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Abstract. Many high-dimensional statistical inference problems are believed to possess inherent compu-
tational hardness. Various frameworks have been proposed to give rigorous evidence for such hardness,
including lower bounds against restricted models of computation (such as low-degree functions), as well as
methods rooted in statistical physics that are based on free energy landscapes. This paper aims to make a
rigorous connection between the seemingly different low-degree and free-energy based approaches. We define
a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree
hardness for a broad class of statistical problems, namely all Gaussian additive models and certain models
with a sparse planted signal. By leveraging these rigorous connections we are able to: establish that for
Gaussian additive models the “algebraic” notion of low-degree hardness implies failure of “geometric” local
MCMC algorithms, and provide new low-degree lower bounds for sparse linear regression which seem difficult
to prove directly. These results provide both conceptual insights into the connections between different
notions of hardness, as well as concrete technical tools such as new methods for proving low-degree lower
bounds.
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1. Introduction

Many inference problems in high dimensional statistics appear to exhibit an information-computation
gap, wherein at some values of the signal-to-noise ratio, inference is information-theoretically possible, but
no (time-)efficient algorithm is known. A wealth of central inference problems exhibit such gaps, including
sparse linear regression, sparse principal component analysis (PCA), tensor PCA, planted clique, community
detection, graph coloring, and many others (we point the reader to the survey references [ZK16a, BPW18,
RSS19, KWB19, Gam21] and references therein for many examples).

A priori, it is unclear whether such gaps are a symptom of the inherent computational intractability
of these problems, or whether they instead reflect a limitation of our algorithmic ingenuity. One of the
main goals in this field is to provide, and understand, rigorous evidence for the existence of an information-
computation gap. Indeed, there are several mature tools to establish statistical or information-theoretic
lower bounds, and these often sharply characterize the signal-to-noise ratio at which inference is possible. We
have relatively fewer tools for establishing computational lower bounds in statistical settings, and the study
of such tools is still in its early days. Broadly, there are three approaches: (i) establishing computational
equivalence between suspected-to-be-hard problems via reductions, (ii) proving lower bounds within restricted
models of computation, or in other words, ruling out families of known algorithms, and (iii) characterizing
geometric properties of the problem that tend to correspond to computational hardness, often by studying a
corresponding energy or free energy landscape of the posterior distribution of the signal given the data, and
establishing the existence of ‘large barriers’ in this landscape. In some cases it can be rigorously shown that
these properties impede the success of certain families of algorithms (notable examples include the work of
Jerrum [Jer92] and Gamarnik and Sudan [GS17]; see also references therein for other instances).

These complementary approaches give us a richer understanding of the computational landscape of high-
dimensional statistical inference. Reductions contribute to establishing equivalence classes of (conjectured
hard) problems, and lower bounds against restricted models, or characterizations of the problem geometry,
give concrete evidence for computational hardness within the current limits of known algorithms. There have
been considerable recent advances in many of these approaches (see for example [BB20], the surveys [ZK16a,
BPW18, RSS19, KWB19, Gam21], and references therein). One particularly exciting direction, which is
the topic of this paper, is the pursuit of rigorous connections between different computational lower bound
approaches. For instance, a recent result shows (under mild assumptions) that lower bounds against statistical
query algorithms imply lower bounds against low-degree polynomials and vice versa [BBH+20]. Results of
this type help to unify our ideas about what makes problems hard, and reduce the number of different lower
bound frameworks to study for each new problem that comes along.

Following the work of [BHK+19, HKP+17, HS17] in the context of the sum-of-squares hierarchy of
algorithms, a conjecture was put forth that there is a large and easy-to-characterize universality class of
intractable problems [Hop18]: all of those for which low-degree statistics cannot distinguish data with a
planted signal from (suitably defined) random noise. These problems are called “hard for the low-degree
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likelihood ratio” or “low-degree hard,” a term which we will define precisely below. Many of the problems
mentioned above fall into this universality class precisely in the regime of their information-computation gaps.

Another successful approach to understand computational hardness of statistical problems borrows tools
from statistical physics: tools such as the cavity method and replica method can be used to make remarkably
precise predictions of both statistical and computational thresholds, essentially by studying properties of free
energy potentials associated to the problem in question, or by studying related iterative algorithms such as
belief propagation or approximate message passing (see e.g. [DMM09, DKMZ11, LKZ15a, LKZ15b, DMK+16]).
We will discuss some of these ideas further in Section 1.3.

Main Contributions. This paper aims to make a rigorous connection between the low-degree and free-
energy based approaches in the setting of statistical inference. (We note that this setting differs from that of
random optimization problems with no planted signal, where a connection of this nature has already been
established [GJW20, Wei22, BH21].) We start by defining a free-energy based criterion, the Franz–Parisi
criterion (Definition 1.5) inspired by the so-called Franz–Parisi potential [FP95] (see Section 1.3 for more on
the connection with statistical physics). We formally connect this criterion to low-degree hardness for a broad
class of statistical problems, namely all Gaussian additive models (Theorems 2.4 and 2.5) and certain sparse
planted models (Theorem 3.7). By leveraging these rigorous connections we are able to (i) establish that
in the context of Gaussian additive models, low-degree hardness implies failure of local MCMC algorithms
(Corollary 2.18), and (ii) provide new low-degree lower bounds for sparse linear regression which seem difficult
to prove directly (Theorem 3.10). We also include some examples that illustrate that this equivalence between
different forms of hardness does not hold for all inference problems (see Section 4), leaving as an exciting
future direction the problem of determining under which conditions it does hold, and investigating what
other free-energy based criteria may be more suitable in other inference problems.

1.1. Setting and Definitions. We will focus on problems in which there is a signal vector of interest u ∈ Rn,
drawn from a prior distribution µ over such signals, and the data observed is a sample from a distribution
Pu on RN that depends on the signal u. One natural problem in this setting is estimation: given a sample
from Pu with the promise that u ∼ µ, the goal is to estimate u (different estimation error targets correspond
to different versions of this problem, often referred to weak/approximate recovery or exact recovery). This
roughly corresponds to the “search” version of the problem, but just as in classical complexity theory, it is
productive to instead study a “decision” version of the problem, hypothesis testing: we are given a sample
generated either from the “planted” distribution P = Eu∼µPu (a mixture model were the data is drawn from
Pu for a random u ∼ µ) or from a “null” reference distribution Q representing pure noise, and the goal is to
decide whether it is more likely that the sample came from P or Q.

Problem 1.1 (High Dimensional Inference: Hypothesis Testing). Given positive integers n,N , a distribution
µ on Rn, and a distribution Pu on RN for each u ∈ supp(µ), the goal is to perform simple hypothesis testing
between

H0 : Y ∼ Q (Null model) ,
H1 : Y ∼ P = E

u∼µ
Pu (Planted model) .

We will be especially interested in asymptotic settings where n→∞ and the other parameters scale with
n in some prescribed way: N = Nn, µ = µn, P = Pn, Q = Qn. In this setting, we focus on the following two
objectives.

Definition 1.2 (Strong/Weak Detection).

• Strong detection: we say strong detection is achieved if the sum of type I and type II errors1 tends
to 0 as n→∞.

• Weak detection: we say weak detection is achieved if the sum of type I and type II errors is at
most 1− ε for some fixed ε > 0 (not depending on n).

1Type I error is the probability of outputting “P” when given a sample from Q. Type II error is the probability of outputting
“Q” when given a sample from P.
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In other words, strong detection means the test succeeds with high probability, while weak detection means
the test has some non-trivial advantage over random guessing.

While our main focus will be on the testing problem, we remark that computational hardness of strong
detection often implies that estimating u is hard as well.2

Throughout, we will work in the Hilbert space L2(Q) of (square integrable) functions RN → R with inner
product 〈f, g〉Q := EY∼Q[f(Y )g(Y )] and corresponding norm ‖f‖Q := 〈f, f〉1/2Q . For a function f : RN → R
and integer D ∈ N, we let f≤D denote the orthogonal (w.r.t. 〈·, ·〉Q) projection of f onto the subspace of
polynomials of degree at most D. We will assume that Pu is absolutely continuous with respect to Q for all
u ∈ supp(µ), use Lu := dPu

dQ to denote the likelihood ratio, and assume that Lu ∈ L2(Q) for all u ∈ supp(µ).
The likelihood ratio between P and Q is denoted by L := dP

dQ = Eu∼µLu.

A key quantity of interest is the (squared) norm of the likelihood ratio, which is related to the chi-squared
divergence χ2(P ‖Q) as

‖L‖2Q =

∥∥∥∥ E
u∼µ

Lu

∥∥∥∥2

Q
= χ2(P ‖Q) + 1 .

This quantity has the following standard implications for information-theoretic impossibility of testing, in the
asymptotic regime n→∞. The proofs can be found in e.g. [MRZ15, Lemma 2].

• If ‖L‖2Q = O(1) (equivalently, lim supn→∞ ‖L‖2Q <∞) then strong detection is impossible. (This is a
classical second moment method associated with Le Cam’s notion of contiguity [Le 60].)

• If ‖L‖2Q = 1 + o(1) (equivalently, limn→∞ ‖L‖2Q = 1) then weak detection is impossible. (It is always
true that ‖L‖2Q ≥ 1, by Jensen’s inequality and the fact EY∼QL(Y ) = 1.)

We will study two different “predictors” of computational complexity of hypothesis testing, both of which can
be seen as different “restrictions” of ‖L‖2Q. Our first predictor is based on the low-degree likelihood ratio L≤D,
which recall means the projection of the likelihood ratio onto the subspace of degree-at-most-D polynomials.
This is already a well-established framework for computational lower bounds [HS17, HKP+17, Hop18] (we
point the reader to the thesis [Hop18] or the survey [KWB19] for a pedagogical exposition).

Definition 1.3 (Low-Degree Likelihood Ratio). Define the squared norm of the degree-D likelihood ratio
(also called the “low-degree likelihood ratio”) to be the quantity

(1) LD(D) := ‖L≤D‖2Q =

∥∥∥∥∥
(

E
u∼µ

Lu

)≤D∥∥∥∥∥
2

Q

= E
u,v∼µ

[
〈L≤Du , L≤Dv 〉Q

]
,

where the last equality follows from linearity of the projection operator, and where u, v are drawn independently
from µ. For some increasing sequence D = Dn, we say that the hypothesis testing problem above is hard for
the degree-D likelihood or simply low-degree hard if LD(D) = O(1).

Heuristically speaking, the interpretation of LD(D) should be thought of as analogous to that of ‖L‖2Q
but for computationally-bounded tests: if LD(D) = O(1) this suggests computational hardness of strong
detection, and if LD(D) = 1 + o(1) this suggests computational hardness of weak detection (it is always the
case that LD(D) ≥ 1; see (31).). The parameter D = Dn should be loosely thought of as a proxy for the
runtime allowed for our testing algorithm, where D = O(log n) corresponds to polynomial time and more
generally, larger values of D correspond to runtime exp(Θ̃(D)) where Θ̃ hides factors of log n (or equivalently,
logN , since we will always take N and n to be polynomially-related). In Section 1.2 we further discuss the
significance of low-degree hardness, including its formal implications for failure of certain tests based on
degree-D polynomials, as well as the more conjectural connection to the sum-of-squares hierarchy.

We now introduce our second predictor, which we call the Franz–Parisi criterion. On a conceptual level,
it is inspired by well-established ideas rooted in statistical physics, which we discuss further in Section 1.3.

2There is no formal reduction from hypothesis testing to estimation at this level of generality (see Section 3.4 of [BMV+17]
for a pathological counterexample) but it is typically straightforward to give such a reduction for the types of testing problems
we will consider in this paper (see e.g. Section 5.1 of [MW15]). On the other hand, estimation can sometimes be strictly harder
than the associated testing problem (see e.g. [SW20]).
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However, the precise definition we use here has not appeared before (to our knowledge). Throughout this
paper we will argue for the significance of this definition in a number of ways: its conceptual link to physics
(Section 1.3), its provable equivalence to the low-degree criterion for Gaussian additive models (Section 2.1),
its formal connection to MCMC methods for Gaussian additive models (Section 2.2), and its usefulness as a
tool for proving low-degree lower bounds (Section 3.2).

Definition 1.4 (Low-Overlap Likelihood Norm). We define the low-overlap likelihood norm at overlap δ ≥ 0
as

(2) LO(δ) := E
u,v∼µ

[
1|〈u,v〉|≤δ · 〈Lu, Lv〉Q

]
,

where u, v are drawn independently from µ.

Definition 1.5 (Franz–Parisi Criterion). We define the Franz–Parisi Criterion at D deviations to be the
quantity

(3) FP(D) := LO(δ), for δ = δ(D) := sup {ε ≥ 0 s.t. Pr
u,v∼µ

(|〈u, v〉| ≥ ε) ≥ e−D}.

For some increasing sequence D = Dn, we say a problem is FP-hard at D deviations if FP(D) = O(1).

Remark 1.6. Two basic properties of the quantity δ defined in (3) are Pr(|〈u, v〉| ≥ δ) ≥ e−D (in particular,
the supremum in (3) is attained) and Pr(|〈u, v〉| > δ) ≤ e−D. These follow from continuity of measure and
are proved in Section 5.1.

Remark 1.7. To obtain a sense of the order of magnitudes, let us assume that the product 〈u, v〉 is
centered and sub-Gaussian with parameter σ2n. This is for instance the case if the prior distribution is a
product measure: µ = µn0 , and the distribution of the product xx′ of two independent samples x, x′ ∼ µ0 is
sub-Gaussian with parameter σ2. Then Pr(|〈u, v〉| ≥ δ) ≤ 2e−δ

2/(2nσ2) for all δ, so δ(D)2 ≤ 2nσ2(D + log 2).

Heuristically speaking, FP(D) should be thought of as having a similar interpretation as LD(D): if
FP(D) = O(1) this suggests hardness of strong detection, and if FP(D) = 1 + o(1) this suggests hardness of
weak detection. The parameter D is a proxy for runtime and corresponds to the parameter D in LD(D), as
we justify in Section 1.3.

We remark that LD(D) and FP(D) can be thought of as different ways of “restricting” the quantity

(4) ‖L‖2Q = E
u,v∼µ

[〈Lu, Lv〉Q] ,

which recall is related to information-theoretic impossibility of testing. For LD, the restriction takes the form
of low-degree projection on each Lu, while for FP it takes the form of excluding pairs (u, v) of high overlap.
Our results will show that (in some settings) these two types of restriction are nearly equivalent.

Finally, we note that the quantities ‖L‖2Q, LD(D), FP(D) should be thought of primarily as lower bounds
that imply/suggest impossibility or hardness. If one of these quantities does not remain bounded as n→∞,
it does not necessarily mean the problem is possible/tractable. We will revisit this issue again in Section 3.2,
where a conditional low-degree calculation will be used to prove hardness even though the standard LD blows
up (akin to the conditional versions of ‖L‖2Q that are commonly used to prove information-theoretic lower
bounds, e.g. [BMNN16, BMV+17, PWB16, PWBM18]).

1.2. Relation of LD to Low-Degree Algorithms. We now give a brief overview of why the low-degree
likelihood ratio is meaningful as a predictor of computational hardness, referring the reader to [Hop18, KWB19]
for further discussion. Notably, bounds on LD(D) imply failure of tests based on degree-D polynomials in
the following specific sense.

Definition 1.8 (Strong/Weak Separation). For a polynomial f : RN → R and two distributions P,Q on RN
(where N, f,P,Q may all depend on n),

• we say f strongly separates P and Q if, as n→∞,√
max {VarP[f ],VarQ[f ]} = o

(∣∣∣∣EP [f ]− E
Q

[f ]

∣∣∣∣) ,



6 BANDEIRA, EL ALAOUI, HOPKINS, SCHRAMM, WEIN, AND ZADIK

• we say f weakly separates P and Q if, as n→∞,√
max {VarP[f ],VarQ[f ]} = O

(∣∣∣∣EP [f ]− E
Q

[f ]

∣∣∣∣) .
These are natural sufficient conditions for strong and weak detection, respectively: strong separation implies
(by Chebyshev’s inequality) that strong detection is achievable by thresholding f , and weak separation implies
that weak detection is possible using the value of f (see Proposition 6.1). The quantity LD(D) can be used
to formally rule out such low-degree tests. Namely, Proposition 6.2 implies that, for any D = Dn,

• if LD(D) = O(1) then no degree-D polynomial strongly separates P and Q;
• if LD(D) = 1 + o(1) then no degree-D polynomial weakly separates P and Q.

While one can think of LD(D) as simply a tool for rigorously ruling out certain polynomial-based tests as
above, it is productive to consider the following heuristic correspondence between polynomial degree and
runtime.

• We expect the class of degree-D polynomials to be as powerful as all exp(Θ̃(D))-time tests (which is
the runtime needed to naively evaluate the polynomial term-by-term). Thus, if LD(D) = O(1) (or
1 + o(1)), we take this as evidence that strong (or weak, respectively) detection requires runtime
exp(Ω̃(D)); see Hypothesis 2.1.5 of [Hop18].

• On a finer scale, we expect the class of degree-O(log n) polynomials to be at least as powerful
as all polynomial-time tests. This is because it is typical for the best known efficient test to be
implementable as a spectral method and computed as an O(log n)-degree polynomial using power
iteration on some matrix; see e.g. Section 4.2.3 of [KWB19]. Thus, if LD(D) = O(1) (or 1 + o(1)) for
some D = ω(log n), we take this as evidence that strong (or weak, respectively) detection cannot be
achieved in polynomial time; see Conjecture 2.2.4 of [Hop18].

We emphasize that the above statements are not true in general (see for instance [HW21, Kun21, KM21,
ZSWB21, DK21] for some discussion of counterexamples) and depend on the choice of P and Q, yet remarkably
often appear to hold up for a broad class of distributions arising in high-dimensional statistics.

Low-degree hardness and sum-of-squares algorithms. An intriguing conjecture posits that LD(D) characterizes
the limitations of algorithms for hypothesis testing in the powerful sum-of-squares (SoS) hierarchy. In
particular, when LD(D) = 1 + o(1), this implies a canonical construction of a candidate sum-of-squares lower
bound via a process called pseudo-calibration. We refer the reader to [Hop18] for a thorough discussion on
connections between LD and SoS via pseudo-calibration, and [HKP+17, KWB19] for connections through
spectral algorithms.

1.3. Relation of FP to Statistical Physics.

1.3.1. The Franz–Parisi potential. Our definition of the low-overlap likelihood norm has a close connection
to the Franz–Parisi potential in the statistical physics of glasses [FP95]. We explain here the connection,
together with a simple derivation of the formula in Eq. (2). For additional background, we refer the reader
to [MM09, ZK16b] for exposition on the well-explored connections between statistical physics and Bayesian
inference.

Given a system with (random) Hamiltonian H : Rn → R, whose configurations are denoted by vectors
u ∈ Rn, we let u0 be a reference configuration, and consider the free energy of a new configuration u drawn
from the Gibbs measure dνβ(u) = Z−1 exp(−βH(u))dµ(u) constrained to be at a fixed distance r from u0.
This free energy is

Fβ(u0, r) = log

∫
1d(u,u0)=r e

−βH(u)dµ(u) .(5)

(For simplicity, we proceed with equalities inside the indicator in this discussion; but for the above to
be meaningful, unless the prior is supported on a discrete set, one has to consider events of the form
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d(u, u0) ∈ (r− δ, r+ δ).) The Franz–Parisi potential is the average of the above free energy when u0 is drawn
from the Gibbs measure νβ′ , at a possibly different temperature β′:

(6) fβ,β′(r) := E
[
Eu0∼νβ′

[
Fβ(u0, r)

]]
,

where the outer expectation is with respect to the randomness (or disorder) of the Hamiltonian H. This
potential contains information about the free energy landscape of νβ seen locally from a reference configuration
u0 ‘equilibrated’ at temperature β′, and allows to probe the large deviation properties of νβ as one changes
β. The appearance of local maxima separated by ‘free energy barriers’ in this potential is interpreted as
a sign of appearance of ‘metastable states’ trapping the Langevin or Glauber dynamics, when initialized
from a configuration at equilibrium at temperature β′, for long periods of time. This observation, which is
reminiscent of standard ‘bottleneck’ arguments for Markov chains [LP17], has been made rigorous in some
cases; see for instance [BGJ20, BWZ20].

In a statistical context, the Gibbs measure νβ corresponds to the posterior measure of the signal vector u
given the observations Y , and β plays the role of the signal-to-noise ratio. Using Bayes’ rule we can write

dνβ(u) =
dPu
dP

(Y ) dµ(u) =
Lu(Y )

L(Y )
dµ(u) .

