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We present here additional details on our methods and additional results from our empirical evaluation.
Our repository1 contains our source code and dataset as well as a google collab notebook for running
an RLPE example.

1 MDP Distance Measures

We aim to find a minimal transform sequence that yields the anticipated policy. For this purpose, we
need to define a distance measure between two MDPs. A straightforward way to measure distance
between a pair of MDPs M and M

′
, which we use in our evaluations, is to count the number of

transforms that are applied to the original MDP M to produce the new MDP M
′
. However, this

definition is meaningful only with atomic transforms that change a single element of the MDP (e.g.,
changing the transition probabilities of a single action). The literature is rich with a variety of other
measures [1, 2, 3]. For example, in [1] the distance between two MDPs is calculated by computing
the accumulated distance between every state in M and its corresponding state in M ′. In constrast,
[3] use a representation of an MDP as a bipartite graph of state and action vertices and define state and
action distances between two vertices recursively according to the similarity between their neighbors
in the graph. They show the advantage of this method in quantifying structural similarities compared
with the bi-simulation approach of [4]. The method is designed for measuring similarities within
the same MDP, but is applicable in our context to measure distances between an original and a
transformed MDP, as long as mappings between the states and actions of the two models are given.

2 Additional Results

Figures 2, 3, and 4 present the results for the SARSA, CEM, and Q-LEARNING, respectively. Each
plot represents for each domain the average computation time for finding an explanation (x axis) and
the average satisfaction ratio (y axis), i.e., the average ratio of the expected policy that was satisfied
before the search exhausted the computational resources. As for the results presented in the main
paper for DQN and PPO, PRE+CLUSTER achieved the best results in terms of solution time.

1https://github.com/sarah-keren/RLPE.git
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Figure 1: Evaluation domains including single-agent and multi-agent settings.

Figure 2: Policy satisfaction ratio and solution time for SARSA.

Figure 3: Policy satisfaction ratio and solution time for Q-LEARNING.
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Figure 4: Policy satisfaction ratio and solution time for CEM.
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