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Abstract

We study the linear contextual bandit problem in the presence of adversarial
corruption, where the reward at each round is corrupted by an adversary, and
the corruption level (i.e., the sum of corruption magnitudes over the horizon) is
C ≥ 0. The best-known algorithms in this setting are limited in that they either
are computationally inefficient or require a strong assumption on the corruption,
or their regret is at least C times worse than the regret without corruption. In this
paper, to overcome these limitations, we propose a new algorithm based on the
principle of optimism in the face of uncertainty. At the core of our algorithm is a
weighted ridge regression where the weight of each chosen action depends on its
confidence up to some threshold. We show that for both known C and unknown
C cases, our algorithm with proper choice of hyperparameter achieves a regret
that nearly matches the lower bounds. Thus, our algorithm is nearly optimal up to
logarithmic factors for both cases. Notably, our algorithm achieves the near-optimal
regret for both corrupted and uncorrupted cases (C = 0) simultaneously.

1 Introduction

We study linear contextual bandits with adversarial corruptions. At each round, the agent observes
a decision set provided by the environment, and selects an action from the decision set. Then an
adversary corrupts the reward of the action selected by the agent. The agent then receives the
corrupted reward of the selected action and proceeds until K rounds. The agent’s goal is to minimize
the regret Regret(K), which is the difference between the optimal accumulated reward and the
selected accumulated reward. This problem can be regarded as a combination of the two classical
bandit problems, stochastic bandits and adversarial bandits (Lattimore and Szepesvári, 2018). In
practice, the contextual bandits with adversarial corruptions can describe many popular decision-
making problems such as pay-per-click advertisements with click fraud (Lykouris et al., 2018) and
recommendation system with malicious users (Deshpande and Montanari, 2012).

Lykouris et al. (2018) first studied the multi-armed bandit with adversarial corruptions. Specifically,
let C denote the corruption level which is the sum of the corruption magnitudes at each round.
Lykouris et al. (2018) proposed an algorithm with a regret that is C times worse than the regret
without corruption. Later, Gupta et al. (2019a) proposed an improved algorithm whose regret consists
of two terms: a corruption-independent term that matches the optimal regret for multi-armed bandit
without corruption, and a corruption-dependent term that is linear in C and independent of K, i.e.,
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Regret(K) = o(K) + O(C). The lower bound proved in Gupta et al. (2019a) suggests that the
linear dependence on C is near-optimal. Such a regret structure reveals an desirable property of
corruption-robust bandit algorithms, that is, the algorithm should perform nearly the same as the
bandit algorithms without corruption when the corruption level C is small or diminishes.

Based on the above observation, a natural question arises:

Can we design computationally efficient algorithms for linear contextual bandits with corruption that
can attain the best possible regret, similar to those in multi-armed bandits?

Some previous works have attempted to answer this question for the simpler stochastic linear bandit
setting, where the decision sets at each round are identical and finite. Li et al. (2019) studied the
stochastic linear bandits and proposed an instance-dependent regret bound. Later on, Bogunovic et al.
(2021) studied the same problem and proposed an algorithm that achieves a regret with the corruption
term depending on C linearly and on K logarithmically. However, these algorithms are limited to the
stochastic linear bandit setting since their algorithm design highly relies on the experiment design
and arm-elimination techniques that require a multiple selection of the same action and can only
handle fixed decision set. They are not applicable to contextual bandits, where the decision set is
changing over time and can even be infinite. For the more general linear contextual bandit setting,
Bogunovic et al. (2021) proved that a simple greedy algorithm based on linear regression can attain
an ideal corruption term that has a linear dependence on C and a logarithmic dependence on K, under
a stringent diversity assumption on the contexts. Lee et al. (2021) proposed an algorithm and the
corruption term in its regret depends on C linearly and on K logarithmically, but only holds for the
restricted case when the corruption at each round is a linear function of the action. Without special
assumptions on the contexts or corruptions, Zhao et al. (2021); Ding et al. (2021) proposed a variant
of the OFUL algorithm (Abbasi-Yadkori et al., 2011) and its regret has a corruption term depending
on K polynomially. Recently, Wei et al. (2022) proposed a Robust VOFUL algorithm that achieves
a regret with a corruption term linearly dependent on C ′1 and only logarithmically dependent on
K. However, Robust VOFUL is computationally inefficient since it needs to solve a maximization
problem over a nonconvex confidence set that is defined as the intersection of exponential number of
sets, and its regret has a loose dependence on context dimension d. In addition, Wei et al. (2022) also
proposed a Robust OFUL algorithm and provided a regret guarantee that has a linear dependence
on a different notion of corruption level Cr

2, which is strictly larger than the corruption level C
considered in the previous work and the current paper. Thus, the above question remains open.

In this paper, we give an affirmative answer to the above question. We summarize our contributions
as follows.

• We propose a computationally efficient algorithm based on the principle of optimism in the face
of uncertainty (Abbasi-Yadkori et al., 2011), named Confidence-Weighted OFUL (CW-OFUL).
At the core of our algorithm is a weighted ridge regression where the weight of each chosen arm
is adaptive to its confidence, which is defined as the truncation of the inverse exploration bonus.
Intuitively, such a weighting strategy prevents the algorithm from exploiting the contexts whose
rewards are more likely corrupted by a large amount.

• For the case when the corruption level C is known to the agent, we show that the proposed algorithm
enjoys a regret Regret(K) = Õ(d

√
K + dC), where d is the dimension of the contexts, C is the

corruption level and K is the number of total iterations. The first term matches the regret lower
bound of linear contextual bandits without corruption Ω(d

√
K) (Lattimore and Szepesvári, 2018).

The second term matches the lower bound on the corruption term in regret Ω(dC) (Bogunovic
et al., 2021). They together suggest that our algorithm is not only robust but also near-optimal up
to logarithmic factors.

• For the case when the corruption level C is unknown to the agent, we show that CW-OFUL enjoys
an Õ(d

√
K) regret for the case C ≤

√
K, with proper choice of the hyperparameter. Surprisingly,

1In Wei et al. (2022), the adversary adds corruption to all actions in the decision set before observing the
agent’s action and they define the corruption level C′ as the maximum corruption over the decision set. See
Remark 2.2 for the formal definition and a more detailed discussion.

2The corruption level Cr is defined as Cr =
√

K
∑K

k=1 c
2
k, where ck ≥ 0 is the corruption magnitude at

round k. As a comparison, C =
∑K

k=1 |ck|. In the worst case, Cr = O(
√
KC) and therefore the corruption

term in the regret of Robust OFUL will depend on K polynomially.
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by proving a lower bound on the regret, we show that our regret upper bound is already optimal for
all algorithms that achieve a near-optimal regret bound for uncorrupted bandits.

We compare our regret bounds with previous ones in Table 1. We can see that our algorithm matches
the lower bound up to logarithmic factors in both known C and unknown C cases, and therefore is
nearly optimal.

Table 1: Comparisons of regrets for corrupted linear contextual bandits.
Algorithm Regret C Efficiency 3 Adversary 4

Robust weighted OFUL
(Zhao et al., 2021) Õ(d

√
K + dC ′

√
K) Known Yes Weak

Robust OFUL
(Wei et al., 2022) Õ(d

√
K + Cr) Known Yes Weak

Robust VOFUL
(Wei et al., 2022) Õ(d4.5

√
K + d4C ′) Known No Weak

CW-OFUL
(Theorem 4.2) Õ(d

√
K + dC) Known Yes Strong

CW-OFUL
(Remark 4.4) Õ(d

√
K + dC ′) Known Yes Weak

Lower bound
(Lattimore and Szepesvári, 2018) Ω(d

√
K + dC) Known N/A Strong

(Bogunovic et al., 2021)

Multi-level weighted OFUL
(Zhao et al., 2021) Õ(dC ′2

√
K), C ′ = Ω(1) Unknown Yes Weak

Greedy
(Bogunovic et al., 2021) Õ

(
(
√
dK + C)/λ0

)5 Unknown Yes Strong

COBE+OFUL
(Wei et al., 2022) Õ(d

√
K + Cr) Unknown Yes Weak

COBE+VOFUL
(Wei et al., 2022) Õ(d4.5

√
K + d4C ′) Unknown No Weak

CW-OFUL(C̄ =
√
K) Õ(d

√
K), C ≤

√
K

(Theorem 4.9) O(K), C ≥
√
K

Unknown Yes Strong

COBE + CW-OFUL
(Remark 4.10 Õ(d

√
K + dC ′) Unknown Yes Weak

Lower bound6

( Lattimore and Szepesvári 2018) Ω(d
√
K), C ≤

√
K Unknown N/A Strong

(Theorem 4.12) Ω(K), C ≥
√
K

1.1 Additional Related Work

Bandits with Misspecification. Bandits with misspecification can be seen as a special case of
bandit with adversarial corruption since it is corrupted relative evenly at each round. Let ϵ be the
misspecification level. Ghosh et al. (2017) firstly studied the stochastic linear bandits and proved a
sublinear regret when ϵ is small. Lattimore and Szepesvari (2019) studied the stochastic linear bandit

3The weak adversary must corrupt the rewards before the agent selects its actions, while the powerful
adversary (i.e., strong adversary) can corrupt the rewards after seeing the action being selected by the agent.

