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Abstract

Representing probability distributions by the gradient of their density functions has
proven effective in modeling a wide range of continuous data modalities. However,
this representation is not applicable in discrete domains where the gradient
is undefined. To this end, we propose an analogous score function called the
“Concrete score”, a generalization of the (Stein) score for discrete settings. Given
a predefined neighborhood structure, the Concrete score of any input is defined
by the rate of change of the probabilities with respect to local directional changes
of the input. This formulation allows us to recover the (Stein) score in continuous
domains when measuring such changes by the Euclidean distance, while using the
Manhattan distance leads to our novel score function in discrete domains. Finally,
we introduce a new framework to learn such scores from samples called Concrete
Score Matching (CSM), and propose an efficient training objective to scale our
approach to high dimensions. Empirically, we demonstrate the efficacy of CSM on
density estimation tasks on a mixture of synthetic, tabular, and high-dimensional
image datasets, and demonstrate that it performs favorably relative to existing
baselines for modeling discrete data.

1 Introduction

When estimating a statistical model, the representation of the underlying probability distribution has
profound implications on the downstream modeling task. Likelihood-based model families such as
Variational Autoencoders (VAEs) [1—4], normalizing flows [5—13], and diffusion models [14—16]
are forced to either approximate the intractable normalizing constant or utilize restrictive model
architectures; implicit models [17-20] try to capture the underlying sampling process by relying
on unstable adversarial training procedures. On the other hand, representing the distribution as
the gradient of the log probability density function—also known as the (Stein) score—allows us to
circumvent such issues. This is key to score matching’s success on a wide range of continuous data
modalities [21-25]. In fact, its recent resurgence has led to significant advances in machine learning
applications of density estimation, such as image generation [26, 16, 27, 15] and audio synthesis
[28, 29], among others.

However, score matching approaches that rely on modeling the gradient of the data distribution are
inherently designed for continuous data; such methods hinge on the existence of the gradient, which
is undefined for discrete domains [22]. Given the ubiquitous nature of structured, discrete data in
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our world today such as graphs, text, genomic sequences, images, we desire an approach that would
allow us to expand the successes of score-based generative models into discrete domains.

To address this challenge, we rst introduce the Concrete score: a generalization of the (Stein) score
that is amenable to bottortinuous and disretedata types Given a prede ned neighborhood
structure, the Concrete score leverages structural information in the data to cosgtragate
gradient informatiorabout the discrete space by considering the similarity between two neighboring
examples. More precisely, the Concrete score of any input is de ned by the rate of change of the
probabilities with respect to directional changes of the input. In direct analogy to the continuous
(Stein) score, the intuition is that the Concrete score should remain small when two examples are
“close” to one another; when the two examples are very different, the Concrete score will be large. We
nd that measuring such changes by the Euclidean distance recovers the (Stein) score in continuous
domains, while using the Manhattan distance leads to our novel score function in discrete domains.

Using this de nition of the Concrete score, we then introduce a framework to learn such scores from
samples called Concrete Score Matching (CSM). To successfully scale our method to high dimensions,
we also propose an ef cient training objective as well as several variations of our approach that
improve performance in practice. Empirically, we demonstrate the ef cacy of CSM on a wide range
of density estimation tasks on a mixture of synthetic, tabular, and high-dimensional image datasets,
and demonstrate that it performs favorably relative to existing baselines for modeling discrete data.

The contributions of our work can be summarized as follows:

1. We propose the Concrete score, a generalization of the (Stein) score to discrete domains.
We construct the Concrete score such that it leverages structural information in the data to
capture surrogate “gradient” information over discrete spaces.

2. We introduce a novel score matching framework for estimating such scores from samples
called Concrete Score Matching (CSM). We then outline several connections between CSM
and existing (continuous) score matching techniques, such denoising score matching (DSM).

3. We propose ef cient learning objectives that allow our method to scale gracefully to high-
dimensional datasets, and show how to port over the recent successes in continuous score
matching approaches to discrete domains.

2 Preliminaries

Let pgaa (X) be the unknown data distribution ov&r 2 RP, for which we have access to i.i.d.
samples Xigl;  Paata (X). The (Stein) score qfyata (X) is the rst order derivative of the log data
density functiors(x) = r  logp(x). The goal of score matching is to learn an unnormalized density
g (x) indexedby 2  such thatthe estimated score funct®oifx) = r x logq (x) is close tas(x).

In practice, we leverage score networks : RP ! RP that is trained to minimize the Fisher
divergence betweeq (x) andpgata (X) [23, 26]. Although the original objective is intractable to
compute due to its dependence on the ground truth data ssorgsve can leverage integration by
parts [21] to simplify the objective as follows:

1
Jsm () = Epp ) Eks (x)k3 + tr(r s (x)) + const. (1)

wheretr( ) denotes the matrix trace, and the optimal score model satis %)  s(x). While

the trace term in Eq. 1 remains problematic—it requires an expensive evaluation of the Hessian of
the log-density function—recent work8d, 16] leverage the Skilling-Hutchinson trace estimator

[31, 32] or directional derivatives [33] to ef ciently approximate the training objective.

Despite their key role in successfully scaling score-based generative models to high-dimensional
datasets, we note two critical limitations of existing score matching techniqueX (st be
continuous; and (2) the density functipgy, (X) must be differentiable. This poses a signi cant
challenge in discrete domains, where both requirements fail to hold.

2\We borrow the terminology from “concrete mathematics” [30].



