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Abstract

Many reinforcement learning (RL) applications have combinatorial action spaces,
where each action is a composition of sub-actions. A standard RL approach
ignores this inherent factorization structure, resulting in a potential failure to
make meaningful inferences about rarely observed sub-action combinations; this is
particularly problematic for offline settings, where data may be limited. In this work,
we propose a form of linear Q-function decomposition induced by factored action
spaces. We study the theoretical properties of our approach, identifying scenarios
where it is guaranteed to lead to zero bias when used to approximate the Q-function.
Outside the regimes with theoretical guarantees, we show that our approach can still
be useful because it leads to better sample efficiency without necessarily sacrificing
policy optimality, allowing us to achieve a better bias-variance trade-off. Across
several offline RL problems using simulators and real-world datasets motivated by
healthcare, we demonstrate that incorporating factored action spaces into value-
based RL can result in better-performing policies. Our approach can help an agent
make more accurate inferences within underexplored regions of the state-action
space when applying RL to observational datasets.

1 Introduction

In many real-world decision-making problems, the action space exhibits an inherent combinatorial
structure. For example, in healthcare, an action may correspond to a combination of drugs and treat-
ments. When applying reinforcement learning (RL) to these tasks, past work [1–4] typically considers
each combination a distinct action, resulting in an exponentially large action space (Figure 1a). This
is inefficient as it fails to leverage any potential independence among dimensions of the action space.

This type of factorization structure in action space could be incorporated when designing the architec-
ture of function approximators for RL (Figure 1b). Similar ideas have been used in the past, primarily
to improve online exploration [5, 6], or to handle multiple agents [7–11] or multiple rewards [12].
However, the applicability of this approach has not been systematically studied, especially in offline
settings and when the MDP presents no additional structure (e.g., when the state space cannot be
explicitly factorized).

In this work, we develop an approach for offline RL with factored action spaces by learning linearly
decomposable Q-functions. First, we study the theoretical properties of this approach, investigating
the sufficient and necessary conditions for it to lead to an unbiased estimate of the Q-function (i.e.,
zero approximation error). Even when the linear decomposition is biased, we note that our approach
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Figure 1: Illustration of Q-network architectures, which take the state s as input and output Q(s, a)
for a selected action. In this example, the action space A consists of D = 3 binary sub-action spaces
{□,■}, {□,■} and {□,■}. (a) Learning with the combinatorial action space requires 23 = 8
output heads (exponential in D), one for each combination of sub-actions. (b) Incorporating the
linear Q decomposition for the factored action space requires 2× 3 = 6 output heads (linear in D).

leads to a reduction of variance, which in turn leads to an improvement in sample efficiency. Lastly,
we show that when sub-actions exhibit certain structures (e.g., when two sub-actions “reinforce” their
independent effects), the linear approximation, though biased, can still lead to the optimal policy. We
test our approach in offline RL domains using a simulator [13] and a real clinical dataset [2], where
domain knowledge about the relationship among actions suggests our proposed factorization approach
is applicable. Empirically, our approach outperforms a non-factored baseline when the sample size is
limited, even when the theoretical assumptions (around the validity of a linear decomposition) are not
perfectly satisfied. Qualitatively, in the real-data experiment, our approach learns policies that better
capture the effect of less frequently observed treatment combinations.

Our work provides both theoretical insights and empirical evidence for RL practitioners to consider
this simple linear decomposition for value-based RL approaches. Our contribution complements
many popular offline RL methods focused on distribution shift (e.g., BCQ [14]) and goes beyond
pessimism-only methods by leveraging domain knowledge. Compatible with any algorithm that has
a Q-function component, we expect our approach will lead to gains for offline RL problems with
combinatorial action spaces where data are limited and when domain knowledge can be used to check
the validity of theoretical assumptions.

2 Problem Setup
We consider Markov decision processes (MDPs) defined by a tupleM = (S,A, p, r, µ0, γ), where
S and A are the state and action spaces, p(s′|s, a) and r(s, a) are the transition and instantaneous
reward functions, µ0(s) is the initial state distribution, and γ ∈ [0, 1] is the discount factor. A
probabilistic policy π(a|s) specifies a mapping from each state to a probability distribution over
actions. For a deterministic policy, π(s) refers to the action with π(a|s) = 1. The state-value function
is defined as V π(s) = EπEM

[∑∞
t=1 γ

t−1rt | s1 = s
]
. The action-value function, Qπ(s, a), is

defined by further restricting the action taken from the starting state. The goal of RL is to find a policy
π∗ = argmaxπ Es∼µ0 [V

π(s)] (or an approximation) that has the maximum expected performance.