From the above formula we make the correspondence L(Y ) = Z, Lu(Y ) = e−βH(u), and Y is the source of
randomness of H. Letting β′ = β, and then omitting the temperatures from our notation, the FP potential (6)
becomes

f(r) = EY∼PEu0∼P(·|Y ) logEu∼µ
[
1d(u,u0)=r Lu(Y )

]
= Eu0∼µEY∼Pu0 logEu∼µ

[
1d(u,u0)=r Lu(Y )

]
(7)

where the second line follows from Bayes’ rule. It is in general extremely difficult to compute the exact
asymptotics of the FP potential f , save for the simplest models3. Physicists have used the replica method
together with structural assumptions about the Gibbs measure to produce approximations of this potential,
which are then used in lieu of the true potential [FP95, FP98]. One such approximation is given by the
so-called replica-symmetric potential which describes the behavior of Approximate Message Passing (AMP)
algorithms; see for instance [LKZ15a, LKZ15b, DMK+16, BPW18, AK18] (for an illustration, see Figure 1
of [DMK+16] or Figure 1 of [BPW18]). But the simplest approximation is the annealed approximation which
can be obtained by Jensen’s inequality: f(r) ≤ fann(r), where

fann(r) := logEu,u0∼µEY∼Pu0
[
1d(u,u0)=r Lu(Y )

]
= logEu,u0∼µ

[
1d(u,u0)=r 〈Lu, Lu0

〉Q
]
.(8)

(We note that our notion of annealed FP is not quite the same as the one in [FP98].) We see a similarity
between Eq. (8) and our Low-Overlap Likelihood Norm, Eq. (2), where the distance has been replaced by the
inner product, or overlap of u and u0. This parametrization turns out to be convenient in the treatment of
Gaussian models, as we do in this paper4.

In many scenarios of interest, the annealed potential has the same qualitative properties as the quenched
potential. We consider below the example of the spiked Wigner model and show that the annealed FP
potential has the expected behavior as one changes the signal-to-noise ratio.

In this paper we are interested in the behavior of this annealed potential near overlap zero, see LO(δ).
More specifically, we consider the annealed potential in a window of size δ, where δ is related to the parameter
D via the entropy of the overlap of two copies from the prior: D = − logP(|〈u, v〉| ≥ δ); see Definition 1.5.
As previously explained in the context of the low degree method, D is a proxy for runtime (there are about
nD terms in a multivariate polynomial in n variables of degree D). A similar heuristic can be made on the
FP side: one needs to draw on average 1/P(|〈u, v〉| ≥ δ) = eD-many samples (u, v) from the prior distribution
to realize the event |〈u, v〉| ≥ δ. This means that for a typical choice of the true signal u0, one needs to
draw about eD samples u from the prior before finding one whose overlap with the truth is |〈u, u0〉| ≥ δ.
Once such an initialization is found then one can ‘climb’ the free energy curve to the closest local maximum

3For instance, if both u and Y have i.i.d. components, then computing f boils down to a classical large deviation analysis.
4Of course, the two parametrizations are equivalent if µ is supported on a subset of a sphere.
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to achieve higher overlap values. (See Figure 1 for an illustration.) So replacing the D by D log n in the
previous expression provides a rough correspondence of runtime between the LD and FP approaches, up to a
logarithmic factor.

The FP criterion, Definition 1.5, is whether FP(D) stays bounded or diverges as n→∞ for some choice
of an increasing sequence D = Dn. A heuristic justification of this criterion is as follows: We should first
note that since Lu ≥ 0, we have FP(D) ≤ ‖L‖2Q. Thus if ‖L‖Q →∞ but FP(D) = O(1), then the divergence
of ‖L‖Q must be due to contributions to the sum Eq. (4) with high overlap values: |〈u, v〉| � δ(D). Suppose
now there is a free energy barrier separating small overlaps |〈u, v〉| ≤ δ(D) from larger ones |〈u, v〉| � δ(D).
For instance, suppose 〈u, v〉 = 0 is a local maximum of the potential, separated by a barrier from a global
maximum located at 〈u, v〉 � δ(D) (see Fig. 1, Panel (b)), then one needs much more than eO(D) samples
to guess an overlap value on the other side of the barrier and land in the basin of attraction of the global
maximum. This suggests that tests distinguishing P and Q cannot be constructed in time eO(D). One of our
main results (see Section 2) is an equivalence relation between the FP(D) criterion and the LD(D′) criterion
for Gaussian models, where D′ = Θ̃(D), therefore grounding this heuristic in a rigorous statement.

1.3.2. Example: The spiked Wigner model. As a concrete example, let us consider the spiked Wigner
model with sparse Rademacher prior: The signal vector u has i.i.d. entries drawn from a three-point prior
µ0 = ρ

2δ+1/
√
ρ+ (1−ρ)δ0 + ρ

2δ−1/
√
ρ, and for 1 ≤ i ≤ j ≤ n we let Yij = λ√

n
uiuj +Zij , where Z is drawn from

the Gaussian Orthogonal Ensemble: Zij ∼ N(0, 1) for i < j and Zii ∼ N(0, 2). The null distribution is pure
Gaussian noise: Y = Z. In this case, known efficient algorithms succeed at detecting/estimating the signal u
if and only if λ > 1 [BGN11, LM19, CL19]. Furthermore, the threshold λALG = 1 is information-theoretically
tight when ρ = 1 (or more generally, if ρ is larger than a known absolute constant). On the other hand if
ρ is small enough, then detection becomes information-theoretically possible for some λ < 1 but no known
polynomial-time algorithm succeeds in the regime [BMV+17, PWBM18, AKJ20]. Let us check that the
behavior of the annealed potential is qualitatively consistent with these facts. As we will see in Section 2, a
small computation leads to the expression

〈Lu, Lv〉Q = exp

(
λ2

2n
〈u, v〉2

)
,

and the annealed FP potential (as a function of the overlap instead of the distance) is

fann(k/ρ) = log Pr
(
〈u, v〉 = k/ρ

)
+
λ2k2

2nρ2
.

Letting k = bnxc, and using Stirling’s formula, we obtain a variational formula for the annealed FP potential:
fann(bnxc/ρ) = nφ(x) + o(n) where

(9) φ(x) = max
p

{
h(p) + (1− p0) log(ρ2/2) + p0 log(1− ρ2)

}
+
λ2x2

2ρ2
, x ∈ [−1, 1] .

The maximization is over probability vectors p = (p−1, p0, p1) satisfying p1 − p−1 = x, and h(p) =
−p−1 log p−1− p0 log p0− p1 log p1. It is not difficult to check that φ(0) = φ′(0) = 0, and φ′′(0) = (λ2− 1)/ρ2.
Hence when λ < λALG = 1, the annealed FP potential fann is negative for all |x| ≤ ε for some ε = ε(λ, ρ)
(Fig 1, Panels (a), (b)). This indicates that FP(D) is bounded for D ≤ c(ε)n. On the other hand, if λ > 1,
fann is positive in an interval [−ε, ε] for some ε > 0, which indicates that FP(D) → ∞ for D = Dn → ∞
slowly (Panel (c)). One can also look at the global behavior of fann, which is plotted in Figure 1. Panel (b)
represents a scenario where x = 0 is a local maximum separated from the two symmetric global maxima by a
barrier, while in panels (a) and (c), no such barrier exists.

Finally, let us remark that while our FP criterion is conceptually similar to ideas that have appeared
before in statistical physics, we also emphasize a few key differences. While free energy barriers are typically
thought of as an obstruction to algorithmic recovery, our criterion—due to its connection with ‖L‖2Q—is
instead designed for the detection problem. As such, we do not expect the annealed FP to make sharp
predictions about estimation error (e.g., MMSE) like the AMP-based approaches mentioned above. (For
instance, Figure 1, Panel (b) wrongly predicts that estimation is ‘possible but hard’ for λ = 0.9, ρ = 0.4, when
it is in fact information-theoretically impossible [LM19].) On the other hand, one advantage of our criterion
is that, by virtue of its connection to LD in Section 2, it predicts the correct computational threshold for
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Figure 1. The annealed FP potential, Eq. (9), for various value of λ and ρ. Panel (a): A
global maximum at x = 0. Panel (b): Local maximum at x = 0 separated from two global
maxima by a ‘barrier’. Panel (c): A local minimum at x = 0.

tensor PCA (matching the best known poly-time algorithms), whereas existing methods based on AMP or
free energy barriers capture a different threshold [RM14, LML+17, BGJ20] (see also [WEM19, BCRT20] for
other ways to “redeem” the physics approach).

2. The Gaussian Additive Model

We will for now focus on a particular class of estimation models, the so called Gaussian additive models.
The distribution Pu describes an observation of the form

(10) Y = λu+ Z

where λ ≥ 0 is the signal-to-noise ratio, u ∼ µ is the signal of interest drawn from some distribution µ on RN ,
and Z ∼ N (0, IN ) is standard Gaussian noise (independent from u). In the recovery problem, the goal is to
recover u, or more precisely to compute an estimator û(Y ) that correlates with u.

We note that in principle, λ could be absorbed into the norm of u, but it will be convenient for us to keep
λ explicit because some of our results will involve perturbing λ slightly.

We focus on the hypothesis testing version of this question, where the goal is to distinguish a sample (10)
from a standard Gaussian vector.

Definition 2.1 (Gaussian Additive Model: Hypothesis Testing). Given N a positive integer, λ ≥ 0, and µ a
distribution on RN with all moments finite, hypothesis testing in the Gaussian additive model consists of
performing a simple hypothesis test between

H0 Q : Y = Z Z ∼ N (0, I),

H1 P : Y = λu+ Z Z ∼ N (0, I), u ∼ µ.

We are interested in understanding, as N = Nn →∞, for which prior distributions µ = µn and SNR levels
λ = λn it is possible to computationally efficiently distinguish a sample from P from a sample from Q (in the
sense of strong or weak detection; see Definition 1.2).

A number of classical inference tasks are captured by the Gaussian additive model. Notable examples
include spiked matrix and tensor models.

Example 2.2 (Matrix and Tensor PCA). In the matrix PCA case (spiked Wigner model), we take N = n2

and u = x⊗2, where x is for instance drawn from the uniform measure over the sphere Sn−1, or has i.i.d.
coordinates from some prior µ0. See for instance a treatment in Section 1.3. In the tensor case, we take
N = np and u = x⊗p, with x again drawn from some prior.

Bounds on LD(D) have already been given for various special cases of the Gaussian additive model such
as tensor PCA [HKP+17, KWB19] and spiked Wigner models (including sparse PCA) [KWB19, DKWB19,
BBK+21].
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As in Section 1.1 we use Pu to denote the distribution N (λu, IN ), and write Lu = dPu
dQ . To write explicit

expressions for LD and FP, we will use the following facts, which are implicit in the proof of Theorem 2.6
in [KWB19].

Proposition 2.3. In the Gaussian additive model, we have the formulas

〈Lu, Lv〉Q = exp(λ2〈u, v〉)
and

〈L≤Du , L≤Dv 〉Q = exp≤D(λ2〈u, v〉)
where exp≤D(·) denotes the degree-D Taylor expansion of exp(·), namely

(11) exp≤D(x) :=

D∑
d=0

xd

d!
.

It will also be helpful to define the overlap random variable

(12) s = 〈u, v〉 where u, v ∼ µ independently.

With Proposition 2.3 in hand, we can rewrite (1) and (3) as (making the dependence on λ explicit)

(13) LD(D,λ) = E
u,v

[
〈L≤Du , L≤Dv 〉Q

]
= E

s

[
exp≤D(λ2s)

]
and

(14) FP(D,λ) = E
u,v

[
1|〈u,v〉|≤δ · 〈Lu, Lv〉Q

]
= E

s

[
1|s|≤δ · exp(λ2s)

]
with δ = δ(D) as defined in (3).

We note that both LD and FP are guaranteed to be finite for any fixed choice of D,λ, µ: our assumption
that µ has finite moments of all orders implies that s also has finite moments of all orders, and so (13) is
finite. Also, (14) is at most exp(λ2δ) <∞.

2.1. FP-LD Equivalence. The following two theorems show that in the Gaussian additive model, FP and
LD are equivalent up to logarithmic factors in D and 1 + ε factors in λ. Recall the notation LD(D,λ) and
FP(D,λ) from (13) and (14).

Theorem 2.4 (FP-hard implies LD-hard). Assume the Gaussian additive model (Definition 2.1) and suppose
‖u‖2 ≤M for all u ∈ supp(µ), for some M > 0. Then for any λ ≥ 0 and any odd integer D ≥ 1,

LD(D,λ) ≤ FP(D̃, λ) + e−D

where
D̃ := D · (2 + log(1 + λ2M)).

The proof can be found later in this section. While the result is non-asymptotic, we are primarily interested
in the regime D = ω(1), in which case we have shown that LD can only exceed FP by an additive o(1) term.
We have lost logarithmic factors in passing from D to D̃. For many applications, these log factors are not an
issue because (in the “hard” regime) it is possible to prove FP is bounded for some D = NΩ(1) while λ,M are
polynomial in N .

Theorem 2.5 (LD-hard implies FP-hard). Assume the Gaussian additive model (Definition 2.1). For every
ε ∈ (0, 1) there exists D0 = D0(ε) > 0 such that for any λ ≥ 0 and any even integer D ≥ D0, if

(15) LD(D, (1 + ε)λ) ≤ 1

eD
(1 + ε)D

then

(16) FP(D,λ) ≤ LD(D, (1 + ε)λ) + ε.

The proof can be found in Section 5.2. In the asymptotic regime of primary interest, we have the following
consequence (also proved in Section 5.2).
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Corollary 2.6. Fix any constant ε′ > 0 and suppose D = Dn, λ = λn, N = Nn, and µ = µn are such that
D is an even integer, D = ω(1), and LD(D, (1 + ε′)λ) = O(1). Then

FP(D,λ) ≤ LD(D, (1 + ε′)λ) + o(1).

Remark 2.7. In the theorems above, we have taken the liberty to assume D has a particular parity for
convenience. Since FP and LD are both monotone in D (see Lemma 5.1), we can deduce similar results for
all integers D. For example, if D is even, Theorem 2.4 implies

LD(D,λ) ≤ LD(D + 1, λ) ≤ FP((D + 1)(2 + log(1 + λ2M)), λ) + e−(D+1).

We now present the proof of Theorem 2.4 (“FP-hard implies LD-hard”), as it is conceptually simple and
also instructive for highlighting the key reason why LD and FP are related. (Some of these ideas extend
beyond the Gaussian additive model, as discussed in Remark 2.10 below.) We first need to establish two key
ingredients. The first is an inequality for low-degree projections.

Lemma 2.8. In the Gaussian additive model with D odd, for any u, v ∈ supp(µ),

〈L≤Du , L≤Dv 〉Q ≤ 〈Lu, Lv〉Q.

Proof. Recalling from Proposition 2.3 the formulas 〈L≤Du , L≤Dv 〉Q = exp≤D(λ2〈u, v〉) and 〈Lu, Lv〉Q =
exp(λ2〈u, v〉), the result follows because exp≤D(x) ≤ exp(x) for all x ∈ R when D is odd (see Lemma 5.4). �

Second, we will need a crude upper bound on ‖L≤Du ‖Q.

Lemma 2.9. In the Gaussian additive model, for any u ∈ supp(µ),

‖L≤Du ‖2Q ≤ (D + 1)(1 + λ2M)D.

Proof. Recall that M is an upper bound on ‖u‖2, and recall from Proposition 2.3 that ‖L≤Du ‖2Q =

〈L≤Du , L≤Du 〉Q = exp≤D(λ2‖u‖2). The result follows because exp≤D(λ2‖u‖2) is the sum of D + 1 terms
(see (11)), each of which can be upper-bounded by (1 + λ2M)D. �

With the two lemmas above in hand, we can now prove Theorem 2.4 without using any additional properties
specific to the Gaussian additive model.

Proof of Theorem 2.4. Recall D̃ := D · (2 + log(1 + λ2M)). Let u, v ∼ µ independently. Define δ = δ(D̃) as
in (3), which implies Pr (|〈u, v〉| > δ) ≤ e−D̃ (see Remark 1.6). Decompose LD into low- and high-overlap
terms:

LD(D,λ) = E
u,v

[
〈L≤Du , L≤Dv 〉Q

]
= E
u,v

[
1|〈u,v〉|≤δ · 〈L≤Du , L≤Dv 〉Q

]
+ E
u,v

[
1|〈u,v〉|>δ · 〈L≤Du , L≤Dv 〉Q

]
.

The low-overlap term can be related to FP using Lemma 2.8:

E
u,v

[
1|〈u,v〉|≤δ · 〈L≤Du , L≤Dv 〉Q

]
≤ E
u,v

[
1|〈u,v〉|≤δ · 〈Lu, Lv〉Q

]
= FP(D̃, λ).

For the high-overlap term, Lemma 2.9 implies (via Cauchy–Schwarz) the crude upper bound 〈L≤Du , L≤Dv 〉Q ≤
(D + 1)(1 + λ2M)D, and together with the tail bound Pr (|〈u, v〉| > δ) ≤ e−D̃ this yields

E
u,v

[
1|〈u,v〉|>δ · 〈L≤Du , L≤Dv 〉Q

]
≤ e−D̃ · (D + 1)(1 + λ2M)D

= exp
(
−D̃ + log(D + 1) +D log(1 + λ2M)

)
≤ exp(−D)

where the final step used the definition of D̃ and the fact log(D + 1) ≤ D. �
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Remark 2.10. Many of the ideas in the above proof can potentially be extended beyond the Gaussian additive
model. The only times we used the Gaussian additive model were in Lemmas 2.8 and 2.9. The main difficulty
in generalizing this proof to other models seems to be establishing the inequality 〈L≤Du , L≤Dv 〉Q ≤ 〈Lu, Lv〉Q
from Lemma 2.8. This inequality is not true in general: one counterexample is the Gaussian additive model
with D even and 〈u, v〉 < 0 (combine Proposition 2.3 with Lemma 5.4); see also the counterexamples in
Section 4. One of our contributions (see Section 3) is to identify another class of problems where this
inequality is guaranteed to hold, allowing us to prove “FP-hard implies LD-hard” for such problems.

Remark 2.11. Some prior work has implicitly used FP in the proof of low-degree lower bounds, in a few
specific settings where the FP-to-LD connection can be made quite easily [BKW20, KWB19, BBK+21].
Our contribution is to establish this in much higher generality, which requires some new ideas such as the
symmetry argument in Section 3.1.

The proof of the converse bound “LD-hard implies FP-hard” (Theorem 2.5) is deferred to Section 5.2. The
key step is to show that when |〈u, v〉| ≤ δ, the inequality 〈L≤Du , L≤Dv 〉Q ≤ 〈Lu, Lv〉Q is almost an equality (see
Lemma 5.7).

2.2. FP-Hard Implies MCMC-Hard. In this section we show that bounds on FP imply that a natural
class of local Markov chain Monte Carlo (MCMC) methods fail to recover the planted signal. Combining this
with the results of the previous section, we also find that low-degree hardness implies MCMC-hardness. We
note that in the setting of spin glass models (with no planted signal), the result of [BAJ18] is similar in spirit
to ours: they relate a version of annealed FP to the spectral gap for Langevin dynamics.

We again restrict our attention to the additive Gaussian model, now with the additional assumption that
the prior µ is uniform on some finite (usually of exponential size) set S ⊆ RN with transitive symmetry,
defined as follows.

Definition 2.12. We say S ⊆ RN has transitive symmetry if for any u, v ∈ S there exists an orthogonal
matrix R ∈ O(N) such that Ru = v and RS = S.

The assumption that S is finite is not too restrictive because one can imagine approximating any continuous
prior to arbitrary accuracy by a discrete set. Many applications of interest have transitive symmetry. For
example, in sparse PCA we might take u = x⊗2 (thought of as the flattening of a rank-1 matrix) where
x ∈ {0, 1}n has exactly k nonzero entries (chosen uniformly at random). In this case, the orthogonal matrix
R in Definition 2.12 is a permutation matrix. More generally, we could take u = x⊗p where x has any fixed
empirical distribution of entries (ordered uniformly at random).

Note that transitive symmetry implies that every u ∈ S has the same 2-norm. Without loss of generality
we will assume this 2-norm is 1, i.e., S is a subset of the unit sphere SN−1.

Given an observation Y = λu+ Z drawn from the Gaussian additive model (with µ uniform on a finite,
transitive-symmetric set S ⊆ SN−1), consider the associated Gibbs measure νβ on S defined by

(17) νβ(v) =
1

Zβ
exp(−βH(v))

where β ≥ 0 is an inverse-temperature parameter (i.e., 1/β is the temperature),

H(v) = −〈v, Y 〉
is the Hamiltonian, and

Zβ =
∑
v∈S

exp(−βH(v))

is the partition function. Note that νβ , H,Zβ all depend on Y , but we have supressed this dependence for
ease of notation. When β = λ (the “Bayesian temperature”), the Gibbs measure νβ is precisely the posterior
distribution for the signal u given the observation Y = λu+ Z.

We will consider a (not necessarily reversible) Markov chain X0, X1, X2, . . . on state space S with stationary
distribution νβ (for some β), that is, if Xt ∼ νβ then Xt+1 ∼ νβ . We will assume a worst-case initial state,
which may depend adversarially on Y . We will be interested in hitting time lower bounds, showing that such
a Markov chain will take many steps before arriving at a “good” state that is close to the true signal u.



THE FRANZ–PARISI CRITERION AND COMPUTATIONAL TRADE-OFFS IN HIGH DIMENSIONAL STATISTICS 13

The core idea of our argument is to establish a free energy barrier, that is, a subset B ⊆ S of small
Gibbs mass that separates the initial state from the “good” states.5 Such a barrier is well-known to imply
a lower bound for the hitting time of the “good” states using conductance; see e.g. [LP17, Theorem 7.4].
In fact, establishing such barriers have been the main tool behind most statistical MCMC lower bounds
[Jer92, BGJ20, GZ22, GZ19, GJS21, BWZ20], with the recent exception of [CMZ22]. More formally, we
leverage the following result; see (the proof of) Proposition 2.2 in [BWZ20].

