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Abstract

Not only have deep networks become standard in machine learning, they are in-
creasingly of interest in neuroscience as models of cortical computation that capture
relationships between structural and functional properties. In addition they are a
useful target of theoretical research into the properties of network computation.
Deep networks typically have a serial or approximately serial organization across
layers, and this is often mirrored in models that purport to represent computation
in mammalian brains. There are, however, multiple examples of parallel pathways
in mammalian brains. In some cases, such as the mouse, the entire visual system
appears arranged in a largely parallel, rather than serial fashion. While these path-
ways may be formed by differing cost functions that drive different computations,
here we present a new mathematical analysis of learning dynamics in networks
that have parallel computational pathways driven by the same cost function. We
use the approximation of deep linear networks with large hidden layer sizes to
show that, as the depth of the parallel pathways increases, different features of the
training set (defined by the singular values of the input-output correlation) will
typically concentrate in one of the pathways. This result is derived analytically and
demonstrated with numerical simulation with both linear and non-linear networks.
Thus, rather than sharing stimulus and task features across multiple pathways,
parallel network architectures learn to produce sharply diversified representations
with specialized and specific pathways, a mechanism which may hold important
consequences for codes in both biological and artificial systems.

1 Introduction

Deep networks are increasingly used as models of cortical computation, particularly of the visual
pathway. Indeed, the earliest convolutional neural network was a model of the mammalian visual
system [6] and the use of CNNs to model the visual pathway has continued [14, 21, 22, 3, 2]. These
models are usually serial models of the primate ventral stream that describe the computation of that
system as being closely related to object recognition. However, processing of visual information
in the primate is associated with (at least) two parallel pathways, the “ventral” (or “what”) and the
“dorsal” (or “where") pathways [4, 7, 10]. In the mouse visual system, anatomical analysis also
suggests that there are parallel pathways [8, 19, 20], although the specific functional role of these
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pathways is less clear. Interestingly, recent research [1] has shown that self-supervised training in
neural network architectures with parallel pathways can lead to the emergence of ventral-like and
dorsal-like pathways. Another study shows that, with a similar self-supervised training objective,
shallower architectures with parallel pathways lead to closer matches with functional data in the
Allen Brain Observatory than deep single pathway architectures [11]. Furthermore, an anatomically
constrained deep neural network model for the mouse visual cortex has demonstrated that such
parallel architectures produce more diverse representations of visual images, compared to single
pathway architectures [18].

Additionally, a coincident observation has been made for the original AlexNet [9] (a deep neural
network designed for image processing) that also shows the emergence of functional specialization
across parallel pathways, with different pathways (defined in the model because it was implemented
on multiple GPUs) learning different features of the input data. Overall, in the road map for
developing future artificial intelligence systems, architectures with parallel pathways promise potential
solutions for multi-tasking, multi-sensory, energy-efficient computing [15]. But despite the richness
of information representation and the potential capabilities of the architectures with parallel pathways,
there is a lack of research in understanding the fundamental learning behavior that occurs in such
architectures. Here, we advance this frontier through a mathematical analysis of the behaviour of
deep neural networks with parallel pathways, in the tractable setting of deep linear networks [16].

Our starting point follows Saxe et al. [17], which elegantly shows how, in such a linear network, the
training data and learning dynamics for a given task can be fully described via a set of independent
modes resulting from singular value decomposition (SVD) of the input-output correlation matrix.
During gradient decent, a deep linear network will pick up the task related information from the data
by acquiring knowledge from each mode [17]. Here, we use the same overall framework to study the
dynamics of learning in linear networks with parallel pathways.

Our analysis and simulations yield the following main results. For linear networks with multiple
parallel pathways of hidden neurons that feed into the same output representation and cost function:

1. For wide networks with random weight initialization, the learning dynamics reduces to a
coupled set of ordinary differential equations of dimension equal to the number of pathways
for each non-zero singular vector in the input-output correlation matrix of the training set.

2. These dynamics are competitive in the sense that each pathway will compete to “explain”
the singular values of the training set.

