual events.

Lin et al. [5] leveraged the common semantics shared by videos with replaced audios or frames in a
mini batch to detect relevant events.

Different from these baselines based on HAN, we develop a fully novel network architecture to
alleviate implicit audio-visual matching and modality category uncertainty in the hybrid attention
network. We are the first to exploit unimodal grouping for learning audio-visual representations with
class-aware semantics. Furthermore, we introduce a modality-aware cross-modal grouping module to
match the video-level label, although the given target does not indicate modalities.

3 Method

Given a video with both audio and visual tracks, our goal is to parse the video into temporal segments
associated with audible, visible, and audio-visible event categories. We propose a novel baseline:
Multi-modal Grouping Network (MGN) to address the task, which mainly consists of two modules:
class-aware unimodal grouping (Sec. 3.2) and modality-aware cross-modal grouping (Sec. 3.3).

3.1 Preliminaries

In this section, we first describe the problem setup and notations and revisit Multi-modal Multiple
Instance Learning in HAN [3] for the audio-visual video parsing (AVVP) task.

Problem Setup and Notations. Given a video with 7" non-overlapping audio and visual segments,
our goal is to temporally localize and recognize audio, visual, and audio-visual events that existed
in the video. For the multi-label events with C' event categories at time ¢, we have audio, visual,
and audio-visual event labels for evaluation, which are denoted as: y¢,y?,y?’ € R**“. During
training, we do not have the segment- and modality-level annotations. Therefore, we can only use the
video-level label y*¥ € R'*€ to perform weakly-supervised learning.



Revisit Multimodal Multiple Instance Learning. To address the weakly-supervised audio-visual
video parsing problem, HAN [3] introduced a Multimodal Multiple Instance Learning (MMIL)
framework based on transformers [33]. Given a set of audio-visual features F* = {f#}/_ |, F =
{f'}L_, in T segments, HAN applied self-attention and cross-attention layers to aggregate the
unimodal and cross-modal information at each timestamp:

£ = £ + Gua (£ F* F?) + o (£, F¥, F"), M
B2 = £ + dua(£7, F*, F) + o (£, F, FO), @
where @4 (), deq () denote the self-attention and cross-attention functions:
Goa (£, F*, F*) = Softmax( & FaT)Fa 3)
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and £, f € R4 Fe Fv € RT*4 (s the dimension of audio-visual features. Then, the probability
of segment-wise categories for audio and visual events (p?, p? € R'*Y) is predicted by a shared
fully-connected (FC) layer and sigmoid function. With the attentive MMIL pooling, the video-level
prediction is formulated as:

T
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where W, = {w¢, w?} is the temporal attention weights computed by a FC layer and normalized by
a softmax function. P; = {p¢, p}} is the probability set of audio-visual predictions. M = 2 denotes
audio and visual modalities. Finally, the model is trained to optimize a weakly-supervised loss of
p?? and a guided loss of p?, p¥ with label smoothing:

Liase = O(y™, p*) + O(¥y*,p") + O(¥".p") ©)

where O(-) is a binary cross-entropy function-based loss term, which summarizes binary cross-entropy
for all categories and O(y,p) = >, BCE(y;,p;). y*,y" are video-level audio and visual labels
generated by smoothing y*¥ to decrease the confidence of positive labels.

However, such a training mechanism will pose two main challenges. First, these methods without
explicit grouping suffer from false predictions due to the modality and temporal uncertainties. Second,
there is no constraint for modality category prediction to match the video-level target at the end.
To address these challenges, inspired by [34], we propose a novel Multi-modal Grouping Network
(MGN) with class-aware unimodal grouping and modality-aware cross-modal grouping modules, as
shown in Figure 1.

3.2 Class-aware Unimodal Grouping

In order to explicitly group class-aware matching semantics for audio-visual representations, we
introduce a novel class aware unimodal grouping module by incorporating learnable modality-speciﬁc
class tokens {c?}$;, {c?}, to help to group raw input unimodal features {f*}7 ,, {f'} ;.