4In this work, we assume there is a computation oracle to solve the linear optimization problems over the
decision set Dt (e.g., Line 3 of Algorithm 1). This is implicitly assumed in almost all existing works for solving
contextual linear bandit problems with infinite arms (e.g., OFUL and LinUCB algorithms); otherwise, choosing
an arm from the infinite decision set is computationally intractable. In the special case that the decision set is
finite or the convex hull of a finite set, such a computation oracle apparently exists. ).

5Greedy Bogunovic et al. (2021) assumes that each arm in the decision set at each round is sampled from a
distribution that satisfies (r, λ0)-diverse property (Kannan et al., 2018) . A distribution D is (r, λ0)-diverse if
for any a = µ+ ξ with µ ∈ Rd and ξ ∼ D, λmin(Eξ∈D[aa⊤|θ⊤ξ ≥ b]) ≥ λ0 holds for all θ ∈ Rd and b ∈ R
satisfying b ≤ r∥θ∥2.

6The lower bound under a large corruption level C ≥
√
K only holds for algorithms that can achieve near-

optimal regret for uncorrupted bandits. It is possible for an algorithm that does not achieve the optimal regret for
uncorrupted bandits (e.g., RK = O(K0.75)) to achieve a sub-linear regret in the presence of corruptions.
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setting under milder assumptions. With the knowledge of ϵ, they proposed an algorithm with an
Õ(

√
dK log(N)+ϵ

√
dK) regret, where d is the dimension of the contextual vector, N is the number

of arms. Their regret bound matches their proved lower bound up to logarithmic factors. Foster et al.
(2020) further considered the more general linear contextual bandits with misspecification when
ϵ is unknown to the agent, and proposed an algorithm equipped with a CORRAL meta algorithm
(Agarwal et al., 2017) to deal with the unknown ϵ. Their algorithm enjoys an Õ(d

√
K + ϵ

√
dK)

regret. Krishnamurthy et al. (2021) proposed an algorithm without using a meta algorithm which
has the same order of regret as Foster et al. (2020). Our algorithm can be directly applied to the
misspecification setting by choosing the corruption level C to be Kϵ, which immediately gives us an
Õ(d
√
K + dKϵ) regret upper bound.

Bandits with Adversarial Rewards. There exists a large body of literature on the problems of
adversarial multi-armed bandits (Auer et al., 2002; Bubeck and Cesa-Bianchi, 2012). There is also
a line of works trying to design algorithms that can achieve near-optimal regret bounds for both
stochastic bandits and adversarial bandits simultaneously (Bubeck and Slivkins, 2012; Seldin and
Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017; Zimmert and Seldin, 2019; Lee
et al., 2021). However, most of these algorithms focus on the general adversarial reward setting
without specifying the total amount of corruption. One of the notable exceptions is Lee et al.
(2021), which assumed that the adversarial corruptions are generated through the inner product of
an adversarial vectors and the contextual vector. As a comparison, our algorithm and result do not
need such additional assumption on the structure of the corruption. Our algorithm can be applied to
both corrupted and uncorrupted settings with different choices of hyperparameters, and achieves a
near-optimal regret for both cases.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters
to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector
x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s ℓ2 norm
and by ∥x∥Σ =

√
x⊤Σx the Mahalanobis norm. For two positive sequences {an} and {bn} with

n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn
holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that
an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use 1{·}
to denote the indicator function.

2 Preliminaries

In this section, we introduce the setting of linear contextual bandit with adversarial corruption.

Linear contextual bandit with corruption. We define linear contextual bandits with corruption as
follows: at the beginning of each round k ∈ [K], the agent receives a decision set Dk ⊆ Rd from the
environment and it chooses an action (i.e., arm, contextual vector) x ∈ Dk. After choosing the action
xk at round k, the environment generates the corresponding r′k based on the stochastic linear model
r′k = ⟨θ∗,x⟩+ ηk, where θ∗ ∈ Rd is an unknown environment parameter and ηk is the stochastic
noise. After seeing the stochastic reward r′k, the adversary (i.e., attacker) introduces an adversarial
corruption ck onto the reward, which may depend on the decision setDk, action xk, stochastic reward
r′k. Finally, the agent observes the corrupted reward rk = ⟨θ∗,x⟩+ ηk + ck at round k. Following
Abbasi-Yadkori et al. (2011), we make the following assumptions on the bandit model.
Assumption 2.1. The linear contextual bandit satisfies the following conditions:

• At each round k and any action x ∈ Dk, we have ∥x∥2 ≤ L.

• For the unknown environment parameter θ∗, it satisfies ∥θ∗∥2 ≤ S.

• At each round k, the corresponding stochastic noise ηk is conditional R-sub-Gaussian, i.e.,

∀λ ∈ R, E
[
eληk |x1:k, η1:k−1, c1:k−1

]
≤ exp(R2λ2/2).

Regret. The goal of the agent is to minimize the pseudo-regret in the first K rounds, which is defined
as follows:

Regret(K) =
∑K

k=1 maxx∈Dk
⟨θ∗,x⟩ − ⟨θ∗,xk⟩.
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Corruption level. To measure the level of adversarial corruptions, we define the corruption level as
C :=

∑K
k=1 |ck|. With this definition, we say a linear contextual bandit problem is C-corrupted if

and only if the corruption level is no larger than C.
Remark 2.2. The adversary in our setting and the corresponding definition of corruption level is
the same as that in Bogunovic et al. (2021) and slightly different from that in prior works such as
Lykouris et al. (2018); Gupta et al. (2019b); Zhao et al. (2021). More specifically, in these works, the
adversarial corruption ck is chosen before the choice of action xk ∈ Dk. Since the actions selected
by the agent may not be deterministic, the adversary chooses different corruption ck,x for different
action x ∈ Dk. With this notion of corruption, the corresponding corruption level is defined as
C ′ =

∑K
k=1 maxx∈Dk

|ck,x|. As a comparison, our adversary chooses the corruption after observing
the action xk and for the corruption level. We have

C =

K∑
k=1

|ck,xk
| ≤

K∑
k=1

max
x∈Dk

|ck,x| = C ′,

which implies that our corruption level C is always no larger than the corruption level C ′ in Lykouris
et al. (2018); Gupta et al. (2019b); Zhao et al. (2021).

3 Algorithms

In this section, we review existing algorithms for linear contextual bandits (and stochastic linear
bandits) and discuss their limitations when they are applied to the adversarial corruption setting. Then
we present our algorithm CW-OFUL and illustrate how our algorithm design can overcome the these
limitations.

3.1 Existing Algorithms

We begin with reviewing the classical OFUL algorithm (Abbasi-Yadkori et al., 2011). Under
Assumption 2.1, at round k, OFUL estimates θ∗ by online ridge regression over all the past observed
actions and rewards, i.e.,

θk ← argmin
θ∈Rd

λ∥θ∥22 +
∑k−1

i=1

(
θ⊤xi − ri

)2
. (3.1)

With θk in hand, OFUL constructs a confidence set for θ∗ as follows Ck =
{
θ : ∥θk − θ∥Σk

≤ β
}

,

where β is the confidence radius and Σk = λI+
∑k−1

i=1 xix
⊤
i is the covariance matrix of contexts

xi, i = 1, . . . , k. Without corruption, it is known that setting β = Õ(R
√
d) guarantees that θ∗ ∈ Ck

with high probability, which further leads to a sublinear regret Õ(d
√
K). However, with corruption,

such a choice of β is not sufficient. To see why, we take a closer look at the closed-form solution θk
to (3.1):

θk = Σ−1
k

k−1∑
i=1

xiri = Σ−1
k

k−1∑
i=1

xi(x
⊤
i θ

∗ + ηi) +Σ−1
k

k−1∑
i=1

xici.