Proposition 2.13 (Free Energy Barrier Implies Hitting Time Lower Bound). Suppose X0, X1, X2, . . . is a
Markov chain on a finite state space S, with some stationary distribution ν. Let A and B be two disjoint
subsets of S and define the hitting time τB := inf{t ∈ N : Xt ∈ B}. If the initial state X0 is drawn from the
conditional distribution ν|A, then for any t ∈ N, Pr(τB ≤ t) ≤ t · ν(B)

ν(A) . In particular, for any t ∈ N there

exists a state v ∈ A such that if X0 = v deterministically, then Pr(τB ≤ t) ≤ t · ν(B)
ν(A) .

We will need to impose some “locality” on our Markov chain so that it cannot jump from A to a good
state without first visiting B.

Definition 2.14. We say a Markov chain on a finite state space S ⊆ SN−1 is ∆-local if for every possible
transition v → v′ we have ‖v − v′‖2 ≤ ∆.

We note that the use of local Markov chains is generally motivated and preferred in theory and practice for the,
in principle, low computation time for implementing a single step. Indeed, a ∆-local Markov chain sampling
from a sufficiently low-temperature Gibbs measure may need to optimize over the whole ∆-neighborhood to
update a given point. For such reasons, in most (discrete-state) cases the locality parameter ∆ > 0 is tuned so
that the ∆-neighborhood of each point is at most of polynomial size; see e.g. [Jer92, BWZ20, GZ19, CMZ22].

Our results will be slightly stronger in the special case that S satisfies the following property, which holds
for instance if u = x⊗p with p even, or if u ≥ 0 entrywise.

Definition 2.15. We say S ⊆ SN−1 has nonnegative overlaps if 〈u, v〉 ≥ 0 for all u, v ∈ S.

We now state the core result of this section, followed by various corollaries.

Theorem 2.16 (FP-Hard Implies Free Energy Barrier). Let µ be the uniform measure on S, where S ⊆ SN−1

is a finite, transitive-symmetric set. The following holds for any ε ∈ (0, 1/2), D ≥ 2, λ ≥ 0, and β ≥ 0. Fix a
ground-truth signal u ∈ S and let Y = λu+ Z with Z ∼ N (0, IN ). Define δ = δ(D) as in (3). Let

A = {v ∈ S : |〈u, v〉| ≤ δ} and B = {v ∈ S : 〈u, v〉 ∈ (δ, (1 + ε)δ]}.

With probability at least 1− e−εD over Z, the Gibbs measure (17) associated to Y satisfies

νβ(B)

νβ(A)
≤ 2

(
2 · FP(D + log 2, λ̃)

)1−2ε

e−εD

where

(18) λ̃ :=

√
βλ · 2 + ε

1− 2ε
.

Furthermore, if S has nonnegative overlaps (in the sense of Definition 2.15) then the factor 2+ε
1−2ε in (18) can

be replaced by 1+ε
1−2ε .

The proof is deferred to Section 5.3 and uses an argument based on [BGJ20] (and also used by [BWZ20] in
the “high temperature” regime). This argument makes use of the rotational invariance of Gaussian measure,
and we unfortunately do not know how to generalize it beyond the Gaussian additive model. We leave this as
an open problem for future work.

5We note that depending on the temperature, a free energy barrier may arise due to entropy, not necessarily due to an
increase of the Hamiltonian. Even when an Hamiltonian is monotonically decreasing along a direction to the desired solution, a
free barrier may still exist, consisting of a small-volume set that must be crossed to reach good solutions — its small volume can
still lead to a small Gibbs mass, for a sufficiently high temperature.
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As mentioned above, one particularly natural choice of β is the Bayesian temperature λ (which corresponds
to sampling from the posterior distribution). In this case β = λ, if S has nonnegative overlaps and ε is small,
there is essentially no “loss” between λ̃ and λ. Without nonnegative overlaps, we lose a factor of

√
2 in λ.

Corollary 2.17 (FP-Hard Implies Hitting Time Lower Bound). In the setting of Theorem 2.16, suppose
X0, X1, X2, . . . is a ∆-local Markov chain with state space S and stationary distribution νβ, for some ∆ ≤ εδ.
Define the hitting time τ := inf{t ∈ N : 〈u,Xt〉 > δ}. With probability at least 1− e−εD over Z, there exists a
state v ∈ A such that for the initialization X0 = v, with probability at least 1− e−εD/2 over the Markov chain,

τ ≥ eεD/2

2
(

2 · FP(D + log 2, λ̃)
)1−2ε .

Proof. Due to ∆-locality,

|〈u,Xt+1〉 − 〈u,Xt〉| = |〈u,Xt+1 −Xt〉| ≤ ‖u‖2 · ‖Xt+1 −Xt‖2 ≤ ∆ ≤ εδ

since ‖u‖2 = 1. This means the Markov chain cannot “jump” over the region B. Formally, since X0 ∈ A, we
have τ ≥ τB (with τB defined as in Proposition 2.13). The result now follows by combining Proposition 2.13
and Theorem 2.16. �

We note that Corollary 2.17 applies for all ∆ ≤ εδ(D). For various models of interest, we note that
the range ∆ ≤ εδ(D) for the locality parameter ∆ contains the “reasonable” range of values where the
∆-neighborhoods are of polynomial size. For example, let us focus on the well-studied tensor PCA settng with
a Rademacher signal and even tensor power, that is S = {u = x⊗2p : x ∈ {−n−p, n−p}n} and the sparse PCA
setting where S = {x ∈ {0, 1/

√
k}n : ‖x‖0 = k} where we focus for simplicity in the regime k/

√
n = ω(1).

Then for any D > 0 and any ε > 0, for both the models, the εδ(D)-neighborhood of any point x ∈ S, contains
nω(1) points. Indeed, it is a simple exercise that for tensor PCA (respectively, sparse PCA) δ(D) = Ω(n−p)
(respectively, δ(D) = Ω(k/n)), and as an implication, each neighborhood contains every vector x at any
Hamming distance o(

√
n) (respectively, o(k2/n)) from the given reference point.

Combining Corollary 2.6 with Corollary 2.17 directly implies the following result, showing that for certain
Gaussian additive models, a bounded low-degree likelihood norm implies a hitting time lower bound for local
Markov chains. To the best of our knowledge this is the first result of its kind.

Corollary 2.18 (LD-Hard Implies Hitting Time Lower Bound). Suppose D = Dn is a sequence with D = ω(1)
such that D + log 2 is an even integer. In the setting of Theorem 2.16, assume for some constant B > 0 that

LD(D + log 2, (1 + ε)λ̃) ≤ B.

Suppose X0, X1, X2, . . . is a ∆-local Markov chain with state space S and stationary distribution νβ, for some
∆ ≤ εδ. Define the hitting time τ := inf{t ∈ N : 〈u,Xt〉 > δ}. There is a constant C = C(B, ε) > 0 only
depending on B, ε such that the following holds for all sufficiently large n. With probability at least 1− e−εD
over Z, there exists a state v ∈ A such that for the initialization X0 = v, with probability at least 1− e−εD/2
over the Markov chain,

τ ≥ C(B, ε)eεD/2.

Remark 2.19. Observe that under a bounded degree-D likelihood norm, Corollary 2.18 not only implies a
super-polynomial lower bound on the hitting time of large overlap τ , but also an eΩ(D)-time lower bound,
matching the exact “low-degree” time complexity predictions. This significantly generalizes to a wide class of
Gaussian additive models a similar observation from [BWZ20] which was in the context of sparse PCA.

Remark 2.20. We note that the original work of [BGJ20], on which the proof of Theorem 2.16 is based,
showed failure of MCMC methods in a strictly larger (by a power of n) range of λ than the low-degree-hard
regime for the tensor PCA problem. In contrast, our MCMC lower bound uses the same argument but
matches the low-degree threshold (at the Bayesian temperature). This is because [BGJ20] only considers
temperatures that are well above the Bayesian one: in their notation, their result is for constant β whereas
the Bayesian β grows with n.
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One might naturally wonder whether for every Gaussian additive model considered in Corollary 2.18,
an appropriately designed MCMC method achieves a matching upper bound, that is it works all the way
down to the low-degree threshold. While we don’t know the answer to this question, we highlight the severe
lack of tools in the literature towards proving the success of MCMC methods for inference, with only a
few exceptions designed in the zero-temperature regime; see e.g. [GZ22]. A perhaps interesting indication
of the lack of such tools and generic understanding, has been the recent proof that the classical MCMC
method of Jerrum [Jer92] actually fails to recover even almost-linear sized planted cliques [CMZ22], that
is it fails much above the

√
n-size low-degree threshold. We note though that [GZ19] suggested (but not

proved) a way to “lift” certain free energy barriers causing the failure of MCMC methods, by an appropriate
overparametrization of the state space. Finally, we note that non-rigorous statistical physics results have
suggested the underperformance of MCMC for inference in various settings, see e.g. [AFUZ19].

Our Theorem 2.16 provides a free energy barrier which becomes larger as the temperature 1/β becomes
larger (equivalently, as λ̃ becomes smaller). We note that there are bottleneck arguments which can establish
the failure of low-temperature MCMC methods using the so-called Overlap Gap Property for inference, see
e.g. [GZ22, BWZ20]. Yet these techniques are usually based on a careful second moment argument and
appear more difficult to be applied in high generality and to connect with the technology built in the present
work.

3. Planted Sparse Models

As discussed previously (see Remark 2.10), the main difficulty in generalizing our proof of “FP-hard implies
LD-hard” from the Gaussian additive model to other models is establishing the inequality 〈L≤Du , L≤Dv 〉Q ≤
〈Lu, Lv〉Q. We showed previously that this inequality holds in the Gaussian additive model with D odd
(Lemma 2.8). Here we identify another class of problems (with a “sparse planted signal”) where we can
establish this inequality via a symmetry argument, allowing us to prove “FP-hard implies LD-hard” and thus
use FP as a tool to prove low-degree lower bounds. As an application, we give new low-degree lower bounds
for the detection problem in sparse linear regression (see Section 3.2).

Assumption 3.1 (Distributional Assumptions). In this section we focus on hypothesis testing between two
distributions P, Q on RN of a specific form, where the signal corresponds to a planted subset of entries.

• Under Y ∼ Q, each entry Yi is drawn independently from some distribution Qi on R.
• Under Y ∼ P, first a signal vector u ∈ Rn is drawn from some distribution µ on Rn. The only role
of the vector u is to be a surrogate for a subset of “planted entries.” To be more precise, to each
u ∈ supp(µ) we associate a set of planted entries Φu ⊆ [N ].6 Conditioned on u, we draw Y from the
following distribution Pu.
– For entries i /∈ Φu, draw Yi independently from Qi (the same as in Q).
– The entries in Φu can have an arbitrary joint distribution (independent from the entries outside

Φu) subject to the following symmetry condition: for any subset S ⊆ [N ] and any u ∈ supp(µ)
such that S ⊆ Φu, the marginal distribution Pu|S is equal to some distribution PS that may
depend on S but not on u.

We will further assume that Qi and PS have finite moments of all orders, and that Pu is absolutely continuous
with respect to Q. Finally, we assume Q has a complete basis of orthogonal polynomials in L2(Q). (This is
for instance known to be the case if the marginals Qi are Gaussian or have bounded support. More generally,
this can be guaranteed under mild conditions on the marginals Qi. See Appendix B for further discussion.)

As in Section 1.1 we define Lu = dPu
dQ , and define

LD(D) = E
u,v∼µ

[
〈L≤Du , L≤Dv 〉Q

]
6This seemingly involved way to identify the planted structure has some advantages as we will see, including providing a

suitable measure of “overlap.” It may be helpful to think about the special case u ∈ {0, 1}n, N = n, and Φu = supp(u) for
intuition, although in many cases of interest u will correspond to a subset of entries of vectors in a different dimension.
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and
FP(D) = E

u,v∼µ

[
1|〈u,v〉|≤δ · 〈Lu, Lv〉Q

]
where

(19) δ = δ(D) = sup {ε ≥ 0 s.t. Pr
u,v∼µ

(|〈u, v〉| ≥ ε) ≥ e−D}.

Remark 3.2. Any distribution P can satisfy Assumption 3.1 by taking only one possible value for u and
taking the associated Φu to be all-ones. However, in this case the resulting FP degenerates to simply ‖L‖2Q
(which can’t be O(1) unless detection is information-theoretically impossible). In order to prove useful
low-degree lower bounds (in the possible-but-hard regime) using the tools from this section, it will be
important to have many possible u’s with different associated distributions Pu, and so the Φu’s must be
sparse (not all ones).

We now give some motivating examples that satisfy the assumptions above. The first is a generic class of
problems that includes the classical planted clique and planted dense subgraph problems (see e.g. [HWX15]).

Example 3.3 (Planted Subgraph Problems). Let N =
(
n
2

)
and observe Y ∈ RN , which we think of as the

complete graph on n vertices with a real-valued observation on each edge. Under Q, each entry Yij is drawn
independently from some distribution Q on R. Under P, a vertex subset C ⊆ [n] of size |C| = k is chosen
uniformly at random. For edges (i, j) whose endpoints both lie in C, we draw Yij independently from some
distribution P . For all other edges, Yij is drawn independently from Q.

To see that this satisfies Assumption 3.1, let u ∈ {0, 1}n be the indicator vector for C and let Φu ⊆ [N ]
be the set of edges whose endpoints both lie in C. For the symmetry condition, note that for any edge
subset S ⊆ [N ] and any u such that S ⊆ Φu, all edges in S must have both endpoints in C, so the marginal
distribution Pu|S is simply the product distribution P⊗|S|.

The next example, sparse generalized linear models (sparse GLMs) includes various classical problems
such as the sparse linear regression problem we will study in Section 3.2.

Example 3.4 (Sparse GLMs). Fix an arbitrary activation function φ : R→ R and real-valued distributions
ν,Ξ, Q,R. The observation will be a pair (X,Y ) ∈ Rm×n × Rm generated as follows.

• Under Q, X has i.i.d. entries drawn from Q and Y has i.i.d. entries drawn from R.
• Under P, X again has i.i.d. entries drawn from Q. We draw a k-sparse signal vector β ∈ Rn by first
choosing exactly k distinct entries uniformly at random to be the support, then drawing these k
entries i.i.d. from ν, and then setting all remaining entries to 0. We then let

Y = φ(Xβ) + ξ,

where φ is applied entrywise and the noise ξ ∈ Rm is drawn i.i.d. from Ξ.

To see that this satisfies Assumption 3.1, let u ∈ {0, 1}n be the support of β (so Pu includes sampling the
nonzero entries of β from ν). Define Φu ⊆ ([m]× [n]) t [m] (where t denotes disjoint union) to contain: (i)
all entries of Y , and (ii) all “planted” columns of X, that is, the columns of X indexed by the support of β.
To see that the entries in Φu are independent (conditioned on u) from those outside Φu, note that Y depends
only on the planted columns of X. For the symmetry condition, let S ⊆ ([m]× [n]) t [m] and let JS ⊆ [n]
index the columns of X that contain at least one entry of S. Suppose u, v are such that S ⊆ Φu and S ⊆ Φv;
we will show Pu|S = Pv|S . From the definition of Φu, we see that u and v must both contain the columns JS
in their support, and each also contains k − |JS | additional columns in their support. However, the joint
distribution of (X[m],JS , Y ) does not depend on which additional k − |JS | columns are the planted ones, due
to symmetry in the model. Therefore Pu|S = Pv|S .

We give one more example, which is the one we will need for our application in Section 3.2. This is a
variation on the previous example with an added ingredient: for technical reasons we will need to condition
on a particular high-probability event.
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Example 3.5 (Sparse GLMs with Conditioning). Consider the setting of Example 3.4. Let i1, . . . , ik ∈ [n]
denote the indices in the support of β, and let Xi1 , . . . , Xik denote the corresponding (“planted”) columns of
X. Let A = A(Xi1 , . . . , Xik) be an event that depends only on the planted columns and is invariant under
permutations of its k inputs. (In other words, A has access to a multi-set of k vectors containing the values
in the planted columns, but not the planted indices i1, . . . , ik.) Under Q, draw (X,Y ) as in Example 3.4.
Under P, draw u as in Example 3.4 (equivalently, draw i1, . . . , ik) and sample (X,Y ) from the conditional
distribution Pu|A.

This satisfies Assumption 3.1 by the same argument as in Example 3.4. Here it is crucial that the
conditioning on A does not affect the non-planted columns. (It would also be okay for A to depend on Y , but
we won’t need this for our sparse regression example.)

3.1. FP-Hard Implies LD-Hard. In the setting of Assumption 3.1, we now establish the key inequality
that will allow us to prove “FP-hard implies LD-hard.”

Proposition 3.6. Under Assumption 3.1, for any integer D ≥ 0 and any u, v ∈ supp(µ),

〈L≤Du , L≤Dv 〉Q ≤ 〈Lu, Lv〉Q.

Proof. We first construct an orthonormal basis of polynomials for L2(Q). For each i ∈ [N ], first construct
an orthonormal basis of polynomials for L2(Qi), that is, a collection {h(i)

k }k∈Ii for some index set Ii ⊆ N
(we use the convention 0 ∈ N), where h(i)

k : R → R is a degree-k polynomial, the set {h(i)
k }k∈Ii, k≤D spans

all polynomials of degree at most D, and 〈h(i)
k , h

(i)
` 〉Qi = 1k=`. Such a basis can be constructed by applying

the Gram–Schmidt process to the monomial basis {1, x, x2, . . .}, discarding any monomials that are linearly
dependent on the previous ones. In particular, 0 ∈ Ii and h(i)

0 (x) = 1. From orthonormality, we have the
property

(20) E
x∼Qi

[h
(i)
k ] = 〈h(i)

k , 1〉Qi = 〈h(i)
k , h

(i)
0 〉Qi = 0 for all k ≥ 1,

which will be needed later.

Now an orthonormal basis of polynomials for Q is given by {Hα}α∈I where the index set I ⊆ NN is the
direct product I :=

∏
i∈[N ] Ii and Hα(x) :=

∏
i∈[N ] h

(i)
αi (xi). Letting |α| :=

∑
i∈[N ] αi, these have the property

that {Hα}α∈I, |α|≤D spans all polynomials RN → R of degree at most D, and 〈Hα, Hβ〉Q = 1α=β .

Expanding in this basis, we have

(21) 〈L≤Du , L≤Dv 〉Q =
∑

α∈I, |α|≤D

〈Lu, Hα〉Q〈Lv, Hα〉Q =
∑

α∈I, |α|≤D
E

Y∼Pu
[Hα(Y )] E

Y∼Pv
[Hα(Y )],

where we have used the change-of-measure property EQ[L · f ] = EP[f ]. We claim that for any α,

(22) E
Y∼Pu

[Hα(Y )] E
Y∼Pv

[Hα(Y )] ≥ 0.

This claim completes the proof because every term in (21) is nonnegative and so

〈L≤0
u , L≤0

v 〉Q ≤ 〈L≤1
u , L≤1

v 〉Q ≤ 〈L≤2
u , L≤2

v 〉Q ≤ · · · ≤ lim
D→∞

〈L≤Du , L≤Dv 〉Q = 〈Lu, Lv〉Q,

where the final equality follows due to our assumption that Q has a complete orthonormal basis of polynomials,
that is, the space of polynomials is dense in L2(Q). It remains to prove the claim (22). Let Sα ⊆ [N ] be
the support of α, that is, Sα = {i ∈ [N ] : αi ≥ 1}. Note that since h(i)

0 = 1, Hα(Y ) depends only on the
entries Y |Sα . If Sα 6⊆ Φu, we will show that EY∼Pu [Hα(Y )] = 0, implying that (22) holds with equality. To
see this, fix some i ∈ Sα \ Φu (which exists because Sα 6⊆ Φu) and note that under Y ∼ Pu, Yi is drawn from
Qi independent from all other entries of Y . Letting ᾱ be obtained from α by setting αi to 0, Hᾱ(Y ) depends
only on Y |Sα\{i} and is therefore independent from Yi. This means

E
Y∼Pu

[Hα(Y )] = E
Y∼Pu

[Hᾱ(Y ) · h(i)
αi (Yi)] = E

Y∼Pu
[Hᾱ(Y )] E

x∼Qi
[h(i)
αi (x)] = E

Y∼Pu
[Hᾱ(Y )] · 0 = 0,

where we have used (20) along with the fact αi ≥ 1 (since i ∈ Sα). The same argument also shows that if
S 6⊆ Φv then EY∼Pv [Hα(Y )] = 0.
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It therefore remains to prove (22) in the case Sα ⊆ Φu ∩ Φv. In this case, the symmetry condition in
Assumption 3.1 implies Pu|Sα = Pv|Sα . Since Hα(Y ) depends only on Y |Sα , this means EY∼Pu [Hα(Y )] =

EY∼Pv [Hα(Y )], implying (22). �

As a consequence of the above, we can now show “FP-hard implies LD-hard.”

Theorem 3.7 (FP-hard implies LD-hard). Under Assumption 3.1, suppose

sup
u∈supp(µ)

‖L≤Du ‖2Q ≤M

for some M ≥ 1 and some integer D ≥ 0. Then

LD(D) ≤ FP(D + logM) + e−D.

For intuition, it is typical to have M = nO(D) and so logM = O(D log n). This will be the case in our
sparse regression example.

Proof. The proof is nearly identical to that of Theorem 2.4. We recap the main steps here.

