
Distributed Inverse Constrained Reinforcement
Learning for Multi-agent Systems

Shicheng Liu & Minghui Zhu
School of Electrical