A Missing privacy proofs

A.1 Proof of [Lemma 2.3]

We restate the lemma for convenience.

Lemma 2.3. Let $M_1 : G \rightarrow M_1$ be a randomized algorithm that is (ϵ, δ)-DP. Suppose $B \subseteq M_1$ is a set of "bad outcomes" with $\Pr [M_1(G) \in B] \leq \delta^*$ for any $G \in G$. Further let $M_2 : G \times M_1 \rightarrow M_2$ be a deterministic algorithm such that for every fixed "non-bad" $m_1 \in M_1 \setminus B$ we have $M_2(G, m_1) = M_2(G', m_1)$ for adjacent $G, G' \in G$. Then the composed mechanism $G \ni G \mapsto M_2(G, M_1(G)) \in M_2$ is $(\epsilon, \delta + \delta^*)$-DP.

The proof is routine:

Proof. Fix $G, G' \in G$ and a set of outcomes $S_2 \subseteq M_2$. Define

$$S_1 := \{m_1 \in M_1 \setminus B : M_2(G, m_1) \in S_2\}.$$

By assumption we have

$$S_1 = \{m_1 \in M_1 \setminus B : M_2(G', m_1) \in S_2\}. \quad (4)$$

Now we can write

$$\Pr [M_2(G, M_1(G)) \in S_2] \leq \Pr [M_1(G) \in B] + \Pr [M_1(G) \notin B \text{ and } M_2(G, M_1(G)) \in S_2]$$

$$\leq \delta^* + \Pr [M_1(G) \in S_1]$$

$$\leq \delta^* + e^\epsilon \cdot \Pr [M_1(G') \in S_1] + \delta$$

$$\leq \delta^* + e^\epsilon \cdot \Pr [M_2(G', M_1(G')) \in S_2] + \delta.$$

\[\square\]

A.2 Proof of [Theorem 4.4]

We restate the theorem for convenience.

Theorem 4.4. By a state let us denote the noised-agreement status of all edges in $E(G) \cup E(G')$ and heavy/light status of all vertices. Under a fixed state, consider Line 4 as a deterministic algorithm that, given G or G', outputs the final clustering. Then this clustering does not depend on whether the input graph is G or G', except on a set of states that arises with probability at most $\frac{1}{4} \delta$ (when steps before Line 4 are executed on either of G or G').

Let us analyze how adding a single edge (x, y) can influence the output of Line 4. Namely, we will show that it cannot, unless at least one of certain bad events happens. We will list a collection of these bad events, and then we will upper-bound their probability.

First, if x and y are not in noised agreement, then (x, y) was removed in Line 2 and the two outputs will be the same. In the remainder we assume that x and y are in noised agreement. Similarly, we can assume that $x, y \in H$ (otherwise they cannot be in noised agreement).

If x and y are both light, then similarly (x, y) will be removed in Line 4 and the two outputs will be the same.

If x and y are both heavy, then (x, y) will survive in \tilde{G}. It will affect the output if and only if it connects two components that would otherwise not be connected. However, intuitively this is unlikely, because x and y are heavy and in noised agreement and thus they should have common neighbors in \tilde{G}. Below [Lemma A.3] we will show that if no bad events (also defined below) happen, then x and y indeed have common neighbors in \tilde{G}.

If x is heavy and y is light, then similarly (x, y) will survive in \tilde{G}, and it will affect the output if and only if it connects two components that would otherwise not be connected and that each contain a heavy vertex. More concretely, we claim that if the outputs are not equal, then y must have a heavy neighbor $z \neq x$ in G that has no common neighbors with x (except possibly y). For otherwise:
We use bad event 3 similarly for y (also defined below) happen, then
Recall that we can assume that x, y
Recall from Section 3 that we can set λ
Moreover, x
Since $\min(x)$ (3. similarly for each x
4. for each x
3. the same for x
2. x
1. x
Finally, if x is light and y is heavy: analogous to the previous point. We will require that x have no bad neighbor, i.e., neighbor $z \neq y$ that has no common neighbors with y.

Bad events. We start with two helpful definitions.

Definition A.1. We say that a vertex v is TV-light (Truly Very light) if $l(v) \geq (\lambda + \lambda')d(v)$, i.e., v lost a $(\lambda + \lambda')$-fraction of its neighbors in Line 2.

Definition A.2. We say that two vertices u, v TV-disagree (Truly Very disagree) if $|N(u) \triangle N(v)| \geq (\beta + \beta') \max(d(u), d(v))$.

Recall from Section 3 that we can set $\lambda' = \beta' = 0.1$.

Our bad events are the following:

1. x and y TV-disagree but are in noised agreement,
2. x is TV-light but is heavy,
3. the same for y,
4. $x \in H$ but $d(x) < T_1$,
5. the same for y,
6. for each $z \in N(y) \setminus \{x, y\}$:
 6a. y and z do not TV-disagree, and z is TV-light but is heavy, (or)
 6b. y and z TV-disagree, but are in noised agreement.
7. similarly for each $z \in N(x) \setminus \{x, y\}$.

Recall that we can assume that x, $y \in H$, so if bad event 4 does not happen, we have

$$d(x) \geq T_1 \quad (5)$$

and similarly for y and bad event 5.

Heavy–heavy case. Let us denote the neighbors of a vertex v in \tilde{G} by $\tilde{N}(v)$; also here we adopt the convention that $v \in \tilde{N}(v)$.

