
Distributed Online Convex Optimization with
Compressed Communication

Zhipeng Tu1,2, Xi Wang1,2, Yiguang Hong∗3, Lei Wang4, Deming Yuan5, Guodong Shi2

1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
2Australian Center for Field Robotics, School of AMME, The University of Sydney, Australia

3Department of Control Science and Engineering, Tongji University, China
4College of Control Science and Engineering, Zhejiang University, China

5School of Automation, Nanjing University of Science and Technology, China
tuzhipeng@amss.ac.cn, wangxi14@mails.ucas.ac.cn, yghong@iss.ac.cn

lei.wangzju@zju.edu.cn, dmyuan1012@gmail.com, guodong.shi@sydney.edu.au

Abstract

We consider a distributed online convex optimization problem when streaming
data are distributed among computing agents over a connected communication
network. Since the data are high-dimensional or the network is large-scale, com-
munication load can be a bottleneck for the efficiency of distributed algorithms.
To tackle this bottleneck, we apply the state-of-art data compression scheme to
the fundamental GD-based distributed online algorithms. Three algorithms with
difference-compressed communication are proposed for full information feedback
(DC-DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit feed-
back (DC-DO2BD), respectively. We obtain regret bounds explicitly in terms of
time horizon, compression ratio, decision dimension, agent number, and network
parameters. Our algorithms are proved to be no-regret and match the same regret
bounds, w.r.t. time horizon, with their uncompressed versions for both convex and
strongly convex losses. Numerical experiments are given to validate the theoretical
findings and illustrate that the proposed algorithms can effectively reduce the total
transmitted bits for distributed online training compared with the uncompressed
baseline.

1 Introduction

Online optimization has attracted considerable attention in recent decades, for its remarkable applica-
tions in machine learning tasks such as spam filtering, dictionary learning, advertising selection, and
so on [1, 2, 3]. In such online tasks, data are revealed incrementally, and decisions must be made
before all data are available. When the streaming data are collected at multiple agents, the distributed
online optimization over a multi-agent network is considered, where data storage and processing are
performed in the agents [4, 5]. It is often impractical to communicate data among different agents
from multiple concerns such as privacy and bandwidth utilization. Also, there is no central agent
for global coordination. In such settings, each agent relies on its own data to run an algorithm while
communicating decisions with its immediate neighbors.

To be specific, this paper considers the distributed online convex optimization (DOCO) prob-
lem over an N -agent network. The objective is to minimize the accumulated system-wide loss
minx∈K

∑T
t=1

∑N
i=1 f

t
i (x), where the local convex loss function f t

i is formed by the data arriving

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

at time t in agent i, and K ⊂ Rd is a convex feasible set. Note that the loss information is revealed to
agent i after its decision xt

i is made. Generally, there are two basic types of information feedback
that agents can possess. One is the full information feedback, where agents have access to the loss
functions. The other is the bandit feedback, where agents can only possess the values of the loss
function at points around the decision. At each time step, agents choose the decisions based on their
local feedback and neighbors’ information. To measure the performance of an algorithm, the (static)
regret is frequently used, which compares the cumulative loss of online decisions and the loss of the
best decision chosen in hindsight through all the time horizons. The regret of node j ∈ V is defined
as

R(j, T) =

T∑
t=1

N∑
i=1

f t
i (x

t
j)−min

x∈K

T∑
t=1

N∑
i=1

f t
i (x). (1)

An algorithm is called no-regret [6] if the average regret over T goes to zero, which means that the
online decision updated by the streaming data is not far from the best decision chosen in hindsight.
Distributed no-regret online algorithms have been widely studied in recent years [4, 7, 8, 9, 10, 11].

Although distributed algorithms are theoretically feasible, most of them are not practical as the model
size gets large, since communication cost can be a bottleneck for efficiency. In distributed training
tasks, agents can be powful microcomputers, while their communication network may be with low
bandwidth. The information exchange over the network is pretty slow compared with the computation
taking place in agents [12]. Thus, communication compression techniques are of significance for
practical implementations.

There have been many attempts to combine distributed optimization algorithms with compressors.
A straightforward idea is the direct compression scheme, while algorithms with this simple scheme
fail to converge even for the distributed average consensus problem [13, 14]. As an improvement,
extrapolation compression scheme and difference compression scheme are proposed [15]. Along
this line, quite a number of studies successfully extend the distributed optimization algorithms with
compressors and meanwhile maintain the convergence rate [16, 17, 18, 19]. However, distributed
online optimization with compression is still an area that has not been fully exploited. [20] proposed
ECD-AMSGrad algorithm that extended the AMSGrad to the distributed online setting with extrapo-
lation compression, while only empirical results were given without theoretical analysis. The key
open problem in this area is

whether it is possible to design provably no-regret distributed online algorithms
that work with compressors.

Contributions In this work, we answer the above question in the affirmative. We apply the
difference compression scheme to the fundamental GD-based distributed online algorithms. Although
the idea of such combination is simple, the underlying algorithm design and theoretical principle are
challenging since the compression error, projection error, and consensus error will be coupled. Our
contributions are summarized as follows:

• We propose communication-efficient distributed online algorithms, which consist of difference
compression, γ-gossip consensus, gradient descent, and projection, for the cases of full infor-
mation feedback (DC-DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit
feedback (DC-DO2BD), respectively. We make the technical advance to combine the difference
compression scheme with the projection scheme. Through proper design, the errors can be
estimated and controlled with the consensus stepsize γ and the gradient descent stepsizes.