Let u, v ∼ µ independently. Define D̃ := D+logM and δ = δ(D̃) as in (19), which implies Pr (|〈u, v〉| > δ) ≤
e−D̃ (see Remark 1.6). Decompose

LD(D,λ) = E
u,v

[
〈L≤Du , L≤Dv 〉Q

]
= E
u,v

[
1|〈u,v〉|≤δ · 〈L≤Du , L≤Dv 〉Q

]
+ E
u,v

[
1|〈u,v〉|>δ · 〈L≤Du , L≤Dv 〉Q

]
.

The low-overlap term can be related to FP using Proposition 3.6:

E
u,v

[
1|〈u,v〉|≤δ · 〈L≤Du , L≤Dv 〉Q

]
≤ E
u,v

[
1|〈u,v〉|≤δ · 〈Lu, Lv〉Q

]
= FP(D̃, λ).

For the high-overlap term,

E
u,v

[
1|〈u,v〉|>δ · 〈L≤Du , L≤Dv 〉Q

]
≤ e−D̃ ·M ≤ e−D

using the choice of D̃. �

3.2. Application: Sparse Linear Regression. In this section we give sharp low-degree lower bounds
for the hypothesis testing version of a classical inference model: sparse linear regression with Gaussian
covariates and Gaussian noise. This classical model, which shares many similarities with the well-studied
setting of compressed sensing, admits an interesting information-computation gap for an appropriate choice
of parameters (see [GZ22] and references therein). There is a sample regime where multiple polynomial-time
algorithms can correctly infer the hidden coefficient vector, including convex programs such as LASSO [Wai09]
or greedy compressed sensing algorithms such as Basis Pursuit [DT10]. Interestingly though, exponential-time
algorithms are known to work for sample sizes which are an order of magnitude smaller as compared to the
known polynomial-time ones (see [RXZ21] and references therein). All known polynomial-time algorithms
for sparse regression are either believed or proven to fail in the intermediate “hard” regime. Motivated
by such results, [GZ22] study this gap and prove that a low-temperature free-energy barrier, also called
the Overlap Gap Property for inference, appears for a part of the hard regime. Their result implies that
certain low-temperature MCMC methods fail, leaving open the question of whether more evidence, such as a
low-degree lower bound, can also be established in the hard regime to support the presence of a gap.

In this section, we establish such a low-degree lower bound for the associated detection problem in sparse
regression. As we discuss in Remark 3.14, the lower bound seems difficult to prove using existing approaches.
We will instead prove this result in an indirect manner by leveraging the connection with FP developed in
the previous section, illustrating that FP can be a powerful tool for proving low-degree lower bounds that
otherwise seem out of reach.

Formally, we consider the following detection task, also studied by [ITV10, Arp21].

Definition 3.8 (Sparse Linear Regression: Hypothesis Testing). Given a sample size m ∈ N, feature size
n ∈ N, sparsity level k ∈ N with k ≤ n and noise level σ > 0, we consider hypothesis testing between the
following two distributions over (X,Y ) ∈ Rm×n × Rm.
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• Q generates a pair (X,Y ) where both X and Y have i.i.d. N (0, 1) entries.
• P generates a pair (X,Y ) as follows. First X is drawn with i.i.d. N (0, 1) entries. Then, for a planted
signal u ∈ {0, 1}n drawn uniformly from all binary vectors of sparsity exactly k, and independent
noise W ∼ N (0, σ2Im), we set

Y = (k + σ2)−1/2(Xu+W ).

This is a specific instance of a sparse GLM (see Example 3.4). As a remark, note that the marginal
distribution of Y is N (0, Im) under both Q and P (but under P, Y is correlated with X).

We follow the parameter assumptions from [GZ22].

Assumption 3.9 (Scaling of the parameters). For constants θ ∈ (0, 1) and R > 0, consider a scaling regime
where n→∞ and

• (Sublinear sparsity)
k = nθ+o(1),

• (High signal-to-noise ratio per sample)

σ2 = o(k),

• (Scale of the sample size)

m = (1 + o(1))Rk log(n/k) = (1 + o(1))R(1− θ)k log n.

The scaling of the sample size is chosen because the low-degree threshold will occur at this scaling. The
high-SNR assumption is for the sake of simplicity, and guarantees that the low-degree threshold will not
depend on the value of σ. Our techniques can likely be generalized to the case where σ is larger, but as [GZ22]
consider this scaling, we focus on this regime for our result.

Under the above assumptions, multiple works in the literature have studied the closely related task of
approximate recovery of u given access to m samples from the planted model P, where the goal is to estimate
the support of u with o(k) errors (false positives plus false negatives) with probability 1− o(1). It is known
that when given m > 2k log n samples, or equivalently when R > 2/(1 − θ), the LASSO convex program
[Wai09] succeeds in achieving the even harder goal of exact recovery. We prove (see Section 6.2.5) that under
the weaker condition R > 2 (for any θ ∈ (0, 1)), a simple thresholding algorithm achieves approximate recovery.
(It was previously suggested by non-rigorous calculations, but not proven to the best of our knowledge, that
AMP also achieves approximate recovery when R > 2 [RXZ19], and a similar result is expected to hold for
LASSO as well [GZ22].) On the other hand, it is known [RXZ21] that the information-theoretic sample size is

minf = 2k
log(n/k)

log(k/σ2 + 1)
= o(k log n/k),(23)

above which the exponential-time maximum-likelihood estimator approximately recovers the hidden signal,
while no estimator succeeds below it. This line of work suggests the presence of a possible-but-hard regime for
approximate recovery when 0 < R < 2 (for any fixed θ ∈ (0, 1)). In [GZ22], rigorous evidence was provided
for this gap, namely when 0 < R < c0 for a small constant c0 > 0, the Overlap Gap Property appears and
certain MCMC methods fail.

Turning back to the detection task, in sparse regression it holds that approximate recovery is formally
at least as hard as strong detection in the sense that there is a polynomial-time reduction from strong
detection to approximate recovery [Arp21]. In particular, the results mentioned above imply that there is a
polynomial-time algorithm for strong detection whenever R > 2. Furthermore, any evidence of hardness for
detection when 0 < R < 2 would suggest that recovery should also be hard in the same regime. We note that
the information-theoretic threshold for strong detection is the same as that for approximate recovery, namely
minf as defined in (23) [RXZ21]. This makes strong detection information-theoretically possible in the entire
regime 0 < R < 2, but the algorithm achieving this has exponential-in-k runtime due to a brute-force search
over all possible

(
n
k

)
signals.

In the following result, we provide rigorous “low-degree evidence” (and a matching upper bound) for the
precise optimal trade-off between sparsity, sample complexity, and time complexity for the sparse linear
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regression detection task. As compared to prior work, this is a sharper threshold than the low-degree lower
bounds in [Arp21] (as we discuss below), and a different scaling regime than the one considered in [ITV10]
(which is an information-theoretic result). The proof is deferred to Section 6.

Theorem 3.10. Define

(24) RLD(θ) =


2(1−

√
θ)

1+
√
θ

if 0 < θ < 1
4 ,

1−2θ
1−θ if 1

4 ≤ θ <
1
2 ,

0 if 1
2 ≤ θ < 1.

Consider sparse linear regression (Definition 3.8) in the scaling regime of Assumption 3.9.

(a) (Hard regime) If R < RLD(θ) then no degree-o(k) polynomial weakly separates P and Q (see Defini-
tion 1.8).

(b) (Easy regime) If R > RLD(θ) then there is a polynomial-time algorithm for strong detection between
P and Q (see Definition 1.2).

The threshold RLD(θ) is a continuous and monotone decreasing function of θ ∈ (0, 1), that is, the problem
is expected to become easier the larger θ is. When θ ≥ 1/2 we have RLD(θ) = 0 which means the testing
problem is “easy” for any fixed R > 0.

The algorithm that gives the matching upper bound in part (b) is fairly simple but somewhat subtle: letting
Xj denote the jth column of X, the idea is to count the number of indices j ∈ [n] for which 〈Xj , Y 〉/‖Y ‖2
exceeds a particular (carefully chosen) threshold, and then threshold this count.

Remark 3.11. We expect that by approximating the algorithm from part (b) by a polynomial, it is possible
to prove that for R > RLD(θ), there is a degree-O(log n) polynomial that strongly separates P and Q.

Remark 3.12 (Optimality of “brute-force search” in the hard regime). Part (a) suggests that for R < RLD(θ),
weak detection requires runtime exp(Ω̃(k)), which matches the runtime of the brute-force search algorithm
of [RXZ21]. This is in contrast to the related sparse PCA problem, where the low-degree analysis suggests a
smoother tradeoff between runtime and SNR, with non-trivial subexponential-time algorithms existing in the
hard regime [DKWB19, HSV20].

Remark 3.13 (Implications for recovery). Recall that approximate recovery is formally at least as hard as
strong detection [Arp21]. Thus, Theorem 3.10 suggests computational hardness of recovery when R < RLD(θ).
In the limit θ ↓ 0, this is essentially tight: limθ↓0RLD(θ) = 2, matching the threshold achieved by both
LASSO [Wai09] and our thresholding algorithm (Section 6.2.5). For larger values of θ, there appears to be a
detection-recovery gap, so our lower bound (while sharp for detection) does not suggest a sharp recovery
lower bound. An interesting open problem is to establish a direct low-degree lower bound for recovery (in the
style of [SW20]) for all R < 2 and all θ ∈ (0, 1).

Proof techniques. Proving the sharp low-degree lower bound in the regime θ < 1/4 requires a conditional
low-degree calculation: instead of bounding LD for testing P versus Q, we bound LD for testing the
conditional distribution P|A versus Q, for some high-probability event A (see Section 6.1.1 for more details).
This is necessary because the standard LD blows up at a sub-optimal threshold due to a rare “bad” event
under P. Conditioning arguments of this type are common for information-theoretic lower bounds (see
e.g. [BMNN16, BMV+17, PWB16, PWBM18]), but this is (to our knowledge) the first instance where
conditioning has been needed for a low-degree lower bound (along with the concurrent work [CGHK+22]
by some of the same authors). We note that [Arp21] gave low-degree lower bounds for sparse regression
by analyzing the standard (non-conditioned) LD, and our result improves the threshold when θ < 1/4 via
conditioning.

Remark 3.14. The standard approach to bounding LD involves direct moment calculations; see e.g.
Section 2.4 of [Hop18] for a simple example, or [Arp21] for the case of sparse regression. It seems difficult to
carry out our conditional low-degree calculation by this approach because it does not seem straightforward to
directly analyze the moments of P|A for our event A. Instead, we bound FP for the P|A versus Q problem
and then use the machinery from the previous section to conclude a bound on the conditional LD. Luckily, FP
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is a somewhat simpler object that “plays well” with the conditioning, leading to a more tractable calculation.
This illustrates that FP can be a powerful tool for proving low-degree lower bounds that may otherwise be
out of reach.

Remark 3.15. Finally, we point out that the prior results and our low-degree hardness results supporting
the information-computation gap for sparse linear regression are conjectured to be meaningful only under the
assumption that the noise level σ is not exponentially small in n. If σ is exponentially small, it is known
that polynomial-time lattice-based methods can exactly recover the hidden signal u even with access to
only m = 1 sample from the planted model [ZG18] (and in particular solve the detection task as well). We
direct the interested reader to the discussion in [ZSWB21] for the importance of non-trivial noise in making
computational predictions in inference.

4. Counterexamples

Our results suggest that one may hope for a formal FP-LD equivalence in much higher generality than
what we have proven. However, in this section we discuss a few obstacles which a more widely-applicable
free energy-based criterion for computational hardness will have to overcome. By “more widely-applicable,”
we mean that we would like a criterion which accurately predicts information-computation gaps for a wide
range of problems outside the Gaussian additive model – after all, the low-degree approach appears to make
accurate predictions for e.g. graph partitioning problems, constraint satisfaction, planted clique, tensor PCA,
and more, and it remains to develop a rigorous mathematical theory based on free energy barriers that
achieves the same.

We first demonstrate a simple hypothesis testing problem for distributions on the n-dimensional hypercube
for which the FP criterion, as we have defined it, makes an obviously-incorrect prediction about computational
hardness – predicting that an easy problem is hard. That is, FP(D) = o(1) for the problems we demonstrate,
but they are polynomial-time solvable (in particular, LD(D)� 1 for small D). This shows that either (a) the
FP criterion does generalize accurately to a broad range of testing problems beyond the Gaussian additive
model, but the particular problem we construct has to be “defined out” of that range, or (b) the FP criterion
itself must be modified to successfully generalize beyond the Gaussian additive model.

We give some evidence against option (a) by showing that our construction of such “bad” problems is
robust in two ways, making it seemingly hard to define a natural class of problems which avoids the issue.
First, adding some noise to the alternative hypothesis H1 does not fix the issue. And, second, the issue can
appear even in a natural planted subgraph detection problem of the kind that we would expect a good theory
of computational hardness to address.

This leaves option (b), that to generalize past the Gaussian additive model, we should look for a different
free energy-based criterion for hardness. The intuitions from statistical physics which in the first place guided
the definition of the Franz–Parisi criterion actually suggest that computational hardness should coincide
with non-monotonicity of some one-parameter curve associated to an inference problem. For instance, the
replica heuristic for predicting computational hardness associates to an inference problem (with a fixed SNR)
a certain one-parameter curve called the replica symmetric potential which, according to the heuristic, is
monotonically increasing if and only if the problem is computationally tractable at that SNR (see Figure 1
of [DMK+16] or Figure 1 of [BPW18]). By contrast, FP(D) measures the value of a related curve near the
typical overlap.

While the replica heuristic and others have been remarkably successful at predicting hardness,7 we show that
formalizing such a criterion will require overcoming some technical challenges. Free energy-based approaches
to computational hardness we are aware of can all be understood to study some function f(t) which tracks or
approximates the free energy of a posterior distribution (or the corresponding Gibbs measure at a different
“non-Bayesian” temperature) restricted to overlap ≈ t with the some ground-truth signal. (Exactly which
function f is used depends on which of many possible free energy-based hardness criteria is in question.) The

7We note, however, that the replica heuristic and the associated AMP algorithm do not predict the correct computational
threshold for tensor PCA [RM14, LML+17, BGJ20] (see also [WEM19, BCRT20] for discussion), which was part of our initial
motivation to search for a different criterion.
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LO(δ) curve we study in this paper and the one-parameter curve studied in the replica method are both
examples of such f .

We also show that many natural hypothesis testing problems – problems to which one would naturally
hope a generic theory of computational hardness would apply – can straightforwardly be transformed into
hypothesis testing problems where any reasonable curve f(t) which measures the free energy of solutions “at
overlap t” must be non-monotonic, regardless of computational complexity of the problem. We do this by
introducing artificial “overlap gaps” – ranges of t where no pair of solutions can have overlap t, but some
pairs exist with both smaller and larger overlaps.

Since the low-degree criterion for hardness remains applicable even to these problems with manufactured
overlap gaps, we take this to show that any criterion based on monotonicity of some free-energy curve must
apply to a narrower set of inference problems than the corresponding low-degree criterion.

Remark 4.1. One use case for our results is to use FP as a tool for proving low-degree lower bounds, as
in Section 3.2. While the counterexamples we give here show that we cannot hope for a formal FP-to-LD
connection for general Boolean-valued problems, one strategy for proving low-degree lower bounds for Boolean-
valued problems is to first compare to an associated Gaussian problem (see Proposition B.1 of [BBK+21])
and then use the FP-to-LD connection for Gaussian problems (Theorem 2.4). This type of strategy is used
implicitly in [BBK+21] to give low-degree lower bounds for community detection. Also, some Boolean-valued
problems (such as planted clique and planted dense subgraph) fall into the framework of Section 3 and can
be handled using the FP-to-LD connection in Theorem 3.7.

4.1. The Form of the Low-Overlap and Low-Degree Likelihood Ratios for Boolean Problems.
Throughout this section, let H0 = Rad( 1

2 )⊗n. We’ll have H1 as a mixture over biased distributions H1 =
Eu∼µHu, where µ is a distribution over bias vectors u ∈ [−1, 1]n, and we sample x ∼ Hu by independently
sampling

xi =

{
1 with probability 1

2 + ui
2

−1 with probability 1
2 −

ui
2 .

Claim 4.2. For u, v ∈ [−1, 1]n, 〈Lu, Lv〉 =
∏n
i=1(1 + uivi).

Proof. By definition,

Lu(x) =
∏
i≤n

(
1(xi = 1) · 1/2 + ui/2

1/2
+ 1(xi = −1) · 1/2− ui/2

1/2

)
=
∏
i≤n

(1 + xiui) .

So,
〈Lu, Lv〉 = E

x∼H0

∏
i≤n

(1 + xiui) =
∏
i≤n

E
x∼H0

(1 + xiui)(1 + xivi) =
∏
i≤n

(1 + uivi). �

It is not completely clear which notion of overlap to take in defining the Franz–Parisi criterion in this
Boolean setting. However, our examples below will rule out any reasonable notion of overlap.

Claim 4.3. In the setting where H0 = Rad( 1
2 )⊗n and H1 = Eu∼µHu,

LD(D) =
∑
S⊂[n]
|S|≤D

Eu,v∼µ

[∏
i∈S

uivi

]
.

Proof. The Walsh–Hadamard characters are an orthonormal basis for L2(H0). For each S ⊆ [n], the character
χS is given by χS(x) =

∏
i∈S xi. We can express Lu(x) =

∑
S⊆[n] L̂u(S)χS(x), where L̂u(S) = 〈Lu, χS〉,

and L≤Du (x) =
∑
S⊆[n],|S|≤D L̂u(S)χS(x). (For proofs of these standard facts from Boolean analysis, see

e.g. [O’D14].)

Taking the inner product in the Walsh–Hadamard basis, 〈L≤Du , L≤Dv 〉 =
∑
S⊆[n],|S|≤D L̂u(S)L̂v(S). Com-

puting L̂u(S), we get L̂u(S) = Ex∼H0

∏
i∈[n](1+xiui)·

∏
i∈S xi =

∏
i∈S ui. Since LD(D) = Eu,v∼µ〈L≤Du , L≤Dv 〉,

the claim follows. �
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4.2. Examples of Problems where FP Fails to Predict the Computational Threshold. Both of
the examples presented in this section show that in the Boolean case, the form of the inner product of
likelihood ratios (Claim 4.2) enables us to make FP(D) small even for easy problems.

Our first simple example shows that it is possible to have FP (D) = 0 for all reasonable values of D, and
for any reasonable definition of overlap between bias vectors u, v even for an easy hypothesis testing problem.
Consider any distribution µ over bias vectors in {±1}n (rather than in [−1, 1]n). Then whenever u, v ∼ µ are
such that u 6= v, they disagree on at least one coordinate, so there exists some i ∈ [n] (depending on u, v)
where ui = −vi. This means whenever u 6= v,

〈Lu, Lv〉 =
∏
j∈[n]

(1 + ujvj) = (1− u2
i ) ·

∏
j∈[n]\{i}

(1 + uivi) = 0.

Hence, for any reasonable definition of overlap between u, v, for any δ small enough to exclude the u = v case,

LO(δ) ≤ Eu,v∼µ[1u 6=v · 〈Lu, Lv〉] = 0.

Thus, even if H1 and H0 are easy to distinguish (for example, H1 is uniform over {u ∈ {±1} :
∑
i∈[n] ui =

0.9n}), the Franz–Parisi criterion will predict that the problem is hard for D = nΩ(1).

The assumption of u ∈ {±1} is quite artificial, but next we will see that it is not necessary; a more “noisy”
version of the problem, in which H1 is not a mixture around point masses but rather a mixture of biased
product measures with reasonable variance, will still exhibit the same qualitative behavior. After that, we’ll
show how to embed this problem into a natural planted problem: a variant of densest subgraph in the easy
regime.

4.2.1. Positively biased product measures. For any ε, δ ∈ (0, 1), consider the following prior µ over u: sample
ui = ε with probability 1

2 + 1
2δ and ui = −ε otherwise. For sake of illustration, in the following lemmas we

take 〈u, v〉 to be the definition of overlap of bias vectors u, v, so that FP agrees with the definition used in
the rest of this paper. However, we believe that a qualitatively similar statement holds for any reasonable
definition of overlap.

Lemma 4.4. In the model above, for any α > 0, if ε = n−1/4+2α and δ = n−1/4+α and D � nα,
FP (D) = exp(−O(n8α)) but LD(D) ≥ n6α. Furthermore, given x sampled from either H0 or H1, the statistic
〈x,~1〉 distinguishes between the models with error probability o(1).

Proof. First, we show that in this parameter setting, a successful test statistic exists. The test statistic
〈x,~1〉 is distributed as 2

(
Bin(n, 1

2 )− n
2

)
for x ∼ H0, and it is distributed as 2ε

(
Bin(n, 1

2 + 1
2δ)−

n
2

)
for

x ∼ H1. Since in our setting EH1 [〈x, 1〉] = εδn = n1/2+3α �
√
n and EH0 [〈x, 1〉] = 0, 〈x,~1〉 takes value at

most
√
n log n under H0 with probability 1−O(1/n), and at least n1/2+2α with probability 1− o(1/n), so

thresholding on 〈x, 1〉 gives a hypothesis test which succeeds with high probability.

The value of FP(D) and LD(D) follow as corollaries of Claims 4.5 and 4.6 below.

Claim 4.5. If ε, δ ∈ (0, 1) satisfy ε2 � max
(
δ2,
√

D
n

)
, then FP(D) ≤ exp

(
−O(nε4)

)
.