3 The Concrete Score

The above limitations prevent the direct application of score matching techniques to discrete data.
We thus propose the Concrete score, a generalization of the (Stein) score for discrete settings. The
key intuition is that although the gradient is unde ned in discrete spaces, we can still construct a
surrogatefor the gradient by leveraging local directional changes to the input. We do so by exploiting
special neighborhood structures in the data, and elaborate upon the necessary conditions on these
structures to guarantee that our surrogate gradient indeed recovers a valid score function that (1)
completely characterizes the distribution, and (2) is amenable for parameter estimation.

3.1 Constructing Surrogate Gradients for Discrete Data

To be more precise, l§aa (X) be the data distribution ove¢. We denoteN : X | X K as the
function mapping each exampke2 X to a set of neighbors, such tHdt(x) = fxn,; 5 Xn, 0

andK = jN (x)j . This neighborhood induces a particular graphical structure onto the support of
Pgata (X), which we call the "neighborhood-induced graph”, that will play a key role in constructing
the surrogate gradient. We provide a formal de nition below.

De nition 1 (Neighborhood-induced graph).et pgata (X) be the data distribution oveX andN be
the function mapping each node2 X to its set of neighbors. The neighborhood-induced graps
the directed graph which results from adding a directed edge #dmeach node in its neighborhood
setx, 2 N (x), for all x 2 supp(Pgata (X))-

An important point is that the neighborhood structure can be asymmetric, since the neighborhood-
induced graph is a directed graph. This implies that there may exist casesNvpere fx1g does
not necessarily imply that (x;) = fxg. We provide an intuitive example below.

There exist a wide range of neighborhood structures, all of which yield different neighborhood-
induced graphs. We visualize ve common structures in Figure 1.

Figure 1. Examples of common neighborhood structures and their corresponding (connected)
neighborhood-induced graphs, where the arrows point to the neighbors of a given node. Note
that the neighborhood structure is directed.

Such graphs provide insight into the kinds of neighborhood structures that are amenable to our
framework. One necessary characteristic of such graptenisectednessn fact, the ve common
graphical structures (among others) shown in Figure 1 are all weakly connected graphs. We emphasize
that connectedness does not take the directionality of the underlying Gimptiges into account—it

does not matter whether a noxidnas an incoming or outgoing edge.

With the above de nitions in place, we can now de ne the surrogate gradient as the local differences
between a set of examples (similar to directional derivative in the continuous case). Using this notion
of the “gradient”, we construct the Concrete score as the rate of change of the probabilities with
respect to these local directional changes in the irpag de ned below.

De nition 2 (Concrete score)LetN be a function mapping each poirtto its set of neighbors
N (x) = fXn,;:5Xn, g Then, the Concrete scom,,, (x;N) : X | RN for a given
distribution pyata (X) evaluated ak is:

. Pdata (Xn;)  Pdata (X) . ... Pdata (Xn,)  Pdata (X) T .
C X3 N ) yeeny . 2
Pdata ( ) pdata (X) pdata (X) ( )

3We consider a xed number of neighbdgs for eachx to simplify our notation, but note that this can be
generalized to a variable number of neighbors for exery




Although we have de ned the Concrete score, we have yet to justify whether it is indeed a suitable
score function for estimatingyata (X). The necessary condition, which we cadimpletenesi34],
ensures that the Concrete score preserves enough informationmhe(x) such that we can
successfully learpgata (X) from data samples using score matching. We make this statement more
precise in the following theorem.

Theorem 1(Completeness)Let pyata (X) be a (discrete) data distribution. Denatg,,, (X;N) as

the Concrete score @faa (X) with neighboring structurdN , andc (x; N ) the Concrete score for a
distributionp (x) parameterized by 2 . When the graph induced by the neighborhood structure
N is connectede (X;N) = Cp,,. (X;N) impliesthatp (X) = Pgata (X) 8x 2 X..

Proof sketch.If two nodesx andx®in a neighborhood-induced gra@hshare an edge, then their
density ratiopgata (X9 =puata (X) can be uniquely identi ed usingy,,, (x;N). Thus whenG is
connected, the density ratio between any node pai@isruniquely identi ed givercy,,, (X;N).
Therefore, knowing the density ratio between any two points uniquely identigs (x). O

We provide the full proof in Appendix A. We emphasize here that the connectedness of the
neighborhood-induced graph (a kind of regularity conditior\brand pgata (X)) Was crucial for
demonstrating the completness of the Concrete score.

Note that Theorem 1 only requires the neighborhood-induced graph to be connected. This implies that
given a connected graph, we can augment it with additional edges—the new graph will still remain
complete, but contain additional information in the augmented neighborhood structure that may help
parameter estimation in practice. This is a phenomenon that we observe empirically in Section 5.3.

3.2 Connection to Stein Scores and Existing Score Matching Techniques

The form of the Concrete score in Eq. 2 suggests a natural connection with the Stein score in
continuous domains. In the following proposition, we illustrate the connection between the two
when we de ne the neighborhood structure to be similar to the grid in Figure 1. In particular, as
the distance between neighboring nodes shrinks to zero, our Concrete score converges to the Stein
score up to a multiplicative constant.

Proposition 1. Forx 2 RP, p(x) 2 P (RP), and > 0, let the neighborhood structufé (x) =
fx + g2, . Then, we have:
Iilm0 (XN ) =1 4 logp(x):

We note that while from this perspective the Concrete score can be seen as a nite-difference
approximation to the continuous (Stein) score, CSM is different from nite difference score matching
(FD-SM) [33]. We introduce a new family of score functions generalizable to discrete domains in the
formof (p(x + v)  p(x))=p(x), wherev is the direction fromx pointing to its neighbor with length

. On the other hand, FD-SM still attempts to match the Stein score, and approximates directional
derivatives with nite difference using two neighbors in the formladgp(x + v) logp(x V).
Nevertheless, the differences between the two forms@deas ! O.