We first use self-attention transformers: ¢2,(-) and ¢?,(+) to temporally aggregate unimodal features
from audio and visual inputs and align the features with the categorical token embeddings:

By e}y = {08 (x§, X X, X = (X = (s (bl (O
{E ey = {0l (), X X0 X = (x)20 = (B Yo {efy ] ®
where [ ; ] denotes the concatenation operator. Then, the unimodal grouping blocks g (), gv (")

take the learned audio and visual event class tokens and aggregated features as inputs to generate
class-aware audio and visual embeddings as:

{gz =1=9 ({fa}t 1v{éa}z 1) {gz =1=9 ({fv}t 1a{év}z 1) 9



During grouping, we merge all the unimodal features that belong to the same class token into a
new unimodal class-aware feature, by computing the similarity matrices A®, AV between unimodal
features and class tokens via a softmax operation formulated as

Ay, = Softmax(W2f - Wiel), Ay, = Softmax(W/f - Wyev) (10)

where W', W' and W, W} are the weights of the learned linear projections for the features and
class tokens of audio and visual modalities, respectively. Based on this similarity, we calculate the
class-aware features with the weighted sum of all segment features assigned to that class:
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where W, W and W7, W7 denote the learned weights of linear projections for audio and visual

modalities, separately. Note that, the audio features {f‘t“}thl are merged with discriminative visual
features {f’}7_, via a similar grouping block with a hard-softmax operation. In order to constrain the
independence of each class token cf, ¢}, we apply FC layers and softmax operation to generate the

category probability e, e} of class tokens for audio and visual modalities with a class-constrained
loss as:

gf = g" ({1, &) = &f + Wy
(1)
gl =g ({f} &) =¢/ + Wy

C
Las =Y CE(h;,e})+ CE(h;,e}) (12)
i=1

where CE(-) refers to cross-entropy loss; h; is an one-hot encoding vector and only its element for the
target class entry ¢ is 1. After the class-aware unimodal grouping, the video-level category predictions
p?%, p* of audio and visual events is simply computed by a FC layer and sigmoid operator:

_Sigmmd(FC({gz 1)), —Sigm01d(FC({gZ 1)) (13)

With the help of the proposed class-constrained loss, we generate class-aware representations
{21, {g?}, of audio and visual modalities for audio-visual matching.

3.3 Modality-aware Cross-modal Grouping

The second challenge requires us to predict the modality category for matching with the only given
video-level target in an explicit way. To achieve this, we propose a modality-aware cross-modal
grouping module composed of cross-modal transformers ¢.,(-) and grouping blocks g**(-) to
aggregate class-aware representations {g?}< ,, {g?}% ,. Based on the audio-visual similarity in
the grouping stage, we combine all the audio features with visual features into new cross-modal
modality-aware features {g¢”}< | as:

{g?}izla {gfi’qczi = ¢ca([{g§l}ic=1i {gf}?:ii) (14)

{g;l i= 1: av({g = 17{ ) (15)

where g°¥(-) denote the grouping operator similar to g*(-) and 9" (+) in Eq. 11. Then, we leverage
the joint audio-visual representations {g?"}{_, to predict the video-level target of audio and visual
events via a FC layer and sigmoid function as:

= Sigmoid(FC({g{"}{1,)) (16)
The whole model can be optimized in an end-to-end manner in terms of the objective function:
L= Lyase + Leis (17)

At inference time, the unimodal class-aware similarity is used to predict the audio, visual, and
audio-visual events for each segment ¢:

p; =p*'OA{, p/=p"'OA}, p'=p;Op; (18)
where p?, p? € R™¢ and A%, A? € RT*C,



Table 1: Quantitative results of weakly-supervised audio-visual video parsing. ‘C’ and ‘R’ denote the
contrastive learning and label refinement proposed in MA [4], respectively.