Lemma A.3. If x and y are heavy and bad events 1–5 do not happen, then $|\tilde{N}(x) \cap \tilde{N}(y)| \geq 3$, i.e., x and y have another common neighbor in \tilde{G}.

Proof. Recall that we can assume that x and y are in noised agreement (otherwise the two outputs are equal). Since bad event 1 does not happen, x and y do not TV-disagree, i.e.,

$$|N(x) \triangle N(y)| < (\beta + \beta') \max(d(x), d(y)) .$$

From this we get $\min(d(x), d(y)) \geq (1 - \beta - \beta') \max(d(x), d(y))$ and thus $d(x) + d(y) = \min(d(x), d(y)) + \max(d(x), d(y)) \geq (2 - \beta - \beta') \max(d(x), d(y))$ and so

$$|N(x) \triangle N(y)| < \frac{\beta + \beta'}{2 - \beta - \beta'}(d(x) + d(y)) .$$

Since x is heavy but bad event 2 does not happen, x is not TV-light, i.e., $l(x) < (\lambda + \lambda')d(x)$.
Moreover, $l(x) = |N(x) \setminus \tilde{N}(x)|$ because x is heavy (so there are no light-light edges incident to it).
We use bad event 3 similarly for y.

16
We will use the following property of any two sets A, B:

$$|A \cap B| = \frac{|A| + |B| - |A \triangle B|}{2}.$$

Taking these together, we have

$$|\tilde{N}(x) \cap \tilde{N}(y)| \geq |N(x) \cap N(y)| - |N(x) \setminus \tilde{N}(x)| - |N(y) \setminus \tilde{N}(y)|$$

$$= \frac{d(x) + d(y) - |N(x) \triangle N(y)| - l(x) - l(y)}{2}$$

$$\geq \frac{1 - \beta - \beta'}{2 - \beta - \beta'}(d(x) + d(y)) - (\lambda + \lambda')(d(x) + d(y))$$

$$= \left(\frac{1 - \beta - \beta'}{2 - \beta - \beta'} - \lambda - \lambda'\right)(d(x) + d(y))$$

$$\geq 3,$$

where the last inequality follows since

$$\frac{1 - \beta - \beta'}{2 - \beta - \beta'} - \lambda - \lambda' \geq \frac{1 - 0.2 - 0.1}{2} - 0.2 - 0.1 = 0.05 > 0$$

and as, by (5), we have $d(x) + d(y) \geq 2T_1$, and T_1 is large enough:

$$T_1 \geq \frac{1.5}{\frac{1 - \beta - \beta'}{2 - \beta - \beta'} - \lambda - \lambda'}.$$ \hspace{1cm} (6)

\begin{flushright}
\fbox{}
\end{flushright}

Heavy–light case. Without loss of generality assume that x is heavy and y is light. Recall that a bad neighbor of y is a vertex $z \in \tilde{N}(y) \setminus \{x, y\}$ that is heavy and has no common neighbors with x (except possibly y).

Lemma A.4. If x is heavy, y is light, and bad events do not happen, then y has no bad neighbors.

Proof. Suppose that a vertex $z \in \tilde{N}(y) \setminus \{x, y\}$ is heavy; we will show that z must have common neighbors with x.

Since $z \in \tilde{N}(y)$, we have that y and z must be in noised agreement (otherwise (y, z) would have been removed). Since bad event 6b does not happen, y and z do not TV-disagree, i.e.,

$$|N(y) \triangle N(z)| < (\beta + \beta') \max(d(y), d(z))$$

which also implies that $d(z) \geq (1 - \beta - \beta')d(y)$.

Since bad event 6a does not happen, and y and z do not TV-disagree, and z is heavy, thus z is not TV-light, i.e., $l(z) < (\lambda + \lambda')d(z)$.

As in the proof of Lemma A.3, since bad events 1 and 2 do not happen, we have

$$|N(x) \triangle N(y)| < (\beta + \beta') \max(d(x), d(y)),$$
which also implies that \(d(x) \geq (1 - \beta - \beta')d(y) \) and \(l(x) < (\lambda + \lambda')d(x) \). Similarly as in that proof, we write

\[
|\tilde{N}(x) \cap \tilde{N}(z)| \geq |N(x) \cap N(z)| - |N(x) \setminus \tilde{N}(x)| - |N(z) \setminus \tilde{N}(z)|
\]

\[
= \frac{d(x) + d(z) - |N(x) \triangle N(z)|}{2} - l(x) - l(z)
\]

\[
\geq \frac{d(x) + d(z) - (\beta + \beta')(d(x) + d(z))}{2} - (\lambda + \lambda')(d(x) + d(z))
\]

\[
= (1 - \beta - \beta' - 2(\lambda + \lambda')) \frac{d(x) + d(z)}{2}
\]

\[
\geq (1 - \beta - \beta' - 2(\lambda + \lambda')) \frac{d(x) + (1 - \beta - \beta')d(y)}{2}
\]

\[
\geq (1 - \beta - \beta' - 2(\lambda + \lambda')) \frac{2 - \beta - \beta'}{T_1}
\]

\[
\geq 2,
\]

where the second-last inequality follows as, by (5), we have \(d(x), d(y) \geq T_1 \), and the last inequality follows because

\[
1 - \beta - \beta' - 2(\lambda + \lambda') \geq 1 - 0.2 - 0.1 - 2 \cdot (0.2 + 0.1) \geq 0.1 > 0
\]

and \(T_1 \) is large enough:

\[
T_1 \geq \frac{2 \cdot 2}{(1 - \beta - \beta' - 2(\lambda + \lambda'))(2 - \beta - \beta')}.
\]

Bounding the probability of bad events. Roughly, our strategy is to union-bound over all the bad events.