2.1 Factored Action Spaces
While the standard MDP definition abstracts away the underlying structure within the action space A,
in this paper, we explicitly express a factored action space as a Cartesian product of D sub-action
spaces,A =

⊗D
d=1Ad = A1×· · ·×AD. We use a ∈ A to denote each action, which can be written

as a vector of sub-actions a = [a1, . . . , aD], with each ad ∈ Ad. In general, a sub-action space can
be discrete or continuous, and the cardinalities of discrete sub-action spaces are not required to be the
same. For clarity of analysis and illustration, we consider discrete sub-action spaces in this paper.

2.2 Linear Decomposition of Q Function
The traditional factored MDP literature almost exclusively considers state space factorization [15]. In
contrast, here we capitalize on action space factorization to parameterize value functions. Specifically,
our approach considers a linear decomposition of the Q function, as illustrated in Figure 1b:

Qπ(s,a) =
∑D

d=1 qd(s, ad). (1)

Each component qd(s, ad) in the summation is allowed to condition on the full state space s and only
one sub-action ad. While similar forms of decomposition have been used in past work, there are key
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differences in how the summation components are parameterized. In the multi-agent RL literature,
each component qd(sd, ad) can only condition on the corresponding state space of the d-th agent [e.g.,
8, 9]. The decomposition in Eqn. (1) also differs from a related form of decomposition considered
by Juozapaitis et al. [12] where each component qd(s,a) can condition on the full action a. To the
best of our knowledge, we are the first to consider this specific form of Q-function decomposition
backed by both theoretical rigor and empirical evidence; in addition, we are the first to apply this idea
to offline RL. We discuss other related work in Section 5.

3 Theoretical Analyses
In this section, we study the theoretical properties of the linear Q-function decomposition induced by
factored action spaces. We first present sufficient and necessary conditions for our approach to yield
unbiased estimates, and then analyze settings in which our approach can reduce variance without
sacrificing policy performance when the conditions are violated. Finally, we discuss how domain
knowledge may be used to check the validity of these conditions, providing examples in healthcare.

3.1 Sufficient Conditions for Zero Bias
If we consider the total return of D MDPs running in parallel, where each MDP is defined by their
respective state space Sd and action space Ad, then the desired linear decomposition holds for the
MDP defined by the joint state space

⊗D
d=1 Sd and joint action space

⊗D
d=1Ad (formally discussed

in Appendix B.1). However, this relies on an explicit, known state space factorization, limiting its
applicability. In contrast, we now present a generalization that forgoes the explicit factorization of
the state space by making use of state abstractions. Intuitively, the MDP should have some implicit
factorization, such that it is homomorphic to D parallel MDPs. It is, however, not a requirement that
this factorization is known, as long as it exists.

Theorem 1. Given an MDP defined by S,A, p, r and a policy π : S → ∆(A), whereA =
⊗D

d=1Ad

is a factored action space with D sub-action spaces, if there exists D unique corresponding state
abstractions ϕ = [ϕ1, · · · , ϕD] where ϕd : S → Zd, zd = ϕd(s), z′d = ϕd(s

′), such that for all
s, a, s′ the following holds:∑

s̃∈ϕ−1(ϕ(s′)) p(s̃|s,a) =
∏D

d=1 pd(z
′
d|zd, ad) (2)

r(s,a) =
∑D

d=1 rd(zd, ad) (3) π(a|s) = ∏D
d=1 πd(ad|zd) (4)

for some pd : Zd ×Ad → ∆(Zd), rd : Zd ×Ad → R, and πd : Zd → ∆(Ad), then the Q-function
of policy π can be expressed as Qπ(s,a) =

∑D
d=1 qd(s, ad).

In Appendix B.2, we present an induction-based proof of Theorem 1. Since every assumption is
used in key steps of the proof, we conjecture that the sufficient conditions cannot be relaxed in
general. Consequently, if the sufficient conditions are satisfied, then using Eqn. (1) to parameterize
the Q-function leads to zero approximation error and results in an unbiased estimator. Note that
this does not require knowledge of ϕ. To highlight the significance of Theorem 1, we present the
following example, in which the state space cannot be explicitly factored, yet the linear decomposition
exists (additional examples probing the sufficient conditions can be found in Appendix C).
Example 1 (Two-dimensional chains with abstractions). The factored action space shown in Figure 2a,
A = Ax ×Ay, is the composition of two binary sub-action spaces: Ax = {←,→} leading the agent
to move left or right, and Ay = {↓, ↑} leading the agent to move down or up. Thus, A consists of
four actions, where each action a = [ax, ay] leads the agent to move diagonally.