Method Segment-Level Event-Level

A V. AV Type Event A V AV Type Event
AVE [1] 472 37.1 354 399 416 404 347 31.6 355. 365
AVSDN [2] 478 520 37.1 457 508 341 463 265 356. 377
HAN [3] 60.1 529 489 540 554 513 489 43.0 477 48.0
MGN (ours) 60.7 555 50.6 556 572 510 524 444 493 492
MA [4] (wC) 61.9 53.1 497 549 562 528 494 438 487 49.0
MGN (w C) 60.6 56.7 525 566 574 514 532 464 503 494
MA [4] (WR) 59.8 575 526 566 566 521 544 458 508 494
MGN (w R) 60.0 60.6 540 582 58.2 503 584 479 522 49.1

MA [4] (wC+R) 60.3 600 55.1 589 579 53.6 564 49.0 53.0 50.6
MGN (w C+R) 60.2 619 555 592 58.7 509 59.7 49.6 534 499

4 Experiments

4.1 Experimental Setup

Dataset. The Look, Listen and Parse (LLP) Dataset [3] contains 11,849 YouTube video clips of
10-seconds long from 25 different event categories, such as car, music, cheering, speech, etc. Note
that each video includes at least 1s audio or visual events and 7202 video clips are annotated with
more than one event categories. We use 10,000 video clips with only video-level event labels for
training. Following the official splits [3] of validation and test sets, we develop and test the model on
the remaining 1879 videos with the segment-level annotations, i.e., the speech event for audio starts
at 1s and ends at Ss.

Evaluation Metrics. We follow the prior work [3, 4] and use F-scores to evaluate both segment-level
and event-level predictions for audio, visual, and audio-visual events. The segment-level metrics
can evaluate snippet-wise event prediction performance. For the event-level metrics, we concatenate
positive consecutive segments in the same events and compute F-score based on mloU=0.5 as the
threshold. Type @AV and Event@AYV are reported for the overall evaluation of audio-visual video
parsing performance. Type@AV is the averaged audio, visual, and audio-visual event evaluation
results. Different from Type@AV directly averaging results from different event types, Event@AV
considers audio and visual events for each sample.

Implementation. Following the data pre-processing in previous work [3], we sample video frames
at 8 fps from the 10-second videos with 10 non-overlapping snippets of 1 second. For low-level
visual features, we concatenate 2D and 3D visual features extracted by ResNet-152 [35] pre-trained
on ImageNet [36] and 3D ResNet [37] pre-trained on Kinetics-400 [38]. We utilize VGGish [39]
pre-trained on AudioSet [40] to extract the audio features. The model is trained with Adam [41]
optimizer with 81=0.9, $2=0.999 and with an initial learning rate of 3e-4. We train the model with a
batch size of 16 for 40 epochs.

4.2 Comparison to Prior Work

In this work, we propose a novel and effective training framework for weakly-supervised audio-visual
video parsing. To demonstrate the effectiveness of our approach, we first compare it to previous
network baselines 2: 1) AVE [1]: an audio-guided co-attention network with additional audio-visual
parsing branches; 2) AVSDN [2]: a sequence-to-sequence-based model with additional audio-visual
parsing branches to merge global audio-visual features into local ones; 3) HAN [3]: a hybrid attention
network with multi-modal multiple instance learning pooling. Furthermore, we compare MA [4],
a method based on HAN with the audio-visual contrastive learning (C) and the label refinement

*Note that we will not include the recent work [5] into comparison since there is no source code for it.
Meanwhile, they are based on HAN [3], but our MGN is a fully novel backbone.
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Figure 2: Qualitative comparisons with baselines. “V_c” denotes the “Vacuum_cleaner” class. The
proposed MGN achieves much better performance in parsing audio and visual events. Note that the
audio-visual event prediction is an intersection of audio and visual event predictions.