• We analyze the regret bounds of the proposed algorithms for convex and strongly convex losses,
respectively, which are established explicitly in terms of time horizon T , compression ratio
ω, decision dimension d, agent number N , and parameters of the communication graph G, as
simplified and summarized in Table 1. The obtained regret bounds are in accordance with those
of [11] w.r.t T,N, d. Our algorithms are no-regret with theoretical guarantees.

• We give exhaustive experiments to illustrate the performance of the proposed algorithms. Com-
pared with the uncompressed algorithm DAOL [8], the proposed algorithms can reduce the
total transmitted bits for distributed online training. Moreover, DC-DOGD and DC-DO2BD
significantly outperform the algorithm ECD-AMSGrad [20].

2

Table 1: Regret bounds in different settings
Settings convex losses strongly convex losses

Full information O
((

ω−2N 1/2 + ω−4
)
N
√
T
)

O
((
ω−2N 1/2 + ω−4

)
N ln(T)

)
One-point bandit O

((
ω−2N 1/2 + ω−4

)1/2
Nd1/2T 3/4

)
O
((

ω−2N 1/2 + ω−4
)1/3

Nd2/3T 2/3 ln
1/3(T)

)
Two-point bandit O

((
ω−2N 1/2 + ω−4

)
Nd

√
T
)

O
((
ω−2N 1/2 + ω−4

)
Nd2 ln(T)

)

Related Work Distributed online convex optimization has received numerous attention in recent
years. Many basic algorithms have been extended to distributed settings, referring to [7] and
references therein. For instance, [8] proposed a distributed online subgradient algorithm over a static
directed network and achieved the regrets O(

√
T) and O(ln(T)) for convex and strongly convex

losses, which are in line with those of centralized online algorithms [21, 22]. In the bandit feedback
setting, by modifying the gradient to a randomized estimator, [9] proposed a distributed online bandit
algorithm with one-point sampling over an undirected network and achieved O(T 2/3 ln

1/3(T)) regret
for strongly convex losses. Better bound could be achieved by two-point sampling, as [4] obtained
O(

√
T) regret for convex quadratic losses in case of bounded decision set. Also, [10] investigated

the distributed online two-point bandit algorithm in dynamic environments and achieved O(
√
T) and

O(ln(T)) regrets for convex and strongly convex losses, which match those of centralized two-bandit
algorithms [23]. [11] comprehensively studied DOCO over Erdős-Rényi random networks in full
gradient feedback, one-point bandit feedback, and two-point bandit feedback, and gave regret bounds.
Along the line of [11], this paper aims to further introduce compressed communication strategies,
while preserving the regret bounds order-wisely.

Recently, combining distributed optimization algorithms with compressors has seen a dramatic
rise in interest. Traditional compressors include the quantization [24, 25, 26], sparsification [27,
28, 29], and hybrid combining of them [30, 31, 32]. The way to apply compressors is called a
compression scheme. The most widely used compression schemes in distributed optimization are
extrapolation compression and difference compression [15]. Extrapolation compression allows
agents to compress the extrapolation between the last two local states. Decentralized PSGD with
extrapolation compression (ECD-PSGD) [15] was proved to converge sublinearly and match the rate
of its uncompressed case (D-PSGD). Difference compression (DC), which is also called CHOCO
[16] or innovation compression [19], allows agents to add replicas of neighboring states and compress
the state-difference. There have been extensive successful designs combining distribute optimization
algorithms with DC, to name a few, DCD-PSGD [15] (based on PSGD), CHOCO-SGD [16] (based
on gossip SGD), SPARQ-SGD [17] (based on event-trigger), C-GT [18] (based on gradient tracking),
and COLD[19] (based on NIDS), etc.

The difference compression scheme is different from the error-feedback scheme (EF) [24, 33] in
what to be compressed, which results in different application fields. DC compresses the difference
between the current variable and the replica variable, which is widely used in distributed optimization
where nodes tend to exchange state information whose limit is nonzero in general. EF compresses
the sum of the gradient and the residual error, which is widely used in federated learning where
nodes tend to exchange gradient information whose limit is expected to be zero. The insight is that
successful designs have to compress something that goes to zero, otherwise the noise introduced by
the compression will not vanish, which leads to the algorithm oscillation or even divergence. It is
worth noting that the idea of DC can also be applied to federated learning, such as EF21 [34] and
FedPAQ [35], which is another line of research. In this paper, we focus on applying DC to distributed
online optimization.

The results about the distributed online optimization with compression are quite limited. [20] poposed
the ECD-AMSGrad algorithm that combined AMSGrad with extrapolation compression. Actually,
the AMSGrad algorithm may not be a good choice for DOCO problem since although AMSGrad
itself is proved no-regret [36], a considerable performance gap still exists between AMSGrad and
SGD [37]. Besides, the introduction of compression errors will further worsen the algorithm such
that ECD-AMSGrad will lose the no-regret performance (see Section 5). This paper focuses on the
fundamental GD-based algorithms and will give no-regret guarantees.

3

2 Full Information Feedback

In this section, we first introduce the multi-agent network and the compressor we use, and then
propose a communication-efficient distributed online algorithm for DOCO with full information
feedback. Expected regret bounds will be given for both convex and strongly convex losses.

Graph The multi-agent network is described by an undirected graph G(V, E), where V =
{1, . . . , N} is the set of nodes, representing the set of agents, and E ⊂ V × V is the set of edges. Let
A = [aij] ∈ RN×N be the connectivity matrix of G such that aij = aji. If (vi, vj) ∈ E , then vi and
vj can exchange information, and aij = 0 otherwise. It is worth noting that the communication is
node-to-node in our distributed setting, and there is no central node. The graph in this paper satisfies
the following assumption.
Assumption 1. The communication graph G is undirected and connected. Its connectivity matrix
A ∈ [0, 1]N×N is a symmetric doubly stochastic matrix.