By simple calculation and assuming λ to be a constant, we can show that ∥θk − θ∗∥Σk
can be upper

bounded by

∥θk − θ∗∥Σk
≤ O

(∥∥∥∥ k−1∑
i=1

xiηi

∥∥∥∥
Σ−1

k︸ ︷︷ ︸
I1

+

∥∥∥∥ k−1∑
i=1

xici

∥∥∥∥
Σ−1

k︸ ︷︷ ︸
I2

)
.

The first term I1 is corruption-independent and bounded by Õ(R
√
d) according to Abbasi-Yadkori

et al. (2011). The challenge is to bound the second term I2, which depends on the corruption. Existing
approaches (Zhao et al., 2021; Ding et al., 2021) bound I2 by triangle inequality and Cauchy-Schwarz
inequality,

I2 ≤
k−1∑
i=1

∥xici∥Σ−1
k
≤

k−1∑
i=1

|ci| max
1≤j≤k−1

∥xj∥Σ−1
k
≤

k−1∑
i=1

|ci|L/
√
λ = O(C), (3.2)
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Algorithm 1 CW-OFUL
Require: Regularization parameter λ, confidence radius β and threshold parameter α

1: for round k = 1, 2, .. do
2: Set Σk = λI+

∑k−1
i=1 wixix

⊤
i

3: Set bk =
∑k−1

i=1 wixiri and θk = Σ−1
k bk

4: Receive the decision set Dk

5: Choose action xk ← argmaxx∈Dk
θ⊤
k x+ β

√
x⊤Σ−1

k x

6: Set wk = min{1, α/∥xk∥Σ−1
k
}

7: end for

where C is the corruption level and max1≤j≤k−1 ∥xj∥Σ−1
k

is bounded by the crude upper bound

L/
√
λ. Unfortunately, such a bound makes the confidence radius be the order of O(R

√
d + C),

which eventually leads to an term O(C
√
K) in the regret, which is C times worse than the regret

without corruption.

In order to obtain a tighter bound of I2, for stochastic linear bandits, Bogunovic et al. (2021)
proposed a Robust Phase Elimination (RPE) algorithm, which employs optimal design (Lattimore
and Szepesvári, 2018) to select the arms. In this setting, the decision set is finite and fixed over time,
i.e., Dk = D for all k ∈ [K] and |D| ≤ ∞. More specifically, RPE divides the time horizon into
several phases. Within each phase, RPE performs linear regression on a multisetA ⊂ D, which is the
G-optimal design of D. Here the multiset means A has duplicate elements. Let Σ be the covariance
matrix defined over A, then the following upper bound holds (Lattimore and Szepesvári, 2018):

∀x ∈ D, ∥x∥Σ−1 = O
(
|A|−1/2

)
. (3.3)

By choosing a large enough |A|, (3.3) provides a uniformly small upper bound for
max1≤j≤k−1 ∥xj∥Σ−1

k
for any k. Substituting (3.3) back into (3.2) with |A| = O(C2), we can

show that I2 is bounded by some small constant, which therefore eliminates the O(C
√
K) term in the

final regret. Although the optimal design-based approach RPE (Bogunovic et al., 2021) successfully
eliminates the multiplicative term C

√
K, it is not applicable to our linear contextual bandit setting:

(1) it needs to select a multiset from the decision set, which is impossible for the general contextual
bandit setting; (2) the complexity of optimal design introduces some additional quadratic term C2 in
their final regret, which makes their algorithm non-optimal (See Bogunovic et al. (2021) for more
details).

3.2 Our Algorithm

As we have seen before, it is pivotal to bound the corruption-dependent term I2 tightly. To overcome
the limitations of existing approaches, we propose a fundamentally new approach and present our
CW-OFUL in Algorithm 1. At a high level, Algorithm 1 is an extension of the OFUL algorithm
(Abbasi-Yadkori et al., 2011), which is also based on the principle of optimism in the face of
uncertainty.

Our algorithm assigns a weight wk to each selected action xk. More specifically, at round k, we use
the following weighted ridge regression to estimate the unknown vector θ∗:

θk ← argmin
θ∈Rd

λ∥θ∥22 +
∑k−1

i=1 wi

(
θ⊤xi − ri

)2
. (3.4)

The closed-form solution to the above optimization problem is displayed in Line 3 of Algorithm 1.
While weighted ridge regression is not new and has been used in prior work on bandits (Kirschner and
Krause, 2018; Zhou et al., 2021; Russac et al., 2019), the setting, motivation and the choice of weight
are fundamentally different. More specifically, we choose the weight as the truncation of the inverse
exploration bonus, which is wk = min

{
1, α/∥xk∥Σ−1

k

}
. Here α > 0 is a threshold parameter. We

can see that for action xk with a large exploration bonus ∥xk∥Σ−1
k

(low confidence), CW-OFUL will
assign a small weight to it to avoid the potentially large regret caused by both the stochastic noise and
the adversarial corruption. On the other hand, for the action with a small exploration bonus (high

6



confidence), CW-OFUL will assign a large weight to it (it can be as large as 1). Another interesting
observation is that by setting α to be sufficiently large, the weight will become 1 for every action,
and CW-OFUL will degenerate to OFUL (Abbasi-Yadkori et al., 2011).

As a comparison, Kirschner and Krause (2018); Zhou et al. (2021) used the inverse of the noise
variance as the weight to normalize the noise and derived tight variance-dependent regret guarantees.
Russac et al. (2019) set the weight as a geometric sequence to perform moving average to deal with
the non-stationary environment.

To see how our choice of weight can lead to tighter regret, we first write down the closed-form
solution to (3.4)

θk = Σ−1
k

k−1∑
i=1

wixi(x
⊤
i θ

∗ + ηi) +

k−1∑
i=1

Σ−1
k wixici,

where the covariance matrix Σk = λI+
∑k−1

i=1 wixix
⊤
i . With some calculation and assuming λ to

be a constant, we can obtain

∥θk − θ∗∥Σk
≤ O

(∥∥∥∥ k−1∑
i=1

wixiηi

∥∥∥∥
Σ−1

k︸ ︷︷ ︸
I1

+

∥∥∥∥ k−1∑
i=1

wixici

∥∥∥∥
Σ−1

k︸ ︷︷ ︸
I2

)
.

I1 is the corruption-independent term and can still be bounded by Õ(R
√
d) according to Abbasi-

Yadkori et al. (2011). For I2, we have∥∥∥∥ k−1∑
i=1

wixici

∥∥∥∥
Σ−1

k

≤
k−1∑
i=1

|ci|wi

∥∥xi

∥∥
Σ−1

k

≤
k−1∑
i=1

|ci|α = Cα,

It is evident that with our carefully designed weight, the corruption-dependent term I2 can be
uniformly bounded by some constant Cα, the same as that in Bogunovic et al. (2021). Therefore, by
setting α to be sufficiently small, our CW-OFUL can get rid of the C

√
K term in the final regret.

4 Main Results

In this section, we present the main theoretical guarantees of CW-OFUL.

4.1 Known Corruption Level C: Upper Bound

We first consider the case when C is known to the agent. In this case, we choose α = R
√
d/C.

The following lemma characterizes the estimation error of θk with respect to θ∗, which is a formal
summary of our discussion in Section 3.
Lemma 4.1. Suppose that Assumption 2.1 holds. For any 0 < δ < 1 and corruption budget C ≥ 0,

set the confidence radius β = R
√
d log

(
(1 +KL2/λ)/δ

)
+
√
λS + αC in Algorithm 1, then with

probability at least 1− δ, for every round k, the estimator θk satisfies that ∥θk − θ∗∥Σk
≤ β.

The following theorem provides the regret bound of Algorithm 1.
Theorem 4.2. Suppose that Assumption 2.1 holds. For any 0 < δ < 1 and corruption budget C ≥ 0,
set the confidence radius β in Algorithm 1 as follows:

β = R
√
d log

(
(1 +KL2/λ)/δ

)
+ αC +

√
λS.

Then with probability at least 1− δ, its regret in the first K rounds is upper bounded by

Regret(K) = O

(
dR

√
K log2

(
(1 +KL2/λ)/δ

)
+ αC

√
dK log2

(
(1 +KL2/λ)/δ

)
+ S

√
dλK log(1 +KL2/λ) +

Rd1.5

α
×
√

log3
(
(1 +KL2/λ)/δ

)
7



+
dS
√
λ

α
×
√
log2

(
(1 +KL2/λ)/δ

)
+ dC

√
log2

(
(1 +KL2/λ)/δ

))
.

