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A1 Related work

A1.1 Safe Reinforcement Learning Using Curriculum Induction

Here we review the work from [48]. Consider the Safe RL problem M = ⟨S,A,P, r,D⟩ with the
following objective:

max
π

Eρπ

T∑
t=0

r(st,at, st+1)

s.t. Eρπ

T∑
t=0

I(st ∈ D) ≤ κ

where ρπ is the distribution of trajectories induced by π, I is the indicator function and D is the
unsafe set. Note that this safe RL problem is less general than the standard formulation of safe RL.

The authors introduce a teacher-student hierarchy. The student tries to learn a safe policy, while
the teacher is guiding the student through interventions I. The interventions I are represented by
pairs ⟨Di, Ti⟩ that modify the safe RL problem into a student’s problem Mi = ⟨S,A,Pi, ri,D,Di⟩,
where we make the following modifications to the safe RL problem. The state transitions are modified
as Pi(s

′|s,a) = P(s′|s,a) for all s ̸∈ Di and Pi(s
′|s,a) = Ti(s′|s) for all s ∈ Di. This means

that the teacher changes the probability transition for the student if they enter the set Di. The reward
is modified as well: ri(s,a, s′) = r(s,a, s′) if s ̸∈ Di and ri(s,a, s

′) = 0 if s ∈ Di. Therefore,
the student does not get any reward in the unsafe set. The student incorporates the interventions into
their objective as follows:

max
π

Eρπ
i

T∑
t=0

ri(st,at, st+1),

s.t. Eρπ
i

T∑
t=0

I(st ∈ D) ≤ κi,

Eρπ
i

T∑
t=0

I(st ∈ Di) ≤ τi,

where κi and τi are intervention-specific tolerances set by the teacher.

To learn the teacher’s policy the following constraints are followed:
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• The unsafe set is contained in the intervention set D ⊆ Di

• If κi + τi ≤ κ, then the set of feasible policies of the student is a subset of the set of feasible
policies of the safe RL problem ΠMi ∈ ΠM.

The teacher learns when to intervene and to switch between different interventions. The teacher is
modeled by a POMDP ⟨ST ,AT ,PT ,RT ,OT ⟩, where the state-space is the set of all student policies
ST = ΠM (not only feasible ones), the action space is the space of all interventions AT = I , i.e., the
teacher chooses the index i for the student problem, the state transitions PT : ΠM×I×ΠM → [0, 1]
is governed by the student’s algorithms, the observation space OT = Φ is the space of evaluation
statistics of student policies π. Finally the reward function is defined through the policy improvement
RT (n) = V̂ (πn,i) − V̂ (πn−1,i), where the index i denotes the student. The total reward for an

episode is V̂ (πNs,i) =
Ns∑
n=1

RT (n). Now the policy is transferred from the trial n− 1 to the next n.

Note also the student index i can be understood as an episode of learning teacher’s policy in this case.

The major difference of our work is its online nature, while [48] pre-train teacher’s policies deciding
the curriculum, we do not pre-train our safety budget schedules dk explicitly, but use rules-of-thumb
to determine the parameters of our online learning procedures. Our approach is preferable when a
new task needs to be learned with minimal prior information about it, while the method from [48] is
preferable when the policy of choosing the constraints can be transferred from another task. We also
note that we do not reset our environment, but let it train further if the constraints are violated. Hence
our approach can further be improved by adding reset policies similarly to [48] and [21].

A1.2 RL with probability one constraints

We have introduced the safety state to the environment as follows:

st+1 ∼ P (· | st,at)

zt+1 = (zt − l(st,at))/γl

This means we have

γlzt+1 − zt = −l(st,at)

and

γt+1
l zt+1 − γtzt = −γt

l l(st,at),

γt
l zt − γt−1zt−1 = −γt−1

l l(st−1,at−1),

...

γ1
l z1 − z0 = −l(s0,a0),

z0 = d.

Now we can sum up the left and the right-hand sides and obtain:

γt+1
l zt+1 = d−

t∑
k=0

γk
l l (sk,ak) .

This means that the constraint can now be rewritten as g(zT ) ≥ 0 resulting in the following optimiza-
tion problem:

max
π(·)

E
T−1∑
t=0

γt
rr(st,at, st+1),

g(zT ) ≥ 0.

(A1)

If we consider the problem with probability one constraints then as a constraint we get zT ≥ 0 almost
surely (or equivalently with probability one). It was noted that zT ≥ 0 almost surely is equivalent to
zt ≥ 0 for all t ≥ 0. Now the reward is reshaped to get:
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r̂(st, sz,at, st+1, zt+1) =

{
r(st,at, st+1) if zt ≥ 0,

−∆ if zt < 0.
(A2)

This problem can be solved using off-the-shelf RL algorithms for any finite ∆. Finally, it was noted
in [43] that with ∆ → +∞, the problem converges to safe RL with probability one constraints.