Compressor A compressor Q(·) : Rd → Rd is a mapping whose output can be usually encoded
with fewer bits than its input. In this paper, we consider a broad class of compressors with the
following general property, which has been widely considered in distributed optimization with
compression [16, 17, 19].
Assumption 2. For some ω ∈ (0, 1], Q satisfies

EQ∥Q(x)− x∥2 ≤ (1− ω)∥x∥2, ∀x ∈ Rd, (2)

where EQ denotes the expectation over the internal randomness of Q.

Compressors satisfy the above assumption are called ω-contracted, which include many important
biased or unbiased compressors, such as sparsification (Randk and Topk) [28], random quantization
(QSGDs) [26], random gossip (RGossipp) [16], etc.

2.1 Algorithm design

In the full information feedback, the loss function f t
i is revealed to node i at time t after the decision

xt
i is made. Then node i has access to the gradient value ∇f t

i (x
t
i) and can use gti = ∇f t

i (x
t
i) to make

the next decision xt+1
i . We propose the DC-DOGD algorithm as shown in Algorithm 1, which is

based on DAOL [8] and memory-efficient CHOCO-SGD [16]. The DC-DOGD algorithm consists
of two main parts: difference compressed communication (steps 2 and 3) and local decision update
(steps 4 and 5).

Algorithm 1 Distributed Online Gradient Descent with Difference Compression (DC-DOGD)
Input: consensus stepsize γ, GD stepsizes {ηt}Tt=1, time T
Initialize: set x1

i = 0, x̂1
i = 0, s1i = 0, for each node i ∈ V .

1: for t = 1 to T − 1 do in parallel for each node i ∈ V
2: Compress the difference vector qti = Q(xt

i − x̂t
i) and update the replica x̂t+1

i = x̂t
i + qti .

3: Send qti to its neighbors and receive qtj from all its neighbors j ∈ Ni. Update the estimate of
the consensus decision by st+1

i = sti +
∑

j∈Ni
aijq

t
j .

4: Receive the full information feedback and calculate gti = ∇f t
i (x

t
i).

5: Update its decision variable as follows

xt+1
i = PK

(
xt
i + γ(st+1

i − x̂t+1
i)− ηtg

t
i

)
, (3)

where PK denotes the Euclidean projection, i.e., PK(x) = argminy∈K ∥x− y∥.

Output: {xt
i}Tt=1

The insight of introducing the variable x̂t
i and the difference compression are as below. Assume that

x∗ ̸= 0 without loss of generality. Then, if node i transmits the directly compressed information Q(xt
i)

to its neighbors, the compression error Q(xt
i) − xt

i will not vanish for t → ∞. The accumulation
of compression errors makes the algorithm fail to converge. Instead, we compress something that

4

goes to zero. Let node i and all its neighbors keep an auxiliary variable x̂t
i locally, which acts as

a replica of xt
i. Whenever node i updates its decision variable xt

i, node i calculates the difference
xt
i − x̂t

i, compresses the difference qti = Q(xt
i − x̂t

i), and sends the compressed information qti to its
neighbors. After that, node i and all its neighbors update the local replica x̂t+1

i = x̂t
i + qti . When

all nodes are reaching a consensus optimal decision, the updates of local decisions are small, and
the differences between the replica variables and the true decision variables are also small. Then the
compression errors are expected to vanish.

Local decision variables update through gradient descent, γ-gossip, and projection, in order to
minimize the local loss function, keep consensus with neighbors, and remain in the feasible set,
respectively. For each node i, s1i is initialized to 0, and thus, sti =

∑N
j=1 aij x̂

t
j . Recall that x̂t

i tracks
xt
i, then sti acts as node i’s estimate of the consensus decision at time t. The γ-gossip protocol is

adopted to renovate the decision variable towards the consensus decision. The consensus stepsize
γ ∈ (0, 1] is tunable to control the consensus speed, and will also play a crucial role in controlling
the compression error.

If there is no compression, i.e., using exact communication, then x̂t+1
i turns out to be xt

i, and st+1
i

becomes
∑N

j=1 aijx
t
j . Besides, take γ = 1, and then (3) reduces to

xt+1
i = PK

(
xt
i + γ

∑
j∈Ni

aij(x
t
j − xt

i)− ηt∇f t
i (x

t
i)
)
= PK

(∑
j∈Ni

aijx
t
j − ηt∇f t

i (x
t
i)
)
,

which is the DAOL algorithm in [8].
Remark 1. sti is introduced for the memory-efficiency. Eq. (3) is equivalent to the update rule

xt+1
i = PK

(
xt
i + γ

∑
j∈Ni

aij(x̂
t+1
j − x̂t+1

i)− ηtg
t
i

)
. (4)

If we adopt the update rule (4) together with x̂t+1
j = x̂t

j + qtj for j ∈ Ni ∪ {i} instead of steps 3
and 5, then each node have to store deg(i) + 2 vectors, namely, xi, x̂i and x̂j , j ∈ Ni, which is
memory-consuming.
Remark 2. It is potential to extend our algorithm from a fixed graph to a time-varying graph
Gt = (V, Et). We give the following two settings.

• Random switching undirected networks. Our algorithm can be directly applied to the classic
time-varying Erdős-Rényi random networks [38], where Gt is generated over the prescribed
graph G and {i, j} ∈ Et with a probability 0 < p < 1 for all {i, j} ∈ E . This setting is
equivalent to performing random gossip compressor over the fixed graph G, that is, transmiting
information with the probability p, which satisfies Assumption 2 with ω = p.