In addition, if choosing α = (R
√
d+
√
λS)/C and λ = R2/S2, its regret can be upper bounded by

Regret(K) = Õ(d
√
K + dC).

A few remarks about Theorem 4.2 are in order.
Remark 4.3. Compared with the Õ(d

√
K + dC

√
K) regret proved in Zhao et al. (2021); Ding

et al. (2021), our algorithm improves the multiplicative dependence on corruption level C to additive
dependence. In particular, CW-OFUL achieves the same order of regret as the uncorrupted setting
when C = O(

√
K), and it attains a sublinear regret as long as C = o(K). In sharp contrast, the

algorithm proposed in Zhao et al. (2021) achieves the same order of regret as the uncorrupted setting
only when C = O(1), and has a sublinear regret only when C = o(

√
K).

Remark 4.4. We also compare our result with that in Wei et al. (2022). The Robust+OFUL

algorithm in Wei et al. (2022) achieves an Õ(d
√
K + Cr) regret with Cr =

√
T
∑K

k=1 c
2
k, which

will degenerate to Õ(d
√
K + d

√
KC) in the worst case. Their regret guarantee is always worse

than ours when C <
√
K. In addition, according to the discussion in Remark 2.2, Theorem 4.2 also

implies an Õ
(
d
√
K + dC ′) regret under the notion of the corruption level C ′. In contrast, the Robust

VOFUL algorithm in Wei et al. (2022) has an Õ(d4.5
√
K + d4C ′) regret, which is also inferior to

our regret. Furthermore, Robust VOFUL is computationally inefficient.
Remark 4.5. We further compare our result with previous additive regrets derived for stochastic
linear bandits. Let Dk = D be the decision set. Compared with the O(

√
dK log |D|+Cd3/2) regret

for stochastic linear bandit with corruption derived in Bogunovic et al. (2021), our regret improves
the corruption term by a factor of

√
d. Note that the

√
d difference in the leading

√
K term between

our regret and theirs is caused by the fact that Bogunovic et al. (2021) considered the finite-arm
setting, while we consider the infinite-arm setting. Our algorithm will have the same regret as theirs
when |D| = O(exp(d)).
Remark 4.6. For the uncorrupted setting where C = 0, Theorem 4.2 suggests that the threshold
parameter α should be set to infinity. Then by Line 6 in Algorithm 1, each weight wk becomes 1, and
CW-OFUL degenerates to OFUL. Meanwhile, the regret in Theorem 1 also becomes Õ(d

√
K) that

matches the regret of OFUL (Abbasi-Yadkori et al., 2011).

4.2 Known Corruption Level C: Lower Bound

In this subsection, we refer to two existing lower bound results to show that when C is known, our
Õ(d
√
K + dC) regret is optimal up to logarithmic factors. The first proposition shows that the

Õ(d
√
K) corruption-independent term in our regret is near-optimal.

Proposition 4.7 (Theorem 24.2, Lattimore and Szepesvári 2018). Assume d ≤ 2K, R = 1 and
Dk = {∥x∥2 ≤ 1} for all k ≥ 1. Then for any algorithm, there exists an environment parameter
vector θ∗ ∈ Rd satisfying ∥θ∗∥22 = d2/(48K) such that E(Regret(K)) ≥ d

√
K/(16

√
3).

The second proposition suggests that the O(dC) corruption term in our regret is optimal.
Proposition 4.8 (Theorem 3, Bogunovic et al. 2021). For any dimension d, for any algorithm that
has the knowledge of C, there exists an instance satisfying with probability at least 0.5, Regret(K) =
Ω(dC).

Combining Propositions 4.7 and 4.8, we can conclude that for any algorithm, there exists a corrupted
bandit instance such that the algorithm suffers at least Ω(max{d

√
K, dC}) regret. Such a lower

bound matches our upper bound up to logarithmic factors. Therefore, our algorithm is nearly optimal.

4.3 Unknown Corruption Level C: Upper Bound

Now we consider the case when C is unknown. Our solution is quite simple for this case: we
introduce a tuning parameter C̄, which can be viewed as an estimate of C, and select the threshold
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parameter α as Theorem 4.2 suggests. The following theorem gives the regret upper bound of
CW-OFUL for the unknown C case.

Theorem 4.9. Under the same conditions of Theorem 4.2 except that we set α = (R
√
d+
√
λS)/C̄

with C̄ being an estimated corruption level, λ = R2/S2 and β = 2R
√

d log
(
(1 +KL2/λ)/δ

)
+

2
√
λS in Algorithm 1. The regret of CW-OFUL can be upper bounded in the following two cases:

• If the corruption level C satisfies that 0 ≤ C ≤ C̄, then with probability at least 1− δ, the regret is
upper bounded by Regret(K) = Õ(dR

√
K + dC̄).

• If the corruption level C satisfies that C > C̄, the regret is upper bounded by Regret(K) = O(K).

In addition, if we set the estimation C̄ =
√
K, then when 0 ≤ C ≤

√
K, the regret is upper bounded

by Õ(d
√
K).

Remark 4.10. Zhao et al. (2021) proposed an Õ(C2d
√
K) regret with unknown C = Ω(1). Com-

pared with their result, our regret (with C̄ =
√
K) is strictly better in the corruption term. Bogunovic

et al. (2021) proposed an Õ(
√

dK log |D| + Cd1.5 + C2) regret for the stochastic linear bandit
with unknown C, in the regime C = Õ(

√
K/d), where D is the finite decision set. Such a regret

becomes Õ(d
√
K + Cd1.5 + C2) when the size of D becomes exponentially large in d or even

infinite. Compared with their regret, our regret is not only smaller, but also holds for a wider regime
(i.e., C = O(

√
K)). Compared with the greedy algorithm in Bogunovic et al. (2021), our result does

not rely on the stringent (r, λ0)-diverse property assumption on the contexts.

Remark 4.11. We also compare our result (choosing C̄ =
√
K) with those in Wei et al. (2022) for the

unknown C case. Wei et al. (2022) proposed a COBE+OFUL algorithm with an Õ(d
√
K+Cr) regret,

and a COBE+VOFUL algorithm with an Õ(d4.5
√
K+d4C ′) regret, analogous to their results for the

known C case discussed in Remark 4.4. Our CW-OFUL enjoys a better regret than COBE+OFUL
for all C, and it is better than COBE+VOFUL for C <

√
K. In addition, for the modified notion of

corruption level C ′, if we choose the basic algorithm in COBE (Wei et al., 2022) as our CW-OFUL
algorithm, then Theorem 3 in Wei et al. (2022) suggests that COBE+CW-OFUL can deal with
unknown corruption level C ′ and obtained an Õ(d

√
K + dC ′) regret guarantee, which matches the

regret of CW-OFUL algorithm with known corruption level C ′. Note that COBE+VOFUL is also
computationally inefficient.

4.4 Unknown Corruption Level C: Lower Bound

With C̄ =
√
K, for the case when 0 ≤ C ≤

√
K, our regret result is already near-optimal, due to

the lower bound for the uncorrupted bandit in Proposition 4.7. Now we show that our O(K) bound,
seemingly trivial, is actually optimal for a large class of bandit algorithms. In detail, the following
theorem provides a lower bound result for any algorithm for the unknown C case. This is an extension
of the lower bound result in Bogunovic et al. (2021) from d = 2 to general d.

Theorem 4.12. For any algorithm Alg, let RK be an upper bound of Regret(K) such that for any
bandit instance satisfying Assumption 2.1 with C = 0, it satisfies the E

[
Regret(K)

]
≤ RK ≤ O(K),

where the expectation is with respect to the randomness of the algorithm and the stochastic noise.
Then for the general case with C = Ω(RK/d), such an algorithm will have E

[
Regret(K)

]
= Ω(K).

Remark 4.13. If we selects the estimated corruption C̄ = Ω(RK/d), Theorem 4.9 immediately
implies that CW-OFUL enjoys a O(RK) regret when corruption level C < Ω(RK/d) and O(K)
regret when corruption level C ≥ Ω(RK/d). Compared with the algorithm Alg, Theorem 4.12
suggests that CW-OFUL is no worse than the algorithm Alg no matter whether the corruption level
C < Ω(RK/d). More discussion can be found in Appendix A.1.

