
Robustness Analysis of Video-Language Models
Against Visual and Language Perturbations

(Supplementary)
https://bit.ly/3CNOly4

Madeline C. Schiappa
University of Central Florida

madelineschiappa@knights.ucf.edu

Shruti Vyas
University of Central Florida
shruti@crcv.ucf.edu

Hamid Palangi
Microsoft Research

hpalangi@microsoft.com

Yogesh S. Rawat∗
University of Central Florida
yogesh@crcv.ucf.edu

Vibhav Vineet∗
Microsoft Research

vivineet@microsoft.com

Contents

1 Implementation Details 2

1.1 Visual Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Text Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Analysis of Perturbed Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Model Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Limitations 7

3 Licensing 7

4 Impact 8

5 Additional Results 8

5.1 Analysing Feature Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Breakdown of Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3 Absolute Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Perturb Modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.5 MRSVTT QA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.6 Natural vs. Machine vs. Artificial Text Perturbations . . . . . . . . . . . . . . . . 12

∗The authors contributed equally as supervisors to this paper.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://bit.ly/3CNOly4


1 Implementation Details

1.1 Visual Perturbations

Below are more details on the perturbations applied to videos. Examples of these perturbations can
also be found at https://bit.ly/3CNOly4.

Noise These perturbations apply transformations at the pixel level of each frame in a video. The
different noises are Impulse, Gaussian, Shot, and Speckle. Impulse noise simulates corruptions cause
by bit errors by applying a combination of salt and pepper noise with amounts ranging from .03,
.06, .09, 0.17, 0.27. Gaussian noise simulates low-lighting conditions by first normalizing the pixel
values then adds a random normal noise scaled at values .08, .12, 0.18, 0.26, 0.38 based on severity.
Shot noise simulates electronic noise caused by the discrete nature of light by applying a combination
of salt and pepper noise with amounts ranging from .03, .06, .09, 0.17, 0.27. Speckle noise simulates
additive noise and is similar to Gaussian but where the random value is then multiplied by the
normalized pixel value.

Blur Blur perturbations apply transformations that simulate camera motion and focus. Motion blur
increases the radius and sigma of the kernel which is used to create the motion blurring effect ranging
from (10, 3), (15, 5), (15, 8), (15, 12), and (20, 15) based on severity. Zoom blur blurs towards
the center of the frame while increasing the zoom factor based on severity. Defocus blur imitates a
defocused lens over the entire frame. We increase the radius of the disk which is convolved over
the image to create defocus blurring effect ranging from (3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5)
based on severity.

Digital JPEG compression converts each frame to a JPEG with quality ranging from 25, 18, 15,
10, 7 based on severity. MPEG1 compresses the original video to using the ffmpeg [18] format
mpeg2video with levels ranging from 20, 40, 60, 80, 100. MPEG2 compresses the original video
to using the ffmpeg format mpeg4 with levels ranging from 15, 30, 45, 60, 75. This compression
tends to actually affect the playing of the video, where frames are missing and/or skipped. These
slight frame changes allows these perturbations to be considered temporal as well. This can be seen
in an example in Figure 2 under Digital where the frame does not perfectly align with the frames for
the other perturbations because it is slightly off temporally. We can consider these perturbations as
spatio-temporal as they alter both spacial features and temporal features.

Temporal Jumbling splits a video into segments of lengths 32, 16, 8, 4, and 2 where the higher is
less severe and lower is more severe. The frames within each segment are then randomly shuffled.
Box Jumbling splits a video into segments of lengths 4, 9, 16, 25, 36 where the higher is more severe
and lower is less severe. The segments are then randomly shuffled. Sampling transforms a video
from the original method’s frames per second (FPS) to keep consistency with the original approach.
However, it slows the playback speed by sampling frames uniformly at a varying level of rates 2,
4, 8, 16, and 32, where the higher is more severe. Reverse Sampling is the same as sampling but
also reverses the video after sampling. Freeze This perturbation will choose a percentage of frames
to select, ranging from 40%, 20%, 10%, 5% and 2.5%. The more frames selected, the less severe
the perturbation. These selected frames are then repeated until they reach the next sequential frame,
simulating a frozen live stream video.

Camera These perturbations simulate irregularities with camera motion and include Static rotation,
Rotation and Translation. Static rotate rotates every frame the same degree, Rotation rotates each
frame by a random degree, and Translation randomly chooses a new center in the frame to crop to for
each frame as if the camera is randomly shaking.

1.2 Text Perturbations

In Table 1 there are examples for each perturbation when the input text is “a little girl does gynmanstics”
from the MSRVTT dataset. This section discusses the implementation of each in more detail.

