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We organize the supplementary materials as follows:

• Appendix A: the proofs for Theorem 1.

• Appendix B: the pseudo-code of the proposed method.

• Appendix C: more details of experimental settings.

• Appendix D: more empirical results on vanilla long-tailed recognition, test-agnostic long-tailed
recognition, skill-diverse expert learning, and test-time self-supervised aggregation.

• Appendix E: more ablation studies on expert learning and the proposed inverse softmax loss.

• Appendix F: more ablation studies on test-time self-supervised aggregation.

• Appendix G: more discussion on model complexity.

• Appendix H: discussion on potential limitations.

A Proofs for Theorem 1

Proof. We first recall several key notations and define some new notations. The random variables of
model predictions and ground-truth labels are defined as Ŷ ∼ p(ŷ) and Y ∼ p(y), respectively. The
number of classes is denoted by C. Moreover, we further denote the test sample set of the class k by
Zk, in which the total number of samples in this class is denoted by |Zk|. Let ck = 1

|Zk|
∑

ŷ∈Zk
ŷ

represent the hard mean of all predictions of samples from the class k, and let c
= indicate equality up

to a multiplicative and/or additive constant.

As shown in Eq. (4), the optimization objective of our test-time self-supervised aggregation method
is to maximize S =

∑nt

j=1 ŷ
1
j ·ŷ2j , where nt denotes the number of test samples. For convenience, we

simplify the first data view to be the original data, so the objective function becomes
∑nt

j=1 ŷj ·ŷ1j .
Maximizing such an objective is equivalent to minimizing

∑nt

j=1 −ŷj ·ŷ1j . Here, we assume the data
augmentations are strong enough to generate representative data views that can simulate the test data
from the same class. In this sense, the new data view can be regarded as an independent sample from
the same class. Following this, we analyze our method by connecting −ŷj ·ŷ1j to

∑
ŷj∈Zk

∥ŷj−ck∥2,
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which is similar to the tightness term in the center loss [18]:∑
ŷj ,ŷ1

j∈Zk

−ŷj ·ŷ1j
c
=

1

|Zk|
∑

ŷj ,ŷ1
j∈Zk

−ŷj ·ŷ1j
c
=

1

|Zk|
∑

ŷj ,ŷ1
j∈Zk

∥ŷj∥2 − ŷj ·ŷ1j

=
∑

ŷj∈Zk

∥ŷj∥2 −
1

|Zk|
∑

ŷj∈Zk

∑
ŷ1
j∈Zk

ŷj ·ŷ1j

=
∑

ŷj∈Zk

∥ŷj∥2 − 2
1

|Zk|
∑

ŷj∈Zk

∑
ŷ1
j∈Zk

ŷj ·ŷ1j +
1

|Zk|
∑

ŷj∈Zk

∑
ŷ1
j∈Zk

ŷj ·ŷ1j

=
∑

ŷj∈Zk

∥ŷj∥2 − 2ŷj ·ck + ∥ck∥2

=
∑

ŷj∈Zk

∥ŷj−ck∥2,

where we use the property of the normalized predictions, i.e., ∥ŷj∥2 = ∥ŷ1j ∥2 = 1, and the definition
of the class hard mean ck = 1

|Zk|
∑

ŷ∈Zk
ŷ.

By summing over all classes k, we obtain:
nt∑
j=1

−ŷj ·ŷ1j
c
=

nt∑
j=1

∥ŷj−cyi∥2.

Based on this equation, following [1, 21], we can interpret
∑nt

j=1 −ŷj ·ŷ1j as a conditional cross-
entropy between Ŷ and another random variable Ȳ , whose conditional distribution given Y is a
standard Gaussian centered around cY :Ȳ |Y∼N (cy, i):

nt∑
j=1

−ŷj ·ŷ1j
c
= H(Ŷ ; Ȳ |Y ) = H(Ŷ |Y )+DKL(Ŷ ||Ȳ |Y ).

Hence, we know that
∑nt

j=1 −ŷj ·ŷ1j is an upper bound on the conditional entropy of predictions Ŷ
given labels Y :

nt∑
j=1

−ŷj ·ŷ1j
c
≥ H(Ŷ |Y ),

where the symbol
c
≥ represents “larger than" up to a multiplicative and/or an additive constant.

Moreover, when Ŷ |Y∼N (cy, i), the bound is tight. As a result, minimizing
∑nt

j=1 −ŷj ·ŷ1j is
equivalent to minimizing H(Ŷ |Y ):

nt∑
j=1

−ŷj ·ŷ1j ∝ H(Ŷ |Y ).

Meanwhile, the mutual information between predictions Ŷ and labels Y can be represented by:

I(Ŷ ;Y ) = H(Ŷ )−H(Ŷ |Y ).

Combining the above two equations, we have:
nt∑
j=1

−ŷj ·ŷ1j ∝ −I(Ŷ ;Y ) +H(Ŷ ).

Since S =
∑nt

j=1 ŷj ·ŷ1j , we obtain:

S ∝ I(Ŷ ;Y )−H(Ŷ ),

which concludes the proof for Theorem 1.
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B Pseudo-code

This appendix provides the pseudo-code1 of SADE, which consists of skill-diverse expert learning and
test-time self-supervised aggregation. Here, the skill-diverse expert learning strategy is summarized
in Algorithm 1. For simplicity, we depict the pseudo-code based on batch size 1, but we conduct
batch gradient descent in practice.

Algorithm 1 Skill-diverse Expert Learning
Require: Epochs T ; Hyper-parameters λ for Linv

Initialize: Network backbone fθ; Experts E1, E2, E3

1: for e=1,...,T do
2: for x ∈ Ds do // batch sampling in practice
3: Obtain logits v1 based on fθ and E1;
4: Obtain logits v2 based on fθ and E2;
5: Obtain logits v3 based on fθ and E3;
6: Compute loss Lce with v1 for Expert E1; // Eq. (1)
7: Compute loss Lbal with v2 for Expert E2; // Eq. (2)
8: Compute loss Linv with v3 for Expert E3; // Eq. (3)
9: Train the model with Lce + Lbal + Linv .

10: end for
11: end for
Output: The trained model {fθ, E1, E2, E3}

After training the multiple skill-diverse experts with Algorithm 1, the final prediction of the multi-
expert model for vanilla long-tailed recognition is the arithmetic mean of the prediction logits of
these experts, followed by a softmax function.

When it comes to test-agnostic long-tailed recognition, we need to aggregate these skill-diverse
experts to handle the unknown test class distribution based on Algorithm 2. Here, to avoid the learned
weights of some weak experts becoming zero, we give a stopping condition in Algorithm 2: if the
weight for one expert is less than 0.05, we stop test-time training. Retaining a small amount of weight
for each expert is sufficient to ensure the effect of ensemble learning.

Algorithm 2 Test-time Self-supervised Aggregation
Require: Epochs T ′; The trained backbone fθ; The trained experts E1, E2, E3

Initialize: Expert aggregation weights w // uniform initialization
1: for e=1,...,T ′ do
2: for x ∈ Dt do // batch sampling in practice
3: Draw two data augmentation functions t∼T , t′∼T ;
4: Generate data views x1=t(x), x2=t′(x);
5: Obtain logits v11 ,v12 ,v13 for the view x1;
6: Obtain logits v21 ,v22 ,v23 for the view x2;
7: Normalize expert weights w via softmax function;
8: Conduct predictions ŷ1,ŷ2 based on ŷ=wv;
9: Compute prediction stability S; // Eq. (4)

10: Maximize S to update w;
11: end for
12: If wi ≤ 0.05 for any wi ∈ w, then stop training.
13: end for
Output: Expert aggregation weights w

Note that, in test-agnostic long-tailed recognition, each model is only trained once on long-tailed
training data and then directly evaluated on multiple test sets. Our test-time self-supervised strategy
adapts the trained multi-expert model using only unlabeled test data during testing.

1The source code is provided at https://github.com/Vanint/SADE-AgnosticLT.
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C More Experimental Settings

In this appendix, we provide more details on experimental settings.

C.1 Benchmark Datasets

We use four benchmark datasets [22] (i.e., ImageNet-LT [12], CIFAR100-LT [2], Places-LT [12],
and iNaturalist 2018 [15]) to simulate real-world long-tailed class distributions. These datasets
suffer from severe class imbalance [10, 24].Their data statistics are summarized in Table 1, where
CIFAR100-LT has three variants with different imbalance ratios. The imbalance ratio is defined as
maxnj /minnj , where nj denotes the data number of class j.

Table 1: Statistics of datasets.
Dataset # classes # training data # test data imbalance ratio

ImageNet-LT [12] 1,000 115,846 50,000 256
CIFAR100-LT [2] 100 50,000 10,000 {10,50,100}
Places-LT [12] 365 62,500 36,500 996
iNaturalist 2018 [15] 8,142 437,513 24,426 500

C.2 Construction of Test-agnostic Long-tailed Datasets

Following LADE [8], we construct three kinds of test class distributions, i.e., the uniform distribution,
forward long-tailed distributions and backward long-tailed distributions. In the backward ones, the
long-tailed class order is flipped. Here, the forward and backward long-tailed test distributions
contain multiple different imbalance ratios, i.e., ρ ∈ {2, 5, 10, 25, 50}. Note that LADE [8] only
constructed multiple distribution-agnostic test datasets for ImageNet-LT; while in this study, we use
the same way to construct distribution-agnostic test datasets for the remaining benchmark datasets,
i.e., CIFAR100-LT, Places-LT and iNaturalist 2018, as illustrated below.