Consider the MDP in Figure 2b with action spaceA. The state space S = {s0,0, s0,1, s̃0,1, s1,0, s1,1}
contains 5 different states; subscripts indicate the abstract state vector under ϕ = [ϕx, ϕy] (e.g., s0,1
and s̃0,1 are two different raw states but are identical under the abstraction, ϕ(s0,1) = ϕ(s̃0,1) =
[z0,?, z?,1]). There does not exist an explicit state space factorization such that S = Sx × Sy. One
can check that Eqns. (2) and (3) are satisfied by comparing the raw transitions and rewards against
the abstracted version (e.g., action↗ from s0,0 moves both→ (under ϕx) and ↑ (under ϕy) to s1,1
and receives the sum of the two rewards, 1 + 1 = 2). For Eqn. (4) to hold, the policy must take the
same action from s0,1 and s̃0,1. In Figure 2c, we show the linear decomposition of the Q-function for
one such policy where Theorem 1 applies, under which the evolution of the MDP can be seen as two
chain MDPs running in parallel (also in Figure 2b). ◁

3



(a)
Ax

Left Right Ay

Down

Up

Ax ×Ay

[Left, Down]

[Left, Up]

[Right, Down]

[Right, Up]

(c)
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Original MDP
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in y-direction
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Figure 2: (a) The composition of sub-action spaces Ax and Ay results in A = Ax ×Ay depicted by
outgoing arrows exiting the corners of each state (denoted by □). The corner from which the action
exits encodes the direction. (b) An MDP with 5 states and 4 actions of the factored action space A.
For example, action↗= [→, ↑] from s0,0 moves the agent both right (→) and up (↑), to s1,1. Under
abstractions ϕ = [ϕx, ϕy], this MDP can be mapped to two abstract MDPs (with action spacesAx and
Ay, respectively). The abstract state spaces are Zx = {z0,?, z1,?} and Zy = {z?,0, z?,1}, respectively,
where ? indicates the coordinate ignored by the abstraction. s1,1 is an absorbing state whose outgoing
transition arrows are not shown. Taking action↖= [←, ↑] from s0,0 leads to s0,1 with probability p
and to s̃0,1 with probability (1− p) (denoted in green). Actions taken by a determinisitic policy π
are denoted by bold blue arrows. π takes the same action↘= [→, ↓] from s0,1 and s̃0,1. Nonzero
rewards are denoted in red. (c) Linear decomposition of Qπ for s0,0 with respect to the factored
action space (γ = 0.9). Similar decompositions for other states also exist (omitted for space).

3.2 Necessary Conditions for Zero Bias
In Appendix B.5, we derive a necessary condition for the linear parameterization to be unbiased.
Unfortunately, the condition is not verifiable unless the exact MDP parameters are known; this
highlights the non-trivial nature of the problem. One may naturally question whether the sufficient
conditions (which are arguably more verifiable in practice) must hold (i.e., are necessary) for the
linear parameterization to be unbiased. Perhaps surprisingly, none of the conditions are necessary.
We state the following propositions and provide justifications through a set of counterexamples below
and in Appendix C.
Proposition 2. There exists an MDPM and a policy π for which Qπ

M decomposes as Eqn. (1) but
the transition function p ofM does not satisfy Eqn. (2).
Proposition 3. There exists an MDPM and a policy π for which Qπ

M decomposes as Eqn. (1) but
the reward function r ofM does not satisfy Eqn. (3).
Proposition 4. There exists an MDPM and a policy π for which Qπ

M decomposes as Eqn. (1) but
the policy π does not satisfy Eqn. (4).
Example 2 (Modified two-dimensional chains). In Figure 3, all conditions in Theorem 1 are violated,
yet for each state, there exists a linear decomposition of Q-values (see Appendix C). ◁

s0,0

s0,1

s1,0

s1,1

+1

+1

+1 +1

+1

+2

(1− γ)

z0,? z1,?
+1

z?,0

z?,1

+1

φx

φy (c)

(a)

(b)
Figure 3: This MDP is similar to Example 1 (except it does
not have state s̃0,1) and we consider the same abstractions ϕ =
[ϕx, ϕy]. The Q-function and decomposition are exactly the same
as in the previous example. However, none of the conditions in
Theorem 1 are satisfied. (a) The transition function does not satisfy
Eqn. (2) because action↗= [→, ↑] from s0,1 does not move right
(→ under ϕx) to s1,1 and instead moves back to state s0,1. (b) The
reward function does not satisfy Eqn. (3) as the reward of (1− γ)
for action↗= [→, ↑] from s0,1 is not the sum of +1 (→ from z0,?
under ϕx) and 0 (↑ from z?,1 under ϕy). (c) The policy does not
satisfy Eqn. (4) as it takes different sub-actions from z0,? under
ϕx (↖ from s0,0 specifies←, whereas↗ from s0,1 specifies→).