(R). The MA series baselines include MA (w C), MA (w R), and MA (w C+R). The quantitative
comparisons on the LLP dataset are reported in Table 1.

As can be seen, the proposed MGN achieves the overall best results against previous network
baselines in terms most of metrics. For the overall evaluation of segment-level predictions, we
achieve significant performance gains of 1.6 Type@AV and 1.8 Event@AV. When evaluated on
segment-level predictions of each sample, our MGN also improves the baseline by large margins, 2.6
Visual and 1.7 Audio-Visual. Meanwhile, our MGN outperforms baselines by 3.5 Visual, 1.4 Audio-
Visual, and 1.6 Tyep@AV for event-level predictions. These results demonstrate the effectiveness of
our approach in weakly-supervised audio-visual video parsing against prior network architectures.

Furthermore, significant gains can be observed in the setting of using the audio-visual contrastive
learning and label refinement. Adding the contrastive learning to our MGN achieves the segment-level
performance gain of 3.6 Visual and 2.8 Audio-Visual, and the event-level gain of 3.8 Visual and
2.6 Audio-Visual. With the label refinement in MA, we significantly improve MA (w R) by 3.1
segment-level and 4.0 event-level for visual predictions. Our framework with both contrastive learning
and label refinement achieves the best segment-level performance in terms of Visual, Audio-Visual,
Type @AYV, and Event@ AV. These improvements imply the strong generalizability of the proposed
MGN to the audio-visual contrastive learning and the label refinement.

In order to qualitatively evaluate the predictions of audio and visual events, we compare the proposed
MGN with HAN [3], MA [4] in Figure 2. We can observe three main things from previous approaches:
First, existing methods can miss the snippet-wise predictions for some hard segments in the video,
e.g., MA does not predict the vacuum cleaner for visual events after 3s. Second, prior work can miss
one class prediction if there are two categories happening in the same modality. Third, the previous
method can miss one modality prediction for the class existing in both modalities. When it comes to
the proposed MGN, we superiorly achieve high F1 scores of segment-level and event-level prediction,
benefiting from the well-designed class-aware unimodal grouping and modality-aware cross-modal
grouping modules.

4.3 Experimental Analysis

In this section, we conducted ablation studies to validate the benefit of Class-aware Unimodal
Grouping (CUG) and Modality-aware Cross-modal (MCG) Grouping strategies. We also performed
extensive experiments to investigate the false positive issue in HAN and the learned class tokens.



Table 2: Ablation studies on Class-aware Unimodal Grouping (CUG) and Modality-aware Cross-
modal Grouping (MCG) blocks. Segment-level audio-visual video parsing results are reported.

CUG MCG Audio Visual Audio-Visual Type@AV Event@AV

X X 60.1 529 48.9 54.0 55.4
4 X 589 553 49.8 54.7 559
v 4 60.7 55.5 50.6 55.6 57.2

Class-aware Unimodal Grouping & Modality-aware Cross-modal Grouping. In order to demon-
strate the effectiveness of the proposed class-aware unimodal grouping (CUG) and modality-aware
cross-modal grouping (MCG), we ablated the necessity and strategy of grouping blocks. The results
of segment-level predictions are reported in Table 2. We can observe that adding CUG to the vanilla
baseline achieves significant gains of 2.4 Visual, indicating the effectiveness of grouping class-aware
semantics in predicting snippet-wise categories for visual events. Incorporating MCG with CUG
highly increases Audio-Visual, Tyep@AYV, Event@AV by 1.7, 1.6 and 1.8. These results show the
importance of modality-aware grouping on predictions of audio-visual events. Besides effectiveness,
our model is also more efficient. When the depth of CUG and MCG is 3 and 6, the proposed MGN
with only 47.2% parameters of the vanilla baseline performs the best on Type@AV and Event@AYV,
especially on Audio. These results further show the advantage of our MGN in real applications with
lightweight parameters against the prior work [3, 4]. The detailed results are in Appendix.