Fact A.5. Let \(A, c, d \geq 0 \). If \(d \geq \frac{\ln(\frac{c^2}{A})}{A} \), then \(\frac{1}{2} \exp(-A \cdot d) \leq \frac{\delta}{8} \).

Proof. A straightforward calculation.

Claim A.6. The probability of bad event 1, conditioned on bad events 4 and 5 not happening, is at most \(\delta/8 \).

Proof. Start by recalling that by (5), \(d(x), d(y) \geq T_1 \). We have that the sought probability is at most

\[
\Pr \{ E_{x,y} < -\beta' \cdot \max(d(x), d(y)) \} \leq \frac{1}{2} \exp \left(-\frac{\beta' \cdot \max(d(x), d(y))}{\epsilon_{agr}} \right)
\]

where we use \(\epsilon \) to denote the magnitude of \(E_{x,y} \), i.e.,

\[
\epsilon = \max \left(1, \frac{\gamma \sqrt{\max(d(x), d(y)) \cdot \ln(1/\delta_{agr})}}{\epsilon_{agr}} \right).
\]

We will satisfy both

\[
\frac{1}{2} \exp \left(-\beta' \cdot \max(d(x), d(y)) \right) \leq \frac{\delta}{8}
\]

and

\[
\frac{1}{2} \exp \left(-\frac{\epsilon_{agr} \cdot \beta' \cdot \max(d(x), d(y))}{\gamma \sqrt{\max(d(x), d(y)) \cdot \ln(1/\delta_{agr})}} \right) \leq \frac{\delta}{8}.
\]

For the former, by applying Fact A.5 (for \(c = 8, A = \beta' \) and \(d = \max(d(x), d(y)) \)) we get that it is enough to have \(\max(d(x), d(y)) \geq \frac{\ln(4/\delta)}{\beta'} \), which holds when \(T_1 \) is large enough:

\[
T_1 \geq \frac{\ln(4/\delta)}{\beta'}.
\]
For the latter, we want to satisfy
\[
\frac{1}{2} \exp \left(-\frac{\epsilon_{\text{agr}} \cdot \beta' \cdot \sqrt{\max(d(x), d(y))}}{\gamma \ln(1/\delta_{\text{agr}})} \right) \leq \delta / 8.
\]

Use Fact A.5 (for \(c = 8, A = \frac{\epsilon_{\text{agr}} \cdot \beta' \cdot \gamma}{\gamma \ln(1/\delta_{\text{agr}})} \) and \(d = \sqrt{\max(d(x), d(y))} \)) to get that it is enough to have
\[
\sqrt{\max(d(x), d(y))} \geq \frac{\ln(4/\delta) \cdot \gamma \cdot \ln(1/\delta_{\text{agr}})}{\epsilon_{\text{agr}} \cdot \beta'},
\]
which is true when \(T_1 \) is large enough:
\[
T_1 \geq \left(\frac{\ln(4/\delta) \cdot \gamma}{\epsilon_{\text{agr}} \cdot \beta'} \right)^2 \cdot \ln(1/\delta_{\text{agr}}).
\]
(9)

Claim A.7. The probability of bad event 2, conditioned on bad events 4 and 5 not happening, is at most \(\delta / 32 \).

Proof. Start by recalling that by (5), \(d(x) \geq T_1 \). If \(x \) is TV-light but heavy, then we must have \(Y_x < \lambda' \cdot d(x) \). We have that the sought probability is at most
\[
\frac{1}{2} \exp \left(-\frac{\lambda' \cdot d(x) \cdot \epsilon}{8} \right)
\]
and by Fact A.5 (with \(c = 32, d = d(x) \) and \(A = \frac{\lambda' \cdot \epsilon}{8} \)) this is at most \(\delta / 32 \) because \(d(x) \geq T_1 \) and \(T_1 \) is large enough:
\[
T_1 \geq \frac{8 \ln(16/\delta)}{\lambda' \cdot \epsilon}.
\]
(10)

Claim A.8. The probability of bad event 4 is at most \(\delta / 32 \).

Proof. For bad event 4 to happen, we must have \(Z_x \geq T_0 - T_1 = \frac{8 \ln(16/\delta)}{\epsilon} \); as \(Z_x \sim \text{Lap}(8/\epsilon) \), this happens with probability \(\frac{1}{2} \exp(-\ln(16/\delta)) = \delta / 32 \).

The following two facts are more involved versions of Fact A.5.

Fact A.9. Let \(A, d \geq 0 \). If \(d \geq \frac{1.6 \ln(\frac{\sqrt{d}}{A})}{A} \), then \(\frac{1}{2} \exp(-A \cdot d) \leq \frac{\delta}{8d} \).