Therefore, while Theorem 1 imposes a rather stringent set of assumptions on the MDP structure
(transitions, rewards) and the policy, violations of these conditions do not preclude the linear parame-
terization of the Q-function from being an unbiased estimator.
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3.3 How Does Bias Affect Policy Learning?

When the sufficient conditions do not hold perfectly, using the linear parameterization in Eqn. (1) to
fit the Q-function may incur nonzero approximation error (bias). This can affect the performance of
the learned policy; in Appendix B.3, we derive error bounds based on the extent of bias relative to
the sufficient conditions in Theorem 1. Despite this bias, our approach always leads to a reduction
in the variance of the estimator. This gives us an opportunity to achieve a better bias-variance
trade-off, especially given limited historical data in the offline setting. In addition, as we will
demonstrate, biased Q-values do not always result in suboptimal policy performance, and we identify
the characteristics of problems where this occurs under our proposed linear decomposition.

3.3.1 Bias-Variance Trade-off

While the amount of bias incurred depends on the problem structure, the benefit of variance reduction
is immediate. Intuitively, to learn the Q-function of a tabular MDP with state space S and action
space A =

⊗D
d=1Ad, the linear parameterization reduces the number of free parameters from

|S||A| = |S|(∏D
d=1 |Ad|) to |S|(∑D

d=1 |Ad| − D + 1) (see Appendix B.4). This reduces the
hypothesis class from exponential in D to linear in D. To analyze variance reduction, we compare
the bounds on Rademacher complexity [16–18] of the Q-function approximator using the factored
action space with that of the full combinatorial action space (formally discussed in Appendix B.6).
Proposition 5. Using the linear Q-function decomposition for the factored action space in Eqn. (1)
has a smaller lower bound on the empirical Rademacher complexity compared to learning the
Q-function in the combinatorial action space.

Proposition 5 shows that our linear Q-function parameterization leads to a smaller function space,
which implies a lower-variance estimator. Hence, our factored-action approach can make more
efficient use of limited samples, leading to an interesting bias-variance trade-off that is especially
beneficial for offline settings with limited data.

3.3.2 Bias ̸⇒ Suboptimal Performance

Even in the presence of bias, an inaccurate Q-function may still correctly identify the value-
maximizing action (Proposition 6). While this statement is generally true, in this section, we
identify when this occurs specifically given our linear decomposition based on factored action spaces.
To focus the analysis on the most interesting aspects unique to our approach, we consider a bandit
setting; extensions to the sequential RL setting are possible by applying induction similar to the proof
for the main theorems (Appendices B.1 and B.2).

Proposition 6. There exists an MDP with the optimal Q∗ and its approximation Q̂ parameterized in
the form of Eqn. (1), such that Q̂ ̸= Q∗ and yet argmaxa Q̂(a) = argmaxa Q∗(a).

Justification. Consider a 1-step bandit problem with a single state and the same action space as
before, A = Ax × Ay. Taking an action a = [ax, ay] leads the agent to move diagonally and
terminate immediately. Since there are no transitions, the Q-values of any policy are simply the
immediate reward from each action, Q(a) = r(a). We assume the reward function is defined
as in Figure 4a (Appendix B.7 describes a procedure to standardize an arbitrary reward function).

(a) (b)

s

0

α

1

1 + α+ β
rLeft +rDown = 0
rLeft +rUp = α

rRight +rDown = 1
rRight +rUp +���rInteract = 1 + α+ β

(c)
True Value Function Linear Approximation

Q∗(↙)

Q∗(↖)

Q∗(↘)

Q∗(↗)

 =


0

α

1

1 + α+ β



Q̂(↙)

Q̂(↖)

Q̂(↘)

Q̂(↗)

 =


− 1

4β

α + 1
4β

1 + 1
4β

1 + α+ 3
4β



Figure 4: (a) A two-dimensional bandit
problem with action space A. Rewards
are denoted for each arm. (b) Learning
using the linear Q decomposition approach
corresponds to a system of linear equations
that relates the reward of each arm. The
parameter rInteract is dropped in our linear
approximation, leading to omitted-variable
bias. (c) Solving the system results in an
approximate value function Q̂, which does
not equal to the true value function Q∗

unless β = 0.
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Applying our approach amounts to solving for the parameters rLeft, rRight, rDown, rUp of the linear system
in Figure 4b, while dropping the interaction term rInteract, resulting in a form of omitted-variable bias
[19]. Solving the system gives the approximate value function where the interaction term β appears
in the approximation Q̂ for all arms (Figure 4c, details in Appendix B.8).