Considering the long-tailed training classes are sorted in a decreasing order, the various test datasets
are constructed as follows: (1) Forward long-tailed distribution: the number of the j-th class is
nj = N · ρ(j−1)/C , where N indicates the sample number per class in the original uniform test
dataset and C is the number of classes. (2) Backward long-tailed distribution: the number of the j-th
class is nj = N · ρ(C−j)/C . In the backward long-tailed distributions, the order of the long tail on
classes is flipped, so the distribution shift between training and test data is large, especially when the
imbalance ratio gets higher.

For ImageNet-LT, CIFAR100-LT and Places-LT, since there are enough test samples per class, we
follow the setting in LADE [8] and construct the imbalance ratio set by ρ ∈ {2, 5, 10, 25, 50}. For
iNaturalist 2018, since each class only contains three test samples, we adjust the imbalance ratio set
to ρ ∈ {2, 3}. Note that when we set ρ = 3, there are some classes in iNaturalist 2018 containing no
test sample. All these constructed distribution-agnostic long-tailed datasets will be publicly available
along with our code.

C.3 More Implementation Details of Our Method

We implement our method in PyTorch. Following [8, 17], we use ResNeXt-50 for ImageNet-LT,
ResNet-32 for CIFAR100-LT, ResNet-152 for Places-LT and ResNet-50 for iNaturalist 2018 as
backbones, respectively. Moreover, we adopt the cosine classifier for prediction on all datasets.

Although we have depicted the skill-diverse multi-expert framework in Section 4.1, we give more
details about it here. Without loss of generality, we take ResNet [7] as an example to illustrate the
multi-expert model. Since the shallow layers extract more general features and deeper layers extract
more task-specific features [20], the three-expert model uses the first two stages of ResNet as the
expert-shared backbone, while the later stages of ResNet and the fully-connected layer constitute
independent components of each expert. To be more specific, the number of convolutional filters
in each expert is reduced by 1/4, since by sharing the backbone and using fewer filters in each
expert [17, 26], the computational complexity of the model is reduced compared to the model with
independent experts. The final prediction is the arithmetic mean of the prediction logits of these
experts, followed by a softmax function.
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In the training phase, the data augmentations are the same as previous long-tailed studies [8, 11]. If
not specified, we use the SGD optimizer with the momentum of 0.9 and set the initial learning rate as
0.1 with linear decay. More specifically, for ImageNet-LT, we train models for 180 epochs with batch
size 64 and a learning rate of 0.025 (cosine decay). For CIFAR100-LT, the training epoch is 200 and
the batch size is 128. For Places-LT, following [12], we use ImageNet pre-trained ResNet-152 as the
backbone, while the batch size is set to 128 and the training epoch is 30. Besides, the learning rate is
0.01 for the classifier and 0.001 for all other layers. For iNaturalist 2018, we set the training epoch to
200, the batch size to 512 and the learning rate to 0.2. In our inverse softmax loss, we set λ=2 for
ImageNet-LT and CIFAR100-LT, and λ=1 for the remaining datasets.

In the test-time training, we use the same augmentations as MoCo v2 [3] to generate different data
views, i.e., random resized crop, color jitter, gray scale, Gaussian blur and horizontal flip. If not
specified, we train the aggregation weights for 5 epochs with the batch size 128, where we adopt the
same optimizer and learning rate as the training phase.

More detailed statistics of network architectures and hyper-parameters are reported in Table 2. Based
on these hyper-parameters, we conduct experiments on 1 TITAN RTX 2080 GPU for CIFAR100-LT,
4 GPUs for iNaturalist18, and 2 GPUs for ImageNet-LT and Places-LT, respectively.

Table 2: Statistics of the used network architectures and hyper-parameters in our study.
Items ImageNet-LT CIFAR100LT Places-LT iNarutalist 2018

Network Architectures
network backbone ResNeXt-50 ResNet-32 ResNet-152 ResNet-50
classifier cosine classifier

Training Phase
epochs 180 200 30 200
batch size 64 128 128 512
learning rate (lr) 0.025 0.1 0.01 0.2
lr schedule cosine decay linear decay
λ in inverse softmax loss 2 1
weight decay factor 5× 10−4 5× 10−4 4× 10−4 2× 10−4

momentum factor 0.9
optimizer SGD optimizer with nesterov

Test-time Training
epochs 5
batch size 128
learning rate (lr) 0.025 0.1 0.01 0.1

C.4 Discussions on Evaluation Metric

As mentioned in Section 5.1, we follow LADE [8] and use micro accuracy to evaluate model
performance on test-agnostic long-tailed recognition. In this appendix, we explain why micro
accuracy is a better metric than macro accuracy when the test dataset exhibits a non-uniform class
distribution. For instance, in the test scenario with a backward long-tailed class distribution, the tail
classes are more frequently encountered than the head classes, and thus should have larger weights
in evaluation. However, simply using macro accuracy treats all the categories equally and cannot
differentiate classes of different frequencies.

For example, one may train a recognition model for autonomous cars based on the training data
collected from city areas, where pedestrians are majority classes and stone obstacles are minority
classes. Assume the model accuracy is 60% on pedestrians and 40% on stones. If deploying the
model to city areas, where pedestrians/stones are assumed to have 500/50 test data, then the macro
accuracy is 50% and the micro accuracy is 500×0.6+50×0.4

500+50 ≈58%. In contrast, when deploying the
model to mountain areas, the pedestrians become the minority, while stones become the majority.
Assuming the test data numbers are changed to 50/500 on pedestrians/stones, the micro accuracy is
adjusted to 50×0.6+500×0.4

50+500 ≈42%, but the macro accuracy is still 50%. In this case, macro accuracy
is less informative than micro accuracy for measuring model performance. Therefore, micro accuracy
is a better metric to evaluate the performance of test-agnostic long-tailed recognition.
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D More Empirical Results

D.1 More Results on Vanilla Long-tailed Recognition

Accuracy on class subsets In the main paper, we have provided the average performance over
all classes on the uniform test class distribution. In this appendix, we further report the accuracy
regarding various class subsets (c.f. Table 3), making the results more complete.

Table 3: Top-1 accuracy of long-tailed recognition methods on the uniform test distribution.

Method ImageNet-LT CIFAR100-LT(IR10) CIFAR100-LT(IR50)

Many Med. Few All Many Med. Few All Many Med. Few All

Softmax 68.1 41.5 14.0 48.0 66.0 42.7 - 59.1 66.8 37.4 15.5 45.6
Causal [14] 64.1 45.8 27.2 50.3 63.3 49.9 - 59.4 62.9 44.9 26.2 48.8
Balanced Softmax [9] 64.1 48.2 33.4 52.3 63.4 55.7 - 61.0 62.1 45.6 36.7 50.9
MiSLAS [25] 62.0 49.1 32.8 51.4 64.9 56.6 - 62.5 61.8 48.9 33.9 51.5
LADE [8] 64.4 47.7 34.3 52.3 63.8 56.0 - 61.6 60.2 46.2 35.6 50.1
RIDE [17] 68.0 52.9 35.1 56.3 65.7 53.3 - 61.8 66.6 46.2 30.3 51.7

SADE (ours) 66.5 57.0 43.5 58.8 65.8 58.8 - 63.6 61.5 50.2 45.0 53.9

Method CIFAR100-LT(IR100) Places-LT iNaturalist 2018

Many Med. Few All Many Med. Few All Many Med. Few All

Softmax 68.6 41.1 9.6 41.4 46.2 27.5 12.7 31.4 74.7 66.3 60.0 64.7
Causal [14] 64.1 46.8 19.9 45.0 23.8 35.7 39.8 32.2 71.0 66.7 59.7 64.4
Balanced Softmax [9] 59.5 45.4 30.7 46.1 42.6 39.8 32.7 39.4 70.9 70.7 70.4 70.6
MiSLAS [25] 60.4 49.6 26.6 46.8 41.6 39.3 27.5 37.6 71.7 71.5 69.7 70.7
LADE [8] 58.7 45.8 29.8 45.6 42.6 39.4 32.3 39.2 68.9 68.7 70.2 69.3
RIDE [17] 67.4 49.5 23.7 48.0 43.1 41.0 33.0 40.3 71.5 70.0 71.6 71.8

SADE (ours) 65.4 49.3 29.3 49.8 40.4 43.2 36.8 40.9 74.5 72.5 73.0 72.9

Results on stonger data augmentations Inspired by PaCo [5], we further evaluate SADE training
with stronger data augmentation (i.e., RandAugment [4]) for 400 epochs. The results in Table 4
further demonstrate the state-of-the-art performance of SADE.

Table 4: Accuracy of long-tailed methods with stronger augmentations, where the test class distribu-
tion is uniform. Here, ∗ denotes training with RandAugment [4] for 400 epochs. The baseline results
are directly copied from the work [5].

Methods ImageNet-LT CIFAR100-LT(IR10) CIFAR100-LT(IR50) CIFAR100-LT(IR100) Places-LT iNaturalist 2018

PaCo∗ [5] 58.2 64.2 56.0 52.0 41.2 73.2
SADE∗ (ours) 61.2 65.3 57.3 52.2 41.3 74.5

Results on more neural architectures In addition to using the common practice of backbones as
previous long-tailed studies [8, 17], we further evaluate SADE on more neural architectures. The
results in Table 5 demonstrate that SADE is able to train different network backbones well.

Table 5: Accuracy of SADE with various network architectures. Here, ∗ denotes training with
RandAugment [4] for 400 epochs.

ImageNet-LT iNaturalist 2018

Backbone Methods Many Med. Few All Backbone Methods Many Med. Few All

ResNeXt-50 SADE 66.5 57.0 43.5 58.8 ResNet-50 SADE 74.5 72.5 73.0 72.9
SADE∗ 67.3 60.4 46.4 61.2 SADE∗ 75.5 73.7 75.1 74.5

ResNeXt-101 SADE 66.8 57.5 43.1 59.1 ResNet-152 SADE 76.2 64.3 65.1 74.8
SADE∗ 68.1 60.5 45.5 61.4 SADE∗ 78.3 77.0 76.7 77.0

ResNeXt-152 SADE 67.2 57.4 43.5 59.3
SADE∗ 68.6 61.2 47.0 62.1
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Results on more datasets We also conduct experiments on CIFAR10-LT with imbalance ratios of
10 and 100. Promising results in Table 6 further demonstrate the effectiveness and superiority of our
proposed method.

Table 6: Accuracy on CIFAR10-LT, where the test class distribution is uniform. Most results are
directly copied from the work [25].

Imbalance Ratio Softmax BBN MiSLAS RIDE SADE (ours)

10 86.4 88.4 90.0 89.7 90.8
100 70.4 79.9 82.1 81.6 83.8
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D.2 More Results on Test-agnostic Long-tailed Recognition

In the main paper, we have provided the overall performance on four benchmark datasets with various
test class distributions. In this appendix, we further verify the effectiveness of our method on more
dataset settings (i.e., CIFAR100-IR10 and CIFAR100-IR50), as shown in Table 7.

Table 7: Top-1 accuracy over all classes on various unknown test class distributions. “Prior" indicates
that the test class distribution is used as prior knowledge. “Uni." denotes the uniform distribution.
“IR" indicates the imbalance ratio. “BS" denotes the balanced softmax [9].

Method Prior

(a) ImageNet-LT (b) CIFAR100-LT (IR10)

Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT

50 25 10 5 2 1 2 5 10 25 50 50 25 10 5 2 1 2 5 10 25 50

Softmax ✗ 66.1 63.8 60.3 56.6 52.0 48.0 43.9 38.6 34.9 30.9 27.6 72.0 69.6 66.4 65.0 61.2 59.1 56.3 53.5 50.5 48.7 46.5
BS ✗ 63.2 61.9 59.5 57.2 54.4 52.3 50.0 47.0 45.0 42.3 40.8 65.9 64.9 64.1 63.4 61.8 61.0 60.0 58.2 57.5 56.2 55.1
MiSLAS ✗ 61.6 60.4 58.0 56.3 53.7 51.4 49.2 46.1 44.0 41.5 39.5 67.0 66.1 65.5 64.4 63.2 62.5 61.2 60.4 59.3 58.5 57.7
LADE ✗ 63.4 62.1 59.9 57.4 54.6 52.3 49.9 46.8 44.9 42.7 40.7 67.5 65.8 65.8 64.4 62.7 61.6 60.5 58.8 58.3 57.4 57.7
LADE ✓ 65.8 63.8 60.6 57.5 54.5 52.3 50.4 48.8 48.6 49.0 49.2 71.2 69.3 67.1 64.6 62.4 61.6 60.4 61.4 61.5 62.7 64.8
RIDE ✗ 67.6 66.3 64.0 61.7 58.9 56.3 54.0 51.0 48.7 46.2 44.0 67.1 65.3 63.6 62.1 60.9 61.8 58.4 56.8 55.3 54.9 53.4

SADE ✗ 69.4 67.4 65.4 63.0 60.6 58.8 57.1 55.5 54.5 53.7 53.1 71.2 69.4 67.6 66.3 64.4 63.6 62.9 62.4 61.7 62.1 63.0

Method Prior

(c) CIFAR100-LT (IR50) (d) CIFAR100-LT (IR100)

Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT

50 25 10 5 2 1 2 5 10 25 50 50 25 10 5 2 1 2 5 10 25 50

Softmax ✗ 64.8 62.7 58.5 55.0 49.9 45.6 40.9 36.2 32.1 26.6 24.6 63.3 62.0 56.2 52.5 46.4 41.4 36.5 30.5 25.8 21.7 17.5
BS ✗ 61.6 60.2 58.4 55.9 53.7 50.9 48.5 45.7 43.9 42.5 40.6 57.8 55.5 54.2 52.0 48.7 46.1 43.6 40.8 38.4 36.3 33.7
MiSLAS ✗ 60.1 58.9 57.7 56.2 53.7 51.5 48.7 46.5 44.3 41.8 40.2 58.8 57.2 55.2 53.0 49.6 46.8 43.6 40.1 37.7 33.9 32.1
LADE ✗ 61.3 60.2 56.9 54.3 52.3 50.1 47.8 45.7 44.0 41.8 40.5 56.0 55.5 52.8 51.0 48.0 45.6 43.2 40.0 38.3 35.5 34.0
LADE ✓ 65.9 62.1 58.8 56.0 52.3 50.1 48.3 45.5 46.5 46.8 47.8 62.6 60.2 55.6 52.7 48.2 45.6 43.8 41.1 41.5 40.7 41.6
RIDE ✗ 62.2 61.0 58.8 56.4 52.9 51.7 47.1 44.0 41.4 38.7 37.1 63.0 59.9 57.0 53.6 49.4 48.0 42.5 38.1 35.4 31.6 29.2

SADE ✗ 67.2 64.5 61.2 58.6 55.4 53.9 51.9 50.9 51.0 51.7 52.8 65.9 62.5 58.3 54.8 51.1 49.8 46.2 44.7 43.9 42.5 42.4

Method Prior

(e) Places-LT (f) iNaturalist 2018

Forward-LT Uni. Backward-LT Forward-LT Uni. Backward-LT

50 25 10 5 2 1 2 5 10 25 50 3 2 1 2 3

Softmax ✗ 45.6 42.7 40.2 38.0 34.1 31.4 28.4 25.4 23.4 20.8 19.4 65.4 65.5 64.7 64.0 63.4
BS ✗ 42.7 41.7 41.3 41.0 40.0 39.4 38.5 37.8 37.1 36.2 35.6 70.3 70.5 70.6 70.6 70.8
MiSLAS ✗ 40.9 39.7 39.5 39.6 38.8 38.3 37.3 36.7 35.8 34.7 34.4 70.8 70.8 70.7 70.7 70.2
LADE ✗ 42.8 41.5 41.2 40.8 39.8 39.2 38.1 37.6 36.9 36.0 35.7 68.4 69.0 69.3 69.6 69.5
LADE ✓ 46.3 44.2 42.2 41.2 39.7 39.4 39.2 39.9 40.9 42.4 43.0 ✗ 69.1 69.3 70.2 ✗
RIDE ✗ 43.1 41.8 41.6 42.0 41.0 40.3 39.6 38.7 38.2 37.0 36.9 71.5 71.9 71.8 71.9 71.8

SADE ✗ 46.4 44.9 43.3 42.6 41.3 40.9 40.6 41.1 41.4 42.0 41.6 72.3 72.5 72.9 73.5 73.3

Furthermore, we plot the results of all methods under these benchmark datasets with various test
class distributions in Figure 1. To be specific, Softmax only performs well on highly-imbalanced
forward long-tailed class distributions. Existing long-tailed baselines outperform Softmax, but they
cannot handle backward test class distributions well. In contrast, our method consistently outperforms
baselines on all benchmark datasets, particularly on the backward long-tailed test distributions with a
relatively large imbalance ratio.
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(b) CIFAR100-LT(IR10)
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Figure 1: Performance visualizations on various unknown test class distributions, where “F" indi-
cates the forward long-tailed distributions as training data, “B" indicates the backward long-tailed
distributions to the training data, and “U" denotes the uniform distribution.
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D.3 More Results on Skill-diverse Expert Learning

This appendix further evaluates the skill-diverse expert learning strategy on CIFAR100-LT, Places-LT
and iNaturalist 2018 datasets. We report the results in Table 8, from which we draw the following
observations. RIDE [17] is one of the state-of-the-art ensemble-based long-tailed methods, which tries
to learn diverse distribution-aware experts by maximizing the divergence among expert predictions.
However, such a method cannot learn sufficiently diverse experts. As shown in Table 8, the three
experts in RIDE perform very similarly on various groups of classes under all benchmark datasets,
and each expert has similar overall performance on each dataset. Such results demonstrate that simply
maximizing the KL divergence of different experts’ predictions is not sufficient to learn visibly
diverse distribution-aware experts.

In contrast, our proposed method learns the skill-diverse experts by directly training each expert
with their customized expertise-guided objective functions, respectively. To be specific, the forward
expert E1 seeks to learn the long-tailed training distribution, so we directly train it with the cross-
entropy loss. For the uniform expert E2, we use the balanced softmax loss to simulate the uniform
test distribution. For the backward expert E3, we design a novel inverse softmax loss to train the
expert, so that it simulates the inversely long-tailed class distribution. Table 8 shows that the three
experts trained by our method are visibly diverse and skilled in handling different class distributions.
Specifically, the forward expert is skilled in many-shot classes, the uniform expert is more balanced
with higher overall performance, and the backward expert is good at few-shot classes. Because of
such a novel design that enhances expert diversity, our method achieves more promising ensemble
performance compared to RIDE.

Table 8: Performance of each expert on the uniform test distribution. Here, the training imbalance
ratio of CIFAR100-LT is 100. The results show that our proposed method learns more skill-diverse
experts, leading to better performance of ensemble aggregation.

Model

RIDE [17]

ImageNet-LT CIFAR100-LT Places-LT iNaturalist 2018

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All

Expert E1 64.3 49.0 31.9 52.6 63.5 44.8 20.3 44.0 41.3 40.8 33.2 40.1 66.6 67.1 66.5 66.8
Expert E2 64.7 49.4 31.2 52.8 63.1 44.7 20.2 43.8 43.0 40.9 33.6 40.3 66.1 67.1 66.6 66.8
Expert E3 64.3 48.9 31.8 52.5 63.9 45.1 20.5 44.3 42.8 41.0 33.5 40.2 65.3 67.3 66.5 66.7

Ensemble 68.0 52.9 35.1 56.3 67.4 49.5 23.7 48.0 43.2 41.1 33.5 40.3 71.5 72.0 71.6 71.8

Model

SADE (ours)

ImageNet-LT CIFAR100-LT Places-LT iNaturalist 2018

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All

Expert E1 68.8 43.7 17.2 49.8 67.6 36.3 6.8 38.4 47.6 27.1 10.3 31.2 76.0 67.1 59.3 66.0
Expert E2 65.5 50.5 33.3 53.9 61.2 44.7 23.5 44.2 42.6 42.3 32.3 40.5 69.2 70.7 69.8 70.2
Expert E3 43.4 48.6 53.9 47.3 14.0 27.6 41.2 25.8 22.6 37.2 45.6 33.6 55.6 61.5 72.1 65.1

Ensemble 67.0 56.7 42.6 58.8 61.6 50.5 33.9 49.4 40.4 43.2 36.8 40.9 74.4 72.5 73.1 72.9
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D.4 More Results on Test-time Self-supervised Aggregation

This appendix provides more results to examine the effectiveness of our test-time self-supervised
aggregation strategy. We report results in Table 9, from which we draw several observations.

First of all, our method is able to learn suitable expert aggregation weights for test-agnostic class
distributions, without relying on the true test class distribution. For the forward long-tailed test
distribution, where the test data number of many-shot classes is more than that of medium-shot
and few-shot classes, our method learns a higher weight for the forward expert E1 who is skilled
in many-shot classes, and learns relatively low weights for the expert E2 and expert E3 who are
good at medium-shot and few-shot classes. Meanwhile, for the uniform test class distribution where
all classes have the same number of test samples, our test-time expert aggregation strategy learns
relatively balanced weights for the three experts. For example, on the uniform ImageNet-LT test data,
the learned weights by our strategy are 0.33, 0.33 and 0.34 for the three experts, respectively. In
addition, for the backward long-tailed test distributions, our method learns a higher weight for the
backward expert E3 and a relatively low weight for the forward expert E1. Note that when the class
imbalance ratio becomes larger, our method is able to learn more diverse expert weights adaptively
for fitting the actual test class distributions.

Such results not only demonstrate the effectiveness of our proposed strategy, but also verify the
theoretical analysis that our method can simulate the unknown test class distribution. To our best
knowledge, such an ability is quite promising, since it is difficult to know the true test class distribu-
tions in real-world application. Therefore, our method opens the opportunity for tackling unknown
class distribution shifts at test time, and can serve as a better candidate to handle real-world long-tailed
learning applications.

Table 9: The learned aggregation weights by our test-time self-supervised aggregation strategy on
different test class distributions of ImageNet-LT, CIFAR100-LT, Places-LT and iNaturalist 2018.
The results show that our self-supervised strategy is able to learn suitable expert weights for various
unknown test class distributions.

Test Dist. ImageNet-LT CIFAR100-LT(IR10) CIFAR100-LT(IR50)

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.52 0.35 0.13 0.53 0.38 0.09 0.55 0.38 0.07
Forward-LT-25 0.50 0.35 0.15 0.52 0.37 0.11 0.54 0.38 0.08
Forward-LT-10 0.46 0.36 0.18 0.47 0.36 0.17 0.52 0.37 0.11
Forward-LT-5 0.43 0.34 0.23 0.46 0.34 0.20 0.50 0.36 0.14
Forward-LT-2 0.37 0.35 0.28 0.39 0.37 0.24 0.39 0.38 0.23
Uniform 0.33 0.33 0.34 0.38 0.32 0.3 0.35 0.33 0.33
Backward-LT-2 0.29 0.31 0.40 0.35 0.33 0.31 0.30 0.30 0.40
Backward-LT-5 0.24 0.31 0.45 0.31 0.32 0.37 0.21 0.29 0.50
Backward-LT-10 0.21 0.29 0.50 0.26 0.32 0.42 0.20 0.29 0.51
Backward-LT-25 0.18 0.29 0.53 0.24 0.30 0.46 0.18 0.27 0.55
Backward-LT-50 0.17 0.27 0.56 0.23 0.28 0.49 0.14 0.24 0.62

Test Dist. CIFAR100-LT(IR100) Places-LT iNaturalist 2018

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.56 0.38 0.06 0.50 0.20 0.20 - - -
Forward-LT-25 0.55 0.38 0.07 0.50 0.20 0.20 - - -
Forward-LT-10 0.52 0.39 0.09 0.50 0.20 0.20 - - -
Forward-LT-5 0.51 0.37 0.12 0.46 0.32 0.22 - - -
Forward-LT-2 0.49 0.35 0.16 0.40 0.34 0.26 0.41 0.34 0.25
Uniform 0.40 0.35 0.24 0.25 0.34 0.41 0.33 0.33 0.34
Backward-LT-2 0.33 0.31 0.36 0.18 0.30 0.52 0.28 0.32 0.40
Backward-LT-5 0.28 0.30 0.42 0.17 0.28 0.55 - - -
Backward-LT-10 0.23 0.28 0.49 0.17 0.27 0.56 - - -
Backward-LT-25 0.21 0.26 0.53 0.17 0.27 0.56 - - -
Backward-LT-50 0.16 0.28 0.56 0.17 0.27 0.56 - - -

Relying on the learned expert weights, our method aggregates the three experts appropriately and
achieves better performance on the dominant test classes, thus obtaining promising performance
gains on various test distributions, as shown in Table 10. Note that the performance gain compared to
existing methods gets larger as the test dataset gets more imbalanced. For example, on CIFAR100-LT
with the imbalance ratio of 50, our test-time self-supervised strategy obtains a 7.7% performance
gain on the Forward-LT-50 distribution and obtains a 9.2% performance gain on the Backward-LT-50
distribution, both of which are non-trivial. Such an observation is also supported by the visualization
result of Figure 2, which plots the results of existing methods on ImageNet-LT with different test
class distributions regarding the three class subsets.
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In addition, since the imbalance degrees of the test datasets are relatively low on iNaturalist 2018, the
simulated test class distributions are thus relatively balanced. As a result, the obtained performance
improvement is not that significant, compared to other datasets. However, if there are more iNaturalist
test samples following highly imbalanced test class distributions in real applications, our method
would obtain more promising results.

Table 10: The performance improvement via test-time self-supervised aggregation on various test
class distributions of ImageNet-LT, CIFAR100-LT, Places-LT and iNaturalist 2018.

Test Dist.

ImageNet-LT CIFAR100-LT(IR10)

Ours w/o test-time aggregation Ours w/ test-time aggregation Ours w/o test-time aggregation Ours w/ test-time aggregation

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 65.6 55.7 44.1 65.5 70.0 53.2 33.1 69.4 (+3.9) 66.3 58.3 - 66.3 69.0 50.8 - 71.2 (+4.9)
Forward-LT-25 65.3 56.9 43.5 64.4 69.5 53.2 32.2 67.4 (+3.0) 63.1 60.8 - 64.5 67.6 52.2 - 69.4 (+4.9)
Forward-LT-10 66.5 56.8 44.2 63.6 69.9 54.3 34.7 65.4 (+1.8) 64.1 58.8 - 64.1 67.2 54.2 - 67.6 (+3.5)
Forward-LT-5 65.9 56.5 43.3 62.0 68.9 54.8 35.8 63.0 (+1.0) 62.7 57.1 - 62.7 66.9 54/3 - 66.3 (+3.6)
Forward-LT-2 66.2 56.5 42.1 60.0 68.2 56.0 40.1 60.6 (+0.6) 62.8 56.3 - 61.6 66.1 56.6 - 64.4 (+2.8)
Uniform 67.0 56.7 42.6 58.8 66.5 57.0 43.5 58.8 (+0.0) 65.5 59.9 - 63.6 65.8 58.8 - 63.6 (+0.0)
Backward-LT-2 66.3 56.7 43.1 56.8 65.3 57.1 45.0 57.1 (+0.3) 62.7 56.9 - 60.2 65.6 59.5 - 62.9 (+2.7)
Backward-LT-5 66.6 56.9 43.0 54.7 63.4 56.4 47.5 55.5 (+0.8) 62.8 57.5 - 59.7 65.1 60.4 - 62.4 (+2.7)
Backward-LT-10 65.0 57.6 43.1 53.1 60.9 57.5 50.1 54.5 (+1.4) 63.5 58.2 - 59.8 62.5 61.4 - 61.7 (+1.9)
Backward-LT-25 64.2 56.9 43.4 51.1 60.5 57.1 50.0 53.7 (+2.6) 63.4 57.7 - 58.7 61.9 62.0 - 62.1 (+3.4)
Backward-LT-50 69.1 57.0 42.9 49.8 60.7 56.2 50.7 53.1 (+3.3) 62.0 57.8 - 58.6 62.6 62.6 - 63.0 (+3.8)

Test Dist.

CIFAR100-LT(IR50) CIFAR100-LT(IR100)

Ours w/o test-time aggregation Ours w/ test-time aggregation Ours w/o test-time aggregation Ours w/ test-time aggregation

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 59.7 53.3 26.9 59.5 68.0 44.1 19.4 67.2 (+7.7) 60.7 50.3 32.4 58.4 69.9 48.8 14.2 65.9 (+7.5)
Forward-LT-25 59.1 51.8 32.6 58.6 67.3 46.2 19.5 64.5 (+6.9) 60.6 49.6 29.4 57.0 68.9 46.5 15.1 62.5 (+5.5)
Forward-LT-10 59.7 47.2 36.1 56.4 67.2 45.7 24.7 61.2 (+4.8) 60.1 48.6 28.4 54.4 68.3 46.9 16.7 58.3 (+3.9)
Forward-LT-5 59.7 46.9 36.9 54.8 67.0 45.7 29.9 58.6 (+3.4) 60.3 50.3 29.5 53.1 68.3 45.3 19.4 54.8 (+1.7)
Forward-LT-2 59.2 48.4 41.9 53.2 63.8 48.5 39.3 55.4 (+2.2) 60.6 48.8 31.3 50.1 68.2 47.6 22.5 51.1 (+1.0)
Uniform 61.0 50.2 45.7 53.8 61.5 50.2 45.0 53.9 (+0.1) 61.6 50.5 33.9 49.4 65.4 49.3 29.3 49.8 (+0.4)
Backward-LT-2 59.0 48.2 42.8 50.1 57.5 49.7 49.4 51.9 (+1.8) 61.2 49.1 30.8 45.2 63.1 49.4 31.7 46.2 (+1.0)
Backward-LT-5 60.1 48.6 41.8 48.2 50.0 49.3 54.2 50.9 (+2.7) 62.0 48.9 32.0 42.6 56.2 49.1 38.2 44.7 (+2.1)
Backward-LT-10 58.6 46.9 42.6 46.1 49.3 49.1 54.6 51.0 (+4.9) 60.6 48.2 31.7 39.7 52.1 47.9 40.6 43.9 (+4.2)
Backward-LT-25 55.1 48.9 41.2 44.4 44.5 46.6 57.0 51.7 (+7.3) 58.2 47.9 32.2 36.7 48.7 44.2 41.8 42.5 (+5.8)
Backward-LT-50 57.0 48.8 41.6 43.6 45.8 46.6 58.4 52.8 (+9.2) 66.9 48.6 30.4 35.0 49.0 42.7 42.5 42.4 (+7.4)

Test Dist.

Places-LT iNaturalist 2018

Ours w/o test-time aggregation Ours w/ test-time aggregation Ours w/o test-time aggregation Ours w/ test-time aggregation

Many Med. Few All Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 43.5 42.5 65.9 43.7 46.8 39.3 30.5 46.4 (+2.7) - - - - - - - -
Forward-LT-25 42.8 42.1 29.3 42.7 46.3 38.9 23.6 44.9 (+2.3) - - - - - - - -
Forward-LT-10 42.3 41.9 34.9 42.3 45.4 39.0 27.0 43.3 (+1.0) - - - - - - - -
Forward-LT-5 43.0 44.0 33.1 42.4 45.6 40.6 27.3 42.6 (+0.2) - - - - - - - -
Forward-LT-2 43.4 42.4 32.6 41.3 44.9 41.2 29.5 41.3 (+0.0) 73.9 72.4 72.0 72.4 75.5 72.5 70.7 72.5 (+0.1)
Uniform 43.1 42.4 33.2 40.9 40.4 43.2 36.8 40.9 (+0.0) 74.4 72.5 73.1 72.9 74.5 72.5 73.0 72.9 (+0.0)
Backward-LT-2 42.8 41.9 33.2 39.9 37.1 42.9 40.0 40.6 (+0.7) 76.1 72.8 72.6 73.1 74.9 72.6 73.7 73.5 (+0.4)
Backward-LT-5 43.1 42.0 33.6 39.1 36.4 42.7 41.1 41.1 (+2.0) - - - - - - - -
Backward-LT-10 43.5 42.9 33.7 38.9 35.2 43.2 41.3 41.4 (+2.5) - - - - - - - -
Backward-LT-25 44.6 42.4 33.6 37.8 38.0 43.5 41.1 42.0 (+4.2) - - - - - - - -
Backward-LT-50 42.2 43.4 33.3 37.2 37.3 43.5 40.5 41.6 (+4.7) - - - - - - - -
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(b) Balanced Softmax [9]
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(c) MiSLAS [25]
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(d) LADE w/o prior [8]
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(e) RIDE [17]
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(f) SADE (ours)

Figure 2: Top-1 accuracy of existing long-tailed (LT) methods on ImageNet-LT with various test
class distributions, including uniform, forward and backward long-tailed ones with imbalance ratios
10 and 50, respectively. Here, “F-LT-N" and “B-LT-N indicate the cases where test samples follow
the same long-tailed distribution as training data and inversely long-tailed to the training data, with
the imbalance ratio N , respectively. The results show that existing methods perform very similarly
on various test class distributions in terms of their performance on many-shot, medium-shot
and few-shot classes. In contrast, our proposed method is capable of adaptingbi to various test
class distributions in terms of many-shot, medium-shot and few-shot performance, thus leading
to better overall performance on each test class distribution.
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E Ablation Studies on Skill-diverse Expert Learning

E.1 Discussion on Expert Number

In SADE, we consider three experts, where the “forward" and “backward" experts are necessary since
they span a wide spectrum of possible test class distributions, while the “uniform" expert ensures that
we retain high accuracy on the uniform test class distributions. Nevertheless, our approach can be
straightforwardly extended to more than three experts. For the models with more experts, we adjust
the hyper-parameter λ in Eq. (3) for the new experts and keep the hyper-parameters of the original
three experts unchanged, so that different experts are skilled in different types of class distributions.
Following this, we further evaluate the influence of the expert number on our method based on
ImageNet. To be specific, when there are four experts, we set λ = 1 for the new expert; while when
there are five experts, we set λ = 0.5 and λ = 1 for the two newly-added experts, respectively.
As shown in Table 11, with the increasing number of experts, the ensemble performance of our
method is improved on vanilla long-tailed recognition, e.g., four experts obtain a 1.2% performance
gain compared to three experts on ImageNet-LT. As a result, our method with more experts obtains
consistent performance improvement in test-agnostic long-tailed recognition on various test class
distributions compared to three experts, as shown in Table 12. Even so, only three experts are
sufficient to handle varied test class distributions, and provide a good trade-off between performance
and efficiency.

Table 11: Performance of our method with different numbers of experts on ImageNet-LT with the
uniform test distribution.

Model 4 experts 5 experts

Many-shot Medium-shot Few-shot All classes Many-shot Medium-shot Few-shot All classes

Expert E1 69.4 44.5 16.5 50.3 69.8 44.9 17.0 50.7
Expert E2 66.2 51.5 32.9 54.6 68.8 48.4 23.9 52.9
Expert E3 55.7 52.7 46.8 53.4 66.1 51.4 22.0 54.5
Expert E4 44.1 49.7 55.9 48.4 56.8 52.7 47.7 53.6
Expert E5 - - - - 43.1 59.0 54.8 47.5

Ensemble 66.6 58.4 46.7 60.0 68.8 58.5 43.2 60.4

Table 12: Performance of our method with different numbers of experts on various test class
distributions of ImageNet-LT.

Method Experts

ImageNet-LT

Forward Uniform Backward

50 25 10 5 2 1 2 5 10 25 50

SADE
3 experts 69.4 67.4 65.4 63.0 60.6 58.8 57.1 55.5 54.5 53.7 53.1
4 experts 70.1 68.1 66.3 64.2 61.6 60.0 58.7 57.6 56.7 56.1 55.6
5 experts 70.7 68.9 66.8 64.5 62.1 60.4 58.7 57.2 56.3 55.6 54.7
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E.2 Hyper-parameters in Inverse Softmax Loss

This appendix evaluates the influence of the hyper-parameter λ in the inverse softmax loss for the
backward expert, where we fix all other hyper-parameters and only adjust the value of λ. As shown in
Table 13, with the increase of λ, the backward expert simulates more inversely long-tailed distribution
(to the training data), and thus the ensemble performance on few-shot classes is better. Moreover,
when λ ∈ {2, 3}, our method achieves a better trade-off between head classes and tail classes, leading
to relatively better overall performance on ImageNet-LT.

Table 13: Influence of the hyper-parameter λ in the inverse softmax loss on ImageNet-LT with the
uniform test distribution.

Model λ = 0.5

Many-shot classes Medium-shot classes Few-shot classes All long-tailed classes

Forward Expert E1 69.1 43.6 17.2 49.8
Uniform Expert E2 66.4 50.9 33.4 54.5
Backward Expert E3 61.9 51.9 40.3 54.2

Ensemble 71.0 54.6 33.4 58.0

Model λ = 1

Many-shot classes Medium-shot classes Few-shot classes All long-tailed classes

Forward Expert E1 69.7 44.0 16.8 50.2
Uniform Expert E2 65.5 51.1 32.4 54.4
Backward Expert E3 56.5 52.3 47.1 53.2

Ensemble 77.2 55.7 36.2 58.6

Model λ = 2

Many-shot classes Medium-shot classes Few-shot classes All long-tailed classes

Forward Expert E1 68.8 43.7 17.2 49.8
Uniform Expert E2 65.5 50.5 33.3 53.9
Backward Expert E3 43.4 48.6 53.9 47.3

Ensemble 67.0 56.7 42.6 58.8

Model λ = 3

Many-shot classes Medium-shot classes Few-shot classes All long-tailed classes

Forward Expert E1 69.6 43.8 17.4 50.2
Uniform Expert E2 66.2 50.7 33.1 54.2
Backward Expert E3 43.4 48.6 53.9 48.0

Ensemble 67.8 56.8 42.4 59.1

Model λ = 4

Many-shot classes Medium-shot classes Few-shot classes All long-tailed classes

Forward Expert E1 69.1 44.1 16.3 49.9
Uniform Expert E2 65.7 50.8 32.6 54.1
Backward Expert E3 21.9 38.1 58.9 34.7

Ensemble 60.2 57.5 50.4 57.6

Model λ = 5

Many-shot classes Medium-shot classes Few-shot classes All long-tailed classes

Forward Expert E1 69.7 43.7 16.5 50.0
Uniform Expert E2 65.9 50.9 33.0 54.2
Backward Expert E3 16.0 33.9 60.6 30.6

Ensemble 56.3 57.5 54.0 56.6
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F Ablation Studies on Test-time Self-supervised Aggregation

F.1 Influences of Training Epoch

As illustrated in Section 5.1, we set the training epoch of our test-time self-supervised aggregation
strategy to 5 on all datasets. Here, we further evaluate the influence of the epoch number, where we
adjust the epoch number from 1 to 100. As shown in Table 14, when the training epoch number is
larger than 5, the learned expert weights by our method are converged on ImageNet-LT, which verifies
that our method is robust enough. The corresponding performance on various test class distributions
is reported in Table 15.

Table 14: The influence of the epoch number on the learned expert weights by test-time self-supervised
aggregation on ImageNet-LT.

Test Dist. Epoch 1 Epoch 5 Epoch 10

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.44 0.33 0.23 0.52 0.35 0.13 0.52 0.37 0.11
Forward-LT-25 0.43 0.34 0.23 0.50 0.35 0.15 0.50 0.37 0.13
Forward-LT-10 0.43 0.34 0.23 0.46 0.36 0.18 0.46 0.36 0.18
Forward-LT-5 0.41 0.34 0.25 0.43 0.34 0.23 0.43 0.35 0.22
Forward-LT-2 0.37 0.33 0.30 0.37 0.35 0.28 0.38 0.33 0.29
Uniform 0.34 0.31 0.35 0.33 0.33 0.34 0.33 0.32 0.35
Backward-LT-2 0.30 0.32 0.38 0.29 0.31 0.40 0.29 0.32 0.39
Backward-LT-5 0.27 0.29 0.44 0.24 0.31 0.45 0.23 0.31 0.46
Backward-LT-10 0.24 0.29 0.47 0.21 0.29 0.50 0.21 0.30 0.49
Backward-LT-25 0.23 0.29 0.48 0.18 0.29 0.53 0.17 0.3 0.53
Backward-LT-50 0.24 0.29 0.47 0.17 0.27 0.56 0.15 0.28 0.57

Test Dist. Epoch 20 Epoch 50 Epoch 100

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.53 0.38 0.09 0.53 0.38 0.09 0.53 0.38 0.09
Forward-LT-25 0.51 0.37 0.12 0.52 0.37 0.11 0.50 0.38 0.12
Forward-LT-10 0.44 0.36 0.20 0.45 0.37 0.18 0.46 0.36 0.18
Forward-LT-5 0.42 0.35 0.23 0.42 0.35 0.23 0.42 0.35 0.23
Forward-LT-2 0.38 0.33 0.29 0.39 0.33 0.28 0.38 0.32 0.30
Uniform 0.33 0.33 0.34 0.34 0.32 0.34 0.32 0.33 0.35
Backward-LT-2 0.29 0.31 0.40 0.30 0.32 0.38 0.29 0.30 0.41
Backward-LT-5 0.24 0.31 0.45 0.23 0.29 0.48 0.25 0.30 0.45
Backward-LT-10 0.20 0.30 0.50 0.21 0.31 0.48 0.21 0.30 0.49
Backward-LT-25 0.16 0.30 0.54 0.17 0.29 0.54 0.17 0.30 0.53
Backward-LT-50 0.15 0.29 0.56 0.14 0.29 0.57 0.14 0.29 0.57

Table 15: The influence of the epoch number on the performance of test-time self-supervised
aggregation on ImageNet-LT.

Test Dist. Epoch 1 Epoch 5 Epoch 10

Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 68.8 54.6 37.5 68.5 70.0 53.2 33.1 69.4 70.1 52.9 32.4 69.5
Forward-LT-25 68.6 54.9 34.9 66.9 69.5 53.2 32.2 67.4 69.7 52.5 32.5 67.5
Forward-LT-10 60.3 55.3 37.6 65.2 69.9 54.3 34.7 65.4 69.9 54.5 35.0 65.4
Forward-LT-5 68.4 55.3 37.3 63.0 68.9 54.8 35.8 63.0 68.8 54.9 36.0 63.0
Forward-LT-2 67.9 56.2 40.8 60.6 68.2 56.0 40.1 60.6 68.2 56.0 39.7 60.5
Uniform 66.7 56.9 43.1 58.8 66.5 57.0 43.5 58.8 66.4 56.9 43.4 58.8
Backward-LT-2 65.6 57.1 44.7 57.1 65.3 57.1 45.0 57.1 65.3 57.1 45.0 57.1
Backward-LT-5 63.9 57.6 46.8 55.5 63.4 56.4 47.5 55.5 63.3 57.4 47.8 55.6
Backward-LT-10 62.1 57.6 47.9 54.2 60.9 57.5 50.1 54.5 61.1 57.6 48.9 54.5
Backward-LT-25 62.4 57.6 48.5 53.4 60.5 57.1 50.0 53.7 60.5 57.1 50.3 53.8
Backward-LT-50 64.9 56.7 47.8 51.9 60.7 56.2 50.7 53.1 60.1 55.9 51.2 53.2

Test Dist. Epoch 20 Epoch 50 Epoch 100

Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 70.3 52.2 32.4 69.5 70.3 52.2 32.4 69.5 70.0 52.2 32.4 69.3
Forward-LT-25 69.8 52.4 31.4 67.5 69.9 52.3 31.4 67.6 69.7 52.6 32.6 67.5
Forward-LT-10 69.6 54.8 35.8 65.3 69.8 54.6 35.2 65.4 69.8 54.6 35.0 65.4
Forward-LT-5 68.7 55.0 36.4 63.0 68. 55.0 36.4 63.0 68.7 54.7 36.7 62.9
Forward-LT-2 68.1 56.0 39.9 60.5 68.3 55.9 39.6 60.5 68.2 56.0 40.1 60.6
Uniform 66.7 56.9 43.2 58.8 66.9 56.8 42.8 58.8 66.5 56.8 43.2 58.7
Backward-LT-2 65.4 57.1 44.9 57.1 65.6 57.0 44.7 57.1 64.9 57.0 45.6 57.0
Backward-LT-5 63.4 57.4 47.6 55.5 62.7 57.4 48.3 55.6 63.4 57.5 47.0 55.4
Backward-LT-10 60.7 57.5 49.4 54.6 61.1 57.6 48.8 54.4 60.6 57.6 49.1 54.5
Backward-LT-25 60.4 57.1 50.4 53.9 60.4 57.0 50.3 53.8 60.9 56.8 50.2 53.7
Backward-LT-50 60.9 56.1 51.1 53.2 60.6 55.9 51.1 53.2 60.8 56.1 51.2 53.2
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F.2 Influences of Batch Size

In previous results, we set the batch size of test-time self-supervised aggregation to 128 on all datasets.
In this appendix, we further evaluate the influence of the batch size on our strategy, where we adjust
the batch size from 64 to 256. As shown in Table 16, with different batch sizes, the learned expert
weights by our method keep nearly the same, which shows that our method is insensitive to the batch
size. The corresponding performance on various test class distributions is reported in Table 17, where
the performance is also nearly the same when using different batch sizes.

Table 16: The influence of the batch size on the learned expert weights by test-time self-supervised
aggregation on ImageNet-LT.

Test Dist. Batch size 64 Batch size 128 Batch size 256

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.52 0.37 0.11 0.52 0.35 0.13 0.50 0.33 0.17
Forward-LT-25 0.49 .0.38 0.13 0.50 0.35 0.15 0.48 0.24 0.18
Forward-LT-10 0.46 0.36 0.18 0.46 0.36 0.18 0.45 0.35 0.20
Forward-LT-5 0.44 0.34 0.22 0.43 0.34 0.23 0.43 0.35 0.22
Forward-LT-2 0.37 0.34 0.29 0.37 0.35 0.28 0.38 0.33 0.29
Uniform 0.34 0.32 0.34 0.33 0.33 0.34 0.33 0.32 0.35
Backward-LT-2 0.28 .032 0.40 0.29 0.31 0.40 0.30 0.31 0.39
Backward-LT-5 0.24 0.30 0.46 0.24 0.31 0.45 0.25 0.30 0.45
Backward-LT-10 0.21 0.30 0.49 0.21 0.29 0.50 0.22 0.29 0.49
Backward-LT-25 0.17 0.29 0.54 0.18 0.29 0.53 0.20 0.28 0.52
Backward-LT-50 0.15 0.30 0.55 0.17 0.27 0.56 0.19 0.27 0.54

Table 17: The influence of the batch size on the performance of test-time self-supervised aggregation
on ImageNet-LT.

Test Dist. Batch size 64 Batch size 128 Batch size 256

Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 70.0 52.6 33.8 69.3 70.0 53.2 33.1 69.4 69.7 53.8 34.6 69.2
Forward-LT-25 69.6 53.0 33.3 67.5 69.5 53.2 32.2 67.4 69.2 53.7 32.8 67.2
Forward-LT-10 69.9 54.3 34.8 65.4 69.9 54.3 34.7 65.4 69.5 55.0 35.9 65.3
Forward-LT-5 69.0 54.6 35.6 63.0 68.9 54.8 35.8 63.0 68.8 54.9 36.0 63.0
Forward-LT-2 68.2 56.0 40.0 60.6 68.2 56.0 40.1 60.6 68.1 56.0 40.1 60.5
Uniform 66.9 56.6 42.4 58.8 66.5 57.0 43.5 58.8 66.5 56.9 43.3 58.8
Backward-LT-2 64.9 57.0 45.7 57.0 65.3 57.1 45.0 57.1 65.5 57.1 44.8 57.1
Backward-LT-5 63.1 57.4 47.3 55.4 63.4 56.4 47.5 55.5 63.4 56.4 47.5 55.5
Backward-LT-10 60.9 57.7 48.6 54.4 60.9 57.5 50.1 54.5 61.3 57.6 48.7 54.4
Backward-LT-25 60.8 56.7 50.1 53.6 60.5 57.1 50.0 53.7 61.0 57.2 49.6 53.6
Backward-LT-50 61.1 56.2 50.8 53.1 60.7 56.2 50.7 53.1 61.2 56.4 50.0 52.9
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F.3 Influences of Learning Rate

In this appendix, we evaluate the influence of the learning rate on our self-supervised strategy,
where we adjust the learning rate from 0.001 to 0.5. As shown in Table 18, with the increase of the
learning rate, the learned expert weights by our method are sharper and fit the unknown test class
distributions better. For example, when the learning rate is 0.001, the weight for expert E1 is 0.36
on the Forward-LT-50 test distribution, while when the learning rate increases to 0.5, the weight
for expert E1 becomes 0.57 on the Forward-LT-50 test distribution. Similar phenomenons are also
observed on backward long-tailed test class distributions.

By observing the corresponding model performance on various test class distributions in Table 19,
we find that when the learning rate is too small (e.g., 0.001), our test-time self-supervised aggregation
strategy is unable to converge, given a fixed training epoch number of 5. In contrast, given the same
training epoch, our method can obtain better performance by reasonably increasing the learning rate.

Table 18: The influence of the learning rate on the learned expert weights by test-time self-supervised
aggregation on ImageNet-LT, where the number of the training epoch is 5.

Test Dist. Learning rate 0.001 Learning rate 0.01 Learning rate 0.025

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.36 0.34 0.30 0.49 0.33 0.18 0.52 0.35 0.13
Forward-LT-25 0.36 0.34 0.30 0.48 0.34 0.18 0.50 0.35 0.15
Forward-LT-10 0.36 0.34 0.30 0.45 0.34 0.21 0.46 0.36 0.18
Forward-LT-5 0.36 0.33 0.31 0.43 0.34 0.23 0.43 0.34 0.23
Uniform 0.33 0.33 0.34 0.34 0.33 0.33 0.33 0.33 0.34
Backward-LT-5 0.31 0.32 0.37 0.25 0.31 0.44 0.24 0.31 0.45
Backward-LT-10 0.31 0.32 0.37 0.22 0.29 0.49 0.21 0.29 0.50
Backward-LT-25 0.31 0.32 0.37 0.21 0.28 0.51 0.18 0.29 0.53
Backward-LT-50 0.31 0.32. 0.37 0.20 0.28 0.52 0.17 0.27 0.56

Test Dist. Learning rate 0.05 Learning rate 0.1 Learning rate 0.5

E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3) E1 (w1) E2 (w2) E3 (w3)

Forward-LT-50 0.53 0.36 0.11 0.53 0.37 0.10 0.57 0.34 0.09
Forward-LT-25 0.51 0.36 0.13 0.52 0.36 0.12 0.57 0.34 0.09
Forward-LT-10 0.45 0.37 0.18 0.47 0.36 0.18 0.44 0.36 0.20
Forward-LT-5 0.42 0.35 0.23 0.47 0.36 0.18 0.39 0.36 0.25
Uniform 0.33 0.33 0.34 0.31 0.31 0.38 0.33 0.34 0.33
Backward-LT-5 0.24 0.31 0.45 0.24 0.29 0.47 0.21 0.28 0.51
Backward-LT-10 0.21 0.30 0.49 0.21 0.31 0.48 0.22 0.32 0.46
Backward-LT-25 0.16 0.28 0.56 0.17 0.31 0.52 0.15 0.30 0.55
Backward-LT-50 0.15 0.28 0.57 0.14 0.28 0.58 0.12 0.27 0.61

Table 19: The influence of learning rates on test-time self-supervised aggregation on ImageNet-LT,
under training epoch 5.

Test Dist. Learning rate 0.001 Learning rate 0.01 Learning rate 0.025

Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 67.3 56.1 44.1 67.3 69.5 54.0 34.6 69.0 70.0 53.2 33.1 69.4
Forward-LT-25 67.4 56.2 40.3 66.1 69.2 53.8 33.2 67.2 69.5 53.2 32.2 67.4
Forward-LT-10 67.7 56.4 41.9 64.5 69.6 55.0 36.1 65.4 69.9 54.3 34.7 65.4
Forward-LT-5 67.2 55.9 40.8 62.6 68.7 55.0 36.2 63.0 68.9 54.8 35.8 63.0
Uniform 66.9 56.6 42.7 58.8 67.0 56.8 42.7 58.8 66.5 57.0 43.5 58.8
Backward-LT-5 65.8 57.5 43.7 55.0 63.9 57.5 46.9 55.5 63.4 56.4 47.5 55.5
Backward-LT-10 64.6 57.5 43.7 53.1 61.3 57.6 48.6 54.4 60.9 57.5 50.1 54.5
Backward-LT-25 66.0 57.3 44.1 51.5 61.1 57.4 49.3 53.5 60.5 57.1 50.0 53.7
Backward-LT-50 68.2 56.8 43.7 50.0 63.1 56.5 49.5 52.7 60.7 56.2 50.7 53.1

Test Dist. Learning rate 0.05 Learning rate 0.1 Learning rate 0.5

Many Med. Few All Many Med. Few All Many Med. Few All

Forward-LT-50 70.2 52.4 32.4 69.5 70.3 52.3 32.4 69.5 70.3 51.2 32.4 69.5
Forward-LT-25 69.7 52.5 32.5 67.5 69.9 52.3 31.4 67.6 69.9 51.1 29.5 67.5
Forward-LT-10 69.7 54.7 35.8 65.4 69.9 54.3 34.8 65.4 69.5 55.0 35.8 65.3
Forward-LT-5 68.8 54.9 36.2 63.0 68.8 54.8 36.1 63.0 68.3 55.3 37.6 62.9
Uniform 66.6 56.9 43.2 58.8 65.6 57.1 44.7 58.7 67.8 56.4 40.9 58.7
Backward-LT-5 63.6 57.5 48.9 55.4 63.0 57.4 48.1 55.6 61.4 57.4 49.2 55.6
Backward-LT-10 61.1 57.5 48.9 54.4 61.3 57.6 48.6 54.4 62.0 57.5 47.9 54.2
Backward-LT-25 59.9 56.8 51.0 53.9 60.9 57.2 49.9 53.7 60.2 56.8 50.8 53.9
Backward-LT-50 60.1 56.0 51.2 53.2 59.6 55.8 51.3 53.2 58.2 55.6 52.2 53.5
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F.4 Results of Prediction Confidence

In our theoretical analysis (i.e., Theorem 1), we find that our test-time self-supervised aggregation
strategy not only simulates the test class distribution, but also makes the model predictions more
confident. In this appendix, we evaluate whether our strategy can really improve the prediction
confidence of models on various unknown test class distributions of ImageNet-LT. To this end,
we compare the prediction confidence of our method without and with test-time self-supervised
aggregation in terms of the hard mean of the highest prediction probability on all test samples.

As shown in Table 20, our test-time self-supervised aggregation strategy enables the deep model to
have higher prediction confidence. For example, on the Forward-LT-50 test distribution, our strategy
obtains 0.015 confidence improvement, which is non-trivial since it is an average value for a large
number of samples (more than 10,000 samples). In addition, when the class imbalance ratio becomes
larger, our method is able to obtain more apparent confidence improvement.

Table 20: Comparison of prediction confidence between our method without and with test-time
self-supervised aggregation on ImageNet-LT, in terms of the hard mean of the highest prediction
probability on each sample. The higher the highest prediction, the better the model.

Method

Prediction confidence on ImageNet-LT

Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50

Ours w/o test-time aggregation 0.694 0.687 0.678 0.665 0.651 0.639 0.627 0.608 0.596 0.583 0.574
Ours w test-time aggregation 0.711 0.704 0.689 0.674 0.654 0.639 0.625 0.609 0.599 0.589 0.583

F.5 Run-time Cost of Test-time Aggregation

One may be interested in the run-time cost of our test-time self-supervised aggregation strategy, so
we further report its running time on Forward-LT-50 and Forward-LT-25 test class distributions for
illustration. As shown in Table 21, our test-time self-supervised aggregation strategy is fast in terms
of per-epoch time. The actual average additional time is only 0.009 seconds per sample at test time on
V100 GPUs. The result is easy to interpret since we freeze the model parameters and only learn the
aggregation weights, which is much more efficient than training the whole model. More importantly,
the goal of this paper is to handle a practical yet challenging test-agnostic long-tailed recognition
task. For solving this challenging problem, we believe it is acceptable to allow models to be trained
more, while the promising results in previous experiments have demonstrated the effectiveness of
our proposed test-time self-supervised learning strategy in handling this problem. In the future, we
will further extend the proposed method for better computational efficiency, e.g., exploring dynamic
network routing.

Table 21: Run-time cost of our test-time self-supervised aggregation strategy on ImageNet-LT,
compared to the run-time cost of model training. Here, we show two test class distributions for
illustration, which have different numbers of test samples.

Dataset Model training Test-time weight learning

Forward-LT-50 Forward-LT-25

Per-epoch time 713 s 110 s 130 s
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F.6 Test-time Self-supervised Aggregation on Streaming Test Data

In the previous experiments, we conduct the test-time strategy in an offline manner [13]. However,
as mentioned in Section 4.2, our test-time strategy can also be conducted in an online manner and
does not require access to all the test data in advance. To verify this, we further conduct our test-
time strategy on steaming test data of ImageNet-LT. As shown in Table 22, our test-time strategy
performs well on the streaming test data. Even when the test data come in one by one, our test-time
self-supervised strategy still outperforms the state-of-the-art baseline (i.e., offline Tent [16]) by a
large margin.

Table 22: Results of our test-time self-supervised aggregation strategy on streaming test data of
ImageNet-LT, where all test-time strategies are used on the same skill-diverse multi-expert model.

Backbone Test-time strategy Forward-LT Backward-LT

50 5 5 50

SADE

No test-time adaptation 65.5 62.0 54.7 49.8
Offline Tent [16] 68.0 62.8 53.2 45.7

Offline self-supervised aggregation (ours) 69.4 63.0 55.5 53.1
Online self-supervised aggregation with batch size 64 69.5 63.6 55.8 53.1
Online self-supervised aggregation with batch size 8 69.8 63.0 55.4 53.0
Online self-supervised aggregation with batch size 1 69.0 62.8 55.2 52.8
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G More Discussions on Model Complexity

In this appendix, we discuss the model complexity of our method in terms of the number of parameters,
multiply-accumulate operations (MACs) and top-1 accuracy on test-agnostic long-tailed recognition.
As shown in Table 23, both SADE and RIDE belong to ensemble-based long-tailed learning methods,
so they have more parameters (about 1.5x) and MACs (about 1.4x) than the original backbone model,
where we do not use the efficient expert assignment trick in [17] for both methods. Because of
the ensemble effectiveness of the multi-expert scheme, both methods perform much better than
non-ensemble methods (e.g., Softmax and other long-tailed methods). In addition, since our method
and RIDE use the same multi-expert framework, both methods have the same number of parameters
and MACs. Nevertheless, by using our proposed skill-diverse expert learning and test-time self-
supervised aggregation strategies, our method performs much better than RIDE with no increase in
model parameters and computational costs.

One may concern the multi-expert scheme leads to more model parameters and higher computational
costs than the original backbone. However, note that the main focus of this paper is to solve the
challenging test-agnostic long-tailed recognition, while promising results have shown that our method
addresses this problem well. In this sense, slightly increasing the model complexity is acceptable
for solving this practical yet challenging problem. Moreover, since there have already been many
studies [6, 19] showing effectiveness in improving the efficiency of the multi-expert scheme, we think
the computation increment is not a severe issue and we leave it to the future.

Table 23: Model complexity and performance of different methods in terms of the parameter number,
Multiply–Accumulate Operations (MACs) and top-1 accuracy on test-agnostic long-tailed recognition.
Here, we do not use the efficient expert assignment trick in [17] for RIDE and our method.

Method Params (M) MACs (G)

ImageNet-LT (ResNeXt-50)
Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50

Softmax 25.03 (1.0x) 4.26 (1.0x) 66.1 63.8 60.3 56.6 52.0 48.0 43.9 38.6 34.9 30.9 27.6
RIDE [17] 38.28 (1.5x) 6.08 (1.4x) 67.6 66.3 64.0 61.7 58.9 56.3 54.0 51.0 48.7 46.2 44.0
SADE (ours) 38.28 (1.5x) 6.08 (1.4x) 69.4 67.4 65.4 63.0 60.6 58.8 57.1 55.5 54.5 53.7 53.1

Method Params (M) MACs (G)

CIFAR100-LT-IR100 (ResNet-32)
Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50

Softmax 0.46 (1.0x) 0.07 (1.0x) 63.3 62.0 56.2 52.5 46.4 41.4 36.5 30.5 25.8 21.7 17.5
RIDE [17] 0.77 (1.5x) 0.10 (1.4x) 63.0 59.9 57.0 53.6 49.4 48.0 42.5 38.1 35.4 31.6 29.2
SADE (ours) 0.77 (1.5x) 0.10 (1.4x) 65.9 62.5 58.3 54.8 51.1 49.8 46.2 44.7 43.9 42.5 42.4

Method Params (M) MACs (G)

Places-LT (ResNet-152)
Forward-LT Uniform Backward-LT

50 25 10 5 2 1 2 5 10 25 50

Softmax 60.19 (1.0x) 11.56 (1.0x) 45.6 42.7 40.2 38.0 34.1 31.4 28.4 25.4 23.4 20.8 19.4
RIDE [17] 88.07 (1.5x) 13.18 (1.1x) 43.1 41.8 41.6 42.0 41.0 40.3 39.6 38.7 38.2 37.0 36.9
SADE (ours) 88.07 (1.5x) 13.18 (1.1x) 46.4 44.9 43.3 42.6 41.3 40.9 40.6 41.1 41.4 42.0 41.6

Method Params (M) MACs (G)

iNaturalist 2018 (ResNet-50)
Forward-LT Uniform Backward-LT

3 2 1 2 3

Softmax 25.56 (1.0x) 4.14 (1.0x) 65.4 65.5 64.7 64.0 63.4
RIDE [17] 39.07 (1.5x) 5.80 (1.4x) 71.5 71.9 71.8 71.9 71.8
SADE (ours) 39.07 (1.5x) 5.80 (1.4x) 72.3 72.5 72.9 73.5 73.3

H Potential Limitations

One concern is that this work only focuses on long-tailed classification problems. However, we
believe this is enough for a new challenging task of test-agnostic long-tailed recognition, while how
to extending to object detection and instance segmentation will be explored in the future. Another
potential concern is the model complexity of our method. However, as discussed in Appendix G, the
computation increment is not a very severe issue, while how to further accelerate our method will be
explored in future. In addition, one may also expect to evaluate the proposed method on more test
class distributions. However, as shown in Section 5.3, we have demonstrated the effectiveness of our
method on the uniform class distribution, the forward and backward long-tailed class distributions
with various imbalance ratios, and even partial class distributions. Therefore, we believe the empirical
verification is sufficient for verifying our method, and the extension to more complex test class
distributions is left to the future. Furthermore, extending our proposed method to other image
domains, like medical image tasks [23], will also be an interesting direction.

21



References
[1] Malik Boudiaf, Jérôme Rony, et al. A unifying mutual information view of metric learning:

cross-entropy vs. pairwise losses. In European Conference on Computer Vision, 2020.
[2] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbal-

anced datasets with label-distribution-aware margin loss. In Advances in Neural Information
Processing Systems, 2019.

[3] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[4] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Advances in Neural Information Processing
Systems, volume 33, 2020.

[5] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning.
In International Conference on Computer Vision, 2021.

[6] Marton Havasi, Rodolphe Jenatton, et al. Training independent subnetworks for robust predic-
tion. In International Conference on Learning Representations, 2021.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Computer Vision and Pattern Recognition, pages 770–778, 2016.

[8] Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang.
Disentangling label distribution for long-tailed visual recognition. In Computer Vision and
Pattern Recognition, 2021.

[9] Ren Jiawei, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for
long-tailed visual recognition. In Advances in Neural Information Processing Systems, 2020.

[10] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance.
Journal of Big Data, 6(1):1–54, 2019.

[11] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In
International Conference on Learning Representations, 2020.

[12] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Computer Vision and Pattern Recognition,
pages 2537–2546, 2019.

[13] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In International Confer-
ence on Machine Learning, 2022.

[14] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-tailed classification by keeping
the good and removing the bad momentum causal effect. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[15] Grant Van Horn, Oisinand Mac Aodha, et al. The inaturalist species classification and detection
dataset. In Computer Vision and Pattern Recognition, 2018.

[16] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2021.

[17] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X Yu. Long-tailed recogni-
tion by routing diverse distribution-aware experts. In International Conference on Learning
Representations, 2021.

[18] Yandong Wen, Kaipeng Zhang, et al. A discriminative feature learning approach for deep face
recognition. In European Conference on Computer Vision, 2016.

[19] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations,
2020.

[20] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features
in deep neural networks? In Advances in Neural Information Processing Systems, volume 27,
pages 3320–3328, 2014.

22



[21] Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. Unleashing the power of contrastive
self-supervised visual models via contrast-regularized fine-tuning. In Advances in Neural
Information Processing Systems, 2021.

[22] Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed
learning: A survey. arXiv preprint arXiv:2110.04596, 2021.

[23] Yifan Zhang, Ying Wei, et al. Collaborative unsupervised domain adaptation for medical image
diagnosis. IEEE Transactions on Image Processing, 2020.

[24] Yifan Zhang, Peilin Zhao, Jiezhang Cao, Wenye Ma, Junzhou Huang, Qingyao Wu, and
Mingkui Tan. Online adaptive asymmetric active learning for budgeted imbalanced data. In
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2768–2777, 2018.

[25] Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed
recognition. In Computer Vision and Pattern Recognition, 2021.

[26] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network
with cumulative learning for long-tailed visual recognition. In Computer Vision and Pattern
Recognition, pages 9719–9728, 2020.

23


	Proofs for Theorem 1
	Pseudo-code
	More Experimental Settings
	Benchmark Datasets
	Construction of Test-agnostic Long-tailed Datasets
	More Implementation Details of Our Method
	Discussions on Evaluation Metric

	More Empirical Results
	More Results on Vanilla Long-tailed Recognition
	More Results on Test-agnostic Long-tailed Recognition
	More Results on Skill-diverse Expert Learning
	More Results on Test-time Self-supervised Aggregation

	Ablation Studies on Skill-diverse Expert Learning
	Discussion on Expert Number
	Hyper-parameters in Inverse Softmax Loss

	Ablation Studies on Test-time Self-supervised Aggregation
	Influences of Training Epoch
	Influences of Batch Size
	Influences of Learning Rate
	Results of Prediction Confidence
	Run-time Cost of Test-time Aggregation
	Test-time Self-supervised Aggregation on Streaming Test Data

	More Discussions on Model Complexity
	Potential Limitations