5 Conclusion and Future Work

In this work, we study corrupted linear contextual bandits. We propose a CW-OFUL algorithm based
on a weighted ridge regression with truncated inverse exploration bonus weights. We show that for

9



both cases when the corruption level C is known or unknown to the agent, CW-OFUL achieves a
regret that matches the lower bound up to logarithmic factors.

We are also interested in achieving the optimal regret when specializing our algorithm to the misspec-
ified linear contextual bandits.
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A Additional Results

A.1 Discussion on the Lower Bound for Unknown Corruption Level C

Consider a class of algorithms A whose worst-case regret is RK in the uncorrupted case. Here we
only need to consider Ω(d

√
K) ≤ RK ≤ O(K), since for any algorithm, Ω(d

√
K) is the lowest

possible worst-case regret (Lattimore and Szepesvári, 2018) and O(K) is the highest possible regret.
We first show that CW-OFUL belongs to A. Choosing C̄ = RK/d, Theorem 4.9 immediately
suggests that CW-OFUL enjoys a RK regret in the uncorrupted case (i.e., C = 0). Thus CW-OFUL
belongs to A. Then we will show that CW-OFUL is the best possible one in A. On the one hand,
Theorem 4.9 suggests that CW-OFUL suffers a linear regret when C > C̄ = RK/d. On the other
hand, Theorem 4.12 shows that any algorithm with RK regret in the uncorrupted case should have a
linear regret when C = Ω(RK/d). These together imply that CW-OFUL is optimal within A.

A.2 Discussion on the Misspecified Linear Bandits

We consider the misspecified linear bandit setting which assumes that the corruption at each round
is uniformly bounded by ϵ. Clearly, the misspecified linear bandit is a special case of corrupted
linear contextual bandit with C = Kϵ. Theorem 4.2 suggests that a direct application of our
algorithm to this special setting incurs an Õ(d

√
K+dKϵ) regret, which differs from the near-optimal

regret Õ(d
√
K +

√
dKϵ) (Lattimore and Szepesvari, 2019; Foster et al., 2020) by a

√
d factor

on the corruption term. Whether our algorithm is able to achieve the near-optimal regret for both
misspecified linear bandit and corrupted linear contextual bandit simultaneously remains an open
question.

B Experiments
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Figure 1: Comparison of CW-OFUL(ours), Greedy (Bogunovic et al., 2021) and OFUL(Abbasi-
Yadkori et al., 2011). Experiments are run for unknown corruption levels C from {0, 50, 100, ..., 450}
(10 different corruption levels) , and results are averaged over 100 runs. Figure 1(a) presents the
cumulative regrets with unknown corruption C = 450 ; Figure 1(b) shows the cumulative regret
versus unknown corruption level C.

In this section, we run experiments and evaluate the performance of our algorithm CW-OFUL with an
unknown corruption level C, which corroborates our theory. The code and data for our experiments
can be found on Github 3.

Model Parameters We construct a linear bandit instance with dimension d = 5 and the true model
parameter θ∗ is denoted by

θ∗ =

[
1√
d
, ...,

1√
d

]⊤
∈ Rd.

3https://github.com/uclaml/CW-OFUL
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During each round k ∈ [K], the decision set Dk consists of 20 different actions and each action
is uniformly sampled from the space [+1/

√
d,−1/

√
d]d, which satisfies the positive minimum

eigenvalue assumption for greedy algorithm (Bogunovic et al., 2021). In addition, after choosing the
action, xk in round k ∈ [K], an 0.1-Gaussian noise ηk will be added to the reward.

Attack method For the attack method, we choose the flip-θ attack. More specifically, with a
corruption level of C, the adversary tricks the learner by flipping the value, i.e., rt(xt) = −⟨xt, θ

∗⟩+
ηk in the first C rounds. In the remaining rounds, the adversary does not corrupt the reward.

Results and discussions In our experiments, we make a simulation with the total number of
rounds K = 10000 (repeating 100 times and taking the average) and corruption levels from
{0, 50, 100, ..., 450} (10 different corruption levels ). We applied our CW-OFUL algorithm and
compared its performance with greedy (Bogunovic et al., 2021) and OFUL (Abbasi-Yadkori et al.,
2011).

The experimental results are shown in Figure 1 These simulation results suggest that our CW-OFUL
algorithm outperforms both the Greedy and OFUL algorithms. Specifically, Figure 1(a) displays the
cumulative regret of our algorithm, OFUL, and Greedy algorithm under the same number of rounds.
They show that our algorithm slightly outperforms them in terms of regret.

Figure 1(b) plots the cumulative regret versus the unknown corruption level. We can see that all of
the three algorithms demonstrate an additive linear dependence on the unknown corruption level C,
which corroborate our theoretical guarantee.

C Instance-dependent Regrets

Prior works (Lykouris et al., 2018; Li et al., 2019; Zhao et al., 2021) have proved instance-dependent
regret bounds for corruption-robust linear bandits. We show that CW-OFUL also enjoys an instance-
dependent regret bound. Following Abbasi-Yadkori et al. (2011), we define the minimal sub-
optimality gap as follows.
Definition C.1 (Minimal sub-optimality gap). For each round k ∈ [K] and any action x ∈ Dk, the
sub-optimality gap ∆x,k is defined as

∆x,k = max
x∗∈Dk

⟨θ∗,x∗⟩ − ⟨θ∗,x⟩,

and the minimal sub-optimality gap is defined as

∆ = min
k∈[K],x∈Dk

{
∆x,k : ∆x,k ̸= 0

}
. (C.1)

We assume that the minimal sub-optimality gap is strictly positive.
Assumption C.2. The minimal sub-optimality gap is strictly positive, i.e., ∆ > 0.

Under the assumption of positive minimal sub-optimality, the following theorem provides an instance-
dependent regret guarantee for CW-OFUL.
Theorem C.3. Under the same conditions of Theorem 4.2, with high probability at least 1− δ, the
regret of Algorithm 1 in the first K rounds is upper bounded by

Regret(K) ≤ O

(
R2d2 log2

(
(1 +KL2/λ)/δ

)
/∆+

α2dC2

∆
×

√
log

(
3 + C2L2K/(R2λδ)

)
+ S2dλ log(1 +KL2/λ)/∆+

Rd1.5

α
×
√
log3

(
(1 +KL2/λ)/δ

)
+

dS
√
λ

α
×
√
log2

(
(1 +KL2/λ)/δ

)
+ dC

√
log2

(
(1 +KL2/λ)/δ

))
In addition, if choosing α = (R

√
d+
√
λS)/C and λ = R2/S2, the regret can be upper bounded by

Regret(K) ≤ Õ(d2/∆+ dC).

Remark C.4. Our regret is strictly better than the Õ(d2.5C/∆+ d6/∆2) regret proved by Li et al.
(2019) under a stronger assumption. Meanwhile, Zhao et al. (2021) implies an Õ(d2C/∆) regret for
their algorithm under the known C case, which is also worse than our result.
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D Overview of Key Proof Techniques

In this section, we give an overview of the main technical difficulty and our proof technique to derive
Theorem 4.2.

By the standard regret decomposition technique from Abbasi-Yadkori et al. (2011), we upper bound
the regret by the sum of the exploration bonuses times the confidence radius:

Regret(K) = O

(
β ·

K∑
k=1

√
x⊤
k Σ

−1
k xk

)
. (D.1)

Lemma 4.1 suggests β ∼ R
√
d + αC. Therefore, we only need to bound the summation of the

exploration bonuses. For the basic case when wk = 1, we bound it using the elliptical potential
lemma (Abbasi-Yadkori et al., 2011) as follows

∑
wk=1

√
x⊤
k Σ

−1
k xk ≤

K∑
k=1

√√√√x⊤
k

(
λI+

k−1∑
i=1

xix⊤
i

)−1

xk ∼ Õ(
√
dK), (D.2)

which contributes to the corruption-independent term dR
√
K in our regret. For the case when

wk < 1, however, we are facing the weighted covariance matrix and cannot directly use the elliptical
potential lemma. A trivial approach is to lower bound the weights by their uniform lower bound, i.e.,

λI+

k−1∑
i=1

wixix
⊤
i ⪰ min

1≤i≤k−1
wi ·

(
λI+

k−1∑
i=1

xix
⊤
i

)
. (D.3)

By the definition of the weight wi in Algorithm 1 and a crude upper bound for the exploration bonus,
we conclude from the definition of wk that wk = Ω(α). Substituting it into (D.3), we only obtain a
regret Õ(

√
dK/α), which is not satisfying.