Note that Q̂ = Q∗ only when β = 0, i.e., there is no interaction between the two sub-actions. We
first consider the family of problems with α = 1 and β ∈ [−4, 4]. In Figure 5a, we measure the
value approximation error RMSE(Q∗, Q̂), as well as the suboptimality V π∗ −V π̂ = maxa Q∗(a)−
Q∗(argmaxa Q̂(a)) of the greedy policy defined by Q̂ as compared to π∗. As expected, when β = 0,
Q̂ is unbiased and has zero approximation error. When β ̸= 0, Q̂ is biased and RMSE > 0; however,
for β ≥ −1, Q̂ corresponds to a policy that correctly identifies the optimal action.

We further investigate this phenomenon considering both α, β ∈ [−4, 4] (to show all regions with
interesting trends), measuring RMSE and suboptimality in the same way as above. As shown in
Figure 5b, the approximation error is zero only when β = 0, regardless of α. However, in Figure 5c,
for a wide range of α and β settings, suboptimality is zero; this suggests that in those regions, even
in the presence of bias (non-zero approximation error), our approach leads to an approximate value
function that correctly identifies the optimal action. The irregular contour outlines multiple regions
where this happens; one key region is when the two sub-actions affect the reward in the same direction
(i.e., α ≥ 0) and their interaction effects also affect the reward in the same direction (i.e., β ≥ 0).

(a) (b) (c)
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Figure 5: (a) The approximation error and policy suboptimality of our approach for the bandit
problem in Figure 4a, for different settings of β when α = 1. The Q-value approximation is unbiased
only when β = 0, but the corresponding approximate policy is optimal for a wider range of β ≥ −1.
(b-c) The approximation error and policy suboptimality of our approach for the bandit problem in
Figure 4a, for different settings of α and β. The Q-value approximation is unbiased only when
β = 0, but the corresponding approximate policy is optimal for a wide range of α and β values. The
highlighted region of zero suboptimality corresponds to α ≥ 0 and β ≥ 0.

3.4 Practical Considerations: Are these Assumptions too Strong?

Based on our theoretical analysis, strong assumptions (Section 3.1) on the problem structure (though
not necessary, Section 3.2) are the only known way to guarantee the unbiasedness of our proposed
linear approximation. It is thus crucial to understand the applicability (and inapplicability) of our
approach in real-world scenarios. Exploring to what extent these assumptions hold in practice is
especially important for safety-critical domains such as healthcare where incorrect actions (treatments)
can have devastating consequences. Fortunately, RL tasks for healthcare are often equipped with
significant domain knowledge, which serves as a better guide to inform the algorithm design than
heuristics-driven reasoning alone [20, 5, 9].
Oftentimes, when clinicians treat conditions using multiple medications at the same time (giving rise
to the factored action space), it is because each medication has a different “mechanism of action,”
resulting in negligible or limited interactions. For example, several classes of medications are used in
the management of chronic heart failure, and each has a unique and incremental benefits on patient
outcomes [21]. Problems such as this satisfy the sufficient conditions in Section 3.1 in spite of a
non-factorized state space. Moreover, any small interactions would have a bounded effect on RL
policy performance (according to Appendix B.3).
Similarly, in the management of sepsis (which we consider in Section 4.2), fluids and vasopressors
affect blood pressure to correct hypotension via different mechanisms [22]. Fluid infusion increases
“preload” by increasing the blood return to the heart to make sure the heart has enough blood to
pump out [23]. In contrast, common vasopressors (e.g., norepinephrine) increase “inotropy” by
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stimulating the heart muscle and increase peripheral vascular resistance to maintain perfusion to
organs [24, 25]. Therefore, while the two treatments may appear to operate on the same part of the
state space (e.g., they both increase blood pressure), in general they are not expected to interfere with
each other. Recently, there has also been evidence suggesting that their combination can better correct
hypotension [26], which places this problem approximately in the regime discussed in Section 3.3.2.
In offline settings with limited historical data, the benefits of a reduction in variance can outweigh
any potential small bias incurred in the scenarios above and lead to overall performance improvement
(Section 3.3.1). However, our approach is not suitable if the interaction is counter to the effect of
the sub-actions (e.g., two drugs that raise blood pressure individually, but when combined lead to
a decrease). In such scenarios, the resulting bias will likely lead to suboptimal performance (Sec-
tion 3.3.2). Nevertheless, many drug-drug interactions are known and predictable [27–30]. In such
cases, one can either explicitly encode the interaction terms or resort back to a combinatorial action
space (Appendix B.9). While we focus on healthcare, there are other domains in which significant
domain knowledge regarding the interactions among sub-actions is available, e.g., cooperative multi-
agent games in finance where there is a higher payoff if agents cooperate (positive interaction effects)
or intelligent tutoring systems that teach basic arithmetic operations as well as fractions (which are
distinct but related skills). For these problems, this knowledge can and should be leveraged.

