
A Additional Discussion

Computational Efficiency. While our main analysis focuses on statistical efficiency (variance) and
its trade-off with approximation error (bias), here we outline some considerations on computational
efficiency. To compute the values for all output heads in Figure 1, there is a clear saving of
computational cost by our approach with a linear complexity O(D) (measured in flops) in the number
of sub-actions, whereas the baseline has an exponential complexity O(exp(D)). We consider two
common inference operations after the values of the output heads are computed: maxa Q(s,a)
and argmaxa Q(s,a). For both operations, the baseline has an exponential time complexity of
O(exp(D)). For our proposed approach, an optimized implementation has a linear time complexity
of O(D): one can perform argmax/max per sub-action and then concatenate/sum the results. In our
current code release, we did not implement the optimized version; instead, we made use of the sub-
action featurization matrix defined in Appendix B.4 so that automatic differentiation can be applied
directly. This implementation is computationally more expensive than our analysis above and than the
baseline: the forward pass includes a dense matrix multiplication with time complexity O(D exp(D))
flops, followed by an O(exp(D)) argmax/max operation. In settings where computational complexity
might be a bottleneck (especially at inference time), we recommend using the featurization matrix
implementation for learning and the optimized version for inference.

Limitations. Our theoretical analysis in Section 3 focuses on the “realizability” condition of the linear
function class [62], where we are interested in guarantees of zero approximation error, i.e., whether
the true Q∗ lies within the linear function class. In principle, it is possible to find Q∗ given a realizable
function class (e.g., by enumerating all member functions). However, when Q-learning-style iterative
algorithms are used in practice, its convergence relies on a stronger “completeness” condition, as
discussed in [62–64]. We did not investigate how our proposed form of parameterization (and the
specific shape of bias introduced) interacts with the learning procedure, and this is an interesting
direction for future work (Wang et al. [56] studied this for linear value factorization in the context of
FQI but for multi-agent RL).

Ethical Considerations and Societal Impact. In general, policies computationally derived using RL
must be carefully validated before they can be used in high-stakes domains such as healthcare. Our
linear parameterization implicitly makes an independence assumption with respect to the sub-actions,
allowing the Q-function to generalize to sub-action combinations that are underexplored (and even
unexplored) in the offline data (as shown in Section 4.1). When the independence assumptions are
valid (according to domain knowledge), this is a case of a “free lunch” as we can reduce variance
without introducing any bias. However, inaccurate or incomplete domain knowledge may render the
independence assumptions invalid and cause the agent to incorrectly generalize to dangerous actions
(e.g., learned policy recommends drug combinations with adverse side effects, see Section 3.4). This
misuse may be alleviated by incorporating additional offline RL safeguards to constrain the learned
policy (e.g., BCQ was used in Section 4.2 to restrict the learned policy to not take rarely observed
sub-action combinations). Still, to apply RL in healthcare and other safety-critical domains, it is
important to consult and closely collaborate with domain experts (e.g., clinicians for healthcare
problems) to come up with meaningful tasks and informed assumptions, and perform thorough
evaluations involving both the quantitative and qualitative aspects [32, 33].

Table 1: Qualtitative comparisons of this work with the existing literature.

Policy-
based?

Model-
based?

Value-
based?

Linear value
decomposition?

Known state
factorization or
abstraction?

Unbiasedness
guarantees?

[46, 47] ✓ ✓
[48] ✓ ✓
[50, 51] ✓ ✗
[15, 41–43] ✓(V) ✓ ✓
[20] ✓ ✓(Q) ✓1 ✓
VDN [8] ✓(Q) ✓ ✓
QMIX [9] ✓(Q) *2 ✓
BDQ [5] ✓(Q) *2 ✗
This work ✓(Q) ✓ ✗ ✓

1Empirically tested various “combination” functions including linear. 2Both QMIX and BDQ do not aggregate
the sub-Q functions; instead, they aggregate the argmax sub-actions.

16

B Detailed Theoretical Analyses

B.1 Sufficient Condition: The Trivial Setting - D Parallel MDPs

To build intuition, we first consider a related setting where D MDPs are running in parallel. If every
MDP evolves independently as controlled by its respective policy, then the total return from all D
MDPs should naturally be the sum of the individual returns from each MDP. Formally, we state the
following proposition involving fully factored MDPs and factored policies. Here, we use the vector
notation s = [s1, · · · , sD] to indicate the explicit state space factorization.

Definition 1. Given MDPs M1 · · ·MD where each Md is defined by (Sd,Ad, pd, rd), a fully
factored MDPM =

⊗D
d=1Md is defined by S,A, p, r such that S =

⊗D
d=1 Sd, A =

⊗D
d=1Ad,

p(s′|s,a) = ∏D
d=1 pd(s

′
d|sd, ad), and r(s,a) =

∑D
d=1 rd(sd, ad).

Definition 2. Given MDPs M1 · · ·Md and policies π1 · · ·πD where each πd : Sd → ∆(Ad),
then a factored policy π =

⊗D
d=1 πj for the MDPM =

⊗D
d=1Mj is π : S → ∆(A) such that

π(a|s) = ∏D
d=1 πd(ad|sd).

Proposition 7. The Q-function of policy π =
⊗D

d=1 πj for MDPM =
⊗D

d=1Md can be expressed
as Qπ

M(s,a) =
∑D

d=1 Q
πd

Md
(sd, ad).

To match the form in Eqn. (1), we can set qd(s, ad) = Qπd

Md
(sd, ad). Importantly, each Qπd

Md
does

not depend on any ad′ where d′ ̸= d. Note that although our definition of qd is allowed to condition
on the entire state space s, each Qπd

Md
only depends on sd. Proposition 7 can be seen as a corollary to

Theorem 1 where the abstractions are defined using the sub-state spaces, such that ϕd : S → Sd.

Proof of Proposition 7. Without loss of generality, we consider the setting with D = 2 such that
A = A1 ×A2; extension to D > 2 is straightforward. The proof is based on mathematical induction
on a sequence of h-step Q-functions of π defined as Qπ,(h)

M (s,a) = E[
∑h

t=1 γ
t−1rt|s1 = s,a1 =

a,at ∼ π].

Base case. For h = 1, the one-step Q-function is simply the reward, which by assumption
r(s,a) = r1(s1, a1) + r2(s2, a2). Therefore, Qπ,(1)

M (s,a) = Q
π1,(1)
M1

(s1, a1) +Q
π2,(1)
M2

(s2, a2).