Proof. We use the following analytic inequality: for \(\alpha, x > 0 \), if \(x \geq 1.6 \ln(\alpha) \), then \(x \geq \ln(\alpha x) \). We substitute \(x = A \cdot d \) and \(\alpha = \frac{4}{\delta A} \). Then by the analytic inequality, \(A \cdot d \geq \ln \left(\frac{4d}{\delta} \right) \). Negate and then exponentiate both sides.

Fact A.10. Let \(A, d \geq 0 \). If \(\sqrt{d} \geq \frac{2.8 \left(1 + \ln \left(\frac{\sqrt{d}}{A} \right) \right)}{A} \), then \(\frac{1}{2} \exp(-A \cdot \sqrt{d}) \leq \frac{\delta}{8d} \).

Proof. We use the following analytic inequality: for \(\alpha, x > 0 \), if \(x \geq 2.8(\ln(\alpha) + 1) \), then \(x \geq 2 \ln(\alpha x) \). We substitute \(x = A \sqrt{d} \) and \(\alpha = \frac{2}{\sqrt{\delta A}} \). Then by the analytic inequality, \(A \cdot \sqrt{d} \geq \ln \left(\frac{2d}{\delta} \right) \). Negate and then exponentiate both sides.

Claim A.11. For any \(z \in N(y) \setminus \{x, y\} \), the probability of bad event 6a for \(z \), conditioned on bad events 4 and 5 not happening, is at most \(\frac{\delta}{8d(y)} \).
We will satisfy both $z^E_2 \cdot 3$ in total. The probability of bad events 4 or 5 is at most $\delta/2$. Conditioned on these not happening, bad event 6a happens, we must have $z^E_2 < -\lambda' \cdot (1 - \beta - \beta')d(y)$. Thus, the sought probability is at most
\[
\Pr \left[z^E_2 < -\lambda' \cdot (1 - \beta - \beta')d(y) \right] = \frac{1}{2} \exp \left(- \frac{\lambda' \cdot (1 - \beta - \beta')d(y) \cdot \epsilon}{8} \right).
\]
By Fact A.9 (invoked for $d = d(y)$ and $A = \lambda' \cdot (1 - \beta - \beta')\epsilon$), this is at most $\delta/8d(y)$.

Claim A.12. For any $z \in N(y) \setminus \{x, y\}$, the probability of bad event 6b for z, conditioned on bad events 4 and 5 not happening, is at most $\delta/8d(y)$.

Proof. The proof is similar as for Claim A.6 but somewhat more involved as $d(y)$ appears also in the probability bound. Start by recalling that by (5), $d(y) \geq T_1$ and T_1 is large enough:
\[
T_1 \geq \frac{1.6 \ln \left(\frac{4 - 8}{\lambda' \cdot (1 - \beta - \beta') \epsilon} \right) \cdot 8}{\lambda' \cdot (1 - \beta - \beta') \epsilon}.
\] (11)
\]
We will satisfy both
\[
\frac{1}{2} \exp \left(- \beta' \cdot \max(d(y), d(z)) \right) \leq \frac{1}{2} \exp \left(- \beta' \cdot d(y) \right) \leq \frac{\delta}{8d(y)} (12)
\]
and
\[
\frac{1}{2} \exp \left(- \frac{\epsilon_{agr} \cdot \beta' \cdot \max(d(y), d(z))}{\gamma \sqrt{\max(d(y), d(z)) \cdot \ln(1/\delta_{agr})}} \right) \leq \frac{1}{2} \exp \left(- \frac{\epsilon_{agr} \cdot \beta' \cdot \sqrt{d(y)}}{\gamma \sqrt{\ln(1/\delta_{agr})}} \right) \leq \frac{\delta}{8d(y)}. (13)
\]
For the former, by applying Fact A.9 (for $A = \beta'$ and $d = d(y)$) we get that (12) holds because $d(y) \geq T_1$ and T_1 is large enough:
\[
T_1 \geq \frac{1.6 \ln \left(\frac{4 - \beta'}{\beta'} \right) \cdot \beta'}{\beta'}. (14)
\]
For the latter, by applying Fact A.10 (for $A = \frac{\epsilon_{agr} \cdot \beta'}{\gamma \sqrt{\ln(1/\delta_{agr})}}$ and $d = d(y)$) we get that (13) holds because $d(y) \geq T_1$ and T_1 is large enough:
\[
T_1 \geq \left(\frac{2.8 \left(1 + \ln \left(\frac{2}{\sqrt{\delta_{agr}}} \right) \right)^2}{A} \right)^2 = \left(\frac{2.8 \left(1 + \ln \left(\frac{2}{2.8 \sqrt{1/\delta_{agr}}} \right) \right) \sqrt{1/\delta_{agr}}}{\epsilon_{agr} \cdot \beta'} \right)^2. (15)
\]
B Proofs Missing from Section 5

B.1 Proof of Lemma 5.1

First, we prove the following claim.

Lemma B.1. Let $\beta^L, \beta^U \in \mathbb{R}^{V \times V}_{\geq 0}$ and $\lambda^L, \lambda^U \in \mathbb{R}_{\geq 0}^{V}$ such that $\beta^U \geq \beta^L$ and $\lambda^U \geq \lambda^L$. Let E_{rem} be a subset of edges. Then, the following holds:

(A) If v is light in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$, then v is light in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$.

(B) If v is heavy in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$, then v is heavy in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$.

(C) If an edge e is removed in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$, then e is removed in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$ as well.