• Deterministic switching undirected networks. Our algorithm can be applied to this setting by
modifying the connectivity matrix from A to A(t). With further assumptions on the switching
networks such as Bounded Intercommunication Interval assumption [39], one can analyze the
regret interval-wisely. This is interesting but out of this paper’s focus, and we leave it for future
study.

2.2 Regret bounds

We consider following assumptions, which are widely used in the studies of distributed online
optimization [1, 11, 40].
Assumption 3. The convex set K is bounded with diameter D, i.e., ∥x− y∥ ≤ D, ∀x, y ∈ K.

Assumption 4. For each i ∈ V and t = 1, 2, ..., T , the loss function f t
i is convex with bounded

gradient over K, i.e., maxi,t,x ∥∇f t
i (x)∥ ≤ G.

Assumption 5. For each i ∈ V and t = 1, 2, ..., T , the loss function f t
i is µ-strongly convex over K

with the parameter µ > 0, i.e., f t
i (x)− f t

i (y) ≥ ⟨x− y,∇f t
i (y)⟩+

µ
2 ∥x− y∥2, ∀x, y ∈ K.

Suppose that the eigenvalues of the symmetric doubly stochastic connectivity matrix A are 1 =
|λ1(A)| > |λ2(A)| ≥ · · · ≥ |λN (A)|. Define the spectral gap δ := 1 − |λ2(A)| ∈ (0, 1] and the
spectral radius of the Laplacian matrix β := ∥IN −A∥2 ∈ [0, 2]. Then we give the expected regret
bounds of Algorithm 1 for convex and strongly convex losses, respectively.

5

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold. Consider Algorithm 1 with the consensus stepsize

γ =
3δ3ω2(ω + 1)

48(δ2 + 18δβ2 + 36β2)β2(ω + 2)(1− ω) + 4δ2(β2 + β)(ω + 2)(1− ω)ω + 6δ3ω
, (5)

(i) (Convex case) Take the gradient descent stepsize ηt =
D

G
√
t+c

for a constant c ≥ 8
3γδ . Then for

each j ∈ V and T ≥ 1,

EQ [R(j, T)] ≤
(
1

2
+ 8

√
3
(√

N + 2
√
3γ−1δ−1 + 1

) (
1 + γ−1δ−1 + ω−1

))
NGD

√
T + c.

(6)
(ii) (Strongly convex case) With additional Assumption 5, take the gradient descent stepsize ηt =

1
µ(t+c) for a constant c ≥ 16

3γδ . Then for each j ∈ V and T ≥ 1,

EQ [R(j, T)] ≤ µcD2+4
√
3
(√

N + 2
√
3γ−1δ−1 + 1

) (
1 + γ−1δ−1 + ω−1

)
NG2µ−1 ln(T+c).

(7)

The proof ideas are as follows. Firstly, we estimate the general regret bounds for each node, which
depend on the consensus error, the projection error, the compression error, and the gradient descent
stepsize. Then comes the key point that we analyze the coupled relationship between the errors, and
bound them with the consensus stepsize γ and the GD stepsize ηt. Finally, we choose proper γ and
ηt to obtain Theorem 1. Complete proofs are attached to Appendix B.

The consensus stepsize γ chosen in (5) depends on the compression ratio ω and the communicaiton
graph paremeters δ and β. Notice that γ is an increasing function with respect to ω, and γ|ω=0 =
0, γ|ω=1 = 1. Thus, γ ∈ (0, 1] for ω ∈ (0, 1]. If there is no compression (ω = 1) , then γ = 1, and
Algorithm 1 exactly reduces to DAOL [8], as mentioned in the algorithm design.

Theorem 1 shows that Algorithm 1 achieves the regret bounds O((ω−2N 1/2 + ω−4)N
√
T) and

O
((
ω−2N 1/2 + ω−4

)
N ln(T)

)
for convex losses and strongly convex losses, respectively. The

results suggest that

• Algorithm 1 is no-regret in both convex case and strongly convex case, since the time averaged
regret EQ[R(j,T)]/T → 0 for T → ∞. The obtained regret bounds O(

√
T) and O(ln(T)) are in

accordance with those of the centralized online algorithms in the respective cases [21, 22].
• The node averaged regret EQ[R(j,T)]/N increases with N , which in line with the result in [11].
• As the compression ratio ω decreases, fewer bits are needed for node-to-node communication in

each iteration, while more iteration rounds are needed to reach the desired regret. ω can be used
to balance the iteration rounds and the transmitted bits in each iteration from multiple concerns
such as the bandwidth and agent computation capability. In practice, we can choose a proper ω
to minimize the total transmitted bits or minimize the overall training time.

3 One-point Bandit Feedback

In this section, we apply difference compression to DOCO with one-point bandit feedback. We
propose DC-DOBD algorithm, which basically follows DC-DOGD, except for the gradient estimation.

In the one-point bandit feedback, after making the decision xt
i at time t, agent i can query the loss

function value at one point around xt
i and use the feedback to construct the gradient estimator gti .

Like the procedure in [41], let agent i choose a unit-norm vector ut
i ∈ Rd uniformly at random,

query the value of f t
i at the point yti = xt

i + ϵut
i, and calculate gti = d

ϵ f
t
i (y

t
i)u

t
i. Since the loss

function f t
i is defined in the set K, we slightly modify the projection in (3) as P(1−ζ)K to ensure

the query point yti ∈ K. Algorithm 2 actually performs the gradient descent on the function
f̂ t
i (x) = Eu∈B [f t

i (x+ ϵu)] restricted to the convex set (1 − ζ)K. It has been shown by [41] that
E [gti] = ∇f̂ t

i (x
t
i). In the bandit setting, Assumptions 3 and 4 are modified as follows, which are

common in online bandit optimization [11, 23, 41].
Assumption 6. The convex set K contains the ball of radius r centered at the origin, and is contained
in the ball of radius R, i.e., rB ⊆ K ⊆ RB, B = {u ∈ Rd : ∥u∥ ≤ 1}.