Inductive step. Suppose Q
π,(h)
M (s,a) = Q

π1,(h)
M1

(s1, a1) +Q
π2,(h)
M2 (s2, a2) holds. We can express

Q
π,(h+1)
M in terms of Qπ,(h)

M using the Bellman equation:

Q
π,(h+1)
M (s,a) = r(s,a)︸ ︷︷ ︸

1

+γ
∑
s′

p(s′|s,a)V π,(h)
M (s′)︸ ︷︷ ︸

2

where V
π,(h)
M (s′) =

∑
a′

π(a′|s′)Qπ,(h)
M (s′,a′).

By Definition 1, 1 can be written as a sum r(s,a) = r1(s1, a1)+r2(s2, a2) where each summand
depends on only either a1 or a2 but not both. Next we show that 2 also decomposes in a similar
manner. For a given s we have:

V
π,(h)
M (s) =

∑
a

π(a|s)Qπ,(h)
M (s,a)

=
∑
a1,a2

π1(a1|s1)π2(a2|s2)
(
Q

π1,(h)
M1

(s1, a1) +Q
π2,(h)
M2

(s2, a2)
)

=
(
�������: 1∑

a2
π2(a2|s2)

)∑
a1

π1(a1|s1)Qπ1,(h)
M1

(s1, a1) +
(
�������: 1∑

a1
π1(a1|s1)

)∑
a2

π2(a2|s2)Qπ2,(h)
M2

(s2, a2)

=
(∑

a1

π1(a1|s1)Qπ1,(h)
M1

(s1, a1)
)
+
(∑

a2

π2(a2|s2)Qπ2,(h)
M2

(s2, a2)
)
,

17

where we use the fact that π1(a1|s1)Qπ1,(h)
M1

(s1, a1) is independent of π2(a2|s2) (and vice versa),

and that πd(·|sd) is a probability simplex. Letting V
πd,(h)
Md

(sd) =
∑

ad
π1(ad|sd)Qπd,h

Md
(sd, ad),

then V
π,(h)
M (s′) = V

π1,(h)
M1

(s′1) + V
π2,(h)
M2

(s′2).

Substituting into 2 , we have:∑
s′

p(s′|s,a)V π,(h)
M (s′)

=
∑
s′1,s

′
2

p1(s
′
1|s1, a1)p2(s′2|s2, a2)

(
V

π1,(h)
M1

(s′1) + V
π2,(h)
M2

(s′2)
)

=
(
��������: 1∑

s′2
p2(s

′
2|s2, a2)

)∑
s′1
p1(s

′
1|s1, a1)V π1,(h)

M1
(s′1) +

(
��������: 1∑

s′1
p1(s

′
1|s1, a1)

)∑
s′2
p2(s

′
2|s2, a2)V π2,(h)

M2
(s′2)

=
(∑

s′1

p1(s
′
1|s1, a1)V π1,(h)

M1
(s′1)

)
+

(∑
s′2

p2(s
′
2|s2, a2)V π2,(h)

M2
(s′2)

)
where we make use of a similar independence property between p1(s

′
1|s1, a1)V π1,(h)

M1
(s′1) and

p2(s
′
2|s2, a2), and the fact that that pd(·|sd, ad) is a probability simplex.

Therefore, we have Q
π,(h+1)
M (s,a) = Q

π1,(h+1)
M1

(s1, a1) + Q
π2,(h+1)
M2

(s2, a2) as desired, where

Q
πd,(h+1)
Md

(sd, ad) = rd(sd, ad) + γ
∑

s′d
pd(s

′
d|sd, ad)

∑
a′
d
πj(a

′
d|s′d)Q

πd,(h)
Mj

(s′d, a
′
d).

By mathematical induction, this decomposition holds for any h-step Q-function. Letting h → ∞
shows that this holds for the full Q-function.

B.2 Sufficient Condition: The Abstraction Setting
We first review some important background on state abstractions. Using the properties of state
abstractions, we can prove the main sufficient condition in Theorem 1. This proof follows largely
from the techniques used in proving Proposition 7, with the exception of how marginalization over
the state space is handled.

Background on State Abstractions. A state abstraction (also known as state aggregation) [65], is a
mapping ϕ : S → Z that converts each element of the primitive state space S to an element of the
abstract state space Z . Intuitively, if two states s1 and s2 are mapped to the same element under ϕ,
i.e., ϕ(s1) = ϕ(s2), then they are treated as the same (abstract) state under the abstraction. Therefore,
we can view an abstraction as a partitioning of the primitive state space into non-overlapping subsets.
Since a state abstraction is a many-to-one mapping, we define its inverse as ϕ−1(z) = {s̃ : ϕ(s̃) = z},
a set containing all primitive states that are mapped to the abstract state z.

We have the following property of summations involving state abstractions, where for any function
f : S → R, ∑

s∈S
f(s) =

∑
z∈Z

∑
s̃∈ϕ−1(z)

f(s̃)

To understand this property, let us consider the sum of f(s) for all states in S which can be obtained
in two different ways: i) directly iterating through the elements of S, ii) first iterating through the
partitions of S (induced by the abstraction), and then iterating through the elements in each partition,
giving rise to the double summation. This property allows us to change the index of summation
from primitive states to abstract states. For multiple abstractions ϕ = [ϕ1, · · · , ϕD] where ϕd ̸= ϕd′

if d ̸= d′, denoting z = ϕ(s) = [z1, . . . , zD], we can similarly define the inverse abstraction
ϕ−1(z) = {s̃ : ϕ(s̃) = z}, and the summation property similarly applies.

Proof of Theorem 1. Without loss of generality, we consider the setting with D = 2 soA = A1×A2;
extension to D > 2 is straightforward. The proof is based on mathematical induction on a sequence
of h-step Q-functions of π denoted by Q(h)(s,a) = E[

∑h
t=1 γ

t−1rt|s1 = s,a1 = a,at ∼ π].

Base case. For h = 1, the one-step Q-function is simply the reward, which by assumption r(s,a) =

r1(z1, a1) + r2(z2, a2). We can trivially set q(1)d (zd, ad) = rd(zd, ad) such that Q(1)(s,a) =

q
(1)
1 (z1, a1) + q

(1)
2 (z2, a2).

18

Inductive step. Suppose Q(h)(s,a) = q
(h)
1 (z1, a1) + q

(h)
2 (z2, a2) holds. We can express Q(h+1)

in terms of Q(h) using the Bellman equation:

Q(h+1)(s,a) = r(s,a)︸ ︷︷ ︸
1

+γ
∑
s′

p(s′|s,a)V (h)(s′)︸ ︷︷ ︸
2

where V (h)(s′) =
∑
a′

π(a′|s′)Q(h)(s′,a′).