4 Experimental Evaluations

We apply our approach to two offline RL problems from healthcare: a simulated and a real-data
problem, both having an action space that is composed of several sub-action spaces. These problems
correspond to settings discussed in Section 3.4 where we expect our proposed approach to perform
well. In the following experiments, we compare our proposed approach (Figure 1b), which makes
assumptions regarding the effect of sub-actions in combination with other sub-actions, against a
common baseline that considers a combinatorial action space (Figure 1a).

4.1 Simulated Domain: Sepsis Simulator
Rationale. First, we apply our approach to a simulated domain modeled after the physiology of
patients with sepsis [13]. Although the policies are learned “offline,” a simulated setting allows us to
evaluate the learned policies in an “online” fashion without requiring offline policy evaluation (OPE).

Setup. Following prior work [31], a state is represented by a feature vector x(s) ∈ {0, 1}21 that
uses a one-hot encoding for each underlying variable (diabetes status, heart rate, blood pressure,
oxygen concentration, glucose; all of which are discrete). The action space is composed of 3 binary
treatments: antibiotics, vasopressors, and mechanical ventilation, such that A = Aabx ×Avaso ×Amv,
with Aabx = Avaso = Amv = {0, 1} and |A| = 23 = 8. Each treatment affects certain vital signs
and may raise or lower their values with pre-specified probabilities (precise definition in [31]). A
patient is discharged alive when all vitals are normal and all treatments have been withdrawn; death
occurs if 3 or more vitals are abnormal. Rewards are sparse and only assigned at the end of each
episode (+1 for survival and −1 for death), after which the system transitions into the respective
absorbing state. Episodes are truncated at a maximum length of 20 following [13] (where no terminal
reward is assigned). Here, the MDP partly satisfies the sufficient conditions outlined in Section 3. For
example, oxygen saturation (which can be seen as a state abstraction) is only affected by mechanical
ventilation, whereas heart rate is only affected by antibiotics. However, blood pressure is affected by
both antibiotics and vasopressors, meaning the effects of these two sub-actions are not independent.

Offline learning. First, we generated datasets with different sample sizes following different behavior
policies. We ran fitted Q-iteration for up to 50 iterations using a neural network function approximator,
selecting the early-stopping iteration based on ground-truth policy performance. Each setting of
sample size and behavior policy was repeated 10 times with different random seeds. Additional
details are described in Appendix D.1.

Results. Figure 6 compares median performance of the proposed approach vs. the baseline over the
10 runs (error bars are interquartile ranges). We considered behavior policies that take the optimal
action with probability ρ and select randomly among non-optimal actions with probability 1− ρ.

How does sample size affect performance? We first look at a uniformly random behavior policy
(ρ = 1/|A| = 0.125, Figure 6 center). As expected, larger sample sizes (i.e., more training episodes)
lead to better policy performance for both the baseline and proposed approaches. For smaller
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Figure 6: Performance on the sepsis simulator across sample sizes and behavior policies. Plots
display the performance over 10 runs, with the trend lines showing medians and error bars showing
interquartile ranges. ρ is the probability of taking the optimal action under the behavior policies
used to generate offline datasets from the simulator. The left two plots show two ϵ-greedy policies
(ρ > 0.125; conversion: ρ = (1 − ϵ) + ϵ/|A|); the middle plot shows a uniformly random policy
(ρ = 0.125); the right two plots show two policies that undersample the optimal action, ρ < 0.125;
from left to right, ρ decreases. Across different data distributions, our proposed approach outperforms
the baseline at small sample sizes, and closely matches baseline performance at large sample sizes.
Dashed lines denote the value of the optimal policy, which equals to 0.736.

sample sizes (< 5000), the proposed approach consistently outperforms the baseline. As sample size
increases further, the performance gap shrinks and eventually the baseline overtakes our proposed
approach. This is because variance decreases with increasing sample size but the bias incurred by the
factored approximation does not change. Once there are enough samples, reductions in variance are
no longer advantageous and the incurred bias dominates the performance. Overall, this shows that
our approach is promising especially for datasets with limited sample size.