6

Algorithm 2 Distributed Online One-point Bandit Gradient Descent with Difference Compression
(DC-DOBD)
Input: consensus stepsize γ, GD stepsizes {ηt}Tt=1, time T , exploration parameter ϵ, shrinkage

parameter ζ
Initialize: set x1

i = 0, x̂1
i = 0, s1i = 0, for each node i ∈ V .

1: for t = 1 to T − 1 do in parallel for each node i ∈ V
2: Compress the difference vector qti = Q(xt

i − x̂t
i) and update x̂t+1

i = x̂t
i + qti .

3: Spread qti and receive qtj , j ∈ Ni. Update st+1
i = sti +

∑
j∈Ni

aijq
t
j .

4: Receive the one-point bandit feedback and construct gti =
d
ϵ f

t
i (x

t
i + ϵut

i)u
t
i.

5: Update the decision variable xt+1
i = P(1−ζ)K

(
xt
i + γ(st+1

i − x̂t+1
i)− ηtg

t
i

)
.

Output: {xt
i}Tt=1

Assumption 7. For each i ∈ V and t = 1, 2, ..., T , the loss function f t
i is convex and l-Lipschitz

continuous in K, i.e., |f t
i (x)− f t

i (y)| ≤ l∥x− y∥, ∀x, y ∈ K.

Assumptions 6 and 7 lead to an uniform upper bound on the function value, i.e., there exists a constant
B > 0 such that maxx,i,t |f t

i (x)| ≤ B. Then we establish the expected regret bounds of Algorithm 2
for convex and strongly convex losses, respectively.

Theorem 2. Let common Assumptions 1, 2, 6 and 7 hold. Consider Algorithm 2 with the consensus
stepsize γ chosen in (5). Denote

H = 4
√
3
(√

N + 2
√
3γ−1δ−1 + 1

) (
1 + γ−1δ−1 + ω−1

)
. (8)

(i) (Convex case) Take the gradient descent stepsize ηt = 2Rϵ
dB

√
t+c

for a constant c ≥ 8
3γδ , ϵ =(

(1+4H)dBR

2(l+B
r)

) 1
2

(T+c)
1
4

T
1
2

and ζ = ϵ
r . Then for each j ∈ V and T ≥ 1,

E [R(j, T)] ≤ 2NT
1
2 (T + c)

1
4

√
2(1 + 4H) (l + B/r) dBR. (9)

(ii) (Strongly convex case) With additional Assumption 5, take the gradient descent stepsize ηt =

1
µ(t+c) for a constant c ≥ 16

3γδ , ϵ =
(

Hd2B2 ln(T+c)

(l+B
r)µT

) 1
3

and ζ = ϵ
r . Then for each j ∈ V and T ≥ 1,

E [R(j, T)] ≤ 4µcR2 + 3N
(
Hd2B2µ−1

) 1
3 (l + B/r)

2
3 T

2
3 ln

1
3 (T + c). (10)

Theorem 2 shows that Algorithm 2 is also no-regret, and it achieves the regret bounds O(d1/2N 5/4T 3/4)

and O(d2/3N 7/6T 2/3 ln
1/3(T)) for convex losses and strongly convex losses, respectively, which

match the bounds obtained by [11]. The regrets are scaled with
(
ω−2N 1/2 + ω−4

)1/2
and(

ω−2N 1/2 + ω−4
)1/3

for convex and strongly convex losses, which indicates that the influence
of the compression ratio ω on the regret bounds in the one-point bandit setting is less than that in the
full information setting.

4 Two-point Bandit Feedback

In the two-point bandit feedback, agent i can query the loss function values at two points around
xt
i. Like the procedure in [23], let agent i pick a unit-norm vector ut

i ∈ Rd uniformly at random,
query the values of f t

i at yti,1 = xt
i + ϵut

i and yti,2 = xt
i − ϵut

i, and estimate the gradient as
gti =

d
2ϵ

(
f t
i (y

t
i,1)− f t

i (y
t
i,2)
)
ut
i. Then we obtain DC-DO2BD as a variant of DC-DOBD.

In the two-point bandit setting, the regret of node j ∈ V is modified as

R2(j, T) =

T∑
t=1

N∑
i=1

f t
i (y

t
j,1) + f t

i (y
t
j,2)

2
−

T∑
t=1

N∑
i=1

f t
i (x

∗). (11)

7

Algorithm 3 Distributed Online Two-point Bandit Gradient Descent with Difference Compression
(DC-DO2BD)
Input: consensus stepsize γ, GD stepsizes {ηt}Tt=1, time T , exploration parameter ϵ, shrinkage

parameter ζ
Initialize: set x1

i = 0, x̂1
i = 0, s1i = 0, for each node i ∈ V .

1: for t = 1 to T − 1 do in parallel for each node i ∈ V
2: Compress the difference vector qti = Q(xt

i − x̂t
i) and update x̂t+1

i = x̂t
i + qti .

3: Spread qti and receive qtj , j ∈ Ni. Update st+1
i = sti +

∑
j∈Ni

aijq
t
j .

4: Receive the two-point feedback and construct gti =
d
2ϵ (f

t
i (x

t
i + ϵut

i)− f t
i (x

t
i − ϵut

i))u
t
i.

5: Update the decision variable xt+1
i = P(1−ζ)K

(
xt
i + γ(st+1

i − x̂t+1
i)− ηtg

t
i

)
.