(D) If an edge e remains in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$, then e remains in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$ as well.

Proof. Observe that $|N(u)\triangle N(v)| \leq \beta^L_{u,v} \max\{d(u), d(v)\}$ implies $|N(u)\triangle N(v)| \leq \beta^U_{u,v} \max\{d(u), d(v)\}$ as $\beta^L_{u,v} \leq \beta^U_{u,v}$. Hence, if u and v are in agreement in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$, then u and v are in agreement in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$ as well. Similarly, if u and v are not in agreement in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$, then u and v are not in agreement in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$ as well. These observations immediately yield Properties (A) and (B).

To prove Properties (C) and (D), observe that an edge $e = \{u, v\}$ is removed from a graph if u and v are not in agreement, or if e and v are light, or if $e \notin E_{\text{rem}}$. From our discussion above and from Property (A), if e is removed from $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$, then e is removed from $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$ as well. On the other hand, $e \notin E_{\text{rem}}$ remains in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$ if u and v are in agreement, and if u or v is heavy. Property (B) and our discussion about vertices in agreement imply Property (D). \qed

As a corollary, we obtain the proof of Lemma 5.1.

Lemma 5.1. Let $\beta^L, \beta^U \in \mathbb{R}^{V \times V}_{\geq 0}$ and $\lambda^L, \lambda^U \in \mathbb{R}_{\geq 0}^{V}$ such that $\beta^U \geq \beta^L$ and $\lambda^U \geq \lambda^L$.

(i) If u and v are in the same cluster of $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$, then u and v are in the same cluster of $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$.

(ii) If u and v are in different clusters of $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$, then u and v are different clusters of $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$.

Proof. (i) Consider a path P between u and v that makes them being in the same cluster/component in $\text{ALG-CC}(\beta^L, \lambda^L, E_{\text{rem}})$. Then, by Lemma B.1 (D), P remains in $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$ as well. Hence, u and v are in the same cluster of $\text{ALG-CC}(\beta^U, \lambda^U, E_{\text{rem}})$.

(ii) Follows from Property (i) by contraposition. \qed

B.2 Proof of Lemma 5.3

We begin by proving the following claim.

\footnote{Also, by contraposition, Property (D) follows from Property (C) and Property (B) follows from Property (A).}
Lemma B.2. Let ALG-CC$'$ be a version of ALG-CC that does not make singletons of light vertices on Line 4 of Algorithm 2. Let $\beta \in \mathbb{R}_{\geq 0}^{V}$ and $\lambda \in \mathbb{R}_{\geq 0}$ be two constant vectors, i.e., $\beta = \beta \mathbb{1}$ and $\lambda = \lambda \mathbb{1}$. Assume that $5\beta + 2\lambda < 1$. Then, it holds

$$\text{cost}(\text{ALG-CC}'(\beta, \lambda, E_{\leq T})) \leq O(\text{OPT}/(\beta \lambda)) + O(n \cdot T/(1 - 4\beta)^3),$$

where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider a non-singleton cluster C output by ALG-CC$'$($\beta, \lambda, \emptyset$). Let u be a vertex in C. We now show that for any $v \in C$, such that u or v is heavy, it holds that $d(u) \geq (1 - 4\beta)d(u)$. To that end, we recall that in [Calmi et al. 2021] (Lemma 3.3 of the arXiv version) it was shown that

$$|N(u) \Delta N(v)| \leq 4\beta \max\{d(u), d(v)\}. \quad (16)$$

Assume that $d(u) \geq d(v)$, as otherwise $d(v) \geq (1 - 4\beta)d(u)$ holds directly. Then, from Eq. (16) we have

$$d(u) - d(v) \leq |N(u) \Delta N(v)| \leq 4\beta d(u),$$

further implying

$$d(v) \geq (1 - 4\beta)d(u).$$

Moreover, this provides a relation between $d(v)$ and $d(u)$ even if both vertices are light. To see that, fix any heavy vertex z in the cluster. Any vertex u has $d(u) \leq d(z)/(1 - 4\beta)$ and also $d(u) \geq (1 - 4\beta)d(z)$. This implies that if u and v belong to the same cluster than $d(u) \geq (1 - 4\beta)^2d(v)$, even if both u and v are light.

Let $E_{\leq T}$ be a subset (any such) of edges incident to vertices with degree at most T. We will show that forcing ALG-CC$'$ to remove $E_{\leq T}$ does not affect how vertices of degree at least $T/(1 - 4\beta)^3$ are clustered by ALG-CC$'$, To see that, observe that a vertex x having degree at most T and a vertex y having degree at least $T/(1 - \beta) + 1$ are not in agreement. Hence, forcing ALG-CC$'$ to remove $E_{\leq T}$ does not affect whether vertex y is light or not.

However, removing $E_{\leq T}$ might affect whether a vertex z with degree $T/(1 - \beta) < T/(1 - 4\beta)$ is light or not. Nevertheless, from our discussion above, a vertex z with degree at least $T/(1 - 4\beta)^3$ is not clustered together with z by ALG-CC$'$($\beta, \lambda, \emptyset$), regardless of whether z is heavy or light.