3.3 Inference with Concrete Scores

To perform inference, we note that there exist several ways to de ne Markov chain Monte Carlo
(MCMC) samplers that only rely on the Concrete score—we highlight the simplest setting of
Metropolis-Hastings [35—37] for clarity of exposition. We rst note that, by de nition:

Pdata (Xn,) . .... Pdata (Xn, ) T
pdata(x) Y pdata(x)

This implies that we can obtain the density ratios between the neighboringgairéxn, ) =pata (X)
and Pgata (X)=Puata (Xn, ) given the Concrete score. Given a proposal distributjoour sampler

will accept the proposed updat@with acceptance probabilith(x3x) = min  1; %
Speci cally, we can choosgto sample uniformly amoniyl (x) given a particulax. When the neigh-

borhood structure is symmetric, this selection leads to a simpli ed acceptance probalifix) =

deata (X’N)+ 1 =

3)



min 1; % . We note that when the underlying graph is connected, the chain is aperiodic (due

to the presence of a rejection step), irreducible, and positive recurrent (since there is a nite number of
discrete states), so the Markov chain is guaranteed to converge in the limit to the model distribution.

This means that we can also compute tighter bounds on log-likelihood estimates obtained by un-
normalized probability models trained via CSM. In particular, we can compute both a lower bound
estimated via Annealed Importance Sampling (AlE]] and a conservative upper bound estimated

via the Reverse Annealed Importance Sampling Estimator (RAIS8) [This is because both

AIS and RAISE allow us to approximate the intractable normalizing constant by constructing a
sequence of intermediate distributions between our estimated target distribution and another proposal
distribution, and we know that the Concrete score can be repurposed to obtain the necessary density
ratios between neighboring pairs of distributions along this sequence.

4 Learning Concrete Scores with Concrete Score Matching

4.1 The Concrete Score Matching Objective

Next, under the assumption tHdtinduces a weakly connected graph over the suppqugef (x),
we propose a hew score matching framework called Concrete Score Matching (CSM) for estimating
Concrete scores from data samples. To do so, we estipgte(x; N ) with a score modet (;N):
RP 1 RN (i wherejN (x)j denotes the size of the neighborhoodkofOur proposed training
objective is quite natural, as it measures the averagkference between our score mode( ;N)
and the true score,,,, (; N) similar to (continuous) score matching:

X

Lesw( )= Poaa (OKC OGN)  Cpan (OGN )

X

In the following theorem, we demonstrate that Eq. 4 is indeed a principled learning objective: the
estimated is a consistent estimator for the true underlying distribupgg, (X).

Theorem 2 (Consistency) In the limit of in nite data and in nite model capacity, the optimal
that minimizes Eq. 4 recovers the true Concrete score, or sats 6; N ) = Cp,,. (X;N).

Theorem 1 implies that the estimated (underlyipg)(x) from c (x;N) satisesp (x) =

Pgata (X) 8x 2 X . Next, we note that Eq. 4 can be simpli ed to an objective that we can tractably op-

timize by removing its dependence on the unknayp, (x; N ), similar in spirit to Eg. 1. Although

the added exibility of the score model may potentially lead to situations where it does not correspond
to a valid probability distribution—similar to how continuous score models do not necessarily form a
conservative vector eld—this does not appear to hurt CSM's performance empirically.

Theorem 3. Optimizing Equatior{4) is equivalent to optimizing:

X INg(X)] X IN(x)]
Jesm ()= Paata (X) € (X;N)Z+2¢ (x;N); 2Pdata (Xn,)C (X;N )i
lx i=1 ‘57 } |x i=1 57 }

®)
whereN (x) = fxn,;: Xn, gis the set of neighbors of.

We note that in Eq. 5, the objectida-syv ( ) can be approximated using Monte Carlo samples. We
elaborate on the empirical training details in Section 4.2.

4.2 Efcient Training via Monte Carlo

In practice, Eq. 5 is still inef cient; it involves a summation over jll (x)j neighbors fotx, which
can be expensive for high-dimensional datasets. Therefore, we propose several modi cations to the
original training objective that we found to be crucial for scaling up and improving our approach.

We begin with the leftmost terrd;. First, we approximate the outer expectation wipdaia (X)
with Monte Carlo samples from the empirical data distribution. Next, rather than evaluating the
objective for alliN (x)j neighbors, we sample a neighbay, uniformly at random amonby (x;) for



everyx; in a mini-batch. We then upweight the output from the model using this sampié ©g)j.

We provide the unbiased training algorithm for the leftmost term in Algorithm 1. We note that is
similar in spirit to sliced score matching], an approximation technique to make continuous score
matching scalable to higher dimensions.

Next, we turn to the rightmost terdy,. Similar toJ ;, we can estimaté, using an unbiased estimator
based on samples as demonstrated in Algorithm 2. We dd né(x% = f(x;i)jN (x); = x%

as the “reverse neighborhood” set, where an elerpen) 2 N 1(xY) indicates thak®is thei-th
neighbor ofx. There could be multipl& with the samé in N 1(x9 as in the case of the star graph.
Computing and storiniip ! as a hash table mappingo the set oN 1(x) has a time and space
complexity of at mosO( , jN (x)j) (i.e., the number of edges). For special structuseg,(grid),

we can design speci c algorithms that bypass this process. We provide more details in Appendix C.