Proof. If u, v agree on n
2 + ∆ coordinates (which is equivalent to 〈u, v〉 = ε2 · 2∆), then by Claim 4.2,

〈Lu, Lv〉 = (1 + ε2)
n
2 +∆(1− ε2)

n
2−∆

=
(
1− ε4

)n/2 · (1 + ε2

1− ε2

)∆

.

For u, v ∼ µ, we have that 〈u, v〉 ∼ 2ε2
(
Bin(n, 1

2 + 1
2δ

2)− n
2

)
. Now, applying the Chernoff bound for a

sum of independent Bernoulli random variables,

Pr
u,v∼µ

[∣∣∣∣ 〈u, v〉ε2
− δ2n

∣∣∣∣ ≥ C√n] = Pr
X∼Bin(n, 12 + 1

2 δ
2)

[
|X − E[X]| ≥ 1

2C
√
n
]
≤ exp

(
− C2

2(1− δ4)

)
.
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Taking our notion of overlap to be 〈u, v〉, note that if δ0 satisfies Pr(|〈u, v〉| > δ0) < e−D then δ0 > δ(D)
and hence FP(D) ≤ LO(δ0). So we have

FP(D) ≤ Eu,v∼µ
[
1|〈u,v〉|>ε2δ2n+ε2

√
2D(1−δ4)n

· 〈Lu, Lv〉
]
≤ (1− ε4)n/2

(
1 + ε2

1− ε2

)δ2n+
√

2Dn

,

and taking logarithms,

log(FP(D)) ≤ n ·
(

1
2 log(1− ε4) +

(
δ2 +

√
2D
n

)
log

(
1 + ε2

1− ε2

))
= n ·

(
−Ω(ε4) +O

((
δ2 +

√
D
n

)
ε2

))
,

where we have used a first-order Taylor expansion to log(1 + x). Thus so long as ε2 � max
(
δ2,
√

D
n

)
,

FP(D) ≤ exp(−nO(ε4)). This completes the proof. �

While the definition of the overlap of u, v as 〈u, v〉 is just one of many possible choices in the Boolean
setting, we note that any definition of overlap which would count only only “typical” pairs u, v which agree on
a n( 1

2 + δ2

2 )±O(
√
n) fraction of coordinates as having small-enough overlap to be counted when computing

FP(D) for small D would have led to the same outcome.

Claim 4.6. For the model specified above, LD(D) ≥ LD(1) = nδ2ε2.

Proof. In our model, Eu∼µui = εδ for every i ∈ [n]. So we compute directly from Claim 4.3,

LD(1) =
∑
i∈[n]

Eu,v∼µuivi = n · (Eu∼µu1)
2

= nδ2ε2. �

This concludes the proof of the lemma. �

4.2.2. Planted dense-and-sparse subgraph. Next we show that FP can mis-predict the computational threshold
even for a familiar-looking planted subgraph problem. Consider the following problem: H0 is uniform over
{±1}(

n
2), i.e., H0 is the Erdos-Renyi distribution G(n, 1/2). The alternate distribution H1 is uniform over

signed adjacency matrices of n-vertex graphs containing a planted dense subgraph of size δn and a planted
sparse subgraph of size cδn for c < 1. That is, we take µ uniform over the upper-triangular restriction of
matrices of the form u = upper(0.9 · 1S1>S − 0.9 · 1T 1>T ), where S is a subset of [n] chosen by including every
i ∈ S independently with probability δ, and T is a subset of [n] chosen by including every i ∈ T independently
with probability cδ.

Lemma 4.7. When c = 0.9, δ = n−1/10, and D � n0.2, the testing problem H0 vs H1 is easy, LD(D) =
Ω(n9/5), but FP(D) = exp(−Ω(n8/5)).

Proof. To see that the testing problem is easy in this regime, consider the test statistic given a sample x from
either H0 or H1 which is the maximum eigenvalue of the matrix A(x) whose (i, j) entry is given by xij (or xji).
Under H0, λmax(A(x)) = O(

√
n) with high probability. However under H1, λmax(A(x)) ≥ 1>SA(x)1S/|S|,

and the final quantity is at least Ω((δn)2) = Ω(n9/5) with high probability using standard estimates. Hence
the maximum eigenvalue of A(x) furnishes a test that succeeds with high probability.

To bound the values of LD(D) and FP(D), we turn to the following claims:

Claim 4.8. Suppose δ = o(1), c ∈ (0.43, 2.32) and D � δ8n. Then there exists a constant a > 0 such that
FP(D) ≤ exp

(
−aδ4n2

)
.

Proof. Let S′u = Su \ Tu and similarly for T ′u. For u, v where |S′u ∩ S′v| = αn, |T ′u ∩ T ′v| = βn, |S′u ∩ T ′v| = γn,
and |T ′u ∩ S′v| = ηn,

〈Lu, Lv〉 =
∏

(i,j)∈([n]
2 )

(1 + uijvij) = (1.81)(
αn
2 )+(βn2 ) (0.19)(

γn
2 )+(ηn2 ) .
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We have that E|S′u ∩ S′v| = δ2(1 − cδ)2n, E|T ′u ∩ T ′v| = c2δ2(1 − δ)2n and E|T ′u ∩ S′v| = E|S′v ∩ T ′u| =
cδ2(1 − cδ)(1 − δ)n. From standard concentration arguments, the sizes of each of these sets is within an
additive

√
Dn with probability at least 1 − exp(−O(D2)). Hence, for definition of overlap between pairs

(S0, T0), (S1, T1) such that the overlaps accounted for in FP(D) for small D includes only pairs falling within
this tolerance,

log (FP(D)) ≤ log
(

(1.81)
1
2 (1−cδ)4δ4n2+ 1

2 c
4δ4(1−δ)4+O(n3/2

√
D)(0.19)c

2δ4(1−cδ)2(1−δ)2n2−O(n3/2
√
D)
)

≤ δ4n2 ·

(
1
2

(
(1− cδ)4 + c4(1− δ)4 +O(

√
D

δ4
√
n

)
)

log(1.81) + (c2(1− cδ)2(1− δ)2 −O(

√
D

δ4
√
n

)) log(0.19)

)
,

and the quantity within the parenthesis is a negative constant so long as D � δ8n and c ∈ (0.43, 2.32). This
concludes the proof. �

Claim 4.9. LD(D) = Ω((δ(1− c)n)2).

Proof. We have that Eu∼µuij = 0.9(1− c)δ. Hence,

LD(D) ≥ LD(1) =
∑

(i,j)∈([n]
2 )

Eu,v∼µuijvij =

(
n

2

)
0.81(1− c)2δ2. �

This completes the proof of the lemma. �

Remark 4.10. We note that the planted dense-and-sparse subgraph problem can be put into the framework
of Section 3 (specifically Assumption 3.1) and so we have the FP-to-LD implication from Theorem 3.7.
However, to do this, we need to let u encode the set of vertices in the union of the two subgraphs, but not the
choice of which vertices belong to the dense subgraph and which belong to the sparse one — this choice is
instead absorbed into Pu. This alters the notion of overlap sufficiently that the FP curve accurately reflects
the computational complexity of the problem.

4.3. Pruning to Achieve Sparse Support of the Overlap Distribution. We turn to our last family
of examples, constructing problems where the distribution of overlaps has “gaps” in its support, regardless of
the computational complexity of the problem. In fact, this follows from a simple lemma:

Lemma 4.11 (Subsampling prior distributions). Let D be a probability distribution and E be an event
in the probability space corresponding to D ⊗ D, with Prx,y∼D((x, y) ∈ E) ≤ δ, and such that (x, x) /∈ E
for all x in the support of D. Then the uniform distribution D′ over Ω(1/

√
δ) samples from D satisfies

Prx,y∼D′((x, y) ∈ E) = 0 with probability at least 0.99.

Proof. There are at most T 2 distinct pairs of draws x, y ∼ D in a list of T independent draws x1, . . . , xT ; by
a union bound the probability that any (xi, xj) is in E is at most δT 2. �

Now let us sketch an example hypothesis testing problems with a “manufactured” overlap gap, using
Lemma 4.11.

Planted clique with artificial overlap gap. Here H0 is G(n, 1/2) and H1 is G(n, 1/2) with a randomly-added
≈ k-clique. (For simplicity, consider the model where each vertex of the clique is added independently with
probability k/n.) A natural measure of the overlap of two potential k-cliques S, T ⊆ [n], |S| = |T | = k, is
|S ∩ T |.

Consider the event E that |S ∩ T | ∈ [kδ, k). By standard Chernoff bounds,

Pr(|S ∩ T | > kδ) ≤ e−Ω(kδ)

so long as k ≤ n1/2+O(δ). Applying Lemma 4.11, we see that there is a distribution D′ on size ≈ k subsets of
[n] for which no pair has overlap between kδ and k and which has support size eΩ(kδ). Then we can create a
new planted problem, H0 versus H ′1, where H0 is as before and H ′1 plants a clique on a randomly-chosen set
of vertices from D′.
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We note a few features of this construction. (1) Since this construction allows for k to be either smaller or
larger than

√
n, overlap gaps like this can be introduced in both the computationally easy and hard regimes

of planted clique. And, (2), for k = poly(n), the size of the support of the prior distribution in H ′1 is still
2poly(n), meaning that we have not trivialized the planted problem. Finally, (3), it is hopefully clear that
there was nothing special here about planted clique; this approach applies easily to other planted subgraph
problems, spiked matrix and tensor models, and so on.

5. Proofs for the Gaussian Additive Model

5.1. Basic Facts. First we prove Remark 1.6, which contains some basic facts about the quantity δ in the
definition of FP.

Proof of Remark 1.6. For convenience, we recall the definition

δ := sup {ε ≥ 0 s.t. Pr
u,v∼µ

(|〈u, v〉| ≥ ε) ≥ e−D}.

By definition of supremum, for any δ′ < δ we have Pr(|〈u, v〉| ≥ δ′) ≥ e−D. Using continuity of measure,

Pr(|〈u, v〉| ≥ δ) = Pr (∩δ′<δ{|〈u, v〉| ≥ δ′}) = lim
δ′ ↑ δ

Pr(|〈u, v〉| ≥ δ′) ≥ e−D,

as desired.

Now we prove the second statement. By definition of supremum, for any δ′ > δ we have Pr(|〈u, v〉| ≥ δ′) <
e−D. Using continuity of measure,

Pr(|〈u, v〉| > δ) = Pr (∪δ′>δ{|〈u, v〉| ≥ δ′}) = lim
δ′ ↓ δ

Pr(|〈u, v〉| ≥ δ′) ≤ e−D,

as desired. �

Recall the quantities LD(D,λ) and FP(D,λ) from (13) and (14). We now state some associated mono-
tonicity properties.

Lemma 5.1. For any fixed λ, we have that LD(D,λ) and FP(D,λ) are both monotone increasing in D. For
any fixed D, we have that LD(D,λ) is monotone increasing in λ.

Proof. To see that LD is increasing in D, recall the definition (1) and note that projecting onto a larger
subspace can only increase the 2-norm of the projection.

To see that FP is increasing in D, recall the definition (3), note that δ(D) is increasing in D, and note
that 〈Lu, Lv〉Q ≥ 0 because (being likelihood ratios) Lu and Lv are nonnegative-valued functions.

To see that LD is increasing in λ, start with (13) and expand

LD(D,λ) =

D∑
d=0

λ2d

d!
E
s
[sd],

where s = 〈u, v〉 is the overlap random variable from (12). Since E[sd] ≥ 0 for all integers d ≥ 0 (see
Corollary 5.3 below), this is increasing in λ. �

For the next result, we need to introduce some new notation. Let V ≤D denote the space of polynomials
RN → R of degree at most D. Also define V =D = V ≤D∩(V ≤(D−1))⊥ where ⊥ denotes orthogonal complement
(with respect to 〈·, ·〉Q). We have already defined f≤D to mean the orthogonal projection of f onto V ≤D,
and we similarly define f=D to be the orthogonal projection of f onto V =D. In the Gaussian additive model,
V =D is spanned by the multivariate Hermite polynomials of degree exactly D. The following extension of
Proposition 2.3 is implicit in the proof of Theorem 2.6 in [KWB19].

Proposition 5.2. In the Gaussian additive model, we have the formula

〈L=D
u , L=D

v 〉Q = exp=D(λ2〈u, v〉),

where exp=D(x) := xD

D!
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The following corollary is not specific to the Gaussian additive model, yet curiously can be proved via
degree-D projections in the Gaussian additive model.

Corollary 5.3. Let s = 〈u, v〉 denote the overlap random variable, with u, v drawn independently from some
distribution µ on RN with all moments finite. For any integer d ≥ 0, we have E[sd] ≥ 0.

Proof. Consider the Gaussian additive model with prior µ and some SNR λ > 0. Using Proposition 5.2,

0 ≤
∥∥∥∥ E
u∼µ

L=d
u

∥∥∥∥2

Q
= E
u,v∼µ

[
〈L=d

u , L=d
v 〉Q

]
= E

s

[
exp=d(λ2s)

]
=
λ2d

d!
E
s
[sd],

which yields the result. �

Next we state some basic properties of the function exp≤D(·).

Lemma 5.4. Let exp≤D(·) be defined as in (11) for some integer D ≥ 0.

• If D is odd then exp≤D(x) ≤ exp(x) for all x ∈ R.
• If D is even then

exp≤D(x) ≤ exp(x) for all x ≥ 0, and exp≤D(x) > exp(x) for all x < 0.

Proof. For x ≥ 0, both results are immediate because every term in the Taylor expansion (11) is nonnegative
and the series converges to exp(x).

For x < 0, we will prove the following statement by induction on D: exp≤D(x) < exp(x) for all x < 0
when D is odd, and exp≤D(x) > exp(x) for all x < 0 when D is even. The base case D = 0 is easily verified.
The induction step can be deduced from the fact

d

dx

[
exp(x)− exp≤D(x)

]
= exp(x)− exp≤(D−1)(x)

along with the fact exp(0) = exp≤D(0). �

Corollary 5.5. If D is even then exp≤D(x) ≥ 0 for all x ∈ R.

Proof. For x ≥ 0 this is clear because every term in the Taylor expansion (11) is nonnegative. For x ≤ 0,
Lemma 5.4 implies exp≤D(x) ≥ exp(x) ≥ 0. �

Finally, we will need the following standard bounds on the factorial. These appeared in [Knu97] (Sec-
tion 1.2.5, Exercise 24), and the proof can be found in [Pro].

Proposition 5.6. For any integer n ≥ 1,

nn

en−1
≤ n! ≤ nn+1

en−1
.

5.2. Proof of Theorem 2.5: LD-Hard Implies FP-Hard. We first prove Corollary 2.6, a straightforward
consequence of Theorem 2.5 under certain asymptotic assumptions.

Proof of Corollary 2.6. Fix any constant ε ∈ (0, ε′]. Recall LD is monotone increasing in λ (see Lemma 5.1).
For all sufficiently large n, our assumptions on the scaling regime imply that D ≥ D0(ε) and (15) holds, so (16)
holds. In other words, lim supn[FP(D,λ)−LD(D, (1 + ε′)λ)] ≤ ε. Since ε was arbitrary, lim supn[FP(D,λ)−
LD(D, (1 + ε′)λ)] ≤ 0 as desired. �

The remainder of this section is devoted to the proof of Theorem 2.5.
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Proof of Theorem 2.5. Define λ̂ := (1 + ε)λ, λ̃ := (1 + ε2/4)λ, and C := LD(D, λ̂). Define δ = δ(D) as in (3),
which implies Pr(|s| ≥ δ) ≥ e−D (see Remark 1.6). Recall the overlap random variable s from (12). We will
first prove an upper bound on δ in terms of LD(D, λ̂). Since Es[exp=d(λ̂2s)] ≥ 0 for all d (see the proof of
Corollary 5.3),

C = LD(D, λ̂) = E
s
[exp≤D(λ̂2s)] ≥ E

s
[exp=D(λ̂2s)] = E

s

1

D!
(λ̂2s)D.

Using Pr(|s| ≥ δ) ≥ e−D and the fact that D is even,

E
s

1

D!
(λ̂2s)D ≥ e−D 1

D!
(λ̂2δ)D.

Combining this with the above yields (λ̂2δ)D ≤ CeDD! and so, using the factorial bound in Proposition 5.6,

δ ≤ λ̂−2C1/De(D!)1/D ≤ λ̂−2C1/De

(
DD+1

eD−1

)1/D

=
D

λ̂2
(CeD)1/D.

Using (15),

(CeD)1/D ≤ 1 + ε ≤ (1 + ε)2

(1 + ε2/4)2
=
λ̂2

λ̃2
,

and so we conclude

(25) δ ≤ D

λ̃2
.

In Lemma 5.7 below, we establish for all s ∈ [−δ, δ],

exp(λ2s) ≤ exp≤D(λ̃2s) + ε.

As a result,

FP(D,λ) = E
s

[
1|s|≤δ exp(λ2s)

]
≤ E

s

[
exp≤D(λ̃2s)

]
+ ε = LD(D, λ̃) + ε ≤ LD(D, λ̂) + ε,

where we have used the fact exp≤D(x) ≥ 0 for D even (Corollary 5.5) and monotonicity of LD in λ
(Lemma 5.1). �

Lemma 5.7. For an appropriate choice of D0 = D0(ε), we have for all s ∈ [−δ, δ],

exp(λ2s) ≤ exp≤D(λ̃2s) + ε.

Proof. We will split into various cases depending on the value of s.

Case I: s ≤ −λ−2 log(1/ε). We have

exp(λ2s) ≤ exp[λ2 · (−λ−2 log(1/ε))] = ε,

which suffices because exp≤D(x) ≥ 0 for even D (Corollary 5.5).

Case II: −λ−2 log(1/ε) < s ≤ 0. We have

exp(λ2s) = exp(λ̃2s) + exp(λ̃2s)[exp(λ2s− λ̃2s)− 1].

Since s ≤ 0 and D is even, Lemma 5.4 gives exp(λ̃2s) ≤ exp≤D(λ̃2s). For the second term, recalling
λ̃ = (1 + ε2/4)λ and −λ2s ≤ log(1/ε),

exp(λ̃2s)[exp(λ2s− λ̃2s)− 1] ≤ 1 · [exp(−λ2s(ε2/2 + ε4/16))− 1]

≤ exp[log(1/ε)(9ε2/16)]− 1

≤ exp(9ε/16)− 1.

Using the bound exp(x) ≤ 1 + (e− 1)x for x ∈ [0, 1], the above is at most 9
16 (e− 1)ε ≤ ε.
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Case III: 0 < s ≤ D/(2eλ̃2). Using the Taylor series for exp,

exp(λ2s) ≤ exp(λ̃2s) = exp≤D(λ̃2s) +

∞∑
d=D+1

(λ̃2s)d

d!
.

Using the factorial bound (Proposition 5.6) and s ≤ D/(2eλ̃2),
∞∑

d=D+1

(λ̃2s)d

d!
≤

∞∑
d=D+1

1

e

(
eλ̃2s

d

)d
≤ 1

e

∞∑
d=D+1

(
1

2

)d
=

1

e · 2D
,

which can be made smaller than ε by choosing D0 sufficiently large.

Case IV: D/(2eλ̃2) < s ≤ δ. Let d = dλ̃2se and note that D
2e ≤ d ≤ D due to (25) and the assumption on s.

Again using the factorial bound (Proposition 5.6),

exp≤D(λ̃2s) ≥ 1

d!
(λ̃2s)d ≥ 1

ed

(
eλ̃2s

d

)d
=

1

ed

(
eλ̃2s

dλ̃2se

)dλ̃2se

≥ 1

eD

(
eλ̃2s

λ̃2s+ 1

)λ̃2s

=
1

eD

(
e

1 + 1
λ̃2s

)λ̃2s

= exp

[
λ̃2s

(
1− 1 + logD

λ̃2s
− log

(
1 +

1

λ̃2s

))]
.

Since λ̃2s ≥ D/(2e) by assumption, we conclude

exp≤D(λ̃2s) ≥ exp

[
λ̃2s

(
1− 2e · 1 + logD

D
− log

(
1 +

2e

D

))]
.

Since λ̃ > λ, this can be made larger than exp(λ2s) by choosing D0 sufficiently large. �

5.3. Proof of Theorem 2.16: FP-Hard Implies Free Energy Barrier.

Proof of Theorem 2.16. Let b = (1 + ε)δ denote the maximum possible value of 〈u, v〉 for v ∈ B, and let
a = −σδ denote the minimum possible value of 〈u, v〉 for v ∈ A, where σ = 0 if S has nonnegative overlaps
and σ = 1 otherwise). Since the Hamiltonian decomposes as

−H(v) = 〈v, Y 〉 = 〈v, λu+ Z〉 = λ〈u, v〉+ 〈v, Z〉,
we can write

νβ(B)

νβ(A)
=

∑
v∈B exp(−βH(v))∑
v∈A exp(−βH(v))

=

∑
v∈B exp(βλ〈u, v〉+ β〈v, Z〉)∑
v∈A exp(βλ〈u, v〉+ β〈v, Z〉)

≤ exp(βλ(b− a))

∑
v∈B exp(β〈v, Z〉)∑
v∈A exp(β〈v, Z〉)

= exp(βλδ(1 + σ + ε))
ν̃β(B)

ν̃β(A)

where ν̃β(v) ∝ exp(−βH̃(v)) is the Gibbs measure associated with the “pure noise” Hamiltonian H̃(v) =
−〈v, Z〉. Letting Ac = S \A denote the complement of A, we have

ν̃β(B)

ν̃β(A)
≤ ν̃β(Ac)

1− ν̃β(Ac)
,

so it remains to bound ν̃β(Ac).