This implies that the cost of clustering vertices of degree at least $T/(1 - 4\beta)^3$ by ALG-CC$'$($\beta, \lambda, E_{\leq T}$) is upper-bounded by $\text{cost}(\text{ALG-CC}'(\beta, \lambda, E_{\leq T})) \leq O(\text{OPT}/(\beta \lambda)).$ Notice that the inequality follows since ALG-CC$'$($\beta, \lambda, \emptyset$) is a $O((1/\beta \lambda))$-approximation of OPT and $\beta < 0.2$.

It remains to account for the cost effect of ALG-CC$'$($\beta, \lambda, E_{\leq T}$) on the vertices of degree less than $T/(1 - 4\beta)^3$. This part of the analysis follows from the fact that forcing ALG-CC$'$ to remove $E_{\leq T}$ only reduces connectivity compared to the output of ALG-CC$'$ without removing $E_{\leq T}$. That is, in addition to removing edges even between vertices that might be in agreement, removal of $E_{\leq T}$ increases a chance for a vertex to become light. Hence, the clusters of ALG-CC$'$ with removals of $E_{\leq T}$ are only potentially further clustered compared to the output of ALG-CC$'$ without the removal. This means that ALG-CC$'$ with the removal of $E_{\leq T}$ potentially cuts additional “+” edges, but it does not include additional “-” edges in the same cluster. Given that only vertices of degree at most $T/(1 - 4\beta)^3$ are affected, the number of additional “+” edges cut is $O(n \cdot T/(1 - 4\beta)^3)$.

This completes the analysis.

Lemma 5.3. Let Algorithm 1 be a version of Algorithm 1 that does not make singletons of light vertices on Line 4. Assume that $5\beta + 2\lambda < 1/\epsilon$ and also assume that β and λ are positive constants. With probability at least $1 - n^{-2}$, Algorithm 1 provides a solution which has $O(1)$ multiplicative and $O\left(n \cdot \left(\frac{\log n}{\epsilon} + \frac{\log^2 n \log(1/\delta)}{\min(1, \epsilon^2)}\right)\right)$ additive approximation.

Proof. We now analyze under which condition noise agreed and $\hat{I}(v)$ can be seen as a slight perturbation of β and λ. That will enable us to employ Lemmas 5.2 and B.2 to conclude the proof of this theorem.
Analyzing noised agreement. Recall that a noised agreement (Definition 3.1) states

\[|N(u) \triangle N(v)| + E_{u,v} < \beta \cdot \max(d(u), d(v)). \]

This inequality can be rewritten as

\[|N(u) \triangle N(v)| < \left(1 - \frac{E_{u,v}}{\beta \cdot \max(d(u), d(v))} \right) \beta \cdot \max(d(u), d(v)). \]

As a reminder, \(E_{u,v} \) is drawn from \(\text{Lap}(C_{u,v} \cdot \sqrt{\max(d(u), d(v)) \ln(1/\delta)}/\epsilon_{agr}) \), where \(C_{u,v} \) can be upper-bounded by \(C = \sqrt{4 \epsilon_{agr} + 1} + 1 \). Let \(b = C \cdot \sqrt{\max(d(u), d(v)) \ln(1/\delta)}/\epsilon_{agr} \). From Fact 2.5 we have that

\[\Pr [|E_{u,v}| > 5 \cdot b \cdot \log n] \leq n^{-5}. \]

Therefore, with probability at least \(1 - n^{-5} \) we have that

\[\frac{E_{u,v}}{\beta \cdot \max(d(u), d(v))} \leq \frac{5 \cdot \log n \cdot C \cdot \max(d(u), d(v)) \ln(1/\delta)}{\epsilon_{agr} \cdot \beta \cdot \max(d(u), d(v))} = \frac{5 \cdot \log n \cdot C \cdot \sqrt{\ln(1/\delta)}}{\epsilon_{agr} \cdot \beta \cdot \max(d(u), d(v))} \]

Therefore, for \(\max(d(u), d(v)) \geq \frac{2500 \cdot C^2 \cdot \log^2 n \cdot \log(1/\delta)}{\beta^2 \cdot \epsilon_{agr}^2} \) we have that with probability at least \(1 - n^{-5} \) it holds

\[1 - \frac{E_{u,v}}{\beta \cdot \max(d(u), d(v))} \in [9/10, 11/10]. \]

Analyzing noised \(l(v) \). As a reminder, \(\hat{l}(v) = l(v) + Y_v \), where \(Y_v \) is drawn from \(\text{Lap}(8/\epsilon) \). The condition \(\hat{l}(v) > \lambda d(v) \) can be rewritten as

\[l(v) > \left(1 - \frac{Y_v}{\lambda d(v)} \right) \lambda d(v). \]

Also, we have

\[\Pr \left[|Y_v| > \frac{40 \log n}{\epsilon} \right] < n^{-5}. \]

Hence, if \(d(v) \geq \frac{400 \log n}{\lambda \epsilon} \) then with probability at least \(1 - n^{-5} \) we have that

\[1 - \frac{Y_v}{\lambda d(v)} \in [9/10, 11/10]. \]

Analyzing noised degrees. Recall that noised degree \(\hat{d}(v) \) is defined as \(\hat{d}(v) = d(v) + Z_v \), where \(Z_v \) is drawn from \(\text{Lap}(8/\epsilon) \). From Fact 2.5 we have

\[\Pr \left[|Z_v| > \frac{40 \log n}{\epsilon} \right] < n^{-5}. \]

Hence, with probability at least \(1 - n^{-5} \), a vertex of degree at least \(T_0 + 40 \log n/\epsilon \) is in \(H \) defined on Line 1 of Algorithm 1. Also, with probability at least \(1 - n^{-5} \) a vertex with degree less than \(T_0 = 40 \log n/\epsilon \) is not in \(H \).

