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Figure S1: Overview of the proposed DropCov architecture for visual classification, where our
DropCov can be flexibly integrated with existing deep convolutional neural network (CNNs) or ViT
models. Please refer to Sec. S1 for the details.

S1 Overview of DropCov Architecture

Our proposed DropCov can be flexibly integrated with existing deep architectures (e.g., CNNs [2]
and ViT models [9, 8, 10]), whose flowchart is illustrated in Fig. S1. Specifically, an input image first
passes through a backbone model (e.g., CNNs or ViT), and a dimensionality reduction (DR) module
is inserted after the last convolution layer (or transformer block) of deep CNNs (or ViT). The DR
module outputs N d-dimensional features X ∈ RN×d, with which our DropCov replaces the original
global average pooling or classification token to generate a covariance representation z, which is fed
into a classifier for final prediction. Particularly, during the training stage, our DropCov consists of
an adaptive channel dropout (ACD) indicated by Y = δρ(X) and computation of covariance (YTY)
followed by vectorization and triangulation operations (V). For inference, we use V(XTX) without
ACD for final prediction.

S2 More Results for Effect of α on MPN

To further verify Corollary 1, we conduct more experiments to observe effect of power on matrix power
normalization (MPN). Specifically, we experiment with ResNet-50 and ResNet-101 on ImageNet-1K
and experiment with ResNet-18 on CIFAR100. Since MPN is very computationally expensive, we set
α of MPN to {0.1, 0.3, 0.5, 0.7, 1.0} and report the results (i.e., convergence curves) in Fig. S2 and
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(a) Convergence curves of various α
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(b) Generalization vs. representation ability

Figure S2: Results of MPN-based GCP networks with various α using backbones of ResNet-50 and
ResNet-101 (d = 128) on ImageNet-1K. (a) Convergence curves of GCP networks (ResNet-50) with
various α ∈ (0, 1];(a) Convergence curves of GCP networks (ResNet-101) with various α ∈ (0, 1].
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Figure S3: Results of GCP networks with ma-
trix power normalization (MPN) using the back-
bone of ResNet-18 (d = 128) on CIFAR100.
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Figure S4: Changes of ρ for various d

Fig. S3, where ∆ indicates the minimal gap between training and validation performance at a certain
epoch of the last training stage. Particularly, we can see that behaviors of ResNet-50 and ResNet-101
with various α are consistent with those of ResNet-18 (i.e., Fig. 4 (a) of main manuscript), where
α = 0.5 achieves the best trade-off and so leads to the highest accuracies. For small-scale CIFAR100,
all models achieve near perfect (100%) training accuracies after 150 epochs, and α = 0.5 achieves
the highest validation accuracy. Besides, [5, Fig. 3] (w.r.t. AlexNet on ImageNet) and [6, Fig.2]
(w.r.t. VGG-VD on three small-scale fine-grained datasets) show 0.5 is the best choices of α, and
they have similar trends on recognition accuracies for various α. These results suggest α of MPN has
a consistent behavior for different models and various sizes of datasets, providing more supports on
analysis on MPN in Corollary 1.

S3 Analysis on Probability ρ of ACD

Since our adaptive channel dropout (ACD) has the ability to adaptively determine probability ρ of
dropout, we illustrate behavior of probability ρ for various feature dimensions along training epochs
in Fig. S4, where ResNet-18 [2] is used as backbone and trained on ImageNet-1K [1]. Note that
the dotted lines and shadow areas respectively represent mean and variance of ρ for all training
images, which demonstrate that our ACD can adaptively determine probability ρ of dropout for
various feature dimensions and inputs. Meanwhile, ρ also varies along different training states (i.e.,
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Table S1: Details of hyper-parameter settings of our DropCov models built with various deep
architectures, which involve training-from-scratch on ImageNet-1K and fine-tuning on iNat2017.

Training-from-scratch on ImageNet-1K Fine-tuning on iNat2017
Architecture ResNet DeiT-S T2T-ViT-14 Swin-T ResNet-101 DeiT-S
Batch size 256 896 896 1024 64 896
Optimizer SGD AdamW AdamW AdamW SGD AdamW

Momentum β : 0.9
β1/β2 :

0.9/0.95

β1/β2 :

0.9/0.95

β1/β2 :

0.9/0.95
β : 0.9

β1/β2 :

0.9/0.95

Epochs 100 300 310 300 30 300
Base learning rate 1e-1 1e-3 5e-4 5e-4 4.5e-3 5e-5
Final learning rate 1e-4 1e-5 1e-5 1e-5 2.9e-3 1e-8
Scheduler step (×0.1/30) cosine cosine cosine step (×0.94/4) cosine
Weight decay 5e-4 0.03 0.03 0.05 0 0.03
Label smoothing - 0.1 0.1 0.1 - 0.1
Mixup - 0.8 0.8 0.8 - 0.8
Cutmix - 1.0 1.0 1.0 - 1.0
RandAugment - 9/0.5 9/0.5 9/0.5 - 9/0.5
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(a) ResNet-50
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(b) DeiT-S