Algorithm 1 An unbiased estimator df; Algorithm 2 An unbiased estimator df,
Input: pgata, N, ¢ (model). Input: Pgata, N, ¢ (model).

1. Samplex  Pgata (X). ' _ 1. Samplex®  pyaa (X).

2. Sampld  Uniformf1;:::;jN (x)jg. 2. Samplgx;i) Uniform(N 1(x9).
Output: jN (x)j] ¢ (X;N)2+2c (X;N); . Output: 2 jN 1(x9j ¢ (x;N);.

We leverage the grid structure in our experiments, where the neighborsad de ned to be
N(x) = fx eqgi-, . Algorithm 1 and Algorithm 2 allow us to ef ciently train the model by
sampling a dimensiod 2 [D] and ipping the bit for thedth entry ofx for eachx,,.

4.3 Denoising Concrete Score Matching

Finally, we propose another training objective to approximate Eq. 5, with a focus on computational
ef ciency. Similar to denoising score matching (DSM) for (Stein) score estimafidh fve derive a
denoising counterpart for Concrete score estimation called “Denoising Concrete Score Matching
(D-CSM). Speci cally, given a discrete data distributipg (x) and a discrete noise distribution
a(xjx), we de ne the perturbed data distributigx) = | pgata (X)€(%jX), and the posterior

A(xjx) = Pee BUID) Then, we can show that the Concrete score of the perturbed data distribution

B(x) can be obtained vigyx) (%N ) = | Cqxjx) (6 N )q(Xjx). This property allows us to obtain
the D-CSM objective, as shown in the following theorem:

Theorem 4 (Denoising Concrete Score Matching)he objective:

X
Io csm( )= Poaw (O&XIX) € (5N)  Copein) O6EN) 6)

X X
is minimized when (%;N ) = Cpx)(x;N).

We draw a direct analogy to DSM in order to provide additional insight into D-CSM. Recall that in
DSM, there exists a noise distributiogejx) (i.e. N (xjx; 21)) such that the magnitude of Stein
scores captures the distance between the perturied its clean counterpatt D-CSM enjoys a sim-

ilar interpretation. In particular, consider an inputspaceX  ZP with the neighborhood structure
N(x)= fx+vjv 2f 1;0,1g° g. If we de ne g(xjx) = 5>+ wherek is the Manhattan distance
betweenx andx, then the Concrete scoogx) (x; N ) captures how close is to x as measured by

the Manhattan distance. Therefore, D-CSM can also be understood through the lens of a denoiser.
We provide additional experimental results exploring the performance of D-CSM in Appendix B.3.

5 Experimental Results

In this section, we evaluate the performance of CSM on synthetic, tabular, and discrete image datasets
on a variety of sampling and density estimation tasks. We provide additional details on specic
experimental settings and hyperparameter con gurations in Appendix C.



5.1 Baselines

In our experiments, we compare CSM to two relevant baselines for modeling discrete data: Ratio
Matching and Discrete Score Matching with MarginalizatiDiscrete Marginalization ). For
conciseness, we provide additional details and derivations for their training objectives in Appendix D.

Ratio Matching. Similar to score matching, Ratio Matching/] leverages the fact that ratios of
probabilities are independent of the intractable normalizing constant (due to cancellation). The

method then seeks to match the ground truth density rﬁﬁgs)fx—)d) = qq(x(x)d) wherex 4 denotes

the vectorx with thedth entry bit- ipped (e.g. from O to 1).

Discrete Score Matching with Marginalization (Discrete Marginalization). The Discrete Marginal-
ization baseline is another way of estimating discrete probability distributions with score matching as
in [34]. However, we note that this approach is dif cult to scale because it requires us to marginalize
over the data dimension, which may also cause instabilities during training.

5.2 1-D Discrete Data

In this experiment, we consider a 16-category 1-D data distribution as shown in Figure 2. We
parameterize our Concrete score maz€hk; N ) using a shallow MLP model with Tanh activations,

and use the Cycle neighborhood structure during training. We demonstrate that the learned Concrete
score model can faithfully capture the true data distribution when trained with CSM. As shown on
the left side of Figure 2, we nd that CSM generates samples (blue) using MH that almost perfectly
matches the samples drawn frqga. (X) ( ).

We also observe in Appendix A.3 that the Concrete scongygr (X) can recover the Stein score of a
data distribution perturbed with triangular noise. Even though the Concrete score model is trained on
discrete data ( ), this connection allows us to sample with Langevin dynamics using the recovered
Stein score. On the right side of Figure 2, we show how the samples generated using Langevin
dynamics ( ) closely match the triangular noise-perturbed data distribution (gray).
Then, we leverage a closed-form denoising formula for the perturbed distribution (Appendix A.3) to
recover the clean data distribution ( ) from samples obtained via Langevin dynamics (

). The resulting denoised samples ( ) are label¥ehassed in Figure 2. We provide
more details and discussion in Appendix A.3.

Figure 2: Sampling results from a toy 1-D discrete dataset. CSM recovers the true data distribution
Pgata (X) using Metropolis-Hastings (left). The Concrete score can also be used to recover the
Stein score of the triangular noise-perturbed data distribution, allowing for sampling with Langevin
dynamics. Such samples can be denoised to recover the original (clean) data distribution (right).

5.3 Sampling with Toy 2-D Multi-Class Datasets

Next, we consider three 2-D toy benchmark datasets with multiple modes and discontinuities as
commonly used in the density estimation literatutg, 4 1]. We quantize the data in®l 91 bins

to obtain the discrete training data for the experiment (see Figure 3). We compare our method against
the two baselines: (1) Ratio Matching]; and (2) Discrete Marginalizatior8fl]. In particular, we

found that the original equations i4] were incorrect, and provide results using the correct training
objectives (denoted dRatio-fixed andMarginal-fixed )in Figure 3. We provide a step-by-step
derivation addressing this issue with the correct expressions for the training objectives in Appendix D.