How does behavior policy affect performance? As we anneal the behavior policy closer to the optimal
policy (ρ > 0.125, Figure 6 left two), we reduce the randomness in the behavior policy and limit the
amount of exploration possible at the same sample size. The same overall trend largely holds. On
the other hand, when the probability of taking the optimal action is less than random (ρ < 0.125,
Figure 6 right two), the proposed approach achieves better performance than the baseline with an
even larger gap for limited sample sizes (≤ 103). Without observing the optimal actions (ρ = 0),
the baseline performs relatively poorly, even for large sample sizes. In comparison, our approach
accounts for relationships among actions to some extent and is thus able to better generalize to the
unobserved and underexplored optimal actions, thereby outperforming the baseline.

Takeaways. In a challenging situation where our theoretical assumptions do not perfectly hold, our
proposed approach matches or outperforms the baseline, especially for smaller sample sizes.

4.2 Real Healthcare Data: Sepsis Treatment in MIMIC-III
Rationale. We apply our method to a real-world example of learning optimal sepsis treatment
policies for patients in the intensive care unit. Acknowledging the challenging nature of OPE for
quantitative comparisons [32, 33], here we qualitatively inspect the learned policies using clinical
domain knowledge.

Setup. Originally introduced by [2], we use the improved formulations of this task as per [34] and [35].
After applying the specified inclusion and exclusion criteria to the de-identified MIMIC-III database
[36], we obtained a cohort of 19,287 patients and performed a 70/15/15 split for training, validation
and testing. For each patient, their data include 10 time-invariant demographic and contextual features
and a 33-dimensional time series collected at 4h intervals, consisting of measurements from up to
24h before until up to 48h after sepsis onset. We used a recurrent neural network (RNN) with long
short-term memory (LSTM) cells to create an approximate information state [37] to summarize
the history into a dS-dimensional embedding vector. A terminal reward of 100 is assigned for 48h
survival and 0 otherwise. Intermediate rewards are all 0. γ for learning is 0.99 and for evaluation is 1.
Actions pertain to treatment decisions in each 4h interval, representing total volume of intravenous
(IV) fluids and amount of vasopressors administered, resulting in a 5× 5 factored action space.

Offline learning. After learning the state representations, we apply variants of discrete-action batch-
constrained Q-learning (BCQ) [38, 14], where the baseline uses the combinatorial action space and
the proposed approach incorporates the linear decomposition induced by the factored action space.
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Figure 8: (a) Qualitative comparison of policies. (b) Per-action state heterogeneity, measured as the
standard deviation of all state embeddings from which a particular action is observed in the dataset,
averaged over state embedding dimensions. Actions with higher IV fluid doses exhibited greater
heterogeneity in the observed states from which those actions were taken (by the clinician policy).

The Q-networks were trained for a maximum of 10, 000 iterations, with checkpoints saved every 100
iterations. We performed model selection [31] over the saved checkpoints (candidate policies) by
evaluating policy performance using the validation set with OPE. Specifically, we estimated policy
value using weighted importance sampling (WIS) and measured effective sample size (ESS), where
the behavior policy was estimated using k nearest neighbors in the embedding space. Following
previous work [39], the final policies were selected by maximizing validation WIS with ESS of
≥ 200 (we consider other thresholds in Appendix D.3), for which we report results on the test set.

Results. We visualize the validation performance over all candidate policies. Figure 7-left shows
that the performance Pareto frontier (in terms of WIS and ESS) of the proposed approach generally
dominates the baseline.

Quantitative comparisons. Evaluating the final selected policies on the test set (Figure 7-right) shows
that the proposed factored BCQ achieves a higher policy value (estimated using WIS) than baseline
BCQ at the same level of ESS. In addition, both policies have a similar level of agreement with the
clinician policy, comparable to the average agreement among clinicians.

Qualitative comparisons. In Figure 8a, we compare the distributions of recommended actions by
the clinician behavior policy, baseline BCQ and factored BCQ, as evaluated on the test set. While
overall the policies look rather similar, in that the most frequently recommended action corresponds
to low doses of IV fluids <500mL with no vasopressors, there are notable differences for key parts of
the action space. In particular, baseline BCQ almost never recommends higher doses of IV fluids
>500 mL, either alone or in combination with vasopressors, whereas both clinician and factored
BCQ recommend IV fluids >500 mL more frequently. These actions are typically used for critically
ill patients, for whom the Surviving Sepsis Campaign guidelines recommends up to >2L of fluids
[40]. We hypothesize that this difference is due to a higher level of heterogeneity in the patient states
for which actions with high IV fluid doses were observed, compared to the remaining actions with
lower doses of IV fluids. To further understand this phenomenon, we measure the per-action state
heterogeneity in the test set by computing, for each action, the standard deviation (averaged over
the embedding dimensions) of all RNN state embeddings from which that action is taken according
to the behavior policy. As shown in Figure 8b, actions with higher IV fluids generally have larger
standard deviations, supporting our hypothesis. The larger heterogeneity combined with lower sample
sizes makes it difficult for baseline BCQ to correctly infer the effects of these actions, as it does not
leverage the relationship among actions. In contrast, our approach leverages the factored action space
and can thus make better inferences about these actions.
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Takeaways. Applied to real clinical data, our proposed approach outperforms the baseline quantita-
tively and recommends treatments that align better with clinical knowledge. While promising, these
results are based in part on OPE, which has many issues [32, 33]. We stress that further investigation
and close collaboration with clinicians are essential before such RL algorithms are used in practice.