Output: {xt
i}Tt=1

Theorem 3. Let common Assumptions 1, 2, 6 and 7 hold. Consider Algorithm 3 with the consensus
stepsize γ chosen in (5) and H defined in (8).

(i) (Convex case) Take the gradient descent stepsize ηt =
2R

dl
√
t+c

for a constant c ≥ 8
3γδ , ϵ = 1√

T
and ζ = ϵ

r . Then for each j ∈ V and T ≥ 1,

E [R2(j, T)] ≤ (1 + 4H)RNdl
√
T + c+ (3 + 2R/r)Ndl

√
T . (12)

(ii) (Strongly convex case) With additional Assumption 5, take the gradient descent stepsize ηt =
1

µ(t+c) for a constant c ≥ 16
3γδ , ϵ = ln(T)

T and ζ = ϵ
r . Then for each j ∈ V and T ≥ 1,

E [R2(j, T)] ≤ 4µcR2 + µ−1Nd2l2H ln(T + c) + (3 + 2R/r)Ndl ln(T). (13)

Theorem 3 shows that Algorithm 3 achieves O((ω−2N 1/2 + ω−4)Nd
√
T) and O((ω−2N 1/2 +

ω−4)Nd2 ln(T)) regret bounds for convex and strongly convex losses, respectively, which recovers
the regret bounds O(

√
T) (convex) and O(ln(T)) (strongly convex) in the full information case,

while the constants are larger than those of Theorem 1.

5 Numerical Experiments

In this section, we evaluate the three proposed algorithms on a real-world online problem. A
prominent example is the diabetes prediction task, which aims to diagnose diabetes through several
risk factors. Consider the distributed online regularized logistic regression with the local loss function

f t
i (x) =

∑S

j=1
log
(
1 + exp

(
−bti,j

〈
ati,j , x

〉))
+

µ

2
∥x∥2 , (14)

where µ is the regularization parameter, and a batch data samples {(ai,j , bi,j)}Sj=1 are revealed to
agent i at time t. We adopt diabetes-binary-BRFSS2015 dataset with 70692 instances, 21 features,
and 2 labels from Kaggle.2 Here, ai,j ∈ Rd with d = 21, and bi,j ∈ {−1, 1}. We standardize the
data samples and distribute them evenly among N agents under the sorted setting, i.e., each agent
only gets data samples from one class. The connected communication network G(N,M) with N
nodes and M edges is generated randomly by tool NetworkX [42], and then we use the Metropolis
rule [43] to construct the connectivity matrix A to satisfy Assumption 1. We repeat each experiment
ten times and depict the mean curve.3 The parameters selection details are given in Appendix E.

Comparison experiment We run our algorithms DC-DOGD, DC-DOBD, DC-DO2BD, and make
comparisons with ECD-AMSGrad [20], for the convex case (µ = 0) and strongly convex case
(µ = 1). The compressor type, the compression ratio, and the communication network are kept the
same. Take the setting of compressor QSGD2 with ω = 0.3 over G(9, 18) as an example. We plot
the time averaged maximum regret SR(T) := maxj R(j,T)/T versus the time horizon T and versus

2The data set is from https://www.kaggle.com/code/encode0/diabetes-prediction-and-risk-factors-evaluation.
3All experiments are performed on a 64-bit Windows platform with the Intel(R) Core(TM) i7-6850K 3.6Ghz

CPU. The codes are provided in the supplementary materials.

8

the total number of transmitted bits in Fig. 1, where the best solution in the hindsight x∗ is obtained
by LogisticRegression optimizer from scikit-learn [44].

Fig. 1 shows that the time averaged regrets of DC-DOGD, DC-DOBD, and DC-DO2BD go to
zero as T goes to infinity, which is in agreement with the theoretical results that our algorithms are
no-regret. Among the three proposed algorithms, the one-bandit feedback has the worst performance,
while using two-bandit information can improve the performance and even reach that of the full
information feedback. ECD-AMSGrad gets deteriorated in the first few steps because the inverse of
the second raw moment estimation is large and this algorithm does not have a projection to restrict
variables. Then, ECD-AMSGrad declines fast, while its time-average regret can not reach zero.
Clearly, DC-DOGD and DC-DO2BD significantly outperform ECD-AMSGrad.

0 100 200 300 400 500 600 700 800
Time horizon

0

10

20

30

40

50

SR
(T

)

DC-DOGD
DC-DOBD
DC-DO2BD
ECD-AMSGrad

104 105 106

Transmitted bits

100

101

102

SR
(T

)
DC-DOGD
DC-DOBD
DC-DO2BD
ECD-AMSGrad

(a) Convex case

0 100 200 300 400 500 600 700 800
Time horizon

0

10

20

30

40

50

SR
(T

)

DC-DOGD
DC-DOBD
DC-DO2BD
ECD-AMSGrad

104 105 106

Transmitted bits

100

101

102

103

SR
(T

)

DC-DOGD
DC-DOBD
DC-DO2BD
ECD-AMSGrad

(b) Strongly convex case

Figure 1: Comparison of algorithms DC-DOGD, DC-DOBD, DC-DO2BD, and ECD-AMSGrad with
QSGD2, ω = 0.3, G(9, 18).

Impacts of compression ratio and compressor type Fixing the compressor type (Topk) and the
graph G(9, 18), we run DC-DOGD with different compression ratios (ω = 0.05, 0.1, 0.5) for strongly
convex losses.4 We consider DAOL [8] as the baseline, which is with exact communication and is
the special case of DC-DOGD with ω = 1. Fig. 2a shows that the greater the compression degree
is (less ω), the more iteration rounds are needed to reach a certain average regret, while the total
transmitted bits are actually the fewer. DC-DOGD with ω = 0.05 have approximately 8× reduction
on transmitted bits to reach a certain average regret compared with DAOL.