For a fair comparison, we use the same model architecture and training con gurations across all
methods. We use the grid neighborhood structure for training CSM. As shown in Figure 3, the
samples from CSM best capture the shape of the underlying data distributions across all three datasets
(leftmost column). Baselines implemented using the original equatiorigljindeed demonstrate

poor performance on the density estimation td&g&t{o andMarginal columns) in Figure 3.



Data Ratio Ratio- xed Marginal Marginal- xed CSM (Ours)

Figure 3: Sampling results on toy 2-D benchmark datasets. We nd that CSM produces the highest
quality samples across all 3 datasets relative to all baselines.

Datasets Ratio Matching) Discrete Marginalization") CSM (Ours)(")
NLTCS -6.15 -6.21 -6.13
Plants -15.44 -19.03 -14.02
Jester -56.49 -57.06 -54.91
Amazon Diaper -10.69 -42.52 -11.13
Amazon Feeding -12.09 -35.96 -12.65
Amazon Gifts -4.57 -4.28 -4.22
Amazon Media -10.22 -13.77 -10.30
Amazon Toys -9.83 -16.34 -9.30

Table 1: Log-likelihood comparisons on discrete tabular datasets. Higher is better. We nd that CSM
demonstrates good performance, almost always outperforming or performing comparably relative to
theRatio Matching andDiscrete Marginalization baselines.

5.4 Likelihood Evaluation on Discrete Tabular Data

We then evaluate the performance of CSM on density estimation tasks for a wide range of tabular
(discrete) datasets drawn from both the Twenty Datagelsand the Amazon Baby Registries
benchmarks44]. In order to evaluate likelihoods, we directly parameterize the density with a
discrete autoregressive model (MADE), but train the model using the baseline approaches and
CSM. For a fair comparison, we use the same model architecture and experimental con gurations
across all methods. Similar to our previous experiments, we use the grid neighborhood structure for
training CSM. As shown in Table 1, our approa@§lydemonstrates favorable performance relative

to the Ratio Matching and Discrete Marginalization baselines. We provide additional
experimental results in Appendix B.1 and more experimental details in Appendix C.

5.5 Generative Modeling with High-dimensional Images

For our nal experiment, we demonstrate that we can scale CSM to achieve good performance on
complex, high-dimensional binarized image datsets. We experiment with the MMEpddtaset,

which has 784 dimensions. We directly parameterize the Concrete score function with a4J4Net [
and train the model using the CSM based on a grid neighborhood structure. Similat, tovg

perturb the image with different levels of discrete (Categorical) noise, and train the models at different
noise levels with annealing. After the Concrete score model is trained, we sample from the model
using Metropolis-Hastings as discussed in Section 3.3 and follow a similar sample initialization
process as J6]. We provide more details in Appendix C. We present the samples from our model in
Figure 4b. We observe that our CSM approach with Metropolis-Hastings is able to generate samples
that look similar to the digit examples in the training set (Figure 4a).



(a) Binary training images (b) MNIST samples (MH)

Figure 4: Image samples from CSM on the binarized MNIST dataset. We observe that CSM is able
generate high-quality samples on MNIST using Metropolis-Hastings.

6 Related Work

Score Matching. Our work builds on the body of literature on score matchihgy P2] and score-
based generative modelingd, 26, 16]. Notably, we build upon the generalization of score matching

to discrete datad2, 48, 34]. Our score function can be viewed through the lens of generalized score
matching as in34], where the Concrete score serves as a particular instantiation of the linear operator
in their framework. However, we provide a novel perspective in terms of constructing the Concrete
score via surrogate gradient information over a structured discrete space, and provide ef cient
training objectives for CSM. Our work is also closely related to score matching with nite difference
(FD-SM) [33] as discussed in Section 3.2. However, rather than approximating the gradient with
nite differences for continuous data, we leverage the rst-order forward difference to construct our
Concrete score function in discrete domains. In addition, CSM bears similarities to a concurrent work
on scaling up Ratio Matchin@f] for discrete energy-based models (EBM&Y] called RMwGGIS—

our approach can be viewed as a different way to train discrete EBMs (via the Concrete score).

Generative Modeling for Discrete Data.CSM also provides another way to train generative models
for discrete data. A related work i5(], which trains a score-based model on distributions over
graphs. However, they perturb the adjacency matrices with Gaussian noise and use the continuous
variant of DSM. Although there exist several model families for learning binary and Categorical
probability distributions such as normalizing owsT-53], Sum-Product Networks (SPNs}4, 55,
denoising diffusion probabilistic modelsq], discrete (latent)q7, 58] EBMs [49], and Generative

Flow Networks (GFNs)49], there does not yet exist a discrete score-based model that can scale to
high-dimensional discrete datasets. Finally, our approach bears similarities with Gibbs with Gradients
(GWG) [60]. In particular, GWG augments existing MCMC samplers with gradient information by
leveraging local structure to estimate likelihood ratios for transitioning to the next state. However,
GWG utilizes gradients from the probability mass functions of the underlying discrete distributions,
in contrast to the way in which we construct the Concrete score function.