The main difference to [43] is that we investigate the effect of the safety state on safety during training
for both probability one constrained RL and average constrained RL.

A2 Additional algorithm details

A2.1 PI-Simmer

Clip

LPF

Figure A1: Block-diagram of our PI controller. The arrow signifies the direction of the signal,
the triangles mean multiplication with a constant, and the rest of the block means the following
operations: “LPF” stands for the low-pass filter (or the Polyak’s update), “Clip” stands for clipping
the values to a pre-defined minimum and maximum values, Σ stands for a sum of signals and

∫
stands for the integral of the signal over time. Main components of our controller: proportional gain
K, integral gain Ki for the integrator (marked as

∫
) anti-windup gain Kaw.

First, we discuss our design for the PI controller and discuss the necessary parts for it. Our main
source for this discussion are the control engineering textbooks [7, 6]. The idea for the PI controller
is quite intuitive: it takes the error term dtest − c and uses it for action computation. P stands for
the proportional control and multiplies the error term by the gain K proportionally linking the error
terms with actions. The proportional part delivers brute force control by having a large control
magnitude for large errors, but it is not effective if the instantaneous error values become small.
Proportional control cannot achieve zero error tracking, which is achieved by integral control and
summing previous error terms. If the action values are clipped, however, integral control can lead
to the unwanted phenomenon called wind-up and catastrophic effects [6]. This is specifically the
case when the errors become large leading to large values of the integral, which in turn leads to
saturated actions (actions take the clipped values) for a long time. There are several ways of dealing
with wind-up, e.g., resetting the integral, and limiting the integration time, but we will take the
feedback control approach where the previous saturation errors are fed back and used to determine the
current action [6, 1]. Finally, we use a low pass filter for the error to avoid reacting to high-frequency
fluctuations and acting only on the trends. The reader familiar with optimization algorithms may
recognize the loss pass filter as the Polyak update.
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Algorithm A1: PI SIMMER (Full version)

Inputs: {drefk }N−1
k=0 - safety budget schedule, hyper-parameters - τ , Kp, Ki, Kaw, δd.

Set d0 = dref0 ;
for k = 0, . . . , N − 1 do

Perform one epoch of learning for the safe policy with dk and get the statistic ĝ (zT (dk));
Compute and smooth the error term by ek = drefk − ĝ (zT (dk)), wk = (1− τ)wk−1 + τek;

Compute action: uraw
k = Kpwk︸ ︷︷ ︸

P-Part

+Ki

k∑
i=k−Ti

wi︸ ︷︷ ︸
I-Part

+Kaw(uk−1 − uraw
k−1)︸ ︷︷ ︸

Anti-windup

;

Set dk+1 = clip(uraw
k ,−δd, δd) + dk;

end

We propose the following update for the safety budget:

Error term Low-pass filter P-part

ek = dtestk − ĝ
(
zT (d

test
k )

)
, wk = (1− τ)wk−1 + τek, P = Kpek,

I-part Anti-windup Raw signal

I = Ki

k∑
i=k−Ti

ei, AW = Kaw(uk−1 − uraw
k−1), uraw

k = P + I +AW,

Clipping New safety budget

uk = clip(uraw
k ,−δd, δd) dtestk+1 = dtestk + uk,

(A3)

where ek is the current constraint violation, wk is the filtered error term ek, P , I , AW are the
proportional, integral and anti-windup parts of the controller. The gains Kp, Ki, Kaw, as well as Ti,
δd and τ are hyper-parameters.

A2.2 Q Simmer

We're very safe! 
We can risk it!

We're not safe! 
No risk! 

We're borderline safe... 
Can we risk? 

Figure A2: Intuition for Q simmer reward shaping: first the costs c are passed through a low-pass
filter getting ĉ.