Combining the ingredients. Define

\[T' = \max \left(\frac{400 \log n}{\lambda \epsilon}, \frac{2500 \cdot C^2 \cdot \log^2 n \cdot \log(1/\delta)}{\beta^2 \cdot \epsilon_{agr}^2} \right) \]

Our analysis shows that for a vertex \(v \) such that \(d(v) \geq T' \) the following holds with probability at least \(1 - 2n^{-5} \):

(i) The perturbation by \(E_{u,v} \) in Definition 3.1 can be seen as multiplicatively perturbing \(\beta_{u,v} \)
 by a number from the interval \([-1/10, 1/10]\).

(ii) The perturbation of \(l(v) \) by \(Y_v \) can be seen as multiplicatively perturbing \(\lambda \)
 by a number from the interval \([-1/10, 1/10]\).
Let $T = T_0 + \frac{40 \log n}{\epsilon}$. Let $T_0 \geq T' + \frac{40 \log n}{\epsilon}$. Note that this imposes a constraint on T_1, which is
\begin{align*}
T_1 &\geq T' + \frac{40 \log n}{\epsilon} - \frac{8 \log(16/\delta)}{\epsilon}.
\end{align*}
Then, following our analysis above, each vertex in H has degree at least T', and each vertex of degree at least T is in H. Let $E_{\geq T}$ be the set of edges incident to vertices which are not in H; these edges are effectively removed from the graph. Observe that for a vertex u which do not belong to H it is irrelevant what β_u, values are or what $\overline{\lambda}_u$ is, as all its incident edges are removed. To conclude the proof, define $\overline{\beta} = 0.9 \cdot \beta \cdot T$, $\overline{\beta} = 1.1 \cdot \beta \cdot T$, $\overline{\lambda} = 0.9 \cdot \lambda \cdot T$, and $\overline{\lambda} = 1.1 \cdot \lambda \cdot T$. By Lemma 5.2 and Properties (1) and (2) we have
\begin{align*}
\text{cost}(\text{Algorithm 1}) &\leq \text{cost}(\text{Alg-CC}(\overline{\beta}, \overline{\lambda}, E_{\leq T})) + \text{cost}(\text{Alg-CC}(\overline{\beta}, \overline{\lambda}, E_{\leq T})).
\end{align*}
By Lemma B.2 the latter sum is upper-bounded by $O(OPT/(\beta \lambda)) + O(n \cdot T/(1 - 4\beta)^3)$. Note that we replace the condition $5\beta + 2\lambda$ in the statement of Lemma B.2 by $5\beta + 2\lambda < 1/1.1$ in this lemma so to account for the perturbations. Moreover, we can upper-bound T by
\begin{align*}
T &\leq O\left(\frac{\log n}{\lambda \epsilon} + \frac{\log^2 n \cdot \log(1/\delta)}{\beta^2 \cdot \min(1, \epsilon^2)}\right).
\end{align*}
In addition, all discussed bound hold across all events with probability at least $1 - n^{-2}$. This concludes the analysis. \hfill \square

B.3 Proof of Lemma 5.4

Lemma 5.4.
Consider all lights vertices defined in Line 4 of Algorithm 1. Assume that $5\beta + 2\lambda < 1/1.1$. Then, with probability at least $1 - n^{-2}$, making as singleton clusters any subset of those light vertices increases the cost of clustering by $O(OPT/(\beta \lambda)^2)$, where OPT denotes the cost of the optimum clustering for the input graph.

Proof. Consider first a single light vertex v which is not a singleton cluster. Let C be the cluster of G' that v initially belongs to. We consider two cases. First, recall that from our proof of Lemma 5.3 that, with probability at least $1 - n^{-2}$, we have that $0.9\lambda \leq \overline{\lambda}_v \leq 1.1\lambda$ and $0.9\beta \leq \beta_u,v \leq 1.1\beta$, where $\overline{\lambda}$ and $\overline{\beta}$ are inputs to Alg-CC.

Case 1: v has at least $\overline{\lambda}_v/2$ fraction of neighbors outside C. In this case, the cost of having v in C is already at least $d(v) \cdot \overline{\lambda}_v/2 \geq d(v) \cdot 0.9 \cdot \lambda/2$, while having v as a singleton has cost $d(v)$.

Case 2: v has less than $\overline{\lambda}_v/2$ fraction of neighbors outside C. Since v is not in agreement with at least $\overline{\lambda}_v$ fraction of its neighbors, this case implies that at least $\overline{\lambda}_v/2 \geq 0.9 \cdot \lambda/2$ fraction of those neighbors are in C. We now develop a charging arguments to derive the advertised approximation.

Let $x \in C$ be a vertex that v is not in agreement with. Then, for a fixed x and v in the same cluster of G', there are at least $O(d(v)\beta)$ vertices z (incident to x or v, but not to the other vertex) that the current clustering is paying for. In other words, the current clustering is paying for edges of the form $\{z, x\}$ and $\{z, v\}$; as a remark, z does not have to belong to C. Let $Z(v)$ denote the multiset of all such edges for a given vertex v. We charge each edge in $Z(v)$ by $O(1/(\beta \lambda))$.