To overcome this issue, we recall the definition for weight wk < 1 in Algorithm 1: wk = α/∥xk∥Σ−1
k

and we can bound the summation of the exploration bonuses as

∑
wk<1

√
x⊤
k Σ

−1
k xk =

K∑
k=1

wkx
⊤
k Σ

−1
k xk/α ∼ Õ(d/α). (D.4)

Combining the results in (D.2) and (D.4) into (D.1), we can prove the final regret.

E Proof of Theorem 4.2

In this section, we provide the proof of Theorem 4.2. For simplicity, we use E to denote the following
event:

E =

{
∥θk − θ∗∥Σk

≤ β,∀k ∈ [K]

}
.

Lemma 4.1 shows that Pr(E) ≥ 1− δ.

Lemma E.1. If setting the confidence radius β = R
√
d log

(
(1 +KL2/λ)/δ

)
+ αC +

√
λS in

Algorithm 1, then on the event E , for each round k ∈ [K], the regret at round k is upper bounded by

∆k = max
x∈Dk

⟨θ∗,x⟩ − ⟨θ∗,xk⟩ ≤ 2β
√

x⊤
k Σ

−1
k xk.

Proof of Theorem 4.2. Based on the event E , the regret in the first K round can be decomposed into
two parts based on the weight wk:

Regret(K) =

K∑
k=1

max
x∈Dk

⟨θ∗,x⟩ − ⟨θ∗,xk⟩
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≤ min

(
2,

K∑
k=1

2β
√
x⊤
k Σ

−1
k xk

)
=

∑
k:wk=1

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)
︸ ︷︷ ︸

I1

+
∑

k:wk<1

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)
︸ ︷︷ ︸

I2

, (E.1)

where the inequality holds due to the Lemma E.1 with the fact that the suboptimality in each round k
is no more than 2.

For the term I1, we consider for all rounds k ∈ [K] with wk = 1 and we assume these rounds can be
listed as {k1, .., km} for simplicity. With this notation, for each i ≤ m, we can construct the auxiliary
covariance matrix Ai = λI+

∑i−1
j=1 xkj

x⊤
kj

. Due to the definition of original covariance matrix Σk

in Algorithm (Line 2), we have

Σki ≥ λI+

i−1∑
j=1

wkjxkjx
⊤
kj

= Ai.

According to Lemma J.4, it further implies that for vector xki
, we have

x⊤
ki
Σ−1

ki
xki ≤ x⊤

ki
(Ai)

−1xki . (E.2)
Therefore, the term I1 can be bounded by

I1 =
∑

k:wk=1

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)

≤
m∑
i=1

2βmin

(
1,
√
x⊤
ki
Σ−1

ki
xki

)

≤ 2β

m∑
i=1

min

(
1,
√

x⊤
ki
(Ai)−1xki

)

≤ 2β

√√√√ m∑
i=1

1×
m∑
i=1

min
(
1,x⊤

ki
(Ai)−1xki

)
≤ 2β

√
2dK log(1 +KL2/λ), (E.3)

where the first inequality holds since β ≥ 1, the second inequality holds due to (E.2), the third
inequality holds due to Cauchy-Schwarz inequality, the last inequality holds due to Lemma J.3 with
the facts that m ≤ K and ∥xki

∥2 ≤ L.

For the second term I2, according to the definition for weight wk < 1 in Algorithm 1, we have

wk = α/
√
x⊤
k Σ

−1
k xk, which implies that

I2 =
∑

k:wk<1

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)
=

∑
k:wk<1

min
(
2, 2βwkx

⊤
k Σ

−1
k xk/α

)
≤

∑
k:wk<1

min
(
(2 + 2β/α), (2 + 2β/α)wkx

⊤
k Σ

−1
k xk

)
=

∑
k:wk<1

(2 + 2β/α)min
(
1, wkx

⊤
k Σ

−1
k xk

)
, (E.4)

where the second equation holds due to the definition of weight wk. Now, we assume the rounds with
weight wk < 1 can be listed as {k1, .., km} for simplicity. In addition, we introduce the auxiliary
vector x′

i as x′
i =
√
wki

xki
and matrix Σ′

i as

Σ′
i = λI+

i−1∑
j=1

wkj
xkj

x⊤
kj

= λI+

i−1∑
j=1

x′
j(x

′
j)

⊤.
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According to Lemma J.4, we have (Σ′
i)

−1 ⪰ Σ−1
ki

. Therefore, for each i ∈ [m], we have

x⊤
ki
(Σ′

i)
−1xki

≥ x⊤
ki
Σ−1

ki
xki

, (E.5)

where the inequality holds due to (Σ′
i)

−1 ⪰ Σ−1
ki

. Now, taking a summation of (E.5) over all rounds
ki, we have

m∑
i=1

min
(
1, wki

x⊤
ki
Σ−1

ki
xki

)
≤

m∑
i=1

min
(
1, wki

x⊤
ki
(Σ′

i)
−1xki

)
=

m∑
i=1

min
(
1, (x′

i)
⊤(Σ′

i)
−1x′

i

)
≤ 2d log(1 +KL2/λ), (E.6)

where the first inequality holds due to (E.5), the second inequality holds due to Lemma J.3 with the
facts that m ≤ K. Substituting the result in (E.6) into (E.4), the term I2 can be upper bounded by

I2 ≤
∑

k:wk<1

(2 + 2β/α)min
(
1, wkx

⊤
k Σ

−1
k xk

)
≤ (2 + 2β/α)× 2d log(1 +KL2/λ). (E.7)

Finally, substituting the results in (E.3) and (E.7) into (E.1), the regret can be upper bounded by

Regret(K) ≤ 2β
√
2dK log(1 +KL2/λ) + (2 + 2β/α)× 2d log(1 +KL2/λ)

= O

(
dR

√
K log2

(
(1 +KL2/λ)/δ

)
+ αC

√
dK log2

(
(1 +KL2/λ)/δ

)
+ S

√
dλK log(1 +KL2/λ) +

Rd1.5

α
×
√

log3
(
(1 +KL2/λ)/δ

)
+

dS
√
λ

α
×
√
log2

(
(1 +KL2/λ)/δ

)
+ dC

√
log2

(
(1 +KL2/λ)/δ

))
.

Therefore, we complete the proof of Theorem 4.2.

F Proof of Theorem C.3

In this section, we present the detailed proof of Theorem 4.2.

Proof of Theorem C.3. Based on the event E , the regret in round k ∈ [K] is upper bounded by

∆k = max
x∈Dk

⟨θ∗,x⟩ − ⟨θ∗,xk⟩ ≤ 2β
√

x⊤
k Σ

−1
k xk.

On the other hand, according to Assumption C.2, the regret in round k ∈ [K] satisfies that ∆k = 0 or

∆k ≥ ∆. Combining these two results, for round k ∈ [K] with uncertainty 2β
√
x⊤
k Σ

−1
k xk < ∆,

the regret must satisfy ∆k = 0. Therefore, the regret in the first K rounds can be decomposed to two

part based on the weight wk and exploration bonus
√
x⊤
k Σ

−1
k xk:

Regret(K) =

K∑
k=1

max
x∈Dk

⟨θ∗,x⟩ − ⟨θ∗,xk⟩

=
∑

k:2β
√

x⊤
k Σ−1

k xk≥∆

max
x∈Dk

⟨θ∗,x⟩ − ⟨θ∗,xk⟩

≤ min

(
2,

∑
k:2β
√

x⊤
k Σ−1

k xk≥∆

2β
√
x⊤
k Σ

−1
k xk

)
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=
∑

k:wk=1,2β
√

x⊤
k Σ−1

k xk≥∆

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)

+
∑

k:wk<1,2β
√

x⊤
k Σ−1

k xk≥∆

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)

≤
∑

k:wk=1,k:2β
√

x⊤
k Σ−1

k xk≥∆

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)
︸ ︷︷ ︸

J1

+
∑

k:wk<1

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)
︸ ︷︷ ︸

J2

, (F.1)

where the inequality holds due to Lemma E.1 with the fact that the suboptimality in each round is no
more than 2. Notice that the term J2 is equal to the term I2 in the proof of Theorem 4.2 (See (E.1))
and with the same argument, it can be upper bounded by

J2 ≤ O

(
Rd1.5

α
×
√
log3

(
(1 +KL2/λ)/δ

)
+

dS
√
λ

α
×
√

log2
(
(1 +KL2/λ)/δ

)
+ dC

√
log2

(
(1 +KL2/λ)/δ

))
, (F.2)

where the inequality comes from (E.7). For the term J1, we consider for all rounds k ∈ [K] with

wk = 1 and exploration bonus 2β
√
x⊤
k Σ

−1
k xk ≥ ∆. For simplicity, we assume these rounds can be

listed as {k1, .., km}. With this notation, for each i ≤ m, we can construct the auxiliary covariance
matrix Ai = λI+

∑i−1
j=1 xkj

x⊤
kj

. Due to the definition of original covariance matrix Σk in Algorithm
(Line 2), we have

Σki ≥ λI+

i−1∑
j=1

wkjxkjx
⊤
kj

= Ai.