We next claim that

(26) E
Z

[ν̃β(v)] = E
Z

[ν̃β(v′)] for all v, v′ ∈ S.

To see this, let R ∈ O(N) be the orthogonal matrix such that Rv = v′ and RS = S (guaranteed by transitive
symmetry) and write

(27) ν̃β(v) =
exp(β〈v, Z〉)∑
w∈S exp(β〈w,Z〉)

,

(28) ν̃β(v′) =
exp(β〈v′, Z〉)∑
w∈S exp(β〈w,Z〉)

=
exp(β〈Rv,Z〉)∑
w∈S exp(β〈Rw,Z〉)

=
exp(β〈v,R>Z〉)∑
w∈S exp(β〈w,R>Z〉)

.
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By rotational invariance of Z, (27) and (28) have the same distribution, which proves (26). Since ν̃β is a
normalized measure, we must in fact have EZ [ν̃β(v)] = 1/|S| for every v ∈ S, and so (using linearity of
expectation)

E
Z

[ν̃β(Ac)] =
|Ac|
|S|

.

Note that |Ac|/|S| is simply Prv∼µ(|〈u, v〉| > δ), which by transitive symmetry is the same as Prv,v′∼µ(|〈v, v′〉| >
δ), which by Remark 1.6 is at most e−D. By Markov’s inequality,

Pr
Z

(
ν̃β(Ac) ≥ e−(1−ε)D

)
≤ e−εD.

Putting it all together, we have now shown that with probability at least 1− e−εD over Z,

(29)
νβ(B)

νβ(A)
≤ exp(βλδ(1 + σ + ε))

ν̃β(Ac)

1− ν̃β(Ac)
≤ exp(βλδ(1 + σ + ε)) · 2e−(1−ε)D.

The next step is to relate this to FP. Define D̃ = D+ log 2 and δ̃ = δ(D̃) as in (3) so that (by Remark 1.6)
Prv,v′∼µ(|〈v, v′〉| > δ̃) ≤ e−D̃ = 1

2e
−D. Also from Remark 1.6 we have Prv,v′∼µ(|〈v, v′〉| ≥ δ) ≥ e−D, so we

conclude Prv,v′∼µ(|〈v, v′〉| ∈ [δ, δ̃]) ≥ 1
2e
−D. This means

(30) FP(D̃, λ̃) = E
v,v′∼µ

[
1|〈v,v′〉|≤δ̃ · exp(λ̃2〈v, v′〉)

]
≥ 1

2
e−D · exp(λ̃2δ).

Now comparing (29) with (30) and using the choice λ̃2 = βλ(1 + σ + ε)/(1− 2ε), we have

νβ(B)

νβ(A)
≤ 2 exp[βλδ(1 + σ + ε)− (1− ε)D]

= 2 exp[(1− 2ε)(λ̃2δ −D)− εD]

≤ 2
(

2 · FP(D̃, λ̃)
)1−2ε

e−εD

as desired. �

6. Proofs for Sparse Regression

6.1. Proof of Theorem 3.10(a): Lower Bound.

6.1.1. Conditional Low-Degree Calculation. As discussed in Section 3.2, our low-degree lower bound will
involve a conditional low-degree calculation where we bound LD for a modified testing problem P|A versus
Q, for a particular high-probability event A. In this section, we lay down some of the basic foundations for
this approach.

Our ultimate goal will be to rule out weak separation (see Definition 1.8) for the original (non-conditioned)
testing problem P versus Q (see Definition 3.8). Note that in particular, this also rules out strong separation.
To motivate why weak separation is a natural notion of success for low-degree tests, we first show that weak
separation by a polynomial f implies that f ’s output can be used to achieve weak detection (see Definition 1.2).
Unlike the analogous result “strong separation implies strong detection” (which follows immediately from
Chebyshev’s inequality), the testing procedure here may be more complicated than simply thresholding f .

Proposition 6.1. Suppose P = Pn and Q = Qn are distributions over RN for some N = Nn. If there exists
a polynomial f = fn that weakly separates P and Q then weak detection is possible.

Proof. It suffices to show that the random variable P := f(Y ) for Y ∼ P has non-vanishing total variation
(TV) distance from the random variable Q := f(Y ) for Y ∼ Q. By shifting and scaling we can assume
E[Q] = 0, E[P ] = 1, and that Var[Q] and Var[P ] are both O(1). This implies that E[Q2] and E[P 2] are
both O(1). Assume on the contrary that the TV distance is vanishing, that is, P and Q can be coupled
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so that P = Q except on a “bad” event B of probability o(1). Using Cauchy–Schwarz and the inequality
(a− b)2 ≤ 2(a2 + b2),

1 = E[P ]− E[Q] = E[(P −Q)1B ] ≤
√

E(P −Q)2 ·
√

Pr(B)

≤
√

2(E[P 2] + E[Q2]) ·
√

Pr(B)

= O(1) · o(1) = o(1),

a contradiction. �

The next result is the key to our approach: it shows that to rule out weak separation for the original
(non-conditioned) testing problem, it suffices to bound LD for a conditional testing problem P|A versus Q,
where A is any high-probability event under P. More precisely, A is allowed to depend both on the sample
Y ∼ P but also any latent randomness used to generate Y ; notably, in our case, A will depend on u.

Proposition 6.2. Suppose P = Pn and Q = Qn are distributions over RN for some N = Nn. Let A = An
be a high-probability event under P, that is, P(A) = 1 − o(1). Define the conditional distribution P̃ = P|A.
Suppose P̃ is absolutely continuous with respect to Q, let L = dP̃

dQ and define LD(D) = ‖L≤D‖2Q accordingly.
For any D = Dn,

• if LD(D) = O(1) as n→∞ then no degree-D polynomial strongly separates P and Q (in the sense of
Definition 1.8);
• if LD(D) = 1 + o(1) as n→∞ then no degree-D polynomial weakly separates P and Q (in the sense
of Definition 1.8).

Proof. We will need the following variational formula (see e.g. [Hop18, Theorem 2.3.1]) for LD: letting V ≤D
denote the space of polynomials RN → R of degree at most D,

(31) LD(D)− 1 = ‖L≤D‖2Q − 1 = ‖L≤D − 1‖2Q = sup
f∈V ≤D
EQ[f ]=0

(EP̃[f ])2

EQ[f2]
.

We now begin the proof, which will be by contrapositive. Suppose a degree-D polynomial f = fn strongly
(respectively, weakly) separates P and Q. By shifting and scaling we can assume EQ[f ] = 0 and EP[f ] = 1,
and that VarQ[f ] and VarP[f ] are both o(1) (resp., O(1)). Note that EQ[f2] = VarQ[f ]. It suffices to show
EP̃[f ] ≥ 1− o(1) so that, using (31),

LD(D)− 1 ≥
(EP̃[f ])2

EQ[f2]
≥ 1− o(1)

VarQ[f ]

which is ω(1) (resp., Ω(1)), contradicting the assumption on LD(D) and completing the proof.

To prove EP̃[f ] ≥ 1− o(1), we have

1 = E
P
[f ] = P(A) Ẽ

P
[f ] + P(Ac)E

P
[f |Ac]

and so

Ẽ
P
[f ] = P(A)−1(1− P(Ac)E

P
[f |Ac]).

Since P(A) = 1− o(1), it suffices to show P(Ac)EP[f |Ac] = o(1). As above,

E
P
[f2] = P(A) Ẽ

P
[f2] + P(Ac)E

P
[f2 |Ac]

and so

(32) E
P
[f2 |Ac] ≤ P(Ac)−1 E

P
[f2] = P(Ac)−1(VarP[f ] + 1).
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Now using Jensen’s inequality and (32),∣∣∣∣P(Ac)E
P
[f |Ac]

∣∣∣∣ ≤ P(Ac)
√
E
P
[f2 |Ac]

≤ P(Ac)
√
P(Ac)−1(VarP[f ] + 1)

=
√

P(Ac)(VarP[f ] + 1)

=
√
o(1) ·O(1)

which is o(1) as desired. �

6.1.2. The “Good” Event. We now specialize to the sparse regression problem (Definition 3.8). Under P, the
signal u is drawn from µ where µ is the uniform prior over k-sparse binary vectors, and then the observation
(X,Y ) is drawn from the appropriate distribution Pu as described in Definition 3.8. As described in the
previous section, we will need to condition P on a particular “good” event A, which we define in this section.
This event A = A(u) will depend on the signal vector u, and (by symmetry) the probability Pu(A) will not
depend on u, so our conditional distribution will take the form P̃ = Eu∼µP̃u where P̃u := Pu|A. Importantly,
to fit the framework of Section 3 (specifically Example 3.5), the event A will depend only on the columns of
X indexed by the support of the signal vector u.

Definition 6.3 (Good Event). For a ground truth signal u ∈ {0, 1}n with ‖u‖0 = k and a sequence
∆ = ∆(`) > 0 to be chosen later (see Lemma 6.4), let A = A(u,∆) be the following event: for all integers ` in
the range 1 ≤ ` ≤ k/2 and all subsets S ⊆ supp(u) of size |S| = `,

(33)

〈
1√
`

∑
j∈S

Xj ,
1√
k − `

∑
j∈supp(u)\S

Xj

〉
≤ ∆(`),

where (Xj)j∈[n] denote the columns of X.

The following lemma gives us a choice of ∆ such that the event A = A(u,∆) occurs with high probability
under Pu.

Lemma 6.4. Define t = t(`) := log[2`
(
k
`

)
log k] and ∆ = ∆(`) :=

√
2mt + 10t. Then under our scaling

assumptions (Assumption 3.9), the following hold.

• For any fixed δ > 0, for all sufficiently large n, for all integers ` with 1 ≤ ` ≤ k/2,

(34) ∆(`) ≤ (1 + δ)
√

2`m log k.

• Under Pu,

Pr(A) ≥ 1− 1

log k
= 1− o(1).

The proof uses standard concentration tools and is deferred to Appendix A.4.

6.1.3. Proof Overview. Throughout, we work with the conditional likelihood ratio L = dP̃
dQ = Eu∼µLu where

Lu = dP̃u
dQ and where P̃, P̃u are as defined in Section 6.1.2. We define LD and FP accordingly, for the P̃

versus Q problem. By Proposition 6.2, our goal is to bound LD. We will do this by exploiting the FP-to-LD
connection for sparse planted models from Section 3. To apply Theorem 3.7, the first ingredient we need is a
crude upper bound on ‖L≤Du ‖2Q.

Lemma 6.5. For sufficiently large n, for any u ∈ {0, 1}n with ‖u‖0 = k, for any integer D ≥ 1,

‖L≤Du ‖2Q ≤ 9(6mnD)4D.

The proof is deferred to Section 6.1.4. Now, recall from Example 3.5 that our conditioned sparse regression
problem satisfies Assumption 3.1, and so we can apply Theorem 3.7 to conclude

(35) LD(D) ≤ FP(D + logM) + e−D where M = 9(6mnD)4D.
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It therefore remains to bound FP(D̃) where D̃ = D + logM . Recall from (3) that FP(D̃) is defined as
LO(δ) for a certain choice of δ. To choose the right δ, we need a tail bound on the overlap 〈u, v〉 where
u, v ∼ µ independently. In our case 〈u, v〉 follows the hypergeometric distribution Hypergeom(n, k, k), which
has the following basic tail bounds.

Lemma 6.6 (Hypergeometric tail bound). For any integers 1 ≤ ` ≤ k ≤ n,

Pr{Hypergeom(n, k, k) = `} ≤
(

k2

n− k

)`
.

Furthermore, if k2/(n− k) ≤ 1 then

Pr{Hypergeom(n, k, k) ≥ `} ≤ k
(

k2

n− k

)`
.

Proof. For the first statement,

Pr{Hypergeom(n, k, k) = `} =

(
k
`

)(
n−k
k−`
)(

n
k

) ≤ k`
(
n
k−`
)(

n
k

) = k`
k!(n− k)!

(k − `)!(n− k + `)!
≤ k` k`

(n− k)`
.

The second statement follows from the first by a union bound, noting that k is the largest possible value for
Hypergeom(n, k, k), and the bound ( k2

n−k )` is decreasing in `. �

It will end up sufficing to consider δ = εk for a small constant ε > 0. The last ingredient we will need is
the following bound on LO. This is the main technical heart of the argument, and the proof is deferred to
Section 6.1.5.

Proposition 6.7. Consider the setting of Theorem 3.10. If R < RLD(θ) then there exists a constant
ε = ε(θ,R) > 0 such that

LO(εk) = 1 + o(1).

We now show how to combine the above ingredients to complete the proof.

Proof of Theorem 3.10(a). Suppose 0 < R < RLD(θ) and D = o(k). Also assume D = ω(1) without loss of
generality, so that e−D = o(1). Recapping the arguments from this section, it suffices (by Proposition 6.2) to
show LD(D) = 1 + o(1), where LD(D) denotes the conditional LD defined above. Let δ = εk with ε = ε(θ,R)
as defined in Proposition 6.7. From (35) and Proposition 6.7, it now suffices to show FP(D+ logM) ≤ LO(δ).
Recalling the definitions of LO and FP from (2) and (3), this holds provided

(36) Pr(〈u, v〉 ≥ δ) < e−(D+logM)

where u, v are uniformly random k-sparse binary vectors, i.e., 〈u, v〉 ∼ Hypergeom(n, k, k). (Note that
〈u, v〉 ≥ 0, so |〈u, v〉| can be replaced with 〈u, v〉 in this case.)

To complete the proof, we will establish that (36) holds for all sufficiently large n. We start by bounding
the left-hand side. Since RLD(θ) = 0 when θ ≥ 1/2 (see (24)), the assumption 0 < R < RLD(θ) implies
θ < 1/2. Recalling k = nθ+o(1) for θ ∈ (0, 1), this implies k2/(n− k) = n2θ−1+o(1) ≤ 1 (for sufficiently large
n) and so by Lemma 6.6 we have

Pr(〈u, v〉 ≥ δ) ≤ k
(
n2θ−1+o(1)

)δ
and so

(37) log Pr(〈u, v〉 ≥ δ) ≤ log k + (2θ − 1 + o(1))εk log n = −Ω(k log n).

Now, for the right-hand side of (36),

(38) log e−(D+logM) = −D − logM = −D − log 9− 4D log(4mnD) = −o(k log n)

since D = o(k) and 4mnD = nO(1). Comparing (37) and (38) establishes (36) for sufficiently large n. �
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6.1.4. Proof of Lemma 6.5.

Proof of Lemma 6.5. Since Q is the standard Gaussian measure in N = m(n + 1) dimensions, the space
L2(Q) admits the orthonormal basis of Hermite polynomials (see e.g. [Sze39] for a standard reference). We
denote these by (Hα)α∈NN (where 0 ∈ N by convention), where Hα(Z) =

∏N
i=1 hαi(Zi) for univariate Hermite

polynomials (hj)j∈N, and Z = (X,Y ) ∈ RN . We adopt the normalization where ‖Hα‖Q = 1, which is not
usually the standard convention in the literature. This basis is graded in the sense that for any D ∈ N,
(Hα)α∈NN , |α|≤D is an orthonormal basis for the polynomials of degree at most D, where |α| :=

∑N
i=1 αi.

Expanding in the orthonormal basis {Hα}, we have for any u,

‖L≤Du ‖2Q =
∑
|α|≤D

〈Lu, Hα〉2Q =
∑
|α|≤D

(
E

Z∼Pu|A
Hα(Z)

)2

≤ (N + 1)D max
α : |α|≤D

(
E

Z∼Pu|A
Hα(Z)

)2

.

Let P(A) denote the probability of A under Pu (which, by symmetry, does not depend on u). Now we have∣∣∣∣ E
Z∼Pu|A

Hα(Z)

∣∣∣∣ ≤ E
Z∼Pu|A

|Hα(Z)|

≤ P(A)−1 E
Z∼Pu

|Hα(Z)| by Lemma A.6

=: P(A)−1 ‖Hα(Z)‖1

where Lp norms are with respect to Z ∼ Pu

= P(A)−1

∥∥∥∥∥
N∏
i=1

hαi(Zi)

∥∥∥∥∥
1

≤ P(A)−1
∏

i :αi>0

‖hαi(Zi)‖d/αi ,

where d := |α| ≤ D and where the last step used Proposition A.4, an extension of Hölder’s inequality. Under
Pu, the marginal distribution of Zi is N (0, 1), so

‖hαi(Zi)‖d/αi =
(
E|hαi(z)|d/αi

)αi/d
where z ∼ N (0, 1).

Now we have for a ∈ N, ha(z) = 1√
a!

∑a
j=0 cjz

j where the coefficients satisfy
∑a
j=0 |cj | = T (a). Here

T (a) is known as the telephone number which counts the number of permutations on a elements which are
involutions [BBMD+02]. In particular, we have the trivial upper bound T (a) ≤ a!. This means for any a ≥ 1
and q ∈ [1,∞),

E|ha(z)|q = E

∣∣∣∣∣∣ 1√
a!

a∑
j=0

cjz
j

∣∣∣∣∣∣
q

≤ E
(√

a! max
0≤j≤a

|z|j
)q

= (a!)q/2 E (max{1, |z|a})q

= (a!)q/2 Emax{1, |z|aq}

≤ (a!)q/2(1 + E|z|aq).
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Using the formula for Gaussian moments, and that for all x ≥ 1, Γ(x) ≤ xx (see e.g. [LC07]) the above
becomes

= (a!)q/2
(

1 + π−1/2 2aq/2 Γ

(
aq + 1

2

))
≤ aaq/2

(
1 + 2aq/2

(
aq + 1

2

)(aq+1)/2
)

≤ aaq/2(1 + 2aq/2(aq)aq) since
aq + 1

2
≤ aq

≤ 2aaq/22aq/2(aq)aq

= 2(2a)aq/2(aq)aq

≤ 2(2aq)2aq.

Putting it together, and recalling d =
∑
i αi,∣∣∣∣ E

Z∼Pu|A
Hα(Z)

∣∣∣∣ ≤ P(A)−1
∏

i : ai>0

(
2(2d)2d

)αi/d
= 2P(A)−1(2d)2d ≤ 3(2D)2D,

since P(A) ≥ 2/3 for sufficiently large n, and d ≤ D. Finally, using the bound

N + 1 = m(n+ 1) + 1 ≤ 3mn,

we have
‖L≤Du ‖2Q ≤ (N + 1)D

[
3(2D)2D

]2 ≤ 9(3mn)D(2D)4D ≤ 9(6mnD)4D,

completing the proof. �

6.1.5. Proof of Proposition 6.7. A key step in bounding LO is to establish the following bound on 〈Lu, Lv〉Q.

Proposition 6.8. Let u, v ∈ {0, 1}n with ‖u‖0 = ‖v‖0 = k and 〈u, v〉 = `. Let A = A(u,∆) be the “good”
event from Definition 6.3, for some sequence ∆. Also suppose σ2 ≤ εk and ` ≤ εk for some ε ∈ (0, 1). It
holds that

(39) 〈Lu, Lv〉Q ≤ P(A)−2 exp

((
`

k − `

)
m

)
.

Furthermore, if there exists some q = q(`) > 0 satisfying

(40) ∆(`) ≤

(
(1− ε)2

√
`

k
−
√

2(1 + 3ε)

1− ε
q − 10

(1− ε)3/2
q2

)
m,

then for this q = q(`) it holds that

(41) 〈Lu, Lv〉 ≤ P(A)−2 exp

((
`

k − `
− q2

)
m

)
.

The proof of Proposition 6.8 is deferred to Section 6.1.6. We now show how to use this result to bound LO.

Proof of Proposition 6.7. We start with the case 1
4 ≤ θ < 1

2 and R < 1−2θ
1−θ . Fix a constant ε = ε(θ,R) > 0

to be chosen later. Let u, v ∈ {0, 1}n be independent uniformly random binary vectors of sparsity exactly k,
and note that 〈u, v〉 follows the hypergeometric distribution Hypergeom(n, k, k). Therefore Proposition 6.8
and Lemma 6.4 imply

LO(εk) := E
u,v

[
1〈u,v〉≤εk · 〈Lu, Lv〉Q

]
≤ P(A)−2 E

`∼Hypergeom(n,k,k)

[
1`≤εk exp

(
`m

k − `

)]
= (1 + o(1))

∑
0≤`≤εk

Pr{Hypergeom(n, k, k) = `} exp

(
`m

k − `

)
.(42)

We bound the two terms in the product separately.
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First term. Using the hypergeometric tail bound (Lemma 6.6), since k = nθ+o(1) we have

Pr{Hypergeom(n, k, k) = `} ≤
(

k2

n− k

)`
=
(
n2θ−1+o(1)

)`
.(43)

Second term. Recalling k = nθ+o(1) and m = (1 + o(1))(1− θ)Rk log n we have for every 0 ≤ ` ≤ εk,

exp

(
`m

k − `

)
≤ exp

(
`m

(1− ε)k

)
= exp

(
` · (1 + o(1))(1− ε)−1R(1− θ) log n

)
=
(
n(1−ε)−1R(1−θ)+o(1)

)`
.(44)

Plugging (43) and (44) back into (42) we have

LO(εk) ≤ (1 + o(1))

1 +
∑

1≤`≤εk

(
n2θ−1+o(1)

)` (
n(1−ε)−1R(1−θ)+o(1)

)`
≤ (1 + o(1))

1 +
∑

1≤`≤εk

(
n2θ−1+(1−ε)−1R(1−θ)+o(1)

)` .
Provided 2θ − 1 +R(1− θ) < 0, i.e., R < 1−2θ

1−θ , it is possible to choose ε = ε(R, θ) > 0 small enough so that
2θ − 1 + (1− ε)−1R(1− θ) < 0 and therefore LO(εk) ≤ 1 + o(1) as we wanted.