3. For deeper networks, this competition becomes more severe, resulting in more trajectories
in phase space flowing to extreme solutions, wherein features (defined by the singular values
of the training set) are confined largely to a single pathway.

4. For the strict infinite-width limit, the system flows to a state wherein features are shared
evenly across the pathways. At finite width, fluctuations in the initial state put the system
onto a trajectory leading to a biased solution, where the bias is more severe at larger
depths. Thus in large-width, large-depth networks, the system evinces a finite-size induced
spontaneous symmetry breaking.

We demonstrate this result in simulations and show empiricially that the main result holds in networks
with non-linearities. Thus, this depth-dependent mechanism reveals a dynamical link between
network architecture and representation learning.

2 Mathematical framework

Network description: We study the learning dynamics under gradient descent of a system with
parallel pathways with one or more hidden layers in each pathway. We consider “linear" networks
in which the transformation of each layer to the next is given by a matrix multiplication, with no
non-linearity (i.e., linear transfer functions at each “node”). Given an input vector x (of dimension lx)
and output vector y (of dimension ly), the output of the system with M parallel pathways is given by

y =

(
M∑
a=1

WDa
a · · ·W2

aW
1
a

)
x

= Ωx (1)
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where we have defined

Ω =

M∑
a=1

Ωa ≡
M∑
a=1

Da∏
d=1

Wd
a (2)

and where pathway a has Da − 1 hidden layers and Da weight matrices. Each weight matrix Wd
a

has shape Nd
a ×Nd−1

a (where N0
a = lx). In the product formula, we are assuming that matrices with

a higher value of d are to the left of matrices with smaller values of d. A schematic of this system is
given in Figure 1.

As described below, we consider training this network using input-output vector pairs x and y that
have correlation matrix Σyx = USVT , where we have used the singular value decomposition where
S is diagonal and U, V are orthogonal matrices. The gradient descent dynamics will lead to solutions
UTΩV = S, which implies that in the steady state the pathway matrices Ka ≡ UTΩaV must sum
to the singular values. A schematic of this decomposition is shown in Figure 2(top row), adapted
from [17].

Main question and illustration of main result: Given this description of how the network as
a whole carries information about each input-output mode, we ask how this mode information is
distributed across parallel pathways. We illustrate two possibilities in Figure 2: (1) each mode’s
information could be shared across multiple pathways (middle row) or (2) each mode’s information
could be exclusively carried in individual pathways (bottom row). We show that case (2) occurs in the
limit of large network size and large depth due to finite-size induced spontaneous symmetry breaking.

2.1 Learning dynamics under gradient descent

Using the same setting as in Saxe et al. [16], we train the network with a set of P examples
{xi, yi}, i = 1, 2, . . . , P with gradient descent on the squared loss

L =
1

2

P∑
i=1

||yi −Ωxi||2.

In the limit of small learning rate, the dynamics of gradient descent are approximated by the
continuous time ordinary differential equations given below (for each pathway a):

τ
d

dt
Wd

a =

(
Da∏

i=d+1

Wi
a

)T
[Σyx −ΩΣx]

(
d−1∏
i=1

Wi
a

)T
(3)

where
∏d2
i=d1

Wi
a = Wl2

a Wl2−1
a · · ·Wl1

a when l1 ≤ l2 and
∏l2
i=l1

Wi
a = I when l1 > l2. Σyx =

E[yxT ] and Σx = E[xxT ]. We assume without loss of generality that Σx = I.

Define the initial conditions for the weight matrices as Rd
a ≡Wd

a(0). We take the components Rd
a

to be independently and identically distributed according to a normal distribution with zero mean and
variance σ2

Nd
a

, where Nd
a is the number of units in the output of that layer. We also denote the singular

value decomposition of Σyx = USVT , where S is diagonal and U, V are orthogonal matrices.
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Figure 1: Schematic of a multi-pathway network. The first layer input feeds into multiple hidden
layers in parallel, each of which a pathway through multiple hidden layers. The outputs of the final
layer in each pathway linearly combine into the final output of the network.
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C

Figure 2: Example of multi-pathway learning. A) Example reconstructed from [17] showing the
singular value decomposition of a hypothetical training set relating objects to properties. In the steady
state, the network will learn the feature associations defined by the singular values. B) An example of
learning in a shallow, two pathway network. In this case, the features will be arbitrarily split across
the two pathways. C) An example of multi-pathway learning in a deep network. In this case, the
feature learning will typically concentrate into one of the pathways for each feature.