Figure S5: Convergence curve of our DropCov models with the backbones of ResNet-50 and DeiT-S
on validation set of ImageNet-1K.

different training epochs). Besides, small feature dimension (d = 64) has larger variance of ρ than
large one (d = 256), which is caused by that feature correlation is closer related to its importance
for small d, and so it is harder to select features for reaching the good trade-off. Meanwhile, larger
feature dimension has smaller variance of ρ for each epoch and ACD is more stable for all training
samples. Above phenomena indicate our ACD can determine probability ρ of dropout adaptively,
and the results in Table 2 ∼ Table 5 of main manuscript show our ACD is clearly superior to those
dropout methods with fixed ρ, verifying the effectiveness of our ACD.

S4 Training Details

In this work, we apply the proposed DropCov to ResNet [2] and ViT models [9, 8, 10]. For training
our DropCov models based on ResNet, we employ the same optimization policy and hyper-parameter
settings as suggested in [5], whose details are listed in the first column of Table S1. For DropCov
models based on ViT, we train them by following the configurations in [9, 8, 10], whose details are
listed from the second column to the fourth one of Table S1. Particularly, Figs. S5a and S5b show
convergence curve of our DropCov models with the backbones of ResNet-50 [2] and DeiT-S [9] on
validation set of ImageNet-1K, respectively. From them we can see that DropCov models have faster
convergence speed than the original deep CNNs and ViT models. Besides, we perform fine-tuning of

3



(a) small α (b) large α

Figure S6: Visualization of some samples with large and small α achieved by APN on validation set
of ImageNet-1K.

our DropCov models with backbones of ResNet-101 and DeiT-S on iNat2017 [3], whose details of
hyper-parameter settings are given in the last two columns of Table S1.

S5 More Evaluation of Modifications to Existing Methods

Table S2: Results (Top-1 accuracy in
%) of some modifications to existing post-
normalization methods using ResNet-18 on
ImageNet-1K.

Method d = 64 d = 256

Plain GCP 71.1 70.0
Plain GCP + LT 71.2 70.6
B-CNN [7] 38.3 41.1
B-CNN + LT 68.3 73.2

DeepO2P [4] 70.1 Not Converge
LogM (+ 1e-3·I) 70.6 67.0
I-LogM (ε=1e-3) 70.8 71.1
I-LogM (ε=1) 71.2 72.0

DropCov (Ours) 73.5 75.2

In this work, we make some modifications to existing
post-normalization approaches according to our finding
in Corollary 1. Particularly, we introduce an I-LogM
(i.e., ε log((λi + ε)/ε)) to replace the original LogM
(i.e., log(λi)) for DeepO2P [4]. Besides, a linear trans-
form (LT) is introduced to B-CNN [7] and IB-CNN [6]
for recovering information. Here, we assess effect of ε
on I-LogM, while showing performance of plain GCP
with only one LT module.

As listed in Table S2, we can see that single LT mod-
ule brings a little gain for plain GCP. Compared to
B-CNN + LT (79.62% training accuracy), plain GCP
+ LT (91.26% training accuracy) suffers much heavier
over-fitting for large feature dimension (i.e., d = 256)
due to no representation decorrelation involved in plain
GCP + LT, while B-CNN + LT achieves significant improvement over B-CNN and plain GCP. These
results indicate that good trade-off between representation decorrelation and information preservation
plays a key role in effectiveness of post-normalization for GCP. For modifying LogM, a widely used
solution is adding a small value to diagonal elements of covariance matrix (e.g., XTX+ 1e-3·I) [5, 6],
which is indicated by LogM (+ 1e-3·I). Different from them, we directly handle eigenvalues using a
shift operation to make all modified eigenvalues (i.e., inputs of log) be larger than one. As compared
in Table S2, I-LogM (ε=1e-3) is superior to LogM (+ 1e-3·I), especially for large feature dimension
(i.e., d = 256). Meanwhile, ε=1 brings further performance gains, which is used in our experiments.
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S6 Visualization of α of APN

To further analyze our introduced adaptive power normalization (APN), we pick up some samples
with large and small α achieved by APN on validation set of ImageNet-1K, which are illustrated in
Figs. S6. From them we can observe that the samples containing simple objects and more redundant
information have small α, where MPN tends to representation decorrelation. On the contrary,
the samples involving less redundant information (e.g., scene) have large α, where MPN tends to
information preservation. Such these phenomena show the consistency with our finding.
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