ChangeChar Perturbations, natural and machine-based, that alter a character in one or several
of the words in the text. For natural-based perturbations, this includes SpellingError, Keyboard,
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Figure 1: The summary of how this paper organizes both visual and text perturbations used to evaluate
on the text-to-retrieval task for multimodal models. On the visual side, each perturbation also ranges
from a severity of 1 to 5.

and Typos [19]. These are based on common spelling errors, keyboard mistypes, and general typos.
Typos for example randomly inserts, deletes, swaps or replaces a single letter within one word while
keyboard alters text by common keyboard mistakes such as “word → to work”. Machine-based
perturbations include OCR, SwapPrefix and Punctuation [19]. SwapPrefix for example will swap
the prefix of one word while keeping its part-of-speech tag. Punctuation appends and/or prepends
random punctuation to the sentence and OCR uses random values to stimulate an OCR, or optical
character recognition, error.

SwapText It is machine-based perturbations that swap word(s) from the original text. Several
perturbations that make word swaps based on text models include BackTrans which replaces text
with phrases by using back-translation [19]. SwapSynWordNet and SwapSynWordEmbedding both
swap a words with their synonyms as determined by either WordNet [7] or by Glove [14]. MLM
suggestion swaps one syntactic category element of the sentence with what would be predicted by
masked language models (MLM) [19]. MultiPosSwapJJ and MultiPosSwapNN replaces adjectives
and nouns respectively with words holding multiple parts-of-speech (POS).

AddText Perturbations [19] that are natural-based and add text to the original. AppendIrr appends
irrelevant phrases to the original text while InsertAdv adds an adverb before each verb.

TextStyle Perturbations that are natural-based and change the style of the text. These include Tense,
Passive, Casual, Formal, and ReverseNeg [5]. The perturbations Passive, Casual, and Formal change
the text style to those specific styles. Tense changes the tense of the text and ReverseNeg reverse
negates the original text.

Bias Perturbations that are natural-based that change the gender of a given phrase. These vary in
AllFemale, AllMale, GenderSwap, and Neutral. The netural perturbation removes female and male
references and replaces them with neutral ones. For example, a reference to ”a man” and ”a woman”
would be replaced with ”a person”. GenderSwap swaps male references with female and vice versa
using [16].

DropText Perturbations are synthetic and drop words based on their part-of-speech (POS) tag.
DropNN, DropVB, and DropVBNN are different variations of dropping words based on whether the
POS tags are Noun and/or Verb. OnlyNN, OnlyVB, and OnlyNNVB drops all words but those with
POS NN and/or VB. RandNN and RandVB drop one random noun/verb. This is done using the NLTK
[3] package to first extract POS tags for each word. Using these POS tags, based on the respective
perturbation, words are “dropped” by replacing them with “[UNK]” in order to maintain the original
phrase length.
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Figure 2: Visualizations of each perturbation for a single frame in a video from the YouCook2 dataset.
Severity increases from left to right for each perturbation.

Positional These include DropFirst, DropLast, DropFirstandLast, and ShuffleOrder. Drop-related
perturbations will replace a word at that position with an “[UNK]” tag. The ShuffleOrder perturbation
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Figure 3: A visualization of the temporal perturbations for a video showing “a little girl does
gymnastics”.

Figure 4: The perplexity scores for the different text perturbations using GPT-3. The bars represent
the average perplexity for the entire corpus, the dashed lines represent the perplexity when removing
outliers based on a threshold of a 500, and the numbers atop the bars are the percent of outliers that
are removed when using the threshold.

shuffles the words in a phrase randomly. More details on the generated text perturbation are provided
in the Appendix.

1.3 Analysis of Perturbed Text

To understand the severity of each perturbation we evaluate the perturbed text that is generated using
multiple metrics including perplexity, BLEU, METEOR and ROUGE.

Perplexity of Perturbations We first look at the perplexity measurement which measures the
probability of a sentence using the large text model GPT-3 [4]. For each word in the sentence, the
probability of the next word being present is measured and if the probability of the next word is low,
then the perplexity for that sentence will be higher. Perplexity is not necessarily a good measurement
for quality, but it is useful for measuring how statistical models may struggle with text. We first
observe further support on how different the two datasets are on the text side where the perplexity of
MSRVTT is 762.97 and for YouCook2 480.84.
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Table 1: Examples of all text perturbations in each category fot the text “a little girl does gymnastics”
from the MSRVTT dataset.