7 Conclusion

We introduced Concrete Score Matching (CSM), a novel framework for learning discrete probability
distributions via score matching. We proposed to leverage particular kinds of structural information in
the data to construsturrogate gradient informatioabout the discrete space, and used this to de ne

a valid score function. We also introduced several modi cations to the original training objective that
allowed CSM to scale gracefully to high-dimensional datasets, and demonstrated that CSM performs
well on a variety of sampling and density estimation tasks.

However, this work is not without limitations. Since CSM depends on the neighborhood structure,
certain types of graphs may work better for score matching in practice than others. Additionally,
our ef cient training objectives may suffer from high variance when scaling to high dimensions for
particular kinds of neighborhood-induced graphs, such as the Star graph. For future work, although
we xed the number of neighborK for eachx in our experiments, it would be interesting to
adaptively determine the optimal number of neighbors to use forealthing training. We also



believe that CSM can be generalized to leverage more complex neighborhood structures than those
we explored in the paper. Additionally, empirically investigating the performance of D-CSM with
Langevin dynamics relative to CSM would be interesting future work.

Broader Impact. This work introduces a novel score function—the Concrete score—that is de ned
over discrete spaces, as well as a corresponding score matching (CSM) framework that can scale to
high-dimensional discrete datasets. This leads to empirical performance improvements over a range
of density estimation and sampling tasks, and does not have a direct consequence on societal issues.
However, we note that CSM could serve as the basis for developing more powerful generative models
of structured, discrete data. Although this could lead to tangible bene ts (e.g. improved generative
modeling of text data), we should be mindful to take the usual precautions required for generative
modeling research (e.g. against the development of deepfakes).
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Appendix

A Proofs of Theoretical Results

In this section, we provide proofs and additional discussions of the theoretical results.

A.1 Concrete Score Matching

Theorem 1(Completeness)Let pyata (X) be a (discrete) data distribution. Denatg,,, (X;N) as

the Concrete score @aa (X) with neighboring structurdN , andc (x; N ) the Concrete score for a
distributionp (x) parameterized by 2 . When the graph induced by the neighborhood structure
N is connectedg (X;N) = Cp,. (X;N)impliesthatp (X) = Pgata (X) 8% 2 X..

Proof. If two nodesx andx®in a neighborhood-induced grag@share an edge, then their density

ratio paata (X9 =pata (X) andpgata (X)=Puata (x% can be uniquely identi ed usingy,,., (X;N) based

on the de nition:

Pdata (Xn,) . .... Pdata (Xn,) T.
Pdata (X) T Pdata (X)

deata (X'N)+ 1 =

()

For simplicity, we name the elements ¥ fx1;x2;::;; XN g. Note that wherG is a weakly
connected graph, any node péirn; x,) is connected via a path in the graph. Denoting the path
between these two nodesxas! ::! X,,we can obtain the density ratio for any neighboring pairs

on the path using the de nition af,,,, (X;N). Therefore the density ratiiyata (Xn)=data (X1)

can be computed using the products of the density ratios for all neighboring data pairs on the
path. This implies that whe@ is weakly connected, we can uniquely recover the density ratios

Pgata (X). Therefore, knowing the density ratio between any two points uniquely iderigs(x).
O

Theorem 2 (Consistency) In the limit of in nite data and in nite model capacity, the optimal
that minimizes Eq. 4 recovers the true Concrete score, or satis €%;N) = Cp,,. (X;N).

Proof. It is easy to see the optimal that minimizes the following equation

X
Lesm( )= Paaa () KC (X;N)  Cpn (GN)KS @8)

X

satisesc (X;N) = Cp,,. (X;N) almost everywhere.

O
Theorem 3. Optimizing Equatior{4) is equivalent to optimizing:
X INg(X)j X IN(x)]
Jesm( )= Paata (X) © OGN)? +2¢ (x;N); 2Pdata (Xn;)C (X;N);
E i=1 z b i=1 {z }
J 1 J 2
®)
whereN (x) = fxp,; 1 Xn, gis the set of neighbors of.
Proof. Recall that by de nition
Cpus (N, Pdata (Xn;)  Pdata (X) o Pdata (Xn,)  Pdata (X) T: )

Pdata (X) Pdata (X)

15



argminLcsw ()

X
=argmin Pdata (X) K€ (X;N)  Cpya (X5 N )kg
X

X
=argmin - Paata (X) KCpgw OGN)KS 26 (X;N)T Cpe (X;N) + ke (x;N)KS

X

X
=argmin Pdata (X) Kc (x;N)kg 2c (x;N)Tcpdma (x;N)

X

X INg(X)j X IN(x)j
=argmin Paata (X) € (X;N)7+2¢ (X;N); 2Pgata (Xn;)C (X;N);
Ix i=1 {Z } |x i=1 {7 }
Jl -]2

=argmin Jcsu ()

A.2 Denoising Concrete Score Matching

P .
Property 1. Cox) ;N ) =, Coxijx) (6 N )a(Xjx)

Proof. For simplicity, given a distributiomp(x), we de ne the operatoL [p(x)] = p(Xn,)

T
p(x); 5 p(Xn, ) P(x) , whereN (x) = fxn,;:::;Xn, gare the neighbors of. Recall that by

P .
de nition, p(¥) =, Puata (X)&(XjX) and the posteriog(xjx) = %. We have

L[p(¢)]
ROX)
L[ ) Pdata (X)&(%jX)]
p(x)
- x pdataéz()z;‘ [&0¢j)] (by linearity)
X L[e(xjx)] Paata (X)&(%]X)
a(xjx) p(x)

= Cq(xjx)(x'; N )q(XJX')

X

Co() (%3N ) =

O
Theorem 4 (Denoising Concrete Score Matchinghe objective:
X
: 2
Jo esm( )= Pdata (X)E(X]X) € (;N)  Corxjx) (i N) (6)
X%
is minimized wher (%;N ) = Cpx)(x;N).
Proof. The modek that minimizes the least squares
X
=argmin - Paaa (X)X (65N Cypeey (65 N2 (10)
X ;%
P
satisesc (XN )= | Cyxijx) (6N )A(XjX%) = Cp(x) (%; N ) using Property 1. O
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A.3 Connection to distribution perturbed with triangular noise

As discussed in Section 5.2, our approach can be used to denoise a given data distribution perturbed
with triangular noise. For simplicity, we assume2 X  ZP. The argument proceeds in a similar
manner to how denoising score matching can be used to compute the expected @oskptigr)],

wherex is the perturbed data.