According to Lemma J.4, it further implies that for vector xki
, we have

x⊤
ki
Σ−1

ki
xki ≤ x⊤

ki
(Ai)

−1xki . (F.3)
Therefore, the term J1 can be bounded by

J1 =
∑

k:wk=1,2β
√

x⊤
k Σ−1

k xk≥∆

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)

≤
m∑
i=1

2βmin

(
1,
√

x⊤
ki
Σ−1

ki
xki

)

≤ 2β

m∑
i=1

min

(
1,
√

x⊤
ki
(Ai)−1xki

)

≤ 2β

√√√√ m∑
i=1

1×
m∑
i=1

min
(
1,x⊤

ki
(Ai)−1xki

)
≤ 2β

√
2dm log(1 +KL2/λ), (F.4)

where the first inequality holds since β ≥ 1, the second inequality holds due to (F.3), the third
inequality holds due to Cauchy-Schwarz inequality, the fourth inequality holds due to Lemma J.3
with the facts that m ≤ K and ∥xki

∥2 ≤ L. On the other hand, the term J1 is lower bounded by

J1 =
∑

k:wk=1,2β
√

x⊤
k Σ−1

k xk≥∆

min

(
2, 2β

√
x⊤
k Σ

−1
k xk

)
≥ m×∆, (F.5)
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where the inequality holds due to the definition of ki with the fact that ∆ ≤ 2. Combining the upper
and lower bound for term J1, we have

m×∆ ≤ 2β
√

2dm log(1 +KL2/λ),

which further implies that

m ≤ O
(
β2d log(1 +KL2/λ)/gap2min

)
. (F.6)

Substituting the upper bound of m in (F.6) into (F.4), the term J1 can be upper bounded by

J1 ≤ O
(
β2d log(1 +KL2/λ)/∆

)
. (F.7)

Finally, substituting the upper bounds of term J2 in (F.2) and term J1 in (F.7) into (F.1), the regret
can be upper bounded by

Regret(K) ≤ O
(
β2d log(1 +KL2/λ)/∆

)
+O

(
Rd1.5

α
×
√

log3
(
(1 +KL2/λ)/δ

)
+

dS
√
λ

α
×
√
log2

(
(1 +KL2/λ)/δ

)
+ dC

√
log2

(
(1 +KL2/λ)/δ

))
= O

(
R2d2 log2

(
(1 +KL2/λ)/δ

)
/∆+

α2dC2

∆
×

√
log

(
3 + C2L2K/(R2λδ)

)
+ S2dλ log(1 +KL2/λ)/∆+

Rd1.5

α
×
√
log3

(
(1 +KL2/λ)/δ

)
+

dS
√
λ

α
×
√
log2

(
(1 +KL2/λ)/δ

)
+ dC

√
log2

(
(1 +KL2/λ)/δ

))
.

Therefore, we complete the proof of Theorem C.3.

G Proof of Theorem 4.9

Proof of Theorem 4.9. We discuss two cases here.

• For the case C ≤ C̄, we know that C̄ is still a valid upper bound of the corruption level.
Thus, CW-OFUL with a C̄ corruption level runs successfully, and its regret is upper bounded
by Õ(dR

√
K + dC̄) = Õ(dR

√
K + dC̄) as Theorem 4.2 suggests.

• For the case C = Ω(C̄), CW-OFUL can not guarantee a sublinear regret. Thus a trivial regret
bound (i.e., regret at each round is bounded by 2) applies.

H Proof of Theorem 4.12

We introduce our proof of Theorem 4.12, which is adapted from Bogunovic et al. (2021).

Proof of Theorem 4.12. In this proof, we consider an arbitrary algorithm satisfying the conditions
in the statement of Theorem 4.12, which will run K rounds for any bandit instance. We consider
an uncorrupted bandit instance A0 defined as follows. A0 has the decision sets Dk = D. Here D =
{ai}1≤i≤d, where ai = ei is the basis in the d-dimensional space. Let θ∗

0 = (1/4, 1/8, . . . , 1/8︸ ︷︷ ︸
(d−1)−times

) ∈

Rd and ϵi = 0. It is easy to see that the optimal policy is to select a1 at each round, and the regret
to select a sub-optimal arm is 1/8. Since the regret of the algorithm without corruption satisfies
E
[
Regret(K)

]
< RK , and all the regret comes from selecting a2, . . . ,ad, we have the expected

number of rounds to select a2, . . . ,ad is at most RK/(1/8) = 8RK . Then by the pigeonhole
principle, there exists some 2 ≤ i ≤ d such that the expected number of times to select ai is less
than 8RK/(d− 1). Without loss of generality, we suppose i = 2. Then by Markov inequality, with
probability at least 1/2, the number of times to select a2 is less than 16RK/(d− 1).
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Next, we consider a corrupted bandit instance A1 defined as follows. A1 has the same decision set
D = {ei} as A0, while it has a different θ∗

1 = (1/4, 3/8, 1/8, . . . , 1/8︸ ︷︷ ︸
(d−2)−times

). A1 is also noiseless, i.e.,

ϵi = 0. Unlike A0, we have an adversary to attack A1 as follows: whenever a2 is selected and the
total corruption level up to the previous step is no more than 4RK/(d − 1) − 1/4, the adversary
corrupts the reward from 3/8 to 1/8. Otherwise, the adversary stops to corrupt the reward. With this
adversary, the corruption level C is upper bounded by 4RK/(d− 1)− 1/4 + 1/4 = Ω(RK/d).

For this adversary, since for A1, each selection of a2 returns a reward 1/8, then the agent can
not tell the difference between A0 and A1 until the total corruption level reaches the threshold
4Rk/(d− 1) and the adversary stops to corrupt the reward. Therefore, the sequence of rounds for
the agent to select a2 with A1 instance is the same as the sequence for the agent to select a2 with
A0, until the number of rounds to select action a2 reaches 4Rk/(d − 1)/(1/4) = 16Rk/(d − 1).
However, when the total number of times to select a2 is less than 16RK/(d− 1), the agent cannot
differentiate A0 and A1 and will follow the same action sequence as A0. In this case, since for A1,
a2 is the optimal action, and all the other actions suffer a 1/8 regret, then the regret on A1 is at
least 1/8 · (K − 16RK/(d − 1)) = Ω(K), where we use the fact that RK ≤ O(K). Therefore,
with probability at least 1/2, the regret is at least Ω(K), which further implies that the expected
regret is lower bounded by E[Regret(K)] ≥ 1/2 × Ω(K) = Ω(K). Thus, we finish the proof of
Theorem 4.12.

I Proof of Lemmas in Sections 4, D and Appendix E

I.1 Proof of Lemma 4.1

Proof of Lemma 4.1. According to the definition of estimated vector θk in Algorithm 1 (Line 3), we
have

θk = Σ−1
k bk = Σ−1

k

k−1∑
i=1

wixiri = Σ−1
k

k−1∑
i=1

wixi(x
⊤
i θ + ηi + ci).