Type Perturbation Perturbed

AddText AddAdv a little girl specifically does gymnastics
AppendIrr On this occasion, a little girl does gymnastics

Bias

AllFemale a little girl does gymnastics
AllMale a little boy does gymnastics
GenderNeutral a little child does gymnastics
GenderSwap a little boy does gymnastics

ChangeChar

Keyboard a little girl dofs gymnastics
OCR a little girl does gymnastic8
PrefixSwap a little girl does gymnastics
Punct " a little girl does gymnastics, "
SpellErr a lettil girl does gymnastics
Typos a little girl des gymnastics

DropText

NN&VBOnly [UNK] [UNK] girl does gymnastics
NNOnly [UNK] [UNK] girl [UNK] gymnastics
NoNN&VB a little [UNK] [UNK] [UNK]
NoVB a little girl [UNK] gymnastics
RandNN a little girl does [UNK]
RandVB a little girl [UNK] gymnastics
VBOnly [UNK] [UNK] [UNK] does [UNK]
NoNN a little [UNK] does [UNK]

Positional

DropFirst [UNK] little girl does gymnastics
DropFirstLast [UNK] little girl does [UNK]
DropLast a little girl does [UNK]
ShuffleOrder a girl gymnastics does little

SwapText

BackTrans a little girl gymnastics
JJSwap a anodyne girl does gymnastics
MLM a teenage girl does gymnastics
NNSwap a little output does gymnastics
SynWordEmbd a good girl does gymnastics
SynWordNet a little girl manage gymnastics

TextStyle

Casual A little girl that does gymnastics
Formal A young woman does gymnastics.
Neg a little girl does not gymnastics
Passive gymnastics is done by a little girl
Tense a little girl did gymnastics

The results of this analysis is shown in Figure 4 where machine-based perturbations are the bottom
row and natural-based perturbations are the top. Between natural and machine-based there are no
obvious differences in perplexity overall, both appear to have challenging distribution shifts according
to the perplexity of GPT-3. Changing characters in words appear to result in higher perplexity
consistently across the different variations of ChangeChar perturbations. PrefixSwap and NNSwap
are additionally high in perplexity on the machine-based side. These results would indicate the
statistical models should struggle most with character changes and word swaps or drops based on
POS-tags. The most perplex version of text is when words are shuffled in ShuffleOrder, as the words
positions to each other are no longer meaningful. In summary, machine-learning based approaches
are likely to struggle most with character swapping perturbations and shuffling of words.

Comparison Metrics to Original Text We also compare the perturbed text to the original text
using the traditional metrics, BLEU [13], METEOR and Rouge. The results for these are averaged
across the different perturbations for each type for both the MSRVTT and YouCook2 datasets in Table
2. Perturbations that DropText are most dissimilar to the original text for both datasets. Depending on
the dataset, AddText, TextStyle and ChangeChar are similarly dissimilar to the original text, meaning

6



Table 2: Distribution Shift evaluation on MSRVTT and YouCook2 captions respectively.
MSRVTT AddText Bias ChangeChar DropText Positional SwapText TextStyle

BLEU4 0.57 0.88 0.60 0.29 0.64 0.68 0.56
Meteor 0.76 0.94 0.79 0.53 0.78 0.87 0.80
ROUGE-l F1 0.16 0.22 0.22 0.17 0.21 0.21 0.21

YouCook2 AddText Bias ChangeChar DropText Positional SwapText TextStyle

BLEU4 0.64 —– 0.58 0.34 0.62 0.66 0.65
Meteor 0.76 —– 0.78 0.52 0.76 0.85 0.81
ROUGE-l F1 0.17 —– 0.23 0.17 0.22 0.22 0.22

models should be robust but show some level of performance reduction. The most similar is Bias,
meaning models should be highly robust to Bias.

In summary, these scores indicate that we have a varying level of difficulty with our text perturbations
across categories, allowing for variable securities of distribution shift. The most challenging is
DropText and the least challenging is Bias.

1.4 Model Implementations

To process data, train and evaluate models, we used our internal cluster with single-GPU use per run.
All models except the MIL NCE [11] and FIT [1] use features extracted from the visual encoder of
the MIL NCE. For MIL NCE, the clips were split into 4 clips of 32 frames each. For VideoClip [20]
and COOT [8] input videos of size 224× 224 at 30 fps were fed to the pre-trained S3D model where
we extracted features at the final layer with an embedding size of 512. The same procedure was used
for UniVL [10] with the difference being the features are extracted at the earlier layer “mixed5c”
with an embedding size of 1024. For perturbations, we first perturb the video before extracting S3D
features, therefore we have collect perturbed S3D features for embedding sizes 512 and 1024 for each
perturbation and severity. We used the original code for these models to extract features to ensure
that the procedure is the same as the original authors’. These original feature extraction scripts are
located in the Github repositories [9] and [15]. FIT [1] splits each clip into 4 segments and randomly
selects a single frame from each segment.

2 Limitations

This study has several limitations which include 1) the use of simulated noise due to the challenge of
obtaining real-world data and 2) the analysis is on a limited number of models due to availability of
usable code and model weights. The analysis provided is limited to the models we have used in this
study. We tried our best to benchmark all publicly available models that provided weights and used
both text and video. Further challenges from each approach included 1) having strict requirements
on large data pre-processing, 2) requiring heavy GPU usage for both testing and even more so for
training, and 3) having their own specific testing bed. These factors limited both the selection and
time it took to implement models. In future, hopefully a larger number of models will be available.