3 Gradient descent solutions for large hidden layer size

Here we construct solutions to the equations (3). The general strategy is to choose coordinate systems
for the neural representations in the vector space defined by the singular value decomposition. We
then show that the solutions to the gradient descent equations (3) are diagonal in these coordinates.

3.1 Choosing orthogonal coordinates

Each hidden layer d in each pathway a provides an Nd
a dimensional representation of the input space

from which the vectors x are derived. In order to construct solutions of the gradient descent equations
of motion (3), we will choose coordinates on these representations that map to the space of singular
values of the input-output correlation matrix Σyx. We construct these coordinates using the initial
value matrices Rd

a. Note that for large Nd
a , we must have(
Rd
a

)T
Rd
a ≈ σ2I (4)

which is exact as Nd
a → ∞. We use the matrices U and V to project the initial and final weight

matrices onto the singular vectors: W1
a →W1

aV and WDa
a → UTWDa

a . In addition, we use the
initial state matrices Rd

a to define a coordinate system in the singular value space for the intermediate
representations. We define this map as follows:

W̄1
a = σ−2VT

(
R1
a

)T
W1

aV ifd = 1 (5)

W̄d
a = σ−2dVT

(
R1
a

)T · · · (Rd
a

)T
Wd

aR
d−1
a · · ·R1

aV if1 < d < Da (6)

W̄Da
a = σ−2DaUTWDa

a RDa−1
a · · ·R1

aV ifd = Da (7)

4



These coorinate transformations imply the following relations:

VT
(
R1
a

)T · · · (Rd−1
a

)T d−1∏
i=1

Wi
aV =

d−1∏
i=1

W̄i
a (8)

UT

(
Da∏

i=d+1

Wi
a

)
Rd
a · · ·R1

aV =

Da∏
i=d+1

W̄i
a (9)

which together imply

Ω̄ = UTΩV =
∑
a

Ka =
∑
a

Da∏
i=1

W̄i
a (10)

In the singular value coordinate space, the gradient descent equations of motion for each a are now

τ
d

dt
W̄d

a =

(
Da∏

i=d+1

W̄i
a

)T [
S− Ω̄

](d−1∏
i=1

W̄i
a

)T
(11)

Note that in the steady state we have

Ω̄(t→∞) = S (12)

In the initial state we have in the large Nd
a limit:

W̄(0)da = I + δda ifd < Da (13)

W̄(0)Da
a = δDa

a ifd = Da (14)

where δda → 0 in the large Nd
a limit. So each W̄d

a is diagonal (or zero) in the initial state. By
construction, these matrices are all of dimension ls × ls, where ls is the number of singular values of
Σyx.

3.2 Diagonal solutions for the gradient descent equations

We propose the following ansatz for the solution:

W̄(t)da = Γda(t) + δ̄da (15)

where Γda(t) are all diagonal matrices, with diagonal entries given by the vector Γda(t), with compo-
nents

(
Γda(t)

)
α

, where α is an index over the singular values. The terms δ̄da → 0 in the large Nd
a

limit. With this ansatz, in the Nd
a →∞ limit, we have for each pathway a and component α:

τ
d

dt

(
Γda
)
α

=

Da∏
i=d+1

(
Γia
)
α

[
Sα − Ω̄α

] d−1∏
i=1

(
Γia
)
α

(16)

where Sα and Ω̄α are the diagonal components of S and Ω̄, respectively.