This equation further implies that the difference between estimated vector θk and the unknown vector
θ∗ can be decomposed as:

∥θk − θ∗∥Σk
=

∥∥Σ−1
k

k−1∑
i=1

wixi(x
⊤
i θ

∗ + ηi + ci)− θ∗∥∥
Σk

=

∥∥∥∥Σ−1
k

k−1∑
i=1

wixi(x
⊤
i θ + ηi + ci)−Σ−1

k

( k−1∑
i=1

wixix
⊤
i + λI

)
θ∗

∥∥∥∥
Σk

=

∥∥∥∥Σ−1
k

k−1∑
i=1

wixiηi +Σ−1
k

k−1∑
i=1

wixici − λΣ−1
k θ∗

∥∥∥∥
Σk

≤
∥∥∥∥Σ−1

k

k−1∑
i=1

wixiηi

∥∥∥∥
Σk︸ ︷︷ ︸

Stochastic error:I1

+

∥∥∥∥Σ−1
k

k−1∑
i=1

wixici

∥∥∥∥
Σk︸ ︷︷ ︸

Corruption error:I2

+

∥∥∥∥λΣ−1
k θ∗

∥∥∥∥
Σk︸ ︷︷ ︸

Regularization error:I3

, (I.1)

where the inequality holds due to the fact that ∥a+ b+ c∥Σk
≤ ∥a∥Σk

+ ∥b∥Σk
+ ∥c∥Σk

.

For the stochastic error term I1, it can be bounded by the concentration Lemma J.2 in Abbasi-
Yadkori et al. (2011). More specifically, we introduce the auxiliary vector x′

i and noise η′i such that
x′
i =
√
wixi and η′i =

√
wiηi. According to the definition of weight θi in Algorithm (Line 6), both

of these two situations satisfies that the weight θi is bounded by wi ≤ 1. Since the original vector xi

satisfies that ∥xi∥2 ≤ L and the original stochastic noise ηi is R-sub Gaussian, these results further
imply that

∥x′
i∥2 = ∥

√
wixi∥2 ≤ L, η′i =

√
wiηi is R-sub Gaussian.
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With this notation, the covariance matrix Σk and the stochastic error term I1 can be rewritten and
bounded as:

Σk = λI+

k−1∑
i=1

wixix
⊤
i = λI+

k−1∑
i=1

x′
i(x

′
i)

⊤

I1 =

∥∥∥∥Σ−1
k

k−1∑
i=1

wixiηi

∥∥∥∥
Σk

=

∥∥∥∥ k−1∑
i=1

wixiηi

∥∥∥∥
Σ−1

k

=

∥∥∥∥ k−1∑
i=1

x′
iη

′
i

∥∥∥∥
Σ−1

k

≤

√
2R2 log

(
det(Σk)1/2 det(Σ1)−1/2

δ

)
≤ R

√
d log

(
(1 +KL2/λ)/δ

)
, (I.2)

where the first inequality holds due to Lemma J.2 and the second inequality holds due to the facts
that Σk = λI+

∑k−1
i=1 x′

i(x
′
i)

⊤ and ∥x′∥2 ≤ L.

For the corruption error term I2, it can be bounded by

I2 =

∥∥∥∥Σ−1
k

k−1∑
i=1

wixici

∥∥∥∥
Σk

=

∥∥∥∥Σ−1/2
k

k−1∑
i=1

wixici

∥∥∥∥
2

≤
k−1∑
i=1

∥∥∥∥Σ−1/2
k wixici

∥∥∥∥
2

=

k−1∑
i=1

|ci| × wi∥Σ−1/2
k xi∥

≤
k−1∑
i=1

|ci|α

≤ αC, (I.3)

where the first inequality holds due to the fact that ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2, the second inequality
holds due to the definition of weight wi in Algorithm (Line 6) with the fact that Σk ⪰ Σi and the
last inequality holds due to the definition of corruption level C.

For the regularization error term I3, we have

I3 =
∥∥λΣ−1

k θ∗∥∥
Σk

= λ
∥∥θ∗∥∥

Σ−1
k

≤
√
λ∥θ∗∥2 ≤

√
λS, (I.4)

where the first inequality holds due to
∥∥θ∗

∥∥
Σk
≤ ∥θ∗∥2/

√
λmin(Σk) with the fact that Σk =

λI+
∑k−1

i=1 wixix
⊤
i ⪰ λI and the last inequality holds due to the assumption that ∥θ∗∥2 ≤ S.

Finally, substituting the results in (I.2), (I.3) and (I.4) into (I.1), we have

∥θk − θ∗∥Σk
≤ I1 + I2 + I3 ≤ R

√
d log

(
(1 +KL2/λ)/δ

)
+ αC +

√
λS.

Therefore, we finish the proof of Lemma 4.1.
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I.2 Proof of Lemma E.1

Proof of Lemma E.1. Firstly, on the event E , for each round k ∈ [K] and each action x ∈ Dk, we
have

θ⊤
k x+ β

√
x⊤Σ−1

k x− (θ∗)⊤x = (θk − θ∗)⊤x+ β
√
x⊤Σ−1

k x

≥ −∥θk − θ∗∥Σk
× ∥x∥Σ−1

k
+ β

√
x⊤Σ−1

k x

≥ −β∥x∥Σ−1
k

+ β
√
x⊤Σ−1

k x

= 0, (I.5)

where the first inequality holds due to the Cauchy-Schwarz inequality and the last inequality holds due
to the definition of E in Lemma 4.1. (I.5) shows that our estimator in Algorithm 1 is optimistic for each
action x ∈ Dk. For simplicity, we denote the optimal action at round k as x∗ = argmaxx∈Dk

(θ∗)⊤x
and (I.5) further implies that the regret at round k can be upper bounded by

∆k = (θ∗)⊤x∗ − (θ∗)⊤xk

≤ θ⊤
k x

∗ + β
√

(x∗)⊤Σ−1
k x∗ − (θ∗)⊤xk

≤ θ⊤
k xk + β

√
x⊤
k Σ

−1
k xk − (θ∗)⊤xk

= (θk − θ∗)⊤xk + β
√
x⊤
k Σ

−1
k xk

≤ ∥θk − θ∗∥Σk
× ∥xk∥Σ−1

k
+ β

√
x⊤
k Σ

−1
k xk

≤ 2β
√
x⊤
k Σ

−1
k xk,

where the first inequality holds due to (I.5), the second inequality holds due to the selection rule
in Algorithm (Line 5), the third inequality holds due to the Cauchy-Schwarz inequality and the
last inequality holds due to the definition of E in Lemma 4.1. Thus, we finish the proof of Lemma
E.1.

J Auxiliary Lemmas

Lemma J.1 (Azuma–Hoeffding inequality, Cesa-Bianchi and Lugosi 2006). Let {ηk}Kk=1 be a
martingale difference sequence with respect to a filtration {Gk} satisfying |ηk| ≤ R for some constant
R, ηk is Gk+1-measurable, E

[
ηk|Gk

]
= 0. Then for any 0 < δ < 1, with high probability at least

1− δ, we have

K∑
k=1

ηk ≤ R
√
2K log(1/δ).

Lemma J.2 (Lemma 9 in Abbasi-Yadkori et al. 2011). Let {ϵk}Kk=1 be a real-valued stochastic
process with corresponding filtration {Fk}Kk=0 such that ϵk is Fk-measure and ϵk is conditionally
R-sub-Gaussian, i.e.

∀λ ∈ R,E
[
eλϵk |Fk−1

]
≤ exp

(
λ2R2

2

)
.

Let {xk}Kk=1 be an Rd-valued stochastic process where xk is Fk−1-measurable and for any k ∈ [K],
we further define Σk = λI+

∑k
i=1 xix

⊤
i . Then with probability at least 1− δ, for all k ∈ [K], we

have ∥∥∥∥ k∑
i=1

xiηi

∥∥∥∥2
Σ−1

k

≤ 2R2 log

(
det(Σk)

1/2 det(Σ0)
−1/2

δ

)
.
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Lemma J.3 (Lemma 11 in Abbasi-Yadkori et al. 2011). Let {xk}Kk=1 be a sequence of vectors in
Rd, matrix Σ0 a d× d positive definite matrix and define Σk = Σ0 +

∑k
i=1 xix

⊤
i , then we have

k∑
i=1

min
{
1,x⊤

i Σ
−1
i−1xi

}
≤ 2 log

(
detΣk

detΣ0

)
.

In addition, if ∥xi∥2 ≤ L holds for all i ∈ [K], then

k∑
i=1

min
{
1,x⊤

i Σ
−1
i−1xi

}
≤ 2 log

(
detΣk

detΣ0

)
≤ 2

(
d log

(
(trace(Σ0) + kL2)/d

)
− log detΣ0

)
.

Lemma J.4 (Corollary 7.7.4. (a) in Horn and Johnson 2012). Let A,B be a Hermitian matrix in
Rd×d and suppose A,B ≻ 0, then A ⪰ B if and only if B−1 ⪰ A−1.
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