De nition 3 (Triangular noise) We de ne the PDF of th® -dimensional triangular distribution
with lower limit -1, upper limit 1, and mode 0 as the following:
g 0 x< 1
To () = x+1 1 x O
21 x O<x 1
"0 x>1

Lemma 1. Given aD -dimensional discrete distributiopyata (X), let p(x) be the distribution of
Pgata (X) When perturbed with triangular noise as de ned in Equat{an).
X

(%) , Poata (X)To (% X): (12)

X

11)

Thenforanyx;y  Pgat (X) we have*s((zi = b E;;

Proof. Itis easy to see that foramy,y 2 X  ZP, we have

P(X) = Paata (X)To (0); P(Y) = Pdata (¥)To (0) (13)

; ; ica i Pdata (X) .

because the width of the triangular noise is less than one. %‘»JS: m
O

Denotexy the integer such that thd-th index of x, denotedxy, satisesxy 2 [Xg;Xq +1).
imilar to Section 4.3, in the discrete case with perturbed triangular fgiée), we de nep(x) =

« Pdata (X) Tp (%jx) and the posteriag(xjx) = w whereTp (%jxX) = Tp (¥ X).

We have

X
Exla(xjx)] = xq(xjx) (14)
x2f xq¢2f Xq;xq+1 gg
X .
— Pdata (X)TD (X'JX)
= X —p ) (15)

x2f x¢2f xq;xq+1 g9
Using the fact thalp is independent among dimensions, we have

Pdata (X) To (%jX) = Pdata (X) 1[Xg = Xg] (Xa+1 xg)+ 1[Xg=Xg+1] (X4 Xq)
d=1
(16)
and
p(x) = Pdata (X) 1[Xg = Xa] (Xa+1 xq)+ 1[Xg=Xg+1] (X4 Xq)
x2f xg2f Xq;Xq+1 gg d=1
(17)

Plugging in Equation (16) and Equation (17), we have
Qp

g=1 1[Xd=xa] (Xa+1 %)+ 1[xg=xq+1] (¥4 Xq)

q(XJX-) ) P Pdata (y) QD - _
Yof ya2f xaixa+1 09 pae () d=1  L1Yd = Xda] (Xa+1 xg)+ 1lya=Xxa+1] (% Xa)

(18)
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Equation (18) means that giver) we can compute the posterior in closed form using density

ratiosg‘;::ig;, which can be evaluated using Concrete scores as long as the graph induced by the

neighborhood structure is connected (based on Theorem 1). Kngiig) also allows us to sample
from p(xjx) to perform denoising. Similarly, giveg(xjx), we can also compute Equation (14) in
closed form.

Recovering Stein Scores Given Concrete scores, we can uniquely recover the Stein scefa of
denoteds(x), using the following equation, where theth index ofs(x) is de ned as

Pdata (Xd + 1) Pdata (Xd)

X)d = 19

Sx)a Pdata (Xd +1) (¥d Xd)+ Pdata (X) (Xa+1 Xq) (19)
Pdata (Xd+1) 1

- Pdata (Xd) . (20)

T G 0 X+ (xat1 xq)
wherexy 2 Z andxq 2 [Xq; Xq +1). Thus, the Stein scox) of p(x) can be constructed using the
density ratio from Concrete scores. Given the recovered Stein sereve can perform Langevin
dynamics to sample from(x), which gives the smoothed sample in Figure 2 (smoothed orange). We
can then sample from(xjx) using Equation (18) to perform closed-form denoising, which is shown
in Figure 2 (orange).

A.4 Connection to Stein Scores

In this section, we study a special case of the Concrete score, as described in Proposition 1, to highlight
its connection to both the continuous (Stein) score and existing score matching methods. Given a
D -dimensional continuous data distributipfx) and > 0, we de ne a particular neighborhood
structureN (x) = fxn, g2, wherex,, = p(x + €;) ande; is the standard (one-hot) basis vector

with thei-th element; = 1. Then:

COGN) _ 1 p(x+ e) p(x)
p(x)

(21)

.
From Eq. 21, we can make two observations. First, we see B8 PO ... p(x* eo) p(x)

approximates the directional derivativepgik) via a rst-order forward difference operation. As a
result, the scaled Concrete score functie™) converges ts(x) in the limitof ! 0

. T
¢ (xiN) _ o im PO+ ) p().. PO ) PO T TxRO) o

p(x)
which is precisely the de nition of the Stein score.

lim
1o

B Additional Experimental Results

B.1 Likelihood Evaluation on Discrete Tabular Data

We present additional results from Section 5.4, where we trained a MADE model using standard
maximum likelihood. We use the training setting as detailed in Appendix C. As shown in Table 2,
this maximum likelihood baseline serves as an upper bound on performance across all score-based
methods. We note that as in continuous (Stein) score matching, log-likelihoods and score matching
losses are not always correlated even though they both theoretically converge to the optimal solution
given in nite model capacity73]. This is due to practical constraints such as model mis-speci cation

or optimization challenges. We believe that this is also the case for discrete score matching, which
explains why directly optimizing likelihood outperforms all other approaches in Table 2.