For each α, each of the
(
Γda
)
α

for d < Da have the same initial conditions, so by symmetry we can
define qaα =

(
Γda
)
α

for all d < Da and paα =
(
ΓDa
a

)
α

to reduce these equations to

τ
d

dt
qaα = qDa−2

aα paα
[
Sα − Ω̄α

]
(17)

τ
d

dt
paα = qDa−1

aα

[
Sα − Ω̄α

]
for each pathway a and component α. The initial states of these variables are qaα = 1 and paα = 0

in the large Nd
a limit. Moreover we have Ω̄α =

∑M
a=1Kaα =

∑M
a=1 paαq

Da−1
aα . Importantly, these

diagonal solutions are stable to off-diagonal perturbations, meaning that at finite size the small
corrections δ̄da will decay to zero (see the section Simulations and Figure 4).

Taking the ratio of each of the equations in (17) above yields the differential equation

dqaα
dpaα

=
paα
qaα

(18)
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and thus these values are related by
p2aα = q2aα − 1 (19)

The variables paα are thus sufficient to specify the solution and they obey the following equation:

τ
d

dt
paα =

(√
p2aα + 1

)Da−1

α

[
Sα − Ω̄α

]
(20)

with Ω̄α =
∑M
a=1 paα

(√
p2aα + 1

)Da−1
. Different pathways will then be related by the relationship:

dpaα
dpbα

=

√
p2aα + 1

Da−1√
p2bα + 1

Db−1 (21)

which gives

paα2F1

(
1

2
,
Da − 1

2
,

3

2
,−p2aα

)
− pbα2F1

(
1

2
,
Db − 1

2
,

3

2
,−p2bα

)
=

δ̄aα2F1

(
1

2
,
Da − 1

2
,

3

2
,−δ̄2aα

)
− δ̄bα2F1

(
1

2
,
Db − 1

2
,

3

2
,−δ̄2bα

)
= C (22)

where 2F1 is the hypergeometric function and we have defined the constant C. We have re-introduced
the finite size initial conditions via δ̄aα. These are determined by the random matrix initializations
and will vanish in the large network size limit. In the strict limit, the solutions therefore must be
equal across all pathways. Finite size fluctuations in the initial state will break this symmetry.

The phase planes for a two pathway network with common depths D = D1 = D2 is plotted for
various values of D in Figure 3. Each row represents the same set of 100 initial conditions drawn
from zero mean normal distributions of a given variance, with the larger variance in the top row. Note
that as the depth D increases, so does the curvature of the trajectories away from zero. The sharper
trajectories push the steady state solution to one where one or the other pathway dominates Ω̄α = Sα,
so one can see the result already in the phase portrait that at larger depths the contribution to Ω̄α will
come from a single pathway.
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Figure 3: Phase portraits for two pathway networks at different depths for a single α. Sα =
10, Da = Db. Initial conditions are drawn from zero mean 2d Gaussians with σ = 0.1 (top) and
σ = 0.01 (bottom). All initial values are the same for each row. The steady state is governed by
Sα = K1α + K2α, shown by the blue diagonal line. Notice that for deeper networks and larger
initial fluctuations the trajectories tend towards more extreme values where one or the other pathway
dominates for a fixed initial condition.

6



Asymptotic approximation While the result is already qualitatively clear from the phase portrait,
we can obtain an analytic statement. For a more easily interpretable approach than analyzing
hypergeometric functions (and a way of seeing the asymptotic behavior of the above equation),
consider the case where Sα is sufficiently greater than 1 so that we can approximate

paα ≈ qaα (23)

(One can check this with a post-hoc self consistency condition. For the above relation to hold, Sα
will need to be large.) Then we have

dpaα
dpbα

=
pDa−1
aα

pDb−1
bα

(24)

which implies

1

2−Da
p2−Da
aα − 1

2−Db
p2−Db

bα = Cabα (25)

where Cabα is a constant that depends upon initial conditions and which further implies

1

2−Da
(Kaα)

2/Da−1 − 1

2−Db
(Kbα)

2/Db−1 = Cabα (26)