3 Licensing

All the models which we have used in this study are available in public domain. The model code for
HowTo100m MIL [12] and COOT [8] have the Apache 2.0 license and the model code for VideoClip
[20] and UniVL [10] has the MIT license and are publicly available. We will provide YouCook2-P
and MSRVTT-P publicly for future research. These datasets are based on existing YouCook2 [21]
and MSRVTT [17] datasets and we are not using any new video sources. Both these datasets are
available in public domain for research purposes and therefore similar licensing is applicable to the
newly curated datasets.
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Figure 5: On the x-axis, R@5 for text-to-video retrieval and y-axis is the drop in performance when
data is perturbed measured by relative robustness γr for both datasets. These results are aggregated
across all categories for the modality and all combinations we generated for the combination of video
and text.

4 Impact

To our understanding, there are no negative societal impacts of our work. The goal of this work
was to evaluate the robustness of models that may later be used in real-world settings. We aimed to
improve the societal impacts by evaluating these models on real-world distribution shifts including
potential bias in text.

5 Additional Results

Figure 5 shows the relative robustness for the text-to-video retrieval task at R@5 aggregated across
all categories for video, text and when both are perturbed against the performance. The results vary
based on the dataset due to MSRVTT focusing on short videos of activity and YouCook2 breaking up
a long-complex activity into shorter clips. The differences in model robustness and performance for
the different datasets indicates a difference on how models handle clips from long, complex activities
compared to videos that are short and of a simple activity. On the longer activity dataset YouCook2,
pre-training is noticeably more important for both robustness and performance.
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Figure 6: Similarity matrices where the x-axis are video representations and the y-axis are text
representations sampled on the YouCook2 dataset. The darker the color, the more similar. When both
video and text are perturbed, a compounding effect is shown by the increase in similarity for samples
that do not match. Additionally, VideoClip shows less similarity between incorrect pairs when both
are perturbed as compared to UniVL which utilizes cross-attention.

5.1 Analysing Feature Space

To visualize the changes to the embedding space when text and video are perturbed, we selected videos
that were accurately matched to their respective text in the baseline and observed their similarity
change when perturbations were made. Figure 6 visualizes the baseline, when text is perturbed
with appending irrelevant phrases, when video is perturbed by a consistent rotation and when both
these perturbations are applied. As these perturbations are added, the similarity between video and
other text begins to increase. When both video and text are perturbed, this effect is most visible.
Additionally, the UniVL model which uses cross-attention shows even more similarity between
video and text when both are perturbed. This does not necessarily mean that UniVL is less robust in
this case, but it can indicate with cross-attention, video and text are generally more similar and the
difference between ranking one video to the other is much smaller than in other models.

Figures 7 and 8 show tsne plots of the feature space for the Videoclip and UniVL models respectively
when pre-trained and not fine-tuned. The colors indicate the recipe type and are just a way of
visualizing space that should be more similar than videos and text from other recipes. It is important
to note that the models are not trained on creating a space that clusters recipes together; therefore
using recipes is just an arbitrary way of visualizing this space. In Figure 7, we see that when one
modality is perturbed, the embedding space of the other is relatively untouched. When both video
and text are perturbed, both spaces are impacted. In Figure 8, we see a similar trend, where when
one modality is perturbed, the others embedding space is relatively untouched, even though their is
use of cross-attention between the two modalities.

5.2 Breakdown of Perturbations

Results for each perturbation when text is perturbed are shown in Figure 9 and 10. In these figures,
the black, dashed line indicate the original performance and the bars represent the performance when
text is perturbed. The larger the difference between the top of the bar and the horizontal line indicate
a larger drop in relative performance. The figures visualize the noticeable drop in performance for
ChangeChar, a perturbation humans are highly robust to. It also shows how robust models are to
AddText, Positional and Text Style. Finally, it shows models are surprisingly robust to the synthetic
noise of Drop Text. Figure 11 and 12 show performance R@5 over the varying levels of severity.
On both datasets, the majority of models are not robust to spacial perturbations such as Noise and
Blur. FIT [1], which uses a ViT [6, 2] visual encoder, is noticeably robust to spatial noise. When
text is aligned with segments, models are robust to temporal perturbations but are not on YouCook2
when text is no longer aligned with its segment from the long, complex video. However, frame
order does not matter within the texts respective segment. Models are surprisingly robust against
spatio-temporal, or Digital, perturbations, struggling most with JPEG compression.

5.3 Absolute Robustness

The absolute robustness scores for text perturbations are shown in Table 3 and visual perturbations in
Table 4. When observing absolute robustness, UniVL Align [10], pre-trained but not fine-tuned, is
the typically the most robust model that uses a CNN visual encoder, while FIT [1] is the most robust
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Figure 7: TSNE visualizations for output of the VideoClip model for text and video with different
perturbations where colors are recipe types. This is a visualization that uses TSNE to compress
the high-dimensional feature space to 2D space. Using this, we observe that when one modality is
perturbed, the embedding space of the other is untouched. When both video and text are perturbed,
both embedding spaces are impacted.

Figure 8: TSNE visualizations for output of the UniVL model for text and video with different
perturbations where colors are recipe types. This is a visualization that uses TSNE to compress the
high-dimensional feature space to 2D space. When one modality is perturbed, the embedding space
of the other is untouched, despite cross-attention being used. When both video and text are perturbed,
both embedding spaces are impacted.

when video is perturbed of all models. UniVL uses a cross-encoder architecture with an alignment
based objective function. This differs from the relatively robust results in which it varies which model
and pre-training strategy is more robust. In Table 4, the models struggle most with Blur, Noise and
Digital. Digital is likely challenging because it perturbs both spacial features and temporal (see
Figure 2).

5.4 Perturb Modality

Table 5 shows the relative and absolute robustness across the video, text or both being perturbed for
each dataset. FIT [1] is noticeably more relatively robust on video perturbations, likely due to the
use of ViT as the visual encoder. COOT [8] is noticeably low at text robustness, likely due to using
pre-extracted text features instead of training a text encoder. When both is perturbed, UniVL has the
highest absolute robustness for both datasets. UniVL uses cross-attention during training as opposed

10
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Figure 10: Perturbation specific results for text perturbations on the YouCook2 dataset. The black,
horizontal lines indicate the retrieval on the clean dataset Rc while the bar indicates the retrieval on
the perturbed dataset Rp.

to a two-encoder architecture like VideoClip. This could be a potential reason for the high absolute
robustness UniVL demonstrates when using zero-shot evaluation.

5.5 MRSVTT QA

To understand if these findings transcend to other video-language tasks, we evaluated VideoClip on
the multiple choice VideoQA task with results in Table 6 and 7.When only text is perturbed, the
the difference between pre-training strategy is not consistent unlike the text-to-video retrieval task.
Unlike the previous task, zero-shot typically is the least robust and scratch is as robust or more than
fine-tuning. This indicates that when the task is between smaller candidates, pre-training on a large
corpus of data may be less necessary for both performance and robustness.

When text is perturbed, the zero-shot model is typically more robust. Very different findings between
the two modalities. This is likely because this task is similar to video-to-text retrieval and we have
already observed models are less robust to visual perturbations. Zero-shot therefore is more relatively
robust because of the nature of the pre-training dataset of HowTo100m [12] being a variety of noisy
YouTube videos.
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Figure 11: Performance R@5 when video is perturbed for different levels of severity on the YouCook2
dataset. Models are less robust against spacial perturbations and strongly perturbed against Temporal
perturbations that maintain alignment between text and segments. When alignment is disturbed,
models are no longer robust.

5.6 Natural vs. Machine vs. Artificial Text Perturbations

To understand models based on the sub-categories of natural, machine-learning based and synthetic,
we aggregate scores these categories in Table 8 (see Figure 1 for more details on these categories).
Synthetic perturbations are those in DropText and Positional as they would be rare occurrences in the
real world, although still possible with automatic speech recognition for example. When only text is
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Table 3: Average Absolute robustness scores and their standard deviations γa ± σ for each category
of distribution shifts for text perturbations. The UniVL model is typically the highest performer.
Overall, models are very robust to text perturbations when considering the absolute score.

MSRVTTγa ± σ AddText Bias ChangeChar DropText Positional SwapText TextStyle
FIT (scratch) 0.96±0.02 0.93±0.03 0.90±0.05 0.76±0.15 0.90±0.07 0.91±0.07 0.99±0.01
VideoClip (scratch) 0.95±0.03 0.94±0.02 0.90±0.04 0.75±0.15 0.88±0.06 0.91±0.08 0.98±0.01
FIT (zs) 1.00±0.00 0.98±0.02 0.91±0.06 0.80±0.15 0.94±0.05 0.95±0.08 1.01±0.01
MIL NCE (zs) 0.94±0.00 0.97±0.01 0.94±0.03 0.88±0.09 0.94±0.04 0.93±0.03 0.98±0.01
UniVL (zs) 0.99±0.02 1.00±0.01 0.95±0.02 0.89±0.05 0.94±0.03 0.97±0.03 0.98±0.01
VideoClip (zs) 0.98±0.02 0.99±0.01 0.94±0.03 0.86±0.06 0.91±0.04 0.96±0.03 0.99±0.01
FIT (ft) 0.97±0.02 0.94±0.03 0.88±0.06 0.72±0.19 0.89±0.08 0.90±0.09 0.98±0.01
UniVL (ft) 0.96±0.03 0.94±0.03 0.90±0.05 0.74±0.16 0.89±0.06 0.91±0.07 0.98±0.01
VideoClip (ft) 0.97±0.02 0.95±0.02 0.90±0.05 0.75±0.17 0.93±0.04 0.91±0.08 0.98±0.01

YouCook2γa ± σ AddText Bias ChangeChar DropText Positional SwapText TextStyle

COOT (scratch) 0.95±0.05 — 0.64±0.13 0.74±0.16 0.90±0.05 0.78±0.19 0.81±0.23
VideoClip (scratch) 0.96±0.04 — 0.89±0.04 0.81±0.10 0.91±0.03 0.91±0.05 0.98±0.01
MIL NCE (zs) 0.97±0.01 — 0.91±0.05 0.85±0.14 0.94±0.05 0.91±0.06 0.99±0.00
UniVL (zs) 1.03±0.01 — 0.95±0.02 0.90±0.07 0.96±0.04 0.95±0.03 0.99±0.02
VideoClip (zs) 0.97±0.02 — 0.88±0.05 0.73±0.17 0.85±0.07 0.88±0.07 0.97±0.02
UniVL (ft) 0.96±0.04 — 0.89±0.04 0.76±0.15 0.90±0.03 0.90±0.07 0.98±0.01
VideoClip (ft) 0.97±0.02 — 0.90±0.07 0.69±0.22 0.89±0.06 0.88±0.11 0.99±0.04

Table 4: Average Absolute robustness scores and their standard deviations γa ± σ for each category
of distribution shifts for video perturbations. The UniVL model is typically the most robust model.
Models are least robust to Noise, Blur and Digital.

MSRVTTγa Blur Camera Digital Noise Temporal
FIT (scratch) 0.85±0.06 0.96±0.05 0.93±0.03 0.88±0.11 1.00±0.01
VideoClip (scratch) 0.79±0.11 0.91±0.08 0.78±0.10 0.65±0.09 0.98±0.02
FIT (zs) 0.91±0.05 0.99±0.04 0.95±0.03 0.92±0.09 1.01±0.01
MIL NCE (zs) 0.89±0.05 0.94±0.03 0.84±0.05 0.80±0.05 0.97±0.02
UniVL (zs) 0.93±0.04 0.98±0.02 0.93±0.03 0.88±0.03 0.99±0.01
VideoClip (zs) 0.91±0.05 0.96±0.03 0.91±0.04 0.82±0.04 0.99±0.01
FIT (ft) 0.86±0.06 0.96±0.06 0.91±0.04 0.87±0.11 1.00±0.01
UniVL (ft) 0.80±0.10 0.92±0.06 0.79±0.09 0.63±0.11 0.95±0.04
VideoClip (ft) 0.78±0.12 0.91±0.07 0.80±0.10 0.61±0.11 0.97±0.02

YouCook2γa Blur Camera Digital Noise Temporal
COOT (scratch) 0.74±0.09 0.94±0.04 0.88±0.13 0.62±0.07 0.82±0.17
VideoClip (scratch) 0.83±0.07 0.94±0.04 0.91±0.09 0.73±0.05 0.87±0.12
MIL NCE (zs) 0.81±0.08 0.95±0.04 0.90±0.10 0.70±0.05 0.87±0.13
UniVL (zs) 0.91±0.04 0.96±0.04 0.94±0.06 0.84±0.02 0.92±0.07
VideoClip (zs) 0.66±0.11 0.91±0.06 0.87±0.15 0.54±0.08 0.78±0.20
UniVL (ft) 0.82±0.10 0.93±0.05 0.89±0.13 0.62±0.07 0.80±0.17
VideoClip (ft) 0.67±0.16 0.91±0.07 0.85±0.18 0.45±0.11 0.73±0.25

perturbed, UniVL on zero-shot learning is typically more relatively robust for all three categories,
although close to the MIL NCE robustness on synthetic perturbations.
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Figure 12: Performance R@5 when video is perturbed for different levels of severity on the MSRVTT
dataset. Models are less robust against spacial perturbations and strongly perturbed against Temporal
perturbations. Models are surprisingly robust against spatio-temporal (Digital) perturbations, strug-
gling most with JPEG.
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Table 5: Average Absolute robustness γa, Relative Robustness scores γr and their standard deviations
±σ across video, text and multimodal perturbations. FIT is noticeably more relatively robust on
video perturbations likely due to the use of ViT as the visual encoder. COOT is noticeably low at text
robustness, likely due to using pre-extracted text features instead of training a text encoder.

MSRVTT Video Text Video+Text
γa γr γa γr γa γr

FIT (scratch) 0.93±0.08 0.84±0.18 0.89±0.11 0.75±0.25 0.84±0.10 0.65±0.22
VideoClip (scratch) 0.83±0.15 0.63±0.32 0.89±0.11 0.75±0.24 0.77±0.11 0.50±0.24
FIT (zs) 0.96±0.06 0.91±0.15 0.92±0.11 0.81±0.26 0.89±0.10 0.73±0.24
MIL NCE (zs) 0.89±0.08 0.60±0.29 0.94±0.05 0.76±0.20 0.87±0.06 0.51±0.23
UniVL (zs) 0.94±0.05 0.67±0.30 0.95±0.05 0.71±0.28 0.92±0.04 0.54±0.24
VideoClip (zs) 0.92±0.07 0.66±0.32 0.94±0.06 0.72±0.26 0.88±0.06 0.49±0.25
FIT (ft) 0.92±0.09 0.86±0.15 0.87±0.14 0.77±0.24 0.82±0.13 0.67±0.23
UniVL (ft) 0.82±0.15 0.65±0.29 0.88±0.12 0.77±0.23 0.77±0.12 0.54±0.23
VideoClip (ft) 0.82±0.16 0.66±0.30 0.89±0.12 0.80±0.23 0.76±0.13 0.54±0.24

YouCook2 Video Text Video+Text
γa γr γa γr γa γr

COOT (scratch) 0.79±0.16 0.52±0.36 0.77±0.17 0.49±0.39 0.68±0.11 0.28±0.25
VideoClip (scratch) 0.86±0.11 0.53±0.35 0.91±0.08 0.69±0.28 0.78±0.07 0.27±0.22
MIL NCE (zs) 0.84±0.13 0.53±0.37 0.92±0.09 0.76±0.26 0.80±0.10 0.42±0.29
UniVL (zs) 0.91±0.07 0.50±0.36 0.95±0.06 0.73±0.31 0.87±0.05 0.31±0.26
VideoClip (zs) 0.74±0.19 0.50±0.37 0.86±0.13 0.72±0.25 0.65±0.13 0.32±0.25
UniVL (ft) 0.80±0.16 0.55±0.36 0.88±0.11 0.72±0.25 0.70±0.10 0.31±0.23
VideoClip (ft) 0.72±0.23 0.55±0.37 0.86±0.16 0.77±0.26 0.58±0.16 0.33±0.26

Table 6: Average Relative robustness scores and their standard deviations γr ± σ for text categories
on the MSRVTT-QA for the Videoclip model and its training variations.

VideoQA AddText Bias ChangeChar DropText Positional SwapText TextStyle

scratch 0.99±0.01 0.98±0.02 0.96±0.02 0.77±0.23 0.97±0.03 0.94±0.07 1.0±0.0
zeroshot 0.97±0.03 0.98±0.01 0.88±0.07 0.67±0.26 0.9±0.06 0.89±0.09 0.98±0.01
finetune 0.99±0.01 0.99±0.01 0.96±0.02 0.75±0.25 0.96±0.03 0.95±0.06 0.99±0.01

Table 7: Average Relative robustness scores and their standard deviations γr ±σ for visual categories
on the MSRVTT-QA for the Videoclip model and its training variations.

VideoQA Blur Camera Digital Noise Temporal

scratch 0.75±0.14 0.89±0.08 0.71±0.16 0.46±0.2 0.93±0.03
zeroshot 0.8±0.15 0.96±0.07 0.8±0.12 0.51±0.18 1.0±0.01
finetune 0.78±0.14 0.91±0.08 0.79±0.14 0.49±0.2 0.95±0.02
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Table 8: Distribution Shift evaluation using average Relative robustness scores and their standard
deviations γr ± σ and Average Absolute robustness scores and their standard deviations γa ± σ
on MSRVTT and YouCook2 captions respectively when over Natural vs. Machine vs. Artificial
(Positional and DropText).

MSRVTT Natural Machine Synthetic
γa γr γa γr γa γr

FIT (scratch) 0.90±0.09 0.78±0.20 0.94±0.05 0.87±0.11 0.82±0.14 0.61±0.31
VideoClip (scratch) 0.90±0.10 0.77±0.21 0.94±0.04 0.87±0.10 0.82±0.14 0.60±0.30
FIT (zs) 0.93±0.10 0.84±0.23 0.97±0.05 0.92±0.13 0.86±0.14 0.67±0.33
MIL NCE (zs) 0.93±0.04 0.73±0.15 0.96±0.02 0.85±0.09 0.91±0.07 0.66±0.27
UniVL (zs) 0.97±0.03 0.80±0.18 0.97±0.02 0.85±0.14 0.92±0.05 0.50±0.30
VideoClip (zs) 0.95±0.04 0.78±0.16 0.97±0.03 0.86±0.14 0.89±0.06 0.52±0.28
FIT (ft) 0.88±0.11 0.79±0.21 0.93±0.06 0.88±0.10 0.80±0.17 0.63±0.31
UniVL (ft) 0.89±0.09 0.79±0.18 0.94±0.05 0.88±0.09 0.81±0.15 0.63±0.29
VideoClip (ft) 0.90±0.10 0.80±0.18 0.94±0.05 0.89±0.09 0.83±0.16 0.68±0.30

YouCook2 γa γr γa γr γa γr

COOT (scratch) 0.90±0.10 0.76±0.24 0.75±0.19 0.44±0.44 0.76±0.16 0.45±0.37
VideoClip (scratch) 0.91±0.07 0.70±0.23 0.95±0.05 0.83±0.18 0.86±0.09 0.52±0.30
MIL NCE (zs) 0.91±0.08 0.74±0.23 0.95±0.05 0.86±0.15 0.89±0.11 0.67±0.32
UniVL (zs) 0.95±0.04 0.73±0.21 0.98±0.03 0.88±0.17 0.93±0.07 0.59±0.37
VideoClip (zs) 0.87±0.09 0.75±0.18 0.93±0.06 0.86±0.11 0.79±0.15 0.59±0.29
UniVL (ft) 0.89±0.08 0.75±0.19 0.93±0.05 0.85±0.12 0.82±0.13 0.59±0.30
VideoClip (ft) 0.85±0.12 0.76±0.19 0.95±0.06 0.91±0.10 0.78±0.20 0.65±0.32

16



References
[1] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video

and image encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1728–1738, 2021.

[2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for
video understanding? In ICML, volume 2, page 4, 2021.

[3] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In H Larochelle,
M Ranzato, R Hadsell, M F Balcan, and H Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[5] Isak Czeresnia Etinger and Alan W Black. Formality style transfer for noisy, user-generated
conversations: Extracting labeled, parallel data from unlabeled corpora. In Proceedings of the
5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 11–16, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[7] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. Language, Speech, and
Communication. MIT Press, Cambridge, MA, 1998.

[8] Simon Ging, Mohammadreza Zolfaghari, Hamed Pirsiavash, and Thomas Brox. COOT: Co-
operative Hierarchical Transformer for Video-Text Representation Learning. In H Larochelle,
M Ranzato, R Hadsell, M F Balcan, and H Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 22605–22618. Curran Associates, Inc., 2020.

[9] Arrow Luo. Video feature extractor. https://github.com/ArrowLuo/
VideoFeatureExtractor/, 2022.

[10] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Jason Li, Taroon
Bharti, and Ming Zhou. Univl: A unified video and language pre-training model for multimodal
understanding and generation, 2020.

[11] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and
Josef Sivic. Howto100m: Learning a text-video embedding by watching hundred million
narrated video clips, 2019.

[12] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and
Josef Sivic. HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million
Narrated Video Clips. In ICCV, 2019.

[13] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

[14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[15] Facebook Research. fairseq. https://github.com/facebookresearch/fairseq/tree/
main/examples/MMPT/scripts/video_feature_extractor, 2022.

17

https://github.com/ArrowLuo/VideoFeatureExtractor/
https://github.com/ArrowLuo/VideoFeatureExtractor/
https://github.com/facebookresearch/fairseq/tree/main/examples/MMPT/scripts/video_feature_extractor
https://github.com/facebookresearch/fairseq/tree/main/examples/MMPT/scripts/video_feature_extractor


[16] Garrett Reynolds. Gender bender. https://github.com/Garrett-R/gender_bender,
2022.

[17] Ganchao Tan, Daqing Liu, Wang Meng, and Zheng-Jun Zha. Learning to discretely compose
reasoning module networks for video captioning. IJCAI-PRICAI, 2020.

[18] Suramya Tomar. Converting video formats with ffmpeg. Linux Journal, 2006(146):10, 2006.

[19] Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, et al. Textflint: Unified multilingual robustness
evaluation toolkit for natural language processing. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing: System Demonstrations, pages 347–355, Online, aug 2021.
Association for Computational Linguistics.

[20] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze,
Luke Zettlemoyer, and Christoph Feichtenhofer. VideoCLIP: Contrastive pre-training for zero-
shot video-text understanding. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 6787–6800, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics.

[21] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards automatic learning of procedures
from web instructional videos. In AAAI Conference on Artificial Intelligence, pages 7590–7598,
2018.

18

https://github.com/Garrett-R/gender_bender

	Implementation Details
	Visual Perturbations
	Text Perturbations
	Analysis of Perturbed Text
	Model Implementations

	Limitations
	Licensing
	Impact
	Additional Results
	Analysing Feature Space
	Breakdown of Perturbations
	Absolute Robustness
	Perturb Modality
	MRSVTT QA
	Natural vs. Machine vs. Artificial Text Perturbations