Then, we fix the compression ratio (ω = 0.3) and the graph G(9, 18), and run DC-DOGD with
different compressors (Topk, Randk, RGossipp, GSGDs) for strongly convex losses. Fig. 2b shows
that Randk and RGossipp have almost the same performance. It is expected, since Randk allows
each element of the vector to has the probability ω = k/d to be chosen to be transmitted, which
is equivalent to randomly transmitting the whole vector with the probability p = ω. Besides, Figs.
2b shows that Topk has better performance than Randk, which is in line with the intuition that
the largest k coordinates contain more useful information than arbitrary k coordinates. In addition,
quantization GSGDs performs better in reducing the total transmitted bits than sparsification under
the same compression ratio.

0 100 200 300 400 500 600 700 800
Time horizon

100

101

SR
(T

)

w=0.05
w=0.1
w=0.5
Exact comm.

104 105 106 107

Transmitted bits

100

101

SR
(T

)

w=0.05
w=0.1
w=0.5
Exact comm.

(a) Compression ratio

0 100 200 300 400 500 600 700 800
Time horizon

100

101

SR
(T

)

RGossip_p
Rand_k
Top_k
QSGD_s

104 105 106 107

Transmitted bits

100

101

SR
(T

)

RGossip_p
Rand_k
Top_k
QSGD_s

(b) Compressor type

Figure 2: The impacts of compression ratio and compressor type for DC-DOGD over G(9, 18) in the
strongly convex case.

4Since the trajectories in the convex case and strongly convex case share similar trends, here we only present
the experiment results in the strongly convex case, for space limitation.

9

Impacts of topology and node number The communication network topology affects the parame-
ters δ and β, which affect the choice of the stepsizes ηt and γ as well as the algorithm performance.
We take DC-DOGD in the strongly convex case as an example. Fixing the compressor (Top1) and
the compression ratio (ω = 0.05), we assess DC-DOGD over three basic topologies, namely ring,
G(N, 2N), and full connected. Fig. 3a shows that full connected topology exhibits the best regret
with respect to the time horizon, while G(N, 2N) performs slightly better in the sense of tranmitted
bits. A sparser topology with fewer edges uses fewer bits to transmit information in each iteration,
while more iteration rounds are needed for decision consensus. Thus, there will be a tradeoff case by
case.

Finally, we let the node number N vary from to 10 to 50, and run DC-DOGD, DC-DOBD, DC-
DO2BD with the same compressor Top2, the same compression ratio ω = 0.1, over the full
connected graph, for convex losses and strongly convex losses. We plot the node averaged regret
AR(T) := maxj R(j,T)/N versus the node number N in Fig. 3b.

0 100 200 300 400 500 600 700 800
Time horizon

100

101

SR
(T

)

Ring
G(N,2N)
Full

103 104 105 106

Transmitted bits

100

101

SR
(T

)

Ring
G(N,2N)
Full

(a) Different topologies

10 15 20 25 30 35 40 45 50
Node number

0

1

2

3

4

5

AR
(T

)

DC-DOGD
DC-DOBD
DC-DO2BD

10 15 20 25 30 35 40 45 50
Node number

0

1

2

3

4

5

AR
(T

)

DC-DOGD
DC-DOBD
DC-DO2BD

(b) Node number(left: convex, right: strongly convex)

Figure 3: The impacts of topology and node number.

6 Conclusions

In this paper, we considered DOCO with the full information feedback, one-point and two-points
bandit feedback. We designed provably no-regret distributed online algorithms that work with ω-
contracted compressors. The obtained regret bounds for both convex and strongly convex losses
matched those of uncompressed algorithms in the literature. We further assessed the influence of
the compressor type and the compression ratio ω on the regrets, and showed that ω can be used to
balance the iteration rounds and the transmitted bits according to the bandwidth.

A limitation of this work is that the obtained regret bounds show high order inverse dependence
on the compression ratio, which are pretty conservative and may be further improved. Besides, the
impact of topology sparsity is worth further investigation. We believe this paper is an important step
in this direction. Future research includes extensions from fixed graphs to time-varying graphs and
combinations with other compression schemes such as extrapolation compression.

Acknowledgments and Disclosure of Funding

This work is supported in part by Shanghai Municipal Science and Technology Major Project
under Grant 2021SHZDZX0100 and the National Natural Science Foundation of China under Grant
62173250, and in part by Australian Research Council under Grant DP190103615 and LP210200473.

References
[1] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimization,

2(3-4):157–325, 2016.

[2] David Sculley and Gabriel M Wachman. Relaxed online svms for spam filtering. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 415–422, 2007.

[3] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 689–696,
2009.

10

[4] Deming Yuan, Alexandre Proutiere, and Guodong Shi. Distributed online linear regressions. IEEE
Transactions on Information Theory, 67(1):616–639, 2020.

[5] Wenpeng Zhang, Peilin Zhao, Wenwu Zhu, Steven CH Hoi, and Tong Zhang. Projection-free distributed
online learning in networks. In International Conference on Machine Learning, pages 4054–4062. PMLR,
2017.

[6] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference
on Machine Learning, number CONF. Omnipress, 2010.

[7] Xiuxian Li, Lihua Xie, and Na Li. A survey of decentralized online learning. arXiv preprint
arXiv:2205.00473, 2022.

[8] Feng Yan, Shreyas Sundaram, SVN Vishwanathan, and Yuan Qi. Distributed autonomous online learn-
ing: Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge and Data
Engineering, 25(11):2483–2493, 2012.