5 Related Work
For many years, the factored RL literature focused exclusively on state space factorization [15, 41–43].
More recently, interest in action space factorization has grown, as RL is applied in increasingly
more complex planning and control tasks. In particular, researchers have previously considered
the model-based setting with known MDP factorizations in which both state and action spaces are
factorized [44–47]. For model-free approaches, others have studied methods for factored actions
with a policy component (i.e., policy-based or actor-critic) [48, 20, 49–51]. In contrast, our work
considers value-based methods as those have been the most successful in offline RL [52].

Among prior work with a value-based component (e.g., Q-network), the majority pertains to multi-
agent [8–10, 53, 54] or multi-objective [51] problems that impose known, explicit assumptions on
the state space or the reward function. Notably, Son et al. [10] established theoretical conditions
for factored optimal actions (called “Individual-Global-Max”) for multi-agent RL and motivated
subsequent works [55, 56]; their result differs from our contribution on the unbiasedness of factored
Q-functions (instead of actions) for single-agent RL. In the online setting for single-agent deep
RL, Sharma et al. [20] and Tavakoli et al. [5] incorporated factored action spaces into Q-network
architecture designs, but did not provide a formal justification for the linear decomposition. Others
have empirically compared various “mixing” functions to combine the values of sub-actions [20, 9]. In
contrast, while our work only considers the linear decomposition function, we examine its theoretical
properties and provide justifications for using this approach in practical problems, especially in offline
settings. Our linear Q-decomposition is related to that of Swaminathan et al. [57] who also applied a
linearity assumption for off-policy evaluation, but for combinatorial contextual bandits rather than
RL. Our insights on the bias-variance trade-off is also related to a concurrent work by Saito and
Joachims [58] who proposed efficient off-policy evaluation for bandit problems with large (but not
necessarily factored) action spaces. In appendix Table 1, we further outline the differences of our
work compared to the existing literature.

Finally, the sufficient conditions we establish are related to, but different from, those identified by
Van Seijen et al. [59] and Juozapaitis et al. [12] who considered reward decompositions in the absence
of factored actions. Related, Metz et al. [60] proposed an approach that sequentially predicts values
for discrete dimensions of a transformed continuous action space, but assume an a priori ordering
of action dimensions, which we do not; Pierrot et al. [50] studied a different form of action space
factorization where sub-actions are sequentially selected in an autoregressive manner. Complementary
to our work, Tavakoli et al. [6] proposed to organize the sub-actions and interactions as a hypergraph
and linearly combining the values; our theoretical results on the linear decomposition nonetheless
apply to their setting where the sub-action interactions are explicitly identified and encoded.

6 Conclusion
To better leverage factored action spaces in RL, we developed an approach to learning policies that
incorporates a simple linear decomposition of the Q-function. We theoretically analyze the sufficient
and necessary conditions for this parameterization to yield unbiased estimates, study its effect on
variance reduction, and identify scenarios when any resulting bias does not lead to suboptimal
performance. We also note how domain knowledge may be used to inform the applicability of
our approach in practice, for problems where any possible bias is negligible or does not affect
optimality. Through empirical experiments on two offline RL problems involving a simulator and
real clinical data, we demonstrate the advantage of our approach especially in settings with limited
sample sizes. We provide further discussions on limitations, ethical considerations and societal
impacts in Appendix A. Though motivated by healthcare, our approach could apply more broadly
to scale RL to other applications (e.g., education) involving combinatorial action spaces where
domain knowledge may be used to verify the theoretical conditions. Future work should consider the
theoretical implications of linear Q decompositions when combined with other offline RL-specific
algorithms [52]. Given the challenging nature of identifying the best treatments from offline data, our
proposed approach may also be combined with other RL techniques that do not aim to identify the
single best action (e.g., learning dead-ends [61] or set-valued policies [34]).
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