Now we focus on the second case where 0 < θ < 1
4 and R < 2(1−

√
θ)

1+
√
θ

. We are also free to assume

(45) R ≥ 1− 2θ

1− θ
or else we can immediately conclude the result using the same argument as above. Similar to the first case,
using now the second part of Proposition 6.8, for any sequence q = q(`) satisfying (40) we have

LO(εk) ≤ P(A)−2 E
`∼Hypergeom(n,k,k)

[
1`≤εk exp

((
`

k − `
− q2

)
m

)]
.

Hence, by Lemma 6.4 and similar reasoning to the previous case it also holds for any sequence q = q(`)
satisfying (40) that

LO(εk) ≤ (1 + o(1))
∑

0≤`≤εk

Pr{Hypergeom(n, k, k) = `} exp

(
`m

k − `

)
exp

(
−q2m

)

≤ (1 + o(1))

1 +
∑

1≤`≤εk

(
n2θ−1+(1−ε)−1R(1−θ)+o(1)

)`
exp

(
−q2m

) .(46)

Now we choose q = q(`) = c
√
`(log n)/m for a constant c = c(θ,R) > 0 to be chosen later. To satisfy (40), it

suffices (using (34) from Lemma 6.4) to have for some constant δ = δ(θ,R) > 0,

(1 + δ)
√

2`m log k ≤ (1− ε)2

√
`

k
m−

√
1 + 3ε

1− ε
√

2qm− 10(1− ε)−3/2q2m,

or since ` ≤ εk and therefore q ≤ c
√√

ε`k(log n)/m, it suffices to have

(1 + δ)
√

2`m log k ≤ (1− ε)2

√
`

k
m−

√
1 + 3ε

1− ε
√

2qm− 10(1− ε)−3/2c2
√
ε`k log n.

Using the asymptotics of k,m, q and dividing both sides by
√

2`R(1− θ)k log n, it suffices to have

(1 + δ)2(1 + o(1))
√
θ ≤ (1− ε)2(1 + o(1))

√
1

2
R(1− θ)−

√
1 + 3ε

1− ε
(1 + o(1))c− 10

√
ε(1− ε)−3/2c2√
2R(1− θ)

.
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But now there exist sufficiently small constants ε = ε(θ,R) > 0 and δ = δ(θ,R) > 0 satisfying the above so
long as

(47) c <

√
1

2
R(1− θ)−

√
θ.

Notice that such a c > 0 exists since
√
θ <

√
1
2R(1− θ), which holds by our assumptions that θ < 1

4 and

therefore R ≥ 1−2θ
1−θ > 2θ

1−θ (see (45)).

Returning to (46), we have

LO(εk) ≤ (1 + o(1))

1 +
∑

1≤`≤εk

(
n2θ−1+(1−ε)−1R(1−θ)−c2+o(1)

)` ,
which concludes the result LO(εk) = 1 + o(1) for sufficiently small ε > 0, provided that

(48) 2θ − 1 +R(1− θ)− c2 < 0.

We can choose c > 0 to satisfy both (47) and (48) simultaneously, provided

2θ − 1 +R(1− θ)−

(√
1

2
R(1− θ)−

√
θ

)2

< 0,

which can be simplified (by expanding the square) to

(1−R/2)(1− θ) >
√

2Rθ(1− θ).

Squaring both sides yields the equivalent condition

(1−R/2)2

2R
>

θ

1− θ
and R < 2.

Solving for R via the quadratic formula yields the equivalent condition R < 2(1−
√
θ)

1+
√
θ

as desired. �

6.1.6. Proof of Proposition 6.8.

Proof of Proposition 6.8. Throughout we denote for simplicity, λ =
√
k/σ2 + 1. By definition and Bayes’

rule,

Lu(X,Y ) =
P(X,Y |u,A)

Q(X,Y )
=

P(Y |X,u,A)

Q(Y )
· P(X|u,A)

Q(X)
=

P(Y |X,u)

Q(Y )
· 1{(X,u) ∈ A}

P(A)
,

where we have used the fact P(Y |X,u,A) = P(Y |X,u) since Y depends on A only through (X,u), and the
fact Q(X) = P(X). Under Q we have λσY ∼ N (0, λ2σ2Im), while under P conditional on (X,u) we have
λσY =

√
k + σ2Y ∼ N (Xu, σ2Im), and so

P(Y |X,u)

Q(Y )
= λm exp

(
− 1

2σ2
‖λσY −Xu‖22 +

1

2λ2σ2
‖λσY ‖22

)
= λm exp

(
−λ

2 − 1

2
‖Y ‖22 +

λ

σ
〈Y,Xu〉 − 1

2σ2
‖Xu‖22

)
.

This means

〈Lu, Lv〉Q = E
(X,Y )∼Q

[Lu(X,Y )Lv(X,Y )]

= P(A)−2 E
(X,Y )∼Q

[
1{(X,u), (X, v) ∈ A} · P(Y |X,u)

Q(Y )
· P(Y |X, v)

Q(Y )

]
(49)
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where
P(Y |X,u)

Q(Y )
· P(Y |X, v)

Q(Y )

= λ2m exp

(
−(λ2 − 1)‖Y ‖22 +

λ

σ
〈Y,X(u+ v)〉 − 1

2σ2

(
‖Xu‖22 + ‖Xv‖22

))
= λ2m exp

(
−λ

2 − 1

σ2λ2

∥∥∥∥λσY − λ2X(u+ v)

2(λ2 − 1)

∥∥∥∥2

2

+
λ2 ‖X(u+ v)‖22

4(λ2 − 1)σ2
− 1

2σ2

(
‖Xu‖22 + ‖Xv‖22

))
.

In the last step we have “completed the square” so that we can now explicitly compute the expectation over
Y ∼ Q using the (noncentral) chi-squared moment-generating function: for t < 1/(2ν2) and z ∼ N (µ, ν2),
E[exp(tz2)] = (1− 2tν2)−1/2 exp[µ2t/(1− 2tν2)]. This yields

E
Y∼Q

exp

(
−λ

2 − 1

σ2λ2

∥∥∥∥λσY − λ2X(u+ v)

2(λ2 − 1)

∥∥∥∥2

2

)
=

1

(2λ2 − 1)m/2
exp

(
−

λ2 ‖X(u+ v)‖22
4(2λ2 − 1)(λ2 − 1)σ2

)
.

Plugging these results back into (49),

〈Lu, Lv〉Q = P(A)−2 E
X∼Q

1{(X,u), (X, v) ∈ A} λ2m

(2λ2 − 1)m/2

· exp

(
−

λ2 ‖X(u+ v)‖22
4(2λ2 − 1)(λ2 − 1)σ2

+
λ2 ‖X(u+ v)‖22

4(λ2 − 1)σ2
− 1

2σ2

(
‖Xu‖22 + ‖Xv‖22

))

= P(A)−2 E
X∼Q

1{(X,u), (X, v) ∈ A} λ2m

(2λ2 − 1)m/2

· exp

{
1

2σ2(2λ2 − 1)

[
(1− λ2)

(
‖Xu‖22 + ‖Xv‖22

)
+ 2λ2〈Xu,Xv〉

]}
.(50)

Let T = supp(u) and T ′ = supp(v). Let Xi denote the i-th column of X. Define

Z0 =
∑

i∈T∩T ′
Xi, Z1 =

∑
i∈T\T ′

Xi, Z2 =
∑

i∈T ′\T

Xi.

Then under Q (with u, v fixed), the values Z0, Z1, Z2 are mutually independent and

Z0 ∼ N (0, `Im), Z1 ∼ N (0, (k − `)Im), Z2 ∼ N (0, (k − `)Im),

where ` = |T ∩ T ′| = 〈u, v〉. Moreover, Xu and Xv can be expressed in terms of Z0, Z1, Z2 simply by

Xu = Z0 + Z1 and Xv = Z0 + Z2.(51)

Finally, notice that for any X satisfying (X,u), (X, v) ∈ A it necessarily holds (using the definition of A in
Section 6.1.2) that 〈

1√
`
Z0,

1√
k − `

Z1

〉
≤ ∆,

〈
1√
`
Z0,

1√
k − `

Z2

〉
≤ ∆,

where ∆ = ∆(`) is as in Section 6.1.2 (and in particular, satisfies the bound (34)).

We will next use the above to rewrite (50) in terms of Z ∈ Rm×3 with i.i.d.N (0, 1) entries, where the columns
of Z are 1√

`
Z0,

1√
k−`Z1,

1√
k−`Z2. For symmetric U ∈ R3×3, define the event B(U) = {U12 ≤ ∆ and U13 ≤ ∆}.

Also let ` := 〈u, v〉 and

(52) t :=
1

2σ2(2λ2 − 1)
=

1

2σ2(2k/σ2 + 1)
=

1

4k + 2σ2
.

This yields

〈Lu, Lv〉Q ≤ P(A)−2 λ2m

(2λ2 − 1)m/2
E
Z
1B(Z>Z)

· exp
{
t
[
(1− λ2)

(
‖Z0 + Z1‖22 + ‖Z0 + Z2‖22

)
+ 2λ2〈Z0 + Z1, Z0 + Z2〉

]}
= P(A)−2 λ2m

(2λ2 − 1)m/2
E
Z
1B(Z>Z) exp

(
t〈M,Z>Z〉

)
(53)
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where

M = M(`) :=

 2`
√
`(k − `)

√
`(k − `)√

`(k − `) (1− λ2)(k − `) λ2(k − `)√
`(k − `) λ2(k − `) (1− λ2)(k − `)

 .

The eigendecomposition of M is
∑3
i=1 λi

uiu
>
i

‖ui‖2 where

(54)
u>1 = (0 1 − 1) λ1 = (1− 2λ2)(k − `)
u>2 = (

√
k − ` −

√
` −

√
`) λ2 = 0

u>3 = (2
√
`
√
k − `

√
k − `) λ3 = k + `.

We will evaluate the expression in (53) via some direct manipulations with the Wishart density function
that are deferred to Appendix A.3. To apply Lemma A.5, we need to first verify tM ≺ 1

2I3. This follows from
the fact that the maximum eigenvalue of M is k + ` ≤ 2k (see (54)) and the fact t < 1

4k (see (52)). Applying
Lemma A.5 to (53) we conclude

(55) 〈Lu, Lv〉Q ≤ P(A)−2 λ2m

(2λ2 − 1)m/2
det(I3 − 2tM)−m/2 Pr

U∼W3((I3−2tM)−1,m)
{B(U)}

where the Wishart distribution U ∼W3((I3−2tM)−1,m) means U = Z>Z where Z ∈ Rm×3 has independent
rows drawn from N (0, (I3 − 2tM)−1).

We now focus on bounding det(I3−2tM)−m/2. Using (52) and (54), the eigenvalues of the matrix I3−2tM
are

{1, 1− 2t(k + `), 1− 2t(1− 2λ2)(k − `)} =

{
1, 1− k + `

σ2(2λ2 − 1)
, 1 +

k − `
σ2

}
.

Since λ2 = k/σ2 + 1 we conclude

λ2

√
2λ2 − 1

det(I3 − 2tM)−1/2 = λ2

[(
2λ2 − 1− k + `

σ2

)(
1 +

k − `
σ2

)]−1/2

=
k
σ2 + 1

1 + k−`
σ2

=

(
1− `

k + σ2

)−1

.

Hence, it holds that

λ2m

(2λ2 − 1)m/2
det(I3 − 2tM)−m/2 =

(
1− `

k + σ2

)−m
= exp

[
−m log

(
1− `

k + σ2

)]
≤ exp

(
`m

k − `

)
(56)

where we have used the bound log(x) ≥ 1− 1/x in the last step. Combining (55) and (56),

(57) 〈Lu, Lv〉Q ≤ P(A)−2 exp

(
`m

k − `

)
Pr

U∼W3((I3−2tM)−1,m)
{B(U)}.

At this point, we can conclude the first claim (39) by simply taking the trivial bound Pr{B(U)} ≤ 1 on the
last term above (this argument does not exploit the conditioning on the “good” event A). To prove the second
claim (41), we will need a better bound on Pr{B(U)}.

Using the eigendecomposition (54), we can directly compute the entries of

V := (I3 − 2tM)−1 =

3∑
i=1

(1− 2tλi)
−1 uiu

>
i

‖ui‖2
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and in particular deduce

V11 =
k + σ2 + `

k + σ2 − `
V12 = V13 =

√
`(k − `)

k + σ2 − `
V22 + V23 = 2 V22 = V33.

Since U ∼W3(V,m), we have U12 + U13 = 2
∑m
i=1 si where si are i.i.d. and distributed as s = 1

2g1(g2 + g3)
where g ∼ N (0, V ). Equivalently, we can write

g1 =
√
V11 z1 and g2 + g3 =

2V12√
V11

z1 +
√

2V22 + 2V23 − 4V 2
12/V11 z2

where z1, z2 are independent N (0, 1), and so

(58) s =
1

2
g1(g2 + g3) = V12 z

2
1 +

√
1

2
V11(V22 + V23)− V 2

12 z1z2 = V12 z
2
1 +

√
V11 − V 2

12 z1z2.

Hence, recalling B(U) = {U12 ≤ ∆ and U13 ≤ ∆},

Pr
U∼W3(V,m)

{B(U)} ≤ Pr
U∼W3(V,m)

{U12 + U13 ≤ 2∆} = Pr

{
m∑
i=1

si ≤ ∆

}
.

Now using Corollary A.2 for y = q2m, along with the representation (58) for s, we conclude that for all q > 0,

Pr

{
m∑
i=1

si ≤
(
a−

√
2(3a2 + b2) q − 10

√
a2 + b2 q2

)
m

}
≤ exp(−q2m)

where a = V12 and b2 = V11 − V 2
12.

We now claim that for q > 0 satisfying (40) it must also hold that

(59) ∆ ≤
(
a−

√
2(3a2 + b2) q − 10

√
a2 + b2 q2

)
m.

Notice that upon establishing (59) we can conclude

Pr
U∼W3(V,m)

{B(U)} ≤ Pr

{
m∑
i=1

si ≤ ∆

}
≤ exp(−q2m),

and therefore combining with (57),

〈Lu, Lv〉Q ≤ P(A)−2 exp

(
`m

k − `
− q2m

)
which concludes the proof of (41).

Now we focus on establishing (59) as the final step of the proof. Now since 0 ≤ ` ≤ εk and σ2 ≤ εk, we
have

a = V12 =

√
`(k − `)

k + σ2 − `
≥
√
`(1− ε)k

(1 + ε)k
≥ 1− ε

1 + ε

√
`

k
≥ (1− ε)2

√
`

k
.(60)

Also, elementary algebra gives

a =

√
`(k − `)

k + σ2 − `
≤

√
`k

(1− ε)k
=

1

1− ε

√
`

k
≤
√
ε

1− ε
,

b2 = V11 − V 2
12 ≤ V11 =

k + σ2 + `

k + σ2 − `
≤ k + `

k − `
≤ 1 + ε

1− ε
≤ (1− ε)−2,

and therefore

a2 + b2 ≤ 1 + ε

(1− ε)2
≤ (1− ε)−3,(61)

3a2 + b2 ≤ 1 + 3ε

(1− ε)2
.(62)
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Therefore since q > 0, combining (60), (61), (62) we have

(63) a−
√

2(3a2 + b2) q − 10
√
a2 + b2 q2 ≥ (1− ε)2

√
`

k
−
√

2(1 + 3ε)

1− ε
q − 10

(1− ε)3/2
q2.

But now combining (40) and (63) we conclude (59) and the proof is complete. �

6.2. Proof of Theorem 3.10(b): Upper Bound. Given (X,Y ) drawn from either Q or P, we will
distinguish via the statistic T that counts the number of indices j ∈ [n] such that 〈Xj , Y 〉/‖Y ‖2 ≥ τ where
Xj denotes column j of X and τ > 0 is a threshold to be chosen later. Specifically, we set

Tτ =

∣∣∣∣{j ∈ [n] :
〈Xj , Y 〉
‖Y ‖2

≥ τ
}∣∣∣∣ .

We will choose τ = c
√

log n for an appropriate constant c = c(θ,R) > 0 to be chosen later.

6.2.1. Null Model. Define

(64) q = q(τ) := Pr{N (0, 1) ≥ τ}.

Proposition 6.9. Let τ = c
√

log n for a constant c > 0. Then under the null model Q we have E[Tτ ] =

qn = n1−c2/2+o(1) and Var(Tτ ) ≤ qn = n1−c2/2+o(1).

We need the following Lemma.

Lemma 6.10. Let τ = c
√

log n for a constant c > 0 and define q = q(τ) as in (64). Then q = n−c
2/2+o(1).

Proof. Using a standard Gaussian tail bound,

q = Pr{N (0, 1) ≥ τ} ≤ exp

(
−τ

2

2

)
= exp

(
−c

2

2
log n

)
= n−c

2/2.

For the reverse bound, use a standard lower bound on the Gaussian tail:

q = Pr{N (0, 1) ≥ τ} ≥ 1√
2π
· τ

τ2 + 1
exp

(
−τ

2

2

)
=

1√
2π
· τ

τ2 + 1
n−c

2/2 = n−c
2/2+o(1),

completing the proof. �

Proof of Proposition 6.9. Suppose (X,Y ) ∼ Q. In this case, the values zj := 〈Xj , Y 〉/‖Y ‖2 are independent
and each distributed as N (0, 1). The test statistic can be rewritten as

Tτ =

n∑
j=1

1{zj ≥ τ}.

Therefore E[T ] = qn and Var(T ) = q(1− q)n ≤ qn where q := Pr{N (0, 1) ≥ τ}. The result then follows from
Lemma 6.10. �

6.2.2. Planted Model. We decompose the test statistic into two parts Tτ = T+
τ + T−τ , depending on whether

the index j ∈ [n] lies in S = supp(u), the support of the signal vector u, or not. That is,

T+
τ :=

∑
j∈S

1{zj ≥ τ},

and
T−τ :=

∑
j 6∈S

1{zj ≥ τ}.

The following analysis of T−τ follows by the same argument as Proposition 6.9, so we omit the proof.

Proposition 6.11. Let τ = c
√

log n for a constant c > 0, and define q = q(τ) as in (64). Then under the
planted model P we have E[T−τ ] = (n− k)q and Var(T−τ ) ≤ n1−c2/2+o(1).

Focusing now on T+
τ , we will establish the following result in the next section.
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Proposition 6.12. Let τ = c
√

log n for a constant c > 0. Fix any constant c̃ > 0 such that

max{c−
√
R(1− θ), 0} < c̃ < min{

√
2θ, c}.

Then under the planted model P we have that with probability 1− o(1),

T+
τ ≥ nθ−c̃

2/2−o(1).

6.2.3. Proof of Proposition 6.12. Recall Y = (k + σ2)−1/2
(∑

j∈S Xj +W
)
and so for j ∈ S we compute

〈Xj , Y 〉 = (k + σ2)−1/2

(∑
`∈S

〈Xj , X`〉+ 〈Xj ,W 〉

)
= (k + σ2)−1/2

(
‖Xj‖22 + 〈Xj , Zj〉

)
where

Zj =
∑

`∈S, ` 6=j

X` +W.

We define the counting random variable

(65) T̃ :=
∑
j∈S

Ij ,

where Ij = 1{z̃j ≥ c̃
√

log n} where z̃j = 〈Xj , Zj〉/‖Zj‖2 and c̃ ∈ (0, c) is the constant defined in the statement
of the proposition. The following lemma will allow us to analyze T̃ instead of T+

τ .

Lemma 6.13. With probability 1− n−ω(1),
T+
τ ≥ T̃ .

Proof. With probability 1 − n−ω(1), using standard concentration of the χ2 random variable we have the
following norm bounds for some δ = n−Ω(1):

‖Y ‖2 ≤ (1 + δ)
√
m, ‖Xj‖22 ≥ (1− δ)m, ‖Zj‖2 ≥ (1− δ)

√
(k + σ2)m.

Suppose the above bounds hold and that z̃j ≥ c̃
√

log n holds for some j. It suffices to show zj ≥ τ . We have,
recalling σ2 = o(k),

zj = 〈Xj , Y 〉/‖Y ‖2
= (k + σ2)−1/2 ‖Y ‖−1

2

(
‖Xj‖22 + 〈Xj , Zj〉

)
≥ 1

(1 + δ)
√

(k + σ2)m
((1− δ)m+ z̃j · ‖Zj‖2)

≥ 1

(1 + δ)
√

(k + σ2)m

(
(1− δ)m+ c̃

√
log n · (1− δ)

√
(k + σ2)m

)
= (1− o(1))

(√
m

k
+ c̃
√

log n

)
= (1− o(1))

(√
R(1− θ) + c̃

)√
log n.

Since by assumption
√
R(1− θ) + c̃ > c, we have for sufficiently large n that zj ≥ c

√
log n = τ , as we

wanted. �

Note that the z̃j defining T̃ are distributed as z̃j ∼ N (0, 1) but they are not independent. Yet, by linearity
of expectation, E[T̃ ] = q̃k where q̃ := Pr{N (0, 1) ≥ c̃

√
log n}. By Lemma 6.10 we have q̃ = n−c̃

2/2+o(1). We
now bound Var(T̃ ) by first establishing the following lemma.