Our design for the Q learning approach is guided by the intuition depicted in Figure A2 and presented
in what follows. If the current accumulated costs are well below the safety budget dref , then we
are very safe and the safety budget can be further increased. If the accumulated costs are around
the safety budget, then we could stay at the same level or increase the safety budget. If the current
accumulated costs are well above the safety budget dref , then the safety budget should be decreased
to ensure that the policy is incentivized to be safer.

a4



Consider an MDP with the states {d0, . . . , dK−1}, for simplicity of notation we consider the state
space {0, . . . ,K − 1} with the actions {a−1,a0,a+1}, where the action a+1 moves the state s = i
to the state s = i+ 1, a−1 moves the state s = i to the state s = i− 1 and the action a0 does not
transfer the state. Note that the action a+1 is defined for all i < K − 1 and the action a−1 is defined
for all i > 0. The reward for this MDP is non-stationary and defined as follows:

We are not safe We are borderline safe We are very safe (A4)
if s− o ≤ −δ : if |s− o| ≤ δ : if s− o ≥ δ : (A5)

r =


2 a = −1,

−1 a = 0,

−1 a = 1,

r =


−1 a = −1,

1 a = 0,

1 a = 1,

r =


−1 a = −1,

1 a = 0,

2 a = 1.

(A6)

where o is the maximum accumulated cost (over an episode) of the constrained algorithm. We use a
Q-learning update to learn the Q function:

Q(st,at) = (1− lr)Q(st,at) + lr(rt +max
b

Q(st+1, b)) (A7)

and get the action with ε-greedy exploration strategy:

at =

{
argmaxb Q(st, b) with probability ε,

random with probability 1− ε.
(A8)

A3 Implementation details

Pendulum Swing-up. Our first environment is a safe pendulum swing-up defined in [16] and built
upon the Open AI Gym environment [11]. The reward is defined as

r(s,a) = 1− θ2 + 0.1θ̇2 + 0.001a2

π2 + 6.404
,

while the safety cost

l =

1− |θ − δ|
50

if − 25 ≤ θ ≤ 75,

0 otherwise,

where θ is the deviation of the pole angle from the upright position. Effectively, we want to force the
pendulum to swing up from one side. See Figure A3a.

Safety Gym. We use several safety gym environments [37]. We use the benchmark environments
PointGoal1, PointButton1, PointPush1, CarGoal1, CarPush1 (see Figures A3c-A3h), but we also
use a custom-made one from [51] (the environment is schematically depicted in Figure A3b.). In
the custom-made environment called static point goal, a large static hazard region is placed in front
of the goal. This is similar to our motivational example in Figure 1. This environment confirms our
intuition. We use two robots, the point robot has 46 states and 2 actions, while the car robot has 56
states and 2 actions.

Code base and hyper-parameters. Our code is based on two repositories: safety starter agents [37],
and PID Lagrangian [44]. We have implemented the safety state augmentation following the descrip-
tion in [43]. We use default parameters for both code bases unless stated otherwise. We performed a
parameter search where we set the batch size for all the environments to 512. We then tried a few
runs with Ki ∈ [0.001, 0.005, 0.01, 0.05] and determined that Ki = 0.05 generally performs better
for the goal and button tasks, while Ki = 0.01 appears to perform well for the push tasks. We then
tested Kp ∈ [0.01, 0.05, 0.1, 0.5, 1, 5] and our best results are presented in Table A1. The simmering
schedule changes the safety budget every 200 epochs, where the length of the epoch depends on the
batch size and is presented in Table A1.

A4 Further Experiments

A4.1 Safety Gym

We present numerical results for the car and the point robot experiments in Table A2.
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(a) Safe pendulum swing-up. (b) Custom Safety gym

(c) Point Goal (d) Point Button (e) Point Push

(f) Car Goal (g) Car Button (h) Car Push

Figure A3: Panel a: safe pendulum environment from [16]. θ - is the angle from the upright position,
a is the action, and the angle δ defines the unsafe region position where the safety cost is the angle
difference to δ and is incurred only in the red area. Panel b: a depiction of the custom safety gym
environment from [51]: robot needs to reach the goal while avoiding the unsafe region. Panels c-h:
Safety Gym Goal, Button, and Push tasks for robots Point and Car.
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Table A1: Hyper-parameters for safety gym environments
Parameter Static PointGoal PointGoal1 PointButton1 PointPush1 CarGoal1 CarButton1 CarPush1

Batch Size 128 512 512 512 512 512 512
Kp (Vanilla) 0.1 1 5 0.5 0.05 1 0.1
Kp (Simmer) 0.1 5 5 0.5 0.1 1 1
Ki 0.01 0.05 0.05 0.01 0.05 0.05 0.01
γc 0.99 0.995 0.995 0.995 0.995 0.995 0.995
Steps per epoch 13312 53248 53248 53248 53248 53248 53248

Table A2: Numerical values of the results at the end of training. We compute the statistics over the
last 15 epochs and present the mean ± standard deviation. We observe that the cost rates for Simmer
are significantly smaller than the cost rates for PID Lagrangian

Simmer PID Lagrangian PID - Lagrangian
Environment Return Cost Cost rate (·1e2) Return Cost Cost rate (·1e2)