[9] Deming Yuan, Daniel WC Ho, Yiguang Hong, and Guoping Jiang. Online bandit convex optimization over
a network. In 35th Chinese Control Conference, pages 8090–8095. IEEE, 2016.

[10] Jueyou Li, Chaojie Li, Wenwu Yu, Xiaomei Zhu, and Xinghuo Yu. Distributed online bandit learning in
dynamic environments over unbalanced digraphs. IEEE Transactions on Network Science and Engineering,
8(4):3034–3047, 2021.

[11] Jinlong Lei, Peng Yi, Yiguang Hong, Jie Chen, and Guodong Shi. Online convex optimization over
Erdős-Rényi random networks. Advances in Neural Information Processing Systems, 33:15591–15601,
2020.

[12] Dan Alistarh. A brief tutorial on distributed and concurrent machine learning. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, pages 487–488, 2018.

[13] Tuncer Can Aysal, Mark J Coates, and Michael G Rabbat. Distributed average consensus with dithered
quantization. IEEE Transactions on Signal Processing, 56(10):4905–4918, 2008.

[14] Ruggero Carli, Fabio Fagnani, Paolo Frasca, Tom Taylor, and Sandro Zampieri. Average consensus on
networks with transmission noise or quantization. In 2007 European Control Conference, pages 1852–1857.
IEEE, 2007.

[15] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for
decentralized training. Advances in Neural Information Processing Systems, 31, 2018.

[16] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip
algorithms with compressed communication. In International Conference on Machine Learning, pages
3478–3487. PMLR, 2019.

[17] Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Sparq-sgd: Event-triggered and com-
pressed communication in decentralized optimization. IEEE Transactions on Automatic Control, 2022.

[18] Yiwei Liao, Zhuorui Li, Kun Huang, and Shi Pu. Compressed gradient tracking methods for decentralized
optimization with linear convergence. arXiv preprint arXiv:2103.13748, 2021.

[19] Jiaqi Zhang, Keyou You, and Lihua Xie. Innovation compression for communication-efficient distributed
optimization with linear convergence. arXiv preprint arXiv:2105.06697, 2021.

[20] Guangxia Li, Jia Liu, Xiao Lu, Peilin Zhao, Yulong Shen, and Dusit Niyato. Decentralized online
learning with compressed communication for near-sensor data analytics. IEEE Communications Letters,
25(9):2958–2962, 2021.

[21] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceed-
ings of the 20th International Conference on Machine Learning, pages 928–936, 2003.

[22] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2):169–192, 2007.

[23] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In Proceedings of the 23rd Annual Conference on Learning Theory, pages
28–40. Citeseer, 2010.

11

[24] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the
International Speech Communication Association. Citeseer, 2014.

[25] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine Learning,
pages 560–569. PMLR, 2018.

[26] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in Neural Information Processing Systems,
30, 2017.

[27] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
440–445, 2017.

[28] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances in
Neural Information Processing Systems, 31, 2018.

[29] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini,
and Panos Kalnis. On the discrepancy between the theoretical analysis and practical implementations
of compressed communication for distributed deep learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3817–3824, 2020.

[30] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating distributed machine learning
with data sketches. In Proceedings of the 2018 International Conference on Management of Data, pages
1269–1284, 2018.

[31] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3lc: Lightweight and effective traffic
compression for distributed machine learning. Proceedings of Machine Learning and Systems, 1:53–64,
2019.

[32] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd with
quantization, sparsification and local computations. Advances in Neural Information Processing Systems,
32, 2019.

[33] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
signsgd and other gradient compression schemes. In International Conference on Machine Learning, pages
3252–3261. PMLR, 2019.

[34] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and
practically faster error feedback. Advances in Neural Information Processing Systems, 34, 2021.

[35] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq:
A communication-efficient federated learning method with periodic averaging and quantization. In
International Conference on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.

[36] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

[37] Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from adam
to sgd. arXiv preprint arXiv:1712.07628, 2017.

[38] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60, 1960.

[39] Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48–61, 2009.

[40] Elad Hazan, Alexander Rakhlin, and Peter Bartlett. Adaptive online gradient descent. Advances in Neural
Information Processing Systems, 20, 2007.

[41] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in
the bandit setting: gradient descent without a gradient. In Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 385–394, 2005.

[42] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States),
2008.

12

[43] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters,
53(1):65–78, 2004.

[44] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of Machine Learning Research, 12:2825–2830, 2011.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6 Conclusions.
(c) Did you discuss any potential negative societal impacts of your work? [No] This

work is a theoretical finding to solve the communication bottleneck of the distributed
algorithms. Therefore, this work does not present foreseeable societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-

tions 1, 2, 3, 4, 5, 6, and 7.
(b) Did you include complete proofs of all theoretical results? [Yes] We present the proof

ideas in the paper and put the complete proofs in supplemental materials due to space
limitation.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Codes link is in
the supplemental material. Data are from Kaggle with URL. Instructions are included
in Section 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and Appendix E

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We repeat each experiment ten times and only depict the
mean curves to make the figures easier to read. Actually, our experiment results with
different random seeds are similar.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5 footnote 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the tools

NetworkX and scikit-learn with citation. We use the open dateset from Kaggle with
URL.

(b) Did you mention the license of the assets? [Yes] See Appendix F
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Full Information Feedback
	Algorithm design
	Regret bounds

	One-point Bandit Feedback
	Two-point Bandit Feedback
	Numerical Experiments
	Conclusions
	Basic Inequalities
	Proofs of Section 2
	Proofs of Section 3
	Proofs of Section 4
	Parameters selection details
	Additional experiments