Lemma 6.14. Fix j, ` ∈ S with j 6= `. We have

Pr
{
z̃j ≥ c̃

√
log n and z̃` ≥ c̃

√
log n

}
≤ (1 + n−Ω(1)) q̃2.
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Proof. Let Zj` =
∑
i∈S\{j,`}Xi +W and write

z̃j =
1

‖Zj‖2
(〈Xj , X`〉+ 〈Xj , Zj`〉) , z̃` =

1

‖Z`‖2
(〈Xj , X`〉+ 〈X`, Zj`〉) .

The purpose of the above decomposition is to exploit the fact that 〈Xj , Zj`〉/‖Zj`‖2 and 〈X`, Zj`〉/‖Zj`‖2
are independent, and the other terms are small in magnitude in comparison.

By standard concentration, the following events all occur with probability 1− n−ω(1), for some δ = n−Ω(1):

• ‖Zj‖2, ‖Z`‖2 ≥ (1− δ)
√

(k + σ2)m,
• ‖Zj`‖2 ≤ (1 + δ)

√
(k + σ2)m,

• 〈Xj , X`〉 ≤
√
m log n.

The first two properties follow by standard concentration of the χ2 distribution, and the third property follows
from the observation 〈Xj , X`〉/‖X`‖2 ∼ N (0, 1) and that with probability 1− n−ω(1), ‖X`‖2 ≤ (1 + δ)

√
m.

The above events imply

z̃j ≤
√
m log n

(1− δ)
√

(k + σ2)m
+
‖Zj`‖2
‖Zj‖2

· 〈Xj , Zj`〉
‖Zj`‖2

=
log n

(1− δ)
√
k + σ2

+
‖Zj`‖2
‖Zj‖2

· 〈Xj , Zj`〉
‖Zj`‖2

and similarly for z̃`. Using the fact that 〈Xj , Zj`〉/‖Zj`‖2 and 〈X`, Zj`〉/‖Zj`‖2 are independent and dis-
tributed as N (0, 1),

Pr
{
z̃j ≥ c̃

√
log n and z̃` ≥ c̃

√
log n

}
≤ n−ω(1) + Pr

{
〈Xj , Zj`〉
‖Zj`‖2

∧ 〈X`, Zj`〉
‖Zj`‖2

≥ 1− δ
1 + δ

(
c̃
√

log n− log n

(1− δ)
√
k + σ2

)}
= n−ω(1) + Pr

{
N (0, 1) ≥ 1− δ

1 + δ

(
c̃
√

log n− log n

(1− δ)
√
k + σ2

)}2

= n−ω(1) + Pr
{
N (0, 1) ≥ c̃

√
log n− n−Ω(1)

}2

.

Using Lemma A.7, this is

≤ n−ω(1) +
[
Pr
{
N (0, 1) ≥ c̃

√
log n

}(
1 + n−Ω(1)

)]2
= (1 + n−Ω(1)) q̃2,

where for the last equality we used Lemma 6.10. The proof is complete. �

We now bound the variance of T̃ using Lemma 6.14:

Var(T̃ ) = E


∑
j∈S

Ij

2
− (q̃k)2

=
∑
j∈S

E[Ij ] +
∑

j,`∈S, j 6=`

E[IjI`]− (q̃k)2

≤ q̃k + (1 + n−Ω(1)) q̃2k(k − 1)− (q̃k)2

≤ q̃k + n−Ω(1)q̃2k2.

Recall using Lemma 6.10 that E[T̃ ] = q̃k = nθ−c̃
2/2+o(1). Using now that θ > c̃2/2, the variance bound above

implies T̃ ≥ (1− o(1))q̃k = nθ−c̃
2/2+o(1) with probability 1− o(1). In particular, using Lemma 6.13, the proof

of Proposition 6.12 is complete.
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6.2.4. Putting it Together. We now combine the previous results to conclude Theorem 3.10(b).

Proof of Theorem 3.10(b). We first recap the conclusions of Propositions 6.9, 6.11, 6.12. Under Q, we have
E[Tτ ] = qn and Var(Tτ ) ≤ n1−c2/2+o(1). Under P, we have Tτ = T+

τ + T−τ with E[T−τ ] = q(n − k) and
Var(T−τ ) ≤ n1−c2/2+o(1). We need to choose constants c > 0 and c̃ > 0 satisfying

(66) max{c−
√
R(1− θ), 0} < c̃ < min{

√
2θ, c},

in which case we have T+
τ ≥ nθ−c̃

2/2+o(1) with probability 1− o(1).

To successfully distinguish, it suffices by Chebyshev’s inequality to choose c, c̃ > 0 satisfying (66) such that√
VarQ(Tτ ) + VarP(T−τ ) = o(nθ−c̃

2/2+o(1) + EP[T−τ ]− EQ[Tτ ]).

Plugging in the bounds stated above and noting EP[T−τ ]− EQ[Tτ ] = −qk = −nθ−c2/2+o(1) by Lemma 6.10, it
suffices to have

n(1−c2/2)/2+o(1) = o(nθ−c̃
2/2+o(1) − nθ−c

2/2+o(1)),

or since 0 < c̃ < c,
n(1−c2/2)/2+o(1) = o(nθ−c̃

2/2+o(1)),

i.e.,
(1− c2/2)/2 < θ − c̃2/2.

Therefore it suffices to choose (under the assumption R > RLD) c, c̃ > 0 satisfying the following conditions:

(i) 0 < c̃ < c,
(ii) θ − c̃2/2 > (1− c2/2)/2,
(iii) θ > c̃2/2,
(iv)

√
R(1− θ) + c̃ > c.

First consider the case R > 2(1−
√
θ)

1+
√
θ

for arbitrary θ ∈ (0, 1). Then we choose c̃ =
√

2θ − η and c =√
R(1− θ) +

√
2θ − 2η for a sufficiently small constant η = η(θ,R) > 0. This choice immediately satisfies

conditions (i), (iii), (iv). To satisfy (ii), it suffices to have c2 > 2 because of condition (iii). Thus, there exists
η > 0 satisfying (ii) provided that

√
R(1− θ) +

√
2θ >

√
2, which simplifies to R > 2(1−

√
θ)

1+
√
θ

. This completes
the proof in the case θ ≤ 1

4 .

Now consider the remaining case where θ > 1
4 and 1−2θ

1−θ < R ≤ 2(1−
√
θ)

1+
√
θ

. (This covers the case θ ≥ 1/2

because 1−2θ
1−θ ≤ 0 when θ ≥ 1/2.) Since 2(1−

√
θ)

1+
√
θ

< 2θ
1−θ for all θ > 1

4 , we have R < 2θ
1−θ , i.e., R(1− θ)/2 < θ.

This means we can choose c̃ =
√
R(1− θ) to satisfy (iii). We also choose c = 2

√
R(1− θ)− η for sufficiently

small η > 0, which satisfies (i) and (iv). Finally, for this choice of c, c̃, (ii) reduces to R > 1−2θ
1−θ which holds

by assumption. This completes the proof. �

6.2.5. Approximate Recovery. By a simple adaptation of the above proof, we can also prove the following
guarantee for approximate recovery.

Theorem 6.15 (Algorithm for Approximate Recovery). Consider sparse linear regression (Definition 3.8)
in the scaling regime of Assumption 3.9. If R > 2 then there is a polynomial-time algorithm for approximate
recovery, that is: given (X,Y ) drawn from P, the algorithm outputs û ∈ {0, 1}n such that

‖û− u‖22 = o(k) with probability 1− o(1).

Proof. Since R > 2, it is possible to choose a constant c > 0 such that

(67)
√

2(1− θ) < c <
√
R(1− θ).

The estimator will take the form

ûj = 1

{
〈Xj , Y 〉
‖Y ‖2

≥ τ
}

where τ = c
√

log n.
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Note that ‖û − u‖22 is simply the number of false positives E+ := | supp(û) \ supp(u)| plus the number of
false negatives E− := | supp(u) \ supp(û)|. We will consider these two terms separately and show that both
are o(k) with high probability.

False positives. This case follows by an adaptation of the calculations in Section 6.2.1. Noting that the values
〈Xj , Y 〉/‖Y ‖2 for j /∈ supp(u) are i.i.d. N (0, 1), we have E+ ∼ Bin(n−k, q) where q := Pr{N (0, 1) ≥ τ}. This
means E[E+] = q(n− k) ≤ qn and Var[E+] = q(1− q)(n− k) ≤ qn. Using Lemma 6.10, qn = n1−c2/2+o(1).
Recalling k = nθ+o(1) and c >

√
2(1− θ) (from (67)), this means E[E+] = o(k) and Var[E+] = o(k), and so

Chebyshev’s inequality implies E+ = o(k) with probability 1− o(1).

False negatives. This case follows by an adaptation of the calculations in Section 6.2.2. Note that E− is
equal to k−T+

τ for T+
τ as defined in Section 6.2.2. Therefore, the proof is complete by the following analogue

of Proposition 6.12. �

Proposition 6.16. Let τ = c
√

log n for a constant c > 0 satisfying (67). Then under the planted model P
we have that with probability 1− o(1),

T+
τ ≥ (1− o(1))k.

Proof. The proof is similar to that of Proposition 6.12, so we explain here the differences. Fix a constant
c̃ > 0 such that

c−
√
R(1− θ) < c̃ < 0,

which is possible due to (67). Define T̃ and Ij as in the original proof (of Proposition 6.12), using this value
of c̃; see (65). The main difference is that now we have c̃ < 0 instead of c̃ > 0. The result of Lemma 6.13
remains true, namely T+

τ ≥ T̃ with probability 1−n−ω(1); the proof is essentially the same, except now (since
c̃ < 0) we need to use the upper bound ‖Zj‖2 ≤ (1 + δ)

√
(k + σ2)m instead of a lower bound.

It remains to compute the mean and variance of T̃ in order to establish T̃ ≥ (1 − o(1))k with high
probability. As in the original proof, E[T̃ ] = q̃k where q̃ := Pr{N (0, 1) ≥ c̃

√
log n}, but now since c̃ < 0, the

result diverges from the original and we instead have q̃ = 1− n−c̃2/2+o(1) = 1− n−Ω(1) (see Lemma 6.10).

The variance calculation is much easier than in the original proof: we can do away with Lemma 6.14
entirely and instead directly bound

Var(T̃ ) = E


∑
j∈S

Ij

2
− (q̃k)2 ≤ k2 − (q̃k)2 = k2(1− q̃)2 = k2 · n−Ω(1),

since q̃ = 1−n−Ω(1) from above. We have now shown E[T̃ ] = (1− o(1))k and Var(T̃ ) = o(k2), so Chebyshev’s
inequality implies T̃ ≥ (1− o(1))k with probability 1− o(1) as desired. �

Appendix A. Appendix for Sparse Regression

A.1. Bernstein’s Inequality.

Theorem A.1 (see [BLM13], Theorem 2.10). For ν, c > 0, let X1, . . . , Xn be independent with
∑n
i=1 E[X2

i ] ≤
ν and

n∑
i=1

E|Xi|q ≤
q!

2
νcq−2 for all integers q ≥ 3.

Then for all y > 0,

Pr

{
n∑
i=1

(Xi − EXi) ≥
√

2νy + cy

}
≤ e−y.
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Corollary A.2. For a, b ∈ R, let X1, . . . , Xn be i.i.d. and distributed as X = ag2 + bgg′ where g, g′ are
independent N (0, 1). Then for all y > 0,

Pr

{
n∑
i=1

Xi ≥ an+
√

2(3a2 + b2)ny + 10
√
a2 + b2 y

}
≤ e−y and

Pr

{
n∑
i=1

Xi ≤ an−
√

2(3a2 + b2)ny − 10
√
a2 + b2 y

}
≤ e−y.

Proof. We will apply Theorem A.1. Set

ν =

n∑
i=1

E[X2
i ] = (3a2 + b2)n.

For any integer q ≥ 3,

E|X|q = E|g(ag + bg′)|q

≤
(
E|g|2q · E|ag + bg′|2q

)1/2
= (a2 + b2)q/2 E|g|2q

= π−1/2 (a2 + b2)q/2 2q Γ

(
q +

1

2

)
≤ π−1/2 (a2 + b2)q/2 2q Γ(q + 1)

= π−1/2 (a2 + b2)q/2 2q q!

and so
n∑
i=1

E|Xi|q ≤
q!

2
ν · π−1/2 (a2 + b2)q/2 (3a2 + b2)−1 2q+1 ≤ q!

2
ν · π−1/2 (a2 + b2)q/2−1 2q+1.

Set c = 10
√
a2 + b2 so that π−1/2 (a2 + b2)q/2−1 2q+1 ≤ cq−2 for all q ≥ 3. This completes the proof. �

A.2. Hölder’s Inequality.

Proposition A.3 (Hölder’s inequality). Let r ≥ 1 and p, q ∈ [1,∞] with 1
p + 1

q = 1
r , and let X,Y be random

variables. Then ‖XY ‖r ≤ ‖X‖p‖Y ‖q.

Proposition A.4. Let r ≥ 1 and p1, . . . , pn ∈ [1,∞] with
∑
i

1
pi

= 1
r , and let X1, . . . , Xn be random variables.

Then ‖
∏
iXi‖r ≤

∏
i ‖Xi‖pi .

Proof. Proceed by induction on n. The base case n = 2 is Hölder’s inequality. For n ≥ 3, we have by Hölder
that ∥∥∥∥∥

n∏
i=1

Xi

∥∥∥∥∥
r

≤ ‖Xn‖pn

∥∥∥∥∥
n−1∏
i=1

Xi

∥∥∥∥∥
( 1
r−

1
pn

)
−1

.

Since 1
r −

1
pn

=
∑n−1
i=1

1
pi
, the result follows using the induction hypothesis. �

A.3. Wishart Distribution. Recall that for an m×m matrix V � 0, the Wishart distribution Wm(V, n)
is the distribution of Z>Z where Z ∈ Rn×m has each row independently distributed as N (0, V ). For n ≥ m,
the density of U ∼Wm(V, n) (more precisely, the density of the diagonal and upper-triangular entries of U)
is given by

f(U) =
det(U)(n−m−1)/2 exp(− 1

2 〈V
−1, U〉)

2nm/2 det(V )n/2Γm(n/2)

when U � 0 (and f(U) = 0 when U 6� 0), where Γm is the multivariate gamma function [Wis28].
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Lemma A.5. Fix t ∈ R and a symmetric matrix M ∈ Rm×m such that tM ≺ 1
2Im. Then for Z ∈ Rn×m

with i.i.d. N (0, 1) entries and an event B(U) defined on symmetric matrices U ∈ Rm×m, it holds that

E
Z
1B(Z>Z) exp

(
t〈M,Z>Z〉

)
= det(Im − 2tM)−n/2 Pr

U∼Wm((Im−2tM)−1,n)
{B(U)}

where Wm denotes the Wishart distribution defined above.

Proof. Since Z>Z ∼Wm(Im, n), we can use the Wishart density from above to write

E
Z
1B(Z>Z) exp(t〈M,Z>Z〉) =

∫
U�0

1B(U)

det(U)(n−m−1)/2 exp(− 1
2 〈Im, U〉)

2nm/2Γm(n/2)
exp(t〈M,U〉) dU.

We will rewrite this in terms of a different Wishart distribution. Choose V ∈ Rm×m so that − 1
2V
−1 =

− 1
2Im + tM , that is, V = (Im − 2tM)−1. Then we have

E
Z
1B(Z>Z) exp(t〈M,Z>Z〉) =

∫
U�0

1B(U)

det(U)(n−m−1)/2 exp(− 1
2 〈V

−1, U〉)
2nm/2Γm(n/2)

dU

= det(V )n/2
∫
U�0

1B(U)

|U |(n−m−1)/2 exp(− 1
2 〈V

−1, U〉)
2nm/2 det(V )n/2Γm(n/2)

dU

= det(V )n/2 Pr
U∼Wm(V,n)

{B(U)}.

The conclusion follows. �

A.4. Proof of Auxiliary Lemmas.

Proof of Lemma 6.4. For the first part, notice

t = log log k + ` log 2 + log

(
k

`

)
≤ log log k + ` log 2 + ` log k.

Hence for sufficiently large k, we have for all ` that t ≤ (1 + δ)` log k. Since
(
k
`

)
≤ 2k, we also have

t ≤ log log k + k · 2 log 2 = O(k) while m = Θ(k log k). As a result, the first term in ∆ dominates: for
sufficiently large k, we have for all ` that 10t ≤ δ

√
2mt, and so

(68) ∆ ≤ (1 + δ)
√

2mt ≤ (1 + δ)
√

(1 + δ)2`m log k ≤ (1 + δ)2
√

2`m log k.

The result follows since δ > 0 was arbitrary.

For the second part, notice that for any fixed ` and S, the probability that (33) fails is

Pr

{
m∑
i=1

si > ∆

}
where s1, . . . , sm are i.i.d. with distribution s = gg′ where g and g′ are independent N (0, 1). By Corollary A.2
(with a = 0, b = 1), for all t > 0,

Pr

{
m∑
i=1

si >
√

2mt+ 10t

}
≤ e−t.

Plugging in t = t(`) and taking a union bound over the choices of `, S, the probability that A fails is at most
k/2∑
`=1

(
k

`

)
e−t =

1

log k

k/2∑
`=1

2−` ≤ 1

log k
,

completing the proof. �

Lemma A.6. If X ≥ 0 is a nonnegative random variable and A is an event of positive probability,

E[X |A] ≤ Pr(A)−1 E[X].
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Proof. Write

E[X |A] =
E[X · 1A]

Pr(A)
,

and using Hölder’s inequality (Proposition A.3),

E[X · 1A] = ‖X · 1A‖1 ≤ ‖X‖1 · ‖1A‖∞ = E[X] · 1,
completing the proof. �

Lemma A.7. For any 0 ≤ ε < t,
Pr{N (0, 1) ≥ t− ε}

Pr{N (0, 1) ≥ t}
≤ 1 +

ε(t2 + 1)

t
exp(εt).

Proof. Letting Φ(t) = Pr{N (0, 1) ≥ t}, we have Φ′(t) = − 1√
2π

exp(−t2/2) and so

Φ(t− ε) ≤ Φ(t) +
ε√
2π

exp(−(t− ε)2/2).

Using the Gaussian tail lower bound Φ(t) ≥ 1√
2π

t
t2+1 exp(−t2/2),

Φ(t− ε)
Φ(t)

≤ 1 +
1

Φ(t)

ε√
2π

exp(−(t− ε)2/2) ≤ 1 +
ε(t2 + 1)

t
exp(−(t− ε)2/2 + t2/2)

and the result follows. �

Appendix B. Orthogonal Polynomials

We provide here a sufficient condition for L2(Q) to admit a complete basis of orthonormal polynomials. We
refer to [Akh20, Chapter 2] for further background. For a product measure Q =

∏N
i=1Qi, it suffices that each

Qi has finite moments of all orders, and that Qi is uniquely determined by its moment sequence. This in turn
is guaranteed under various assumptions. For instance, Qi is determined by its moments if the characteristic
function of Qi is analytic near zero, or under the weaker Carleman’s condition [Akh20, Addendum 11, p. 85]:

(69)
∞∑
k=1

m
−1/2k
2k =∞ where mk = E

Y∼Qi
[Y k].

Indeed we can first treat the univariate case N = 1, and then generalize to arbitrary N by induction.

In the case N = 1, we can construct an orthonormal basis (hk)k≥0 in R[Y ] by the Gram–Schmidt
orthonormalization process. It remains to verify that the space of polynomials is dense in L2(Q). According
to [Akh20, Theorem 2.3.3], a sufficient condition is that Q be determined by its moment sequence, i.e., no
other probability measure has the same sequence of moments as Q.

Generalizing to arbitrary N , we assume that each Qi is determined by its moments (e.g., satisfies Carleman’s
condition (69)). Since Q =

∏N
i=1Qi, a basis of orthonormal polynomials with respect to 〈·, ·〉Q in R[Y1, . . . , YN ]

is given by (hα)α∈NN (with 0 ∈ N by convention) where hα(Y ) =
∏N
i=1 h

(i)
αi (Yi) and for each i ∈ [N ], (h

(i)
k )k≥0

is a complete orthonormal basis of polynomials for L2(Qi). It remains to show that such a basis is complete
in L2(Q), i.e., the closure of span{hα : α ∈ NN} is L2(Q). Since we are dealing with linear spaces, it suffices
to show that for any f ∈ L2(Q), if

(70) 〈f, hα〉Q = 0 for all α ∈ NN ,
then f = 0 (Q-almost surely). We proceed by induction, the base case N = 1 having already been verified.
Assume the above to be true for dimension up to N − 1. Let Q =

∏N
i=1Qi and let f ∈ L2(Q) such that (70)

holds. This can be equivalently written as∫
f̃(Y )h(N)

αN (Y )QN (dY ) = 0 for all αN ∈ N ,(71)

f̃(y) := E
[
f(Y1, . . . , YN−1, y)

N−1∏
i=1

h(i)
αi (Yi)

]
,(72)
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where the above expectation is over (Y1, · · · , YN−1) ∼
∏N−1
i=1 Qi. Since (h

(N)
k )k≥0 is a complete basis of

L2(QN ), Eq. (71) implies that f̃ = 0 (QN -almost surely). Applying the induction hypothesis to Eq. (72),
f = 0 (Q-almost surely). This concludes the argument.
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