B.2 Neighborhood Structure Speci cation in Practice

In theory, our approach can use any neighborhood structure as long as the neighborhood-induced
graph is connected (see Theorem 1). In practice, the choice of neighborhood structure can affect
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Datasets Ratio Matchin@) Discrete Marginalizatiof") ~ CSM (Ours)(")  Log-Likelihood(")

NLTCS -6.15 -6.21 -6.13 -6.00
Plants -15.44 -19.03 -14.02 -12.52
Jester -56.49 -57.06 -54.91 -51.77
Amazon Diaper -10.69 -42.52 -11.13 -9.82
Amazon Feeding -12.09 -35.96 -12.65 -11.29
Amazon Gifts -4.57 -4.28 -4.22 -3.43
Amazon Media -10.22 -13.77 -10.30 -7.79
Amazon Toys -9.83 -16.34 -9.30 -7.71

Table 2: Log-likelihood comparisons on discrete discrete tabular datasets. Higher is better. We nd
that CSM demonstrates good performance, almost always outperforming or performing comparably
relative to theRatio Matching andDiscrete Marginalization baselines.

performance due to challenges in optimization and proper model speci cation. We provide an
empirical analysis to build intuition on a series of 1-D synthetic datasets, and believe that the same
intuition can generalize to higher dimensions.

First, we consider the 1-D distribution in Figure 5, where the data distribution does not contain
any low density regions (regions with close to zero density). We parameterize the unnormalized
probability distribution with softmax logits, and train the model using CSM. For the training objective,
we explore 4 different neighborhood structures (3 different cycles as well as a fully-connected graph)
as shown in Figure 5. In this setting, we observe that different neighborhood structures yield similar
performances as evaluated by log-likelihood (see Figure 5).

Figure 5: Examples of neighborhood structures and their corresponding log-likelihood values (higher
is better) when trained with Concrete-SM.

Next, we consider a different 1-D data distribution which contains low density regions. As shown in

Figure 6, we observe that the neighborhood structure in this setting plays a critical role in the nal

log-likelihoods: the complete graph in Case 2 outperforms all other structures. Interestingly, when
the low-density regions are in between sets of high-density modes (as in Case 3 in Figure 6), we nd
that the model can still perform comparably relative to Case 2.

Figure 6: Examples of neighborhood structures and their corresponding log-likelihood values (higher
is better) when trained with CSM.

This observation is similar to that of Stein score matchit@ P1]. Therefore, we believe that a
similar noise annealing procedure followed by denoising CSM may potentially alleviate the effects of
poorly chosen neighborhood structures for data distributions with low density regions. We will leave
this investigation for future work. Such empirical results highlight that the best-performing structure
in practice is often data-dependent. That is, a neighborhood graph which respects the particular
dataset structure will perform the best out of all possible graph structures (analogous to the way in
particular types of inductive biases are useful for solving speci c tasks).
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One interesting avenue for future research would be to draw inspiration figrarid investigate
whether it is possible to construct an “optimal” neighborhood structure for a given dataset. In this
work, we uniformly sample a set of neighbors frédr(x) when computing the CSM objective in
practice (Algorithms 1 and 2), which can lead to issues with high variance during training. We
hypothesize that an optimal proposal distribution d\éx) that minimizes variance may lead to
insights on what the optimal neighborhood structure should be.

B.3 Denoising Concrete Score Matching

We present additional experiments on denoising concrete score matching (D-CSM) as introduced
in Section 4.3. In particular, we consider two 2-D toy benchmark datasets as commonly used in
the density estimation literaturé(), 41]. We quantize the data intel 91 equally-distanced
bins to obtain the discrete training data (¥8€lean data in Figure 7). Similar to our previous
experiments, we use the grid neighborhood structure as detailed in Section 5.3 for training via D-CSM.

For the discrete noise distributi@xjx), we consider the following distribution where each marginal
is an independent 1-D Categorical distribution de ned as:

A whenx; = X;
a0aix); = L whenx; 8 xi;

(22)

where0 < w < 1 ande(xjx); denotes the-th entry ofg(xjx). Note that higher values af
correspond to smaller noise levels. We use the same experimental setting as detailed in Appendix C.2,
where we parameterize the un-normalized probability distribution with softmax logits, but train the
model using D-CSM (see Equation (6)).

We present the results in Figure 7. We observe that samples from our model ( ) matches samples
from the ground truth noisy data distributiop¢) (blue), indicating the practical effectiveness of
D-CSM. We leave a more in-depth exploration of the D-CSM approach for future work.

Figure 7: Samples from models trained with D-CSM. The blue samples are the ground truth samples
from p(x) obtained by perturbing the clean data distribution vetkjx). As we increasev, the
variance of the noise distributiagg{xjx) decreases and the perturbed data distribug{e) becomes

less noisy. The samples from our models ( ) match the ground truth perturbed data samples
(blue) across different values of, demonstrating the effectiveness of D-CSM.

C Experimental Details

In this section, we provide more details for each of the experimental settings. We will release our
code upon publication.

C.1 1-D Discrete Data
We discuss the experimental setting for Section 5.2. We use a 16-category 1-D data distribution with

class labels from 0 to 15, and normalize the dat®a] before feeding it into the model. We use
a 3-layer shallow MLP for the score network with 100 hidden units and Tanh activations. We use
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