False Predictions. In order to demonstrate the

effectiveness of the proposed MGN in mitigat- 1500

ing false predictions against baselines, we calcu- 1250 = ;2:,
late the total amount of false positives for all 25 1000

classes in the test set. The comparison results of 750

event-level audio, visual and audio-visual met- 500

rics are shown in Figure 3. We can observe 250

that our MGN with the class-aware unimodal

grouping modules decreases the false positives Event A Event v Event AV

of audio and visual events by large margins, 381
and 494. Furthermore, the number of false pos-
itives of audio-visual events drops down by 678,
which verifies the importance of modality-aware

Figure 3: Comparison results of the total amount of
false positives for all 25 classes between HAN [3]
and the proposed MGN in terms of event-level au-

L o dio, visual and audio-visual metrics, i.e., Event_A,
cross-modal grouping in mitigating the modal- Event V. and Event AV
ity uncertainty. Overall, our MGN with explicit - -
grouping mechanisms significantly eliminates false predictions caused by the modality and temporal
uncertainties existing in the baseline.

Learned Class-aware Features. The learned class tokens are essential to grouping class-aware
semantics from audio and visual features. To better evaluate the quality of those learned class-level
features, we visualize the learned audio and visual representations of 25 categories by t-SNE [42], as
shown in Figure 4. It is noted that each spot denotes the feature of one audio or visual event, while
each color represents each class, such as “Speech” in brown and “Dog” in green. As can be seen
in the last column, features extracted by the proposed MGN are intra-class compact and inter-class
separable. However, there still exists mixtures of multiple categories for audio and visual events
among the representations of HAN and MA. For the sub-figure on the bottom right, we can observe a
large cluster of brown spots for the “Speech” class of audio events in the test set, while brown spots
in prior work are distributed more sparsely. These meaningful visualizations further demonstrate that
our MGN successfully learns compact and discriminative features for each modality.

4.4 Limitation

Although the proposed MGN achieves superior results on visual events and audio-visual events, the
gains of audio events are not significant compared to the visual modality. We notice that there are
1628 visual instances and 2663 audio instances in the test set, which implies the audio modality is
much harder than the visual one in this setting. One possible solution is to introduce a small number
of segment-wise audio-visual parsing annotations as supervision for semi-supervised training. In the
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Figure 4: Qualitative visualizations of audio (Top rows) and visual (Bottom rows) features learned by
HAN, MA and the proposed MGN. Note that each spot denotes the feature of one audio or visual
event, while each color represents each class, such as “Speech” in brown and “Dog” in green.

meanwhile, our MGN performs worse with the increase of the depth of transformer layers in grouping
modules. This is caused by such a weakly-supervised setting with only video-level annotations that
do not indicate either segments or modalities. However, the model is expected to parse a video into
events with different categories and modalities. Therefore, the potential future work is to add more
grouping stages with learned class-tokens as supervision for each one.

5 Conclusion

In this work, we present MGN, a fully novel Multi-modal Grouping Network to explicitly group
class-aware matching semantics for weakly-supervised audio-visual video parsing. We introduce
the class-aware unimodal grouping module to generate class-aware unimodal representations with
learnable tokens by using unimodal grouping blocks for each modality. Furthermore, we leverage the
modality-aware cross-modal grouping to match the video-level target with the cross-modal grouping
blocks. Experimental results demonstrate the effectiveness and superiority of our MGN against
previous baselines. We also show the generalizability of our simple framework to the audio-visual
contrastive learning and label refinement.

Broader Impact. The proposed method detects video events in audio and visual modalities based
on the learned statistics of the training dataset. It could capture internal biases in the data, which
may have negative societal impacts. For example, the model might not be able to discover rare but
important events, such as fire warnings. Thus, before deploying our audio-visual video parsing model
into real-world applications, we need to carefully address these issues.
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