On the other hand, making v a singleton increases the cost of clustering by at most $d(v)$. We now want to argue that there is enough charging so that we can distribute the cost $d(v)$ (for making v a singleton cluster) over $Z(v)$ and, moreover, do that for all light vertices v simultaneously. There are at least $O(\beta \cdot d(v) \cdot \lambda \cdot d(v))$ edges in $Z(v)$; recall that $Z(v)$ is a multiset. We distribute uniformly the cost $d(v)$ (for making v a singleton) across $Z(v)$, incurring $O(1/(\beta \cdot \lambda \cdot d(v)))$ cost per an element of $Z(v)$.

Now it remains to comment on how many times an edge appears in the union of all $Z(\cdot)$ multisets. Edge $z_e = \{x, y\}$ is included in $Z(\cdot)$ when x and its neighbor, or y and its neighbor are considered. Moreover, those neighbors belong to the same cluster of G' and hence have similar degrees (i.e., as shown in the proof of Lemma B.2, their degrees differ by at most $(1 - 4\beta)^2$ factor). Hence, an edge $z_e \in Z(v)$ appears $O(d(z))$ times across all $Z(\cdot)$, which concludes our analysis. \hfill \square
C Lower bound

In this section we show that any private algorithm for correlation clustering must incur at least $\Omega(n)$ additive error in the approximation guarantee, regardless of its multiplicative approximation ratio. The following is a restatement of Theorem 1.2.

Theorem C.1. Let \mathcal{A} be an (ε, δ)-DP algorithm for correlation clustering on unweighted complete graphs, where $\varepsilon \leq 1$ and $\delta \leq 0.1$. Then the expected cost of \mathcal{A} is at least $n/20$, even when restricted to instances whose optimal cost is 0.

Proof. Fix an even number $n = 2m$ of vertices and consider the fixed perfect matching $(1, 2), (3, 4), \ldots, (2m - 1, 2m)$. For every vector $\tau \in \{0, 1\}^m$ we consider the instance I_τ obtained by having plus-edges $(2i - 1, 2i)$ for those $i = 1, \ldots, m$ where $\tau_i = 1$ (and minus-edges for i with $\tau_i = 0$, as well as everywhere outside this perfect matching). Note that this instance is a complete unweighted graph and has optimal cost 0.

For $\tau \in \{0, 1\}^m$ and $i \in \{1, \ldots, m\}$ define $p^{(i)}_\tau$ to be the marginal probability that vertices $2i - 1$ and $2i$ are in the same cluster when \mathcal{A} is run on the instance I_τ.

Finally, for $\sigma \in \{0, 1\}^{m-1}, i \in \{1, \ldots, m\}$ and $b \in \{0, 1\}$ let $\sigma[i \leftarrow b]$ be the vector σ with the bit b inserted at the i-th position to obtain an m-dimensional vector (note that σ is $(m - 1)$-dimensional). Note that $I_{\sigma[i \leftarrow 0]}$ and $I_{\sigma[i \leftarrow 1]}$ are adjacent instances. Thus (ε, δ)-privacy gives

\[p^{(i)}_{\sigma[i \leftarrow 0]} \leq e^{\varepsilon} \cdot p^{(i)}_{\sigma[i \leftarrow 0]} + \delta\]

(18)

for all i and σ.

Towards a contradiction assume that \mathcal{A} achieves expected cost at most $0.05m = 0.1m$ on every instance I_τ. In particular, the expected cost on the matching minus-edges is at most $0.1m$, i.e.,

\[0.1m \geq \sum_{i: \tau_i = 0} p^{(i)}_\tau.\]

Summing this up over all vectors $\tau \in \{0, 1\}^m$ we get

\[2^m \cdot 0.1m \geq \sum_{\tau \in \{0, 1\}^m} \sum_{i: \tau_i = 0} p^{(i)}_\tau = \sum_i \sum_{\sigma \in \{0, 1\}^{m-1}} p^{(i)}_{\sigma[i \leftarrow 0]}\]

(19)

and similarly since the expected cost on the matching plus-edges is at most $0.1m$, we get

\[2^m \cdot 0.1m \geq \sum_{\tau \in \{0, 1\}^m} \sum_{i: \tau_i = 1} (1 - p^{(i)}_\tau) = \sum_i \sum_{\sigma \in \{0, 1\}^{m-1}} (1 - p^{(i)}_{\sigma[i \leftarrow 1]})\]

\[\geq \sum_i \sum_{\sigma \in \{0, 1\}^{m-1}} (1 - e^{\varepsilon} \cdot p^{(i)}_{\sigma[i \leftarrow 0]} - \delta)\]

\[= (1 - \delta) \cdot m \cdot 2^{m-1} - e^{\varepsilon} \cdot \sum_i \sum_{\sigma \in \{0, 1\}^{m-1}} p^{(i)}_{\sigma[i \leftarrow 0]}\]

\[\geq (1 - \delta) \cdot m \cdot 2^{m-1} - e^{\varepsilon} \cdot 2^m \cdot 0.1m\]

\[\geq 0.45 \cdot m \cdot 2^m - 0.1e \cdot 2^m \cdot m.\]

Dividing by $2^m \cdot m$ gives $0.1 \geq 0.45 - 0.1e$, which is a contradiction. \qed