When Da, Db are large we have
1

Kaα
− 1

Kbα
= C ′abα (27)

for some C ′abα. In steady state, we have Sα =
∑
aKaα. Consider S′α = Sα −

∑
c 6=a,bKcα =

Kaα +Kbα. Then in the large depth limit we can write for Kbα

1

S′α −Kbα
− 1

Kbα
= C ′abα (28)

the solutions of which are given by the quadratic equation

C ′abαK
2
bα + (2− S′αC ′abα)Kbα − S′α = 0 (29)

which are

Kbα =
C ′abαS

′
α − 2±

√
(C ′abαS

′
α − 2)2 + 4S′αC

′
abα

2C ′abα
(30)

In the limit |C ′abα| → ∞ and in the domain Kbα ∈ [0, S′α], these will be

Kbα =
S′α
2

+ sign(C ′abα)
S′α
2

(31)

and thus one pathway or the other dominates the singular value α for each α, depending upon the
sign of Cabα. As mentioned above, in the strict limit the constant Cabα → 0, leaving symmetric
solutions across the pathways. In the finite size limit, fluctuations in the initial state will drive Cabα
to larger values, biasing the network to one pathway or the other. We note that in a real application,
initial conditions are not necessarily drawn from the distributions that we assume, and we expect
effectively larger initial fluctuations than our initial state would imply, e.g. by choosing the initial
values of each weight matrix from N(0, σ), rather than scaling with network size (see the examples
in Simulations). Such larger fluctuations would only enhance the effect of the symmetry breaking.

t= 0 t= 1 t= 2 t= 3 t= 4 t= 5 t= 6 t= 7 t= 8 t= 9

Figure 4: Learning dynamics leads to diagonal representations in each pathway. An example
realization of learning in Ka for a single pathway. In the initial state the Ka starts as a uniform
random matrix and quickly becomes diagonal after a few time steps.
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Figure 5: Learning dynamics in two pathway networks with increasing depth. Da = Db = D.
Left to right, top to bottom are D = 2, 3, 4, and 7, respectively. The left side of each sub-panel shows
trajectories of the matrices Ka and Kb in the singular value space. The right side of each sub-panel
shows the final values for Ka and Kb in the singular value space. Note how with larger depths, the
features have a stronger tendency to concentrate on one pathway or the other. Na = Nb = 1000 and
σ = 0.01.

4 Simulations

We demonstrate our results with numerical simulations of networks with two pathways and multiple
depths. For these examples we use the same number of layers per pathway and N1 = N2 = 1000.
The initial state of the weight matrices is drawn from a zero mean normal distribution with a fixed
standard deviation σ = 0.01. The input vectors x are 8-dimensional and are the rows of the 8-
dimensional identity matrix. The output vectors y are 15-dimensional and are the rows of the matrix:

Y =



1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1


(32)

Gradient descent is performed over 1000 epochs with learning rate lr = 0.01. These simulations are
not compute intensive and are easily performed on a standard modern desktop or laptop. All code
for simulations and figures is available on GitHub at https://github.com/AllenInstitute/
Multipathway_NeurIPS2022. Figure (4) shows an example of the matrix Ka for a specific pathway
a, which is initialized as a uniform random matrix, becoming diagonal in the singular value space.
Figure 5 shows an example of learning dynamics for networks with different depths. For the network
of depth 2 (for which “pathway” is an arbitrary concept, as there is only one hidden layer), the
singular values are more or less divided evenly across the pathways. This symmetry is already broken
for networks of depths 3 and 4. Even by depth 7, the largest singular values are concentrated on one
or the other pathway. Figure 6 shows two different initializations, demonstrating stochasticity. One
can see that the largest singular values are typically in one pathway or the other, but not always the
same pathway.