PointGoal1-v0 25.24± 0.81 24.64± 2.72 1.77± 0.01 26.23± 0.22 25.55± 3.62 2.51± 0.00
PointButton1-v0 10.36± 0.93 24.37± 2.81 1.83± 0.01 10.50± 1.10 23.98± 3.73 2.56± 0.01
PointPush1-v0 10.27± 3.45 25.93± 3.58 1.77± 0.06 10.50± 4.41 23.55± 4.59 2.28± 0.26
CarGoal1-v0 23.97± 2.43 25.31± 2.67 1.78± 0.02 27.46± 2.35 22.68± 3.77 2.55± 0.01
CarButton1-v0 1.93± 0.64 25.95± 5.39 1.81± 0.01 1.09± 0.83 24.98± 6.53 2.55± 0.01
CarPush1-v0 8.01± 0.64 17.60± 5.48 1.44± 0.05 6.74± 1.11 19.41± 6.10 2.01± 0.19

A4.2 Ablation for PI Simmer

First, we conduct the ablation study over the parameter of the low pass filter τ in Figure A4a, while
we set K = 0.1, Ki = 0.005, Kaw = 0.01. We notice that smaller values of τ deliver small
deviations from the schedule, while larger values have more freedom to decide on an appropriate
schedule. However, it is noticeable that the runs with small τ (0.001 and 0.005) are constantly
acquiring constraint violations, which happens less often for large values of τ (1 and 0.995). We
believe this is because the controller with smaller values of τ ignores (filters out) spurious constraint
violations, but with larger values of τ this is not happening. At the same time, PI Simmer with large τ
changes the safety budget quite aggressively in the early stages due to constant constraint violations,
which can be avoided if a small τ is chosen. Ultimately the choice of τ is up to the user, but we
would recommend starting with large values.

We observed that it is probably most prudent to choose a small value for K as our deviations
from schedule dtestk are bounded and there is no need for drastic changes in the safety budget that
proportional control can achieve. Indeed, we set Kaw = 0.1, Ki = 0.005, τ = 0.995 and change the
parameter K and the results in Figure A4c supports our claims.

We now turn our attention to the gain Ki of the integral control, while we set K = 0.1, Kaw = 0.01,
τ = 1. We stress that the choice of the gains Ki, Kaw is somewhat interconnected, i.e., with
increasing Ki the gain Kaw should increase as well to counteract saturation. However, it appears
the choice of Ki can have a more significant effect on performance. Figure A4b suggests that large
values of Ki lead to aggressive changes in the safety budget and, more importantly, later lead to
saturation in control limiting the ability of PI Simmer to react to violations. Smaller values of Ki

allow for a balanced approach.

Finally, ablation over Kaw in Figure A4d with K = 0.1, Ki = 0.04, τ = 1.0 shows that while
large values of Kaw decrease the risk of saturation they also diminish the efficacy of integral control.
On the other hand, with zero anti-windup gain, the actions are always saturated leading to more
constraint violations without any reaction from the controller. Therefore, again a balanced approach
is preferable.

A4.3 Ablation for Q Simmer

We perform ablation on the following parameters the learning rate lr, the Polayk’s update τ , and
the reward threshold rthr. Figure A5a suggest that large learning rates preferable. This is perhaps
due to the ability to fast learning, but also fast forgetting may be important since the process is
non-stationary. Ablation with respect to τ is performed in Figure A5b suggesting that higher values
of τ are preferable, but τ = 1 forces the algorithm to oscillate between two adjacent values too often.
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(a) Ablation over the gain for the low-pass filter τ .
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(b) Ablation over the gain for the integral control Ki.
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(c) Ablation over the gain for the proportional control K.
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(d) Ablation over the gain for the anti-windup control Kaw.

Figure A4: Ablation for PI Simmer

Similarly the value for rthr needs to be chosen so that oscillations between adjacent safety budget
does not occur as Figure A5c suggests.
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(a) Ablation over the learning rate lr .
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(b) Ablation over the Polyak update τ .

0 200 400 600 800
epoch

10

20

30

40

50

 

Number of violations

0 200 400 600 800
epoch

20

25

30

35

Safety budget schedule

rthr=0.1
rthr=1
rthr=5

(c) Ablation over the threshold δ for the safety decision.

Figure A5: Ablation for Q Simmer

A5 Illustrations

Parts of the illustrations in Figure 1 are designed by gstudioimagen, macrovector official, Flaticon, and
downloaded from http://www.freepik.com. The illustrations in Figures 2 and A3 are from [43,
37].
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