1 can be written as a sum r(s,a) = r1(z1, a1) + r2(z2, a2) where each summand depends on
only either a1 or a2 but not both. Next we show 2 also decomposes in a similar manner.

For a given s we have:

V (h)(s) =
∑
a

π(a|s)Q(h)(s,a)

=
∑
a1,a2

π1(a1|z1)π2(a2|z2)
(
q
(h)
1 (z1, a1) + q

(h)
2 (z2, a2)

)
=

(
�������: 1∑

a2
π2(a2|z2)

)∑
a1

π1(a1|z1)q(h)1 (z1, a1) +
(
�������: 1∑

a1
π1(a1|z1)

)∑
a2

π2(a2|z2)q(h)2 (z2, a2)

=
∑
a1

π1(a1|z1)q(h)1 (z1, a1) +
∑
a2

π2(a2|z2)q(h)2 (z2, a2) ,

where we used the property that π1(a1|z1)q(h)1 (z1, a1) is independent of π2(a2|z2) (and vice
versa), and that πd(·|zd) is a probability simplex. Letting v

(h)
d (zd) =

∑
ad

πd(ad|zd)q(h)d (zd, ad),

then we can write V (h)(s′) = v
(h)
1 (z′1) + v

(h)
2 (z′2).

Substituting into 2 , we have:∑
s′

p(s′|s,a)V (h)(s′) =
∑
z′

∑
s̃∈ϕ−1(z′)

p(s̃|s,a)V (h)(s̃)

=
∑
z′

∑
s̃∈ϕ−1(z′)

p(s̃|s,a)V (h)(s̃)

=
∑
z′

(∑
s̃∈ϕ−1(z′)

p(s̃|s,a)
)
V (h)(s̃)

=
∑
z′
1,z

′
2

p1(z
′
1|z1, a1)p2(z′2|z2, a2)

(
v
(h)
1 (z′1) + v

(h)
2 (z′2)

)
=

(
��������: 1∑

z′
2
p2(z

′
2|z2, a2)

)∑
z′
1
p1(z

′
1|z1, a1)v(h)1 (z′1) +

(
��������: 1∑

z′
1
p1(z

′
1|z1, a1)

)∑
z′
2
p2(z

′
2|z2, a2)v(h)2 (z′2)

=
(∑

z′
1

p1(z
′
1|z1, a1)v(h)1 (z′1)

)
+
(∑

z′
2

p2(z
′
2|z2, a2)v(h)2 (z′2)

)
where on the first line we used the property of state abstractions to replace the index of summation,
and from the second to the third line we used the fact that for all s̃ ∈ ϕ−1(z′) that have the same
abstract state vector z′, their value V (h)(s′) = v

(h)
1 (z′1) + v

(h)
2 (z′2) are equal; this allows us to

directly sum their transition probabilities p(s̃|s,a). Following that, we substitute in Eqn. (2), and
then use a similar independence property as above and that pd(·|zd, ad) is a probability simplex.

Therefore, we have Q(h+1)(s,a) = q
(h+1)
1 (z1, a1) + q

(h+1)
2 (z2, a2) as desired where

q
(h+1)
d (zd, ad) = rd(zd, ad) + γ

∑
z′
d
pd(z

′
d|zd, ad)

∑
a′
d
π(a′d|z′d)q

(h)
d (z′d, a

′
d).

By mathematical induction, this decomposition holds for any h-step Q-function. Letting h → ∞
shows that this holds for the full Q-function.

19

B.3 Policy Learning with Bias - Performance Bounds

Consider a particular model-based procedure for approximating the optimal Q-function using Eqn. (1):
i) finding approximations M̂ = (p̂, r̂) that are close to the true transition/reward functions p, r such
that there exists some state abstraction setϕ with p̂, r̂ satisfying (2) and (3) with respect toϕ, ii) doing
planning (e.g., dynamic programming) using the approximate MDP parameters p̂ and r̂. We can show
the following performance bounds; note that these upper bounds are loose and information-theoretic
(in that they require knowledge of the implicit factorization).
Proposition 8. If the approximation errors in p̂ and r̂ are upper bounded by ϵp and ϵr for all
s ∈ S,a ∈ A: ∑

s′

∣∣p(s′|s,a)− p̂(s′|s,a)
∣∣ ≤ ϵp,∣∣r(s,a)− r̂(s,a)
∣∣ ≤ ϵr,

then the above model-based procedure leads to an approximate Q-function Q̂ and an approximate
policy π̂ that satisfy:

∥Q∗
M −Q∗

M̂∥∞ ≤
ϵr

1− γ
+

γϵpRmax

2(1− γ)2
,

∥V ∗
M − V π̂

M∥∞ ≤
2ϵr
1− γ

+
γϵpRmax

(1− γ)2
.

Proof. See classical results by Singh and Yee [66] and Kearns and Singh [67] (the simulation lemma).

B.4 Subspace of Representable Q Functions

To help understand how the linear parameterization of Q-function Eqn. (1) affects the representation
power of the function class, we first define the following matrices for action space featurization.
Definition 3. The sub-action mapping matrix for sub-action space Ad, Ψd, is defined as

Ψj =

 | ψd(a
1)⊺ |

...

| ψd(a
|A|)⊺ |

 ∈ {0, 1}|A|×|Ad|

where each rowψd(a
i)⊺ ∈ {0, 1}1×|Ad| is a one-hot vector with a value 1 in column projA→Ad

(ai).

Remark. The i-th row of Ψd corresponds to an action ai ∈ A, and the j-th column corresponds to
a particular element of the sub-action space ajd ∈ Ad. The (i, j)-entry of Ψd is 1 if and only if the
projection of ai onto the sub-action space Ad is ajd. Since each row is a one-hot vector, the sum of
elements in each row is exactly 1, i.e., ψd(a

i)⊺1 = 1.
Definition 4. The sub-action mapping matrix, Ψ, is defined by a horizontal concatenation of Ψd for
d = 1 . . . D

Ψ =

[
Ψ1 · · · ΨD

]
∈ {0, 1}|A|×(

∑
d |Ad|)

Remark. Ψ describes how to map each action ai ∈ A to its corresponding sub-actions. Therefore,
the sum of elements in each row is exactly D, the number of sub-action spaces; ψ(ai)⊺1 = D.

Definition 5. The condensed sub-action mapping matrix, Ψ̃, is

Ψ̃ =

 1 Ψ̃1 · · · Ψ̃D

 ∈ {0, 1}|A|×(1+
∑

d(|Ad|−1))

where the first column contains all 1’s, and Ψ̃d denotes Ψd with the first column removed.

20

Proposition 9. colspace(Ψ) = colspace(Ψ̃) and rank(Ψ) = rank(Ψ̃) = ncols(Ψ̃) (i.e.,
matrix Ψ̃ has full column rank). Consequently, ΨΨ+ = Ψ̃Ψ̃

+
.

Corollary 10. Suppose the Q-function Q of a policy π at state s is linearly decomposable with respect
to the sub-actions, i.e., we can write Q(s, a) =

∑D
d=1 qd(s, ad) for all ad ∈ Ad, then there exists w

and w̃ such that the column vector containing the Q-values for all actions at state s can be expressed
asQ(s,A) = Ψw = Ψ̃w̃. In other words, Eqn. (1) is equivalent toQ(s,A) ∈ colspace(Ψ̃).

Corollary 11. Suppose Q(s,A) /∈ colspace(Ψ̃). Let ŵ = Ψ+Q(s,A) and ˆ̃w = Ψ̃
+
Q(s,A) be

the least-squares solutions of the respective linear equations. Then Ψŵ = Ψ̃ ˆ̃w.
Remark. Corollaries 10 and 11 imply there are two possible implementations, regardless of whether
the true Q-function can be represented by the linear parameterization. Intuitively, both versions try
to project the true Q-value vectorQ(s,A) for a particular state s onto the subspace spanned by the
columns of Ψ or Ψ̃. Since the two matrices have the same column space, the results of the projections
are equal. This does not imply ŵ and ˆ̃w are equal (they cannot be as they have different dimensions),
but rather the resultant Q-value estimates are equal, Q̂(s,A) = Ψŵ = Ψ̃ ˆ̃w.

To make the theorem statements more concrete, we inspect a simple numerical example and verify
the theoretical properties.
Example 3. Consider an MDP with A = A1 ×A2, where A1 = {0, 1} and A2 = {0, 1}. Conse-
quently, |A1| = |A2| = 2 and |A| = 22 = 4.

Suppose for state s we can write Q(s, a) = Q(s, [a1, a2]) = q1(s, a1) + q2(s, a2) for all a1 ∈
A1, a2 ∈ A2. Then

Q(s,A) =

Q(s, a1 = 0, a2 = 0)
Q(s, a1 = 0, a2 = 1)
Q(s, a1 = 1, a2 = 0)
Q(s, a1 = 1, a2 = 1)

 =

q1(s, 0) + q2(s, 0)
q1(s, 0) + q2(s, 1)
q1(s, 1) + q2(s, 0)
q1(s, 1) + q2(s, 1)

 =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

q1(s, 0)q1(s, 1)
q2(s, 0)
q2(s, 1)

=

[|

| Ψ |

|

][|
w
|

]
where Ψ =

1 0 1 0
1 0 0 1
0 1 1 0︸︷︷︸
Ψ1

0 1 ︸︷︷︸
Ψ2

0 1

 , w =

q1(s, 0)q1(s, 1)
q2(s, 0)
q2(s, 1)

}
w1}
w2

We can also write

Q(s,A) = Ψ̃w̃, where Ψ̃ =

1 0 0
1 0 1
1 1 0
1 1 1

 , w̃ =

[
v0(s)
u1(s)
u2(s)

]
=

[
q1(s, 0) + q2(s, 0)
q1(s, 1)− q1(s, 0)
q2(s, 1)− q2(s, 0)

]

One can verify that rank(Ψ) = rank(Ψ̃) = 3 and colspace(Ψ) = colspace(Ψ̃), because the
columns of Ψ̃ are linearly independent, but the columns of Ψ are not linearly independent:110

0

+

001
1

−
101
0

 =

010
1

 .

Furthermore,

Ψ+ =

 3/8 3/8 −1/8 −1/8
−1/8 −1/8 3/8 3/8
3/8 −1/8 3/8 −1/8
−1/8 3/8 −1/8 3/8

 , Ψ̃
+
=

[
3/4 1/4 1/4 −1/4
−1/2 −1/2 1/2 1/2
−1/2 1/2 −1/2 1/2

]

and

ΨΨ+ = Ψ̃Ψ̃
+
=

 3/4 1/4 1/4 −1/4
1/4 3/4 −1/4 1/4
1/4 −1/4 3/4 1/4
−1/4 1/4 1/4 3/4

 .

◁

21

Proof of Proposition 9.

First note that Ψ is a tall matrix for non-trivial cases, with more rows than columns, because
|A| = ∏

d |Ad| ≥
∑

d |Ad| if |Ad| ≥ 2 for all d (see proof). Therefore, the rank of Ψ is the number
of linear independent columns of Ψ.

We use the following notation to write matrix Ψd in terms of its columns:

Ψd =

[| |
cd,1 · · · cd,|Ad|
| |

]
.

The following statements are true:

Claim 1: The columns of Ψd are pairwise orthogonal, cd,j⊺cd,j′ = 0,∀j ̸= j′, and they form an
orthogonal basis. This is because each row ψd(a

i)⊺ is a one-hot vector, containing only
one 1; this implies that out of the two entries in row i of cd,j and cd,j′ , at least one entry is
0, and their product must be 0.

Claim 2: The sum of entries in each row of Ψd is 1, and
∑|Ad|

j=1 cd,j = 1 a column vector of 1’s
with matching size. This is a direct consequence of each row ψd(a

i)⊺ being a one-hot
vector. In other words, 1 ∈ colspace(Ψd).

Claim 3: The columns of Ψ are not linearly independent. This is because there is not a unique
way to write 1 as a linear combination of the columns of Ψ. For example,

∑|Ad|
j=1 cd,j =∑|Ad′ |

j=1 cd′,j = 1 for some d′ ̸= d, where we used the columns of Ψd and Ψd′ .

Claim 4: 1 /∈ colspace(Ψ̃1 · · · Ψ̃D) because the first entry of every column vector in any Ψ̃d is 0
and no linear combination of them can result in a 1. Consequently, 1 /∈ colspace(Ψ̃d) for
any d.

Claim 5: cd,1 /∈ colspace(1, Ψ̃d′ : d′ ̸= d), where cd,1 is the column removed from Ψd to construct
Ψ̃d. This can also be seen from the first entry of the column vector: the first entry of cd,1
is 1, and all columns of Ψ̃d′ : d′ ̸= d have the first entry being 0.

Claim 6: cd,j /∈ colspace(1, Ψ̃1 · · · Ψ̃D \ {cd,j}) for j > 1. By expressing cd,j = (1 −∑|Ad|
j′=2,j′ ̸=j cd,j′) + (−cd,1), we observe that the first part of the sum lies in the col-

umn space, while the second part does not (from the previous claim, cd,1 is not in
the column space of Ψ̃d′ where d′ ̸= d; this is because within Ψ̃d, the only way is
cd,1 = 1−∑|Ad|

j′=2 cd,j′ and we have excluded one of the columns cd,j from the column
space).

Combining these claims implies that each column of Ψ̃ cannot be expressed as a linear combination
of all other columns, and thus Ψ̃ has full column rank, rank(Ψ̃) = ncols(Ψ̃) = 1+

∑D
d=1(|Ad|−1).

It follows that Ψ̃ contains the linearly independent subset of columns from Ψ, and their column
spaces and ranks are equal.

ΨΨ+ and Ψ̃Ψ̃
+

are orthogonal projection matrices onto the column space of Ψ and Ψ̃, respectively.
Since colspace(Φ) = colspace(Ψ̃), it follows that ΨΨ+ = Ψ̃Ψ̃

+
.

B.5 A Necessary Condition for Unbiasedness

Consider the matrix form of the Bellman equation (cf. Sec 2 of Lagoudakis and Parr [68]):

Q = R+ γP πQ

where Q ∈ R|S||A| is a vector containing the Q-values for all state-action pairs, R ∈ R|S||A|, and
P π ∈ R|S||A|×|S||A| is the (s, a)-transition matrix induced by the MDP and policy π. Solving this

22

https://math.stackexchange.com/questions/2998898/show-that-product-is-larger-than-sum

equation gives us the Q-function in closed form:
Q = (I − γP π)−1R (5)

where I ∈ R|S||A|×|S||A|.

To derive a necessary condition, we start by assuming that the Q-function is representable by the
linear parameterization, i.e., there exists W ∈ R(

∑D
d=1 |Ad|)×|S| such that vec−1

|A|×|S|(Q) = ΨW .
Here, vec−1

|A|×|S| is the inverse vectorization operator that reshapes the vector of all Q-values into a

matrix of size |A| × |S|, and Ψ ∈ {0, 1}|A|×(
∑D

d=1 |Ad|) is defined in Appendix B.4. Substituting
Eqn. (5) into the premise gives us a necessary condition: if there existsW ∈ R(

∑D
d=1 |Ad|)×|S| such

that
vec−1

|A|×|S|
(
(I − γP π)−1R

)
= ΨW

Unfortunately, unlike the sufficient conditions in Theorem 1 (and Proposition 7), this necessary
condition is not as clean and likely not verifiable in most settings. The matrix inverse and vec−1

reshaping operation make it challenging to further manipulate the expression. This highlights the
non-trivial nature of the problem.

B.6 Variance Reduction in the Bandit Setting

Background on Rademacher complexity. Let F be a family of functions mapping from Rd to R.
The empirical Rademacher complexity of F for a sample S = {x1, . . . ,xm} is defined by

R̂S(F) = E
σ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
,

where σ = [σ1, . . . , σm] is a vector of i.i.d. Rademacher variables, i.e., independent uniform r.v.s
taking values in {−1,+1}.
For a matrix M ∈ Rm×D, define the (p, q)-group norm as the q-norm of the p-norm of the columns
of M, that is ∥M∥p,q = ∥[∥M1∥p, · · · , ∥MD∥p]∥q , where Mj is the j-th column of M.

In Awasthi et al. [69], Theorem 2 stated that: let F = {f = w⊺x : ∥w∥p ≤ A} be a family of
linear functions defined over Rd with bounded weight in ℓ2-norm, then the empirical Rademacher
complexity of F for a sample S = {x1, . . . ,xm} satisfies the following lower bound (where
X = [x1 . . .xm]⊺):

R̂S(F) ≥
A√
2m
∥X∥2,2.

Proof for Proposition 5. For the sake of argument, we consider the one-timestep bandit setting;
extension to the sequential setting can be similarly derived following Chen and Jiang [62], Duan
et al. [17]. Let the true generative model beQ∗ = Ψr +ψInteractrInteract (details in Appendix B.8). We
formally show the reduction in the variance of the estimators, by comparing the lower bound of their
respective empirical Rademacher complexities. A smaller Rademacher complexity translates into
lower variance estimators.

Suppose we obtain a sample of m actions and apply the linear approximation. Our approach for
factored action space corresponds to the matrix X ∈ {0, 1}m×(

∑
d |Ad|), obtained by stacking the

corresponding rows of Ψ (recall Definition 4). The complete, combinatorial action space corresponds
to the matrixX ′ = [X,xInteract] ∈ {0, 1}m×(1+

∑
d |Ad|) by adding the corresponding rows of ψInteract.

By definition, ∥X∥p,q < ∥X ′∥p,q, since the former drops a column with non-zero norm that exists
in the latter.

Consider the following two function families, for the factored action space and the complete action
space respectively:

FF = {f = w⊺
Fx : ∥wF∥2 ≤ A}

FC = {f = w⊺
Cx

′ : ∥wC∥2 ≤ A},
for some A > 0. A straightforward application of Theorem 2 of Awasthi et al. [69] shows that the
lower bound on the Rademacher complexity of the of the factored action space is smaller than that of
the complete action space, which completes our argument.

23

B.7 Standardization of Rewards for the Bandit Setting (Proposition 6)

s

R0,0

R0,1

R1,0

R1,1

⇝ s

0

α

1

1 + α+ β

Figure 9: Standardization of rewards.

Suppose the rewards of the four arms are [R0,0, R0,1, R1,0, R1,1]. We can apply the following trans-
formations to reduce any reward function to the form of [0, α, 1, 1+α+β], and these transformations
do not affect the least-squares solution:

• If R0,0 = R1,0 and R0,1 = R1,1, we can ignore x-axis sub-action as setting it to either 0
(←) or 1 (→) does not affect the reward. Similarly, if R0,0 = R0,1 and R1,0 = R1,1, we
can ignore y-axis sub-action. In both cases, this reduces to a one-dimensional action space
which we do not discuss further.

• Now at least one of the following is false: R0,0 = R1,0 or R0,1 = R1,1. If R0,0 ̸= R1,0,
skip this step. Otherwise, it must be that R0,0 = R1,0 and R0,1 ̸= R1,1. Swap the role of
down vs. up such that the new R0,0 ̸= R1,0.

• If R0,0 < R1,0, skip this step. Otherwise it must be that R0,0 > R1,0. Swap the role of left
vs. right so that R0,0 < R1,0.

• If R0,0 ̸= 0, subtract R0,0 from all rewards so that the new R0,0 = 0.

• Now R1,0 > R0,0 > 0 must be positive. If R1,0 ̸= 1, divide all rewards by R1,0 so that the
new R1,0 = 1.

• Lastly, we should have R0,0 = 0 and R1,0 = 1. Set α = R0,1 and β = R1,1 −R1,0 −R0,1.

B.8 Omitted-Variable Bias in the Bandit Setting (Proposition 6)

Suppose the true generative model is

Q∗(a) = 1(ax=Left)rLeft + 1(ax=Right)rRight + 1(ay=Down)rDown + 1(ay=Up)rUp + 1(a=Right,Up)rInteract

In other words,

Q
∗(↙)

Q∗(↖)
Q∗(↘)
Q∗(↗)

 =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 rLeft

rRight

rDown

rUp

+

000
1

 rInteract ⇝ Q∗ = Ψr +ψInteractrInteract

Here, rLeft, rRight, rDown, rUp, rInteract are parameters of the generative model. Note that the matrix
[Ψ,ψInteract] has a column space of R4, i.e., this generative model captures every possible reward
configuration of the four actions.

Applying our proposed linear approximation translates to “dropping” the interaction parameter, rInteract,
and estimate the remaining four parameters. This leads to a form of omitted-variable bias, which can
be computed as:

Ψ+ψInteractrInteract =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

+ 000

1

 rInteract

=

 3/8 3/8 −1/8 −1/8
−1/8 −1/8 3/8 3/8
3/8 −1/8 3/8 −1/8
−1/8 3/8 −1/8 3/8

000
1

 rInteract =

−1/83/8
−1/8
3/8

 rInteract

24

The biased estimate of the four parameters are:

r̂ = r +Ψ+ψInteractrInteract ⇝

r̂Left

r̂Right

r̂Down

r̂Up

 =

rLeft − 1

8rInteract

rRight +
3
8rInteract

rDown − 1
8rInteract

rUp + 3
8rInteract

and the estimated Q-values are:

Q̂ =

Q̂(↙)

Q̂(↖)

Q̂(↘)

Q̂(↗)

 =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

rLeft − 1

8rInteract

rRight +
3
8rInteract

rDown − 1
8rInteract

rUp + 3
8rInteract

 =

rLeft + rDown − 1

4rInteract

rLeft + rUp + 1
4rInteract

rRight + rDown +
1
4rInteract

rRight + rUp + 3
4rInteract

For the bandit problem in Figure 4a, substituting rLeft + rDown = 0, rLeft + rUp = α, rRight + rDown = 1,
and rInteract = β gives

Q̂(↙)

Q̂(↖)

Q̂(↘)

Q̂(↗)

 =

− 1

4β

α + 1
4β

1 + 1
4β

1 + α+ 3
4β

which is the solution we presented in Figure 4c.

B.9 Accounting for Sub-action Interactions

When the interaction effect is not negligible and can lead to suboptimal performance, one solution
is to explicitly encode the residual interaction terms in the decomposed Q-function by letting
Q(s,a) =

∑D
d=1 qd(s, ad)+R(a). The exact parameterization of the residual term R(a) is problem

dependent: one may incorporate Tavakoli et al. [6] to systematically consider interactions of certain
“ranks” (e.g., limiting it to only two-way or three-way interactions), and consider regularizing the
magnitude of residual terms so we still benefit from the efficiency gains of the linear decomposition.

C More Illustrative Examples

(a) (b)

s0 s1
+1

a = 0
a = 1

a = 0 a = 1

s0,0

s0,1

s1,0

s1,1

+1

+1 +1 +1

+1

+1

+2

s0,? s1,?
+1

s?,0

s?,1

+1

Mx

My

Figure 10: (a) A one-dimensional chain MDP, with an initial state s0 and an absorbing state s1, and
two actions a = 0 (left) and a = 1 (right). (b) A two-dimensional chain MDP shown together with
the component chainsMx andMy. Rewards are denoted in red. Squares □ indicate absorbing states
whose outgoing transition arrows are omitted. For readability, in the diagram, the states and actions
are laid out following a convention similar to the Cartesian coordinate system so that the bottom left
state has index (0, 0), and right and up both increase the corresponding coordinate by 1.

25

In this appendix, we discuss the building blocks of the examples used in the main paper and provide
additional examples to support the theoretical properties presented in Section 3.

One-dimensional Chain. First, consider the chain problem depicted in Figure 10a. The agent always
starts in the initial state s0 and can take one of two possible actions: left (a = 0), which leads the
agent to stay at s0, or right (a = 1), which leads the agent to transition into s1 and receive a reward of
+1. After reaching the absorbing state s1, both a = 0 and a = 1 lead the agent to stay at s1 with zero
reward. For γ < 1, a (deterministic) optimal policy is π∗(s0) = 1, and either action can be taken in
s1. Next, we use this MDP to construct a two-dimensional problem.

Two-dimensional Chain. Following the construction used in Definition 1, we consider an MDP
M =Mx ×My consisting of two chains (the horizontal chainMx and the vertical chainMy)
running in parallel, as shown in Figure 10b. Their corresponding state spaces are Sx = {s0,?, s1,?}
and Sy = {s?,0, s?,1}, which indicate the x- and y-coordinates respectively. There are 4 actions from
each state, depicted by diagonal arrows {↙,↖,↘,↗}; each action a = [ax, ay] effectively leads
the agent to perform ax inMx and ay inMy. For example, taking action↗= [→, ↑] from state
s0,0 leads the agent to transition into state s1,1 and receive a reward of +2 (the sum of +1 from
Mx and +1 fromMy). For γ < 1, an optimal policy for this MDP is to always move up and right,
π∗(·) =↗= [→, ↑], regardless of which state the agent is in.

Satisfying the Sufficient Conditions. Let ϕx : S → Sx and ϕy : S → Sy be the abstractions. By
construction, the transition and reward functions of this MDP satisfy Eqns. (3) and (4). To apply
Theorem 1, the policy must satisfy Eqn. (4). In Figure 11, we show three such policies (other policies
in this category are omitted due to symmetry and transitions that have the same outcome), together
with the true Q-functions (with γ = 0.9) and their decompositions in the form of Eqn. (1).

Violating the Sufficient Conditions.

• Policy violates Eqn. (4) - Nonzero bias. For this setting, we hold the MDP (transitions
and rewards) unchanged. In Figure 12, we show seven policies that do not satisfy Eqn. (4),
together with the resultant Q-function and the biased linear approximation with the non-zero
approximation error.

• Transition violates Eqn. (2) - Nonzero Bias. Figure 13 shows an example where one
transition has been modified.

• Reward violates Eqn. (2) - Nonzero Bias. Figure 14 shows an example where one reward
has been modified.

• Transition violates Eqn. (2), or policy violates Eqn. (4) - Zero Bias. If γ = 0, then the
Q-function is simply the immediate reward, and any conditions on the transition or policy
can be forgone.

• Reward violates Eqn. (3) - Zero Bias. It is possible to construct reward functions adversar-
ially such that r itself does not satisfy the condition, and yet Q can be linearly decomposed.
See Figure 15 for an example.

26

Policy π MDP diagram Qπ = Qx + Qy

Optimal policy π∗

s0,0
s0,1
s1,0
s1,1

↗↗↗
↗

 =

→, ↑
→, ↑
→, ↑
→, ↑

1.8

1.9

1.9

2

↙ ↖ ↘ ↗

s0,0 1.8 1.9 1.9 2
s0,1 0.9 0.9 1 1
s1,0 0.9 1 0.9 1
s1,1 0 0 0 0

← ← → →

s0,? 0.9 0.9 1 1
s0,? 0.9 0.9 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0

↓ ↑ ↓ ↑

s?,0 0.9 1 0.9 1
s?,1 0 0 0 0
s?,0 0.9 1 0.9 1
s?,1 0 0 0 0

A non-optimal policy

s0,0
s0,1
s1,0
s1,1

↖↖↗
↗

 =

←, ↑
←, ↑
→, ↑
→, ↑

0.9

1

1.9

2

↙ ↖ ↘ ↗

s0,0 0.9 1 1.9 2
s0,1 0 0 1 1
s1,0 0.9 1 0.9 1
s1,1 0 0 0 0

← ← → →

s0,? 0 0 1 1
s0,? 0 0 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0

↓ ↑ ↓ ↑

s?,0 0.9 1 0.9 1
s?,1 0 0 0 0
s?,0 0.9 1 0.9 1
s?,1 0 0 0 0

Another non-optimal policy

s0,0
s0,1
s1,0
s1,1

↙↖↘
↗

 =

←, ↓
←, ↑
→, ↓
→, ↑

0

1

1

2

↙ ↖ ↘ ↗

s0,0 0 1 1 2
s0,1 0 0 1 1
s1,0 0 1 0 1
s1,1 0 0 0 0

← ← → →

s0,? 0 0 1 1
s0,? 0 0 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0

↓ ↑ ↓ ↑

s?,0 0 1 0 1
s?,1 0 0 0 0
s?,0 0 1 0 1
s?,1 0 0 0 0

Figure 11: Example MDPs and policies where Proposition 7 applies, for the optimal policy and two
particular non-optimal policies. γ = 0.9. We show the linear decomposition of the Q-function into
Qx and Qy. Qx only depends on the x-coordinate of state and the sub-action that moves← or→;
Qy only depends on the y-coordinate of state and the sub-action that moves ↓ or ↑.

π(S) MDP diagram Qπ(s0,0,A) Q̂(s0,0,A)

s0,0
s0,1
s1,0
s1,1

↖↗↗
↗

 =

←, ↑
→, ↑
→, ↑
→, ↑

1.71

1.9

1.9

2

↙
↖
↘
↗

1.711.9
1.9
2

 ↙
↖
↘
↗

1.73251.8775
1.8775
2.0225

s0,0
s0,1
s1,0
s1,1

↙↗↗
↗

 =

←, ↓
→, ↑
→, ↑
→, ↑

0

1.9

1.9

2

↙
↖
↘
↗

 0
1.9
1.9
2

 ↙
↖
↘
↗

0.451.45
1.45
2.45

s0,0
s0,1
s1,0
s1,1

↘↙↘
↘

 =

→, ↓
←, ↓
→, ↓
→, ↓

0.9

1

1

2

↙
↖
↘
↗

0.911
2

 ↙
↖
↘
↗

0.6751.225
1.225
1.775

s0,0
s0,1
s1,0
s1,1

↘↙↘
↘

 =

→, ↓
←, ↓
→, ↓
→, ↓

0

1.9

1

2

↙
↖
↘
↗

 0
1.9
1
2

 ↙
↖
↘
↗

0.2251.675
0.775
2.225

π(S) MDP diagram Qπ(s0,0,A) Q̂(s0,0,A)

s0,0
s0,1
s1,0
s1,1

↗↖↗
↗

 =

→, ↑
←, ↑
→, ↑
→, ↑

1.8

1

1.9

2

↙
↖
↘
↗

1.811.9
2

 ↙
↖
↘
↗

1.5751.225
2.125
1.775

s0,0
s0,1
s1,0
s1,1

↘↖↗
↗

 =

→, ↓
←, ↑
→, ↑
→, ↑

1.71

1

1.9

2

↙
↖
↘
↗

1.7111.9
2

 ↙
↖
↘
↗

1.50751.2025
2.1025
1.7975

s0,0
s0,1
s1,0
s1,1

↗↖↘
↘

 =

→, ↑
←, ↓
→, ↓
→, ↓

1.8

1

1

2

↙
↖
↘
↗

1.811
2

 ↙
↖
↘
↗

1.351.45
1.45
1.55

Figure 12: Example MDPs and policies where Proposition 7 does not apply because the policy
violates Eqn. (4) (violations are highlighted). γ = 0.9. For example, in the first case, the policy does
not take the same sub-action from s0,0 and s0,1 with respect to the horizontal chainMx. Applying
the linear approximation produces biased estimates Q̂ of the true Q-function, Qπ .

27

π(S) MDP diagram Qπ(s0,0,A) Q̂(s0,0,A)

s0,0
s0,1
s1,0
s1,1

↗↗↗
↗

 =

→, ↑
→, ↑
→, ↑
→, ↑

1.8

1

1.9

2

1.81.9
1
2

1.5752.125
1.225
1.775

Figure 13: Example MDPs and policies where Theorem 1 does not apply because the transition
function violates Eqn. (2). γ = 0.9. In this example, the highlighted transition corresponding to the
action↗= [→, ↑] from s0,1 does not move right (→ underMx) to s1,1 and instead moves back to
state s0,1. Applying the linear approximation produces biased estimates Q̂ of the true Q-function,
Qπ .

Reward function Q-function Qπ(s0,0,A) Q̂(s0,0,A)

0

1

1

1

0

0

1

1

0

1

0

1

0.9

1.9

1.9

1

0

0

1

1

0

1

0

1

0.91.9
1.9
1

1.3751.425
1.425
1.475

Figure 14: Example MDPs and policies where Theorem 1 does not apply because the reward function
violates Eqn. (3). γ = 0.9. In this example, the reward function of the bottom left state s0,0 does not
satisfy the condition because the reward of↗ is 1 ̸= 2 = 1 + 1. Applying the linear approximation
produces biased estimates Q̂ of the true Q-function, Qπ .

Reward function Q-function Qπ = Qx + Qy

7

2

3

1.5

0

0

1

1

0

4

0

4

8.5

3

7

1.5

0

0

1

1

0

4

0

4

↙ ↖ ↘ ↗

s0,0 8.5 3 7 1.5
s0,1 0 0 1 1
s1,0 0 4 0 4
s1,1 0 0 0 0

← ← → →

s0,? 1.5 1.5 0 0
s0,? 0 0 1 1
s1,? 0 0 0 0
s1,? 0 0 0 0

↓ ↑ ↓ ↑

s?,0 7 1.5 7 1.5
s?,1 0 0 0 0
s?,0 0 4 0 4
s?,1 0 0 0 0

Figure 15: Example MDPs and policies where Theorem 1 does not apply because the reward function
violates Eqn. (3). γ = 1. In this example, the reward function of the bottom left state s0,0 does not
satisfy the condition because 7 + 1.5 ̸= 2 + 3. However, there exists a linear decomposition of the
true Q-function, Qπ , for a particular policy denoted by bold blue arrows.

28

D Experiments

D.1 Sepsis Simulator - Implementation Details

When generating the datasets, we follow the default initial state distribution specified in the original
implementation.

By default, we used neural networks consisting of one hidden layer with 1,000 neurons and ReLU
activation to allow for function approximators with sufficient expressivity. We trained these networks
using the Adam optimizer (default settings) [70] with a batch size of 64 for a maximum of 100
epochs, applying early stopping on 10% “validation data” (specific to each supervised task) with
a patience of 10 epochs. We minimized the mean squared error (MSE) for regression tasks (each
iteration of FQI). For FQI, we also added value clipping (to be within the range of possible returns
[−1, 1]) when computing bootstrapping targets to ensure a bounded function class and encourage
better convergence behavior [71].

D.2 MIMIC Sepsis - Implementation Details

The RNN AIS encoder was trained to predict the mean of a unit-variance multivariate Gaussian that
outputs the observation at subsequent timesteps, conditioned on the subsequent actions, following
the idea in Subramanian and Mahajan [37]. We performed a grid search over the hyperparameters
(Table 2) for training the RNN, selecting the model that achieved the smallest validation loss. Using
the best encoder model, we then trained the offline RL policy using BCQ (and factored BCQ),
considering validation performance of all checkpoints (saved every 100 iterations, for a maximum of
10,000 iterations) and all combinations of the BCQ hyperparameters (Table 2).

Table 2: Hyperparameter values used for training the RNN approximate information state as well as
BCQ for offline RL. Discrete BCQ for both the baseline and factored implementation are identical
except for the final layer of the Q-networks.

Hyperparameter Searched Settings
RNN:
- Embedding dimension, dS {8, 16, 32, 64, 128}
- Learning rate { 1e-5, 5e-4, 1e-4, 5e-3, 1e-3 }
BCQ (with 5 random restarts):
- Threshold, τ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 0.999}
- Learning rate 3e-4
- Weight decay 1e-3
- Hidden layer size 256

D.3 MIMIC Sepsis results

0 50 100 150 200 250
ESS

75

80

85

90

95

100

W
IS

Observed
tau=0.0
tau=0.01
tau=0.05
tau=0.1
tau=0.3
tau=0.5
tau=0.75
tau=0.9999

0 50 100 150 200 250
ESS

75

80

85

90

95

100

W
IS

Observed
tau=0.0
tau=0.01
tau=0.05
tau=0.1
tau=0.3
tau=0.5
tau=0.75
tau=0.9999

Figure 16: Validation performance (in terms of WIS and ESS) for all hyperparameter settings and all
checkpoints considered during model selection. Left - baseline, Right - proposed.

29

0 100 200
Effective Sample Size

90

92

94

96

98

100

Es
tim

ate
d P

oli
cy

 V
alu

e

Baseline
Proposed
Observed

0 100 200
ESS

75

80

85

90

95

100

W
IS

Baseline
Proposed
Observed

Figure 17: Left - Pareto frontiers of validation performance for the baseline and proposed approaches;
Right - test performance of the candidate models that lie on the validation Pareto frontier. The
validation performance largely reflects the test performance, and proposed approach outperforms the
baseline in terms of test performance albeit with a bit more overlap.

75

80

85

90

95

100

Te
st

W
IS

0 50 100 150 200 250
Validation ESS cutoff

0

50

100

150

Te
st

ES
S

Baseline
Proposed

Figure 18: Model selection with different minimum ESS cutoffs. In the main paper we used ESS
≥ 200; here we sweep this threshold and compare the resultant selected policies for both the baseline
and proposed approach (only using candidate models that lie on the validation Pareto frontier). In
general, across the ESS cutoffs, the proposed approach outperforms the baseline in terms of test set
WIS value, with comparable or slightly lower ESS.

30

	Introduction
	Problem Setup
	Factored Action Spaces
	Linear Decomposition of Q Function

	Theoretical Analyses
	Sufficient Conditions for Zero Bias
	Necessary Conditions for Zero Bias
	How Does Bias Affect Policy Learning?
	Bias-Variance Trade-off
	Bias Suboptimal Performance

	Practical Considerations: Are these Assumptions too Strong?

	Experimental Evaluations
	Simulated Domain: Sepsis Simulator
	Real Healthcare Data: Sepsis Treatment in MIMIC-III

	Related Work
	Conclusion
	Additional Discussion
	Detailed Theoretical Analyses
	Sufficient Condition: The Trivial Setting - D Parallel MDPs
	Sufficient Condition: The Abstraction Setting
	Policy Learning with Bias - Performance Bounds
	Subspace of Representable Q Functions
	A Necessary Condition for Unbiasedness
	Variance Reduction in the Bandit Setting
	Standardization of Rewards for the Bandit Setting (thm:argmax-preserve)
	Omitted-Variable Bias in the Bandit Setting (thm:argmax-preserve)
	Accounting for Sub-action Interactions

	More Illustrative Examples
	Experiments
	Sepsis Simulator - Implementation Details
	MIMIC Sepsis - Implementation Details
	MIMIC Sepsis results