Importantly, our analytic results apply strictly to the linearized network. Since the standard situation
with deep networks is to use some form of nonlinear activation we test our results empirically using
either of Tanh or ReLU. The general trend remains the same when using these nonlinearities. The
results are shown in Figures 7 and 8 for ReLU and Tanh, respectively. Simulation parameters are
as above with the exception that the corresponding nonlinearity is used as an activation function
following each layer of each pathway and we train for longer (as shown in each Figure).
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Figure 7: Learning dynamics in two pathway networks with increasing depth, using the ReLU
nonlinearity. Da = Db = D. Left to right, top to bottom are D = 2, 3, 4, and 7, respectively. The
left side of each sub-panel shows trajectories of the matrices Ka and Kb in the singular value space.
The right side of each sub-panel shows the final values for Ka and Kb in the singular value space.
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Figure 8: Learning dynamics in two pathway networks with increasing depth, using the Tanh
nonlinearity. Da = Db = D. Left to right, top to bottom are D = 2, 3, 4, and 7, respectively. The
left side of each sub-panel shows trajectories of the matrices Ka and Kb in the singular value space.
The right side of each sub-panel shows the final values for Ka and Kb in the singular value space.
Note how with larger depths, the features have a stronger tendency to concentrate on one pathway or
the other. Na = Nb = 1000 and σ = 0.01.
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5 Discussion

Many biological neural systems have several computational pathways that are thought to mediate
different aspects of sensory processing, prominant examples being the “what" and “where” pathways
of the macaque visual system [4, 7, 10], the “local” and “global” visual motion pathways [5], and the
parallel anatomical pathways in the mouse [8]. Here we have shown, using the linearized framework
of [16], that depth alone can have a profound impact upon learning dynamics in systems with multiple
channels by separating features in a learned data set by pathway. It is useful to recall again the
observation made for the AlexNet model [9] which featured two pathways as a result of building the
architecture around two GPUs. In that case, the authors noted that each pathway learned different
large scale features of the data (one largely color, the other largely texture).

We have examined the supervised case using linear regression on the output features of the network.
In this framework a power iteration effect from multiple layers of computation (which can be seen in
the weight matrix factors in equation 3) enhances the inherent “explaining away” effect in regression
(as each pathway’s features contribute to accounting for the input-output relationship) so that with
increasing depth there is a tendency for each singular vector to concentrate on one pathway. Note
that this does not imply that separate singular components will prefer different pathways in general.
It is interesting to consider the parallels and differences between this model and the classic Oja rule
that leads to PCA[13]. In that case, the learning dynamics magnifies the largest principal components
of the input space and competition is introduced via weight normalization. This leads to the weights
matching the largest principal components of the input data, i.e. the singular vectors of Σx. (This
happens in a deterministic fashion, although see [12] for a higher order generalization that does not
lead to deterministic selection of the largest components.) The mechanism we describe here operates
in the supervised case and decomposes Σyx.

While we have used a very specific initialization scheme for mathematical purposes, we posit that
(and have provided an example in which) our results are more generally applicable. In some cases
this is easy to show as an extension of our work. This work is an analysis of the analytic properties of
deep networks in the infinite width limit. As such, care must be taken in considering these results in
the context of systems in which corrections due to finite size are large. The assumption of linearity is
also important. Deep networks in practice have non-linearities. One can argue that learning dynamics
will push the system to operate in a regime that maximizes the dynamic range of the response. For a
function like Tanh, this should be at the inflection point. If this is the case, the network should act
in a roughly linear fashion. This is just a high-level argument, however, and nonlinearities may be
responsible for deviations from the results described here, although we have demonstrated in our
examples that common linearities show the same empirical dynamics.

One obvious reason for having an architecture with multiple pathways is to create divergent represen-
tations for different cost functions from a common set of lower level features. In our case we consider
an alternative in which all pathways subserve the same cost function. If the result is to separate
features, why would such an architecture be desirable? One answer may be that multiple pathways
would serve as a form of regularization. Not only does this reduce the space of model complexity,
but through the mechanism we have demonstrated this can also lead to a separation of features,
and perhaps more easily learnable representations for downstream tasks. This may be a useful
component of pre-training procedures. It may be that multiple pathways are a source of architectural
efficiency, and particularly useful when the system has few components (suggesting a reason why
the mouse architecture appears more parallel than mammals with much larger brains). Quantifying
these potential benefits would entail a proper model comparison across different architectures and
examining performance as well as learning speed. Looking towards future work, it is important to
keep in mind that biological systems may be subject to different types of cost functions, and the
dynamics of those may be quite different than what we see here.

As this is an analytic approach to the theory of deep neural networks from a dynamical systems
perspective, we anticipate no negative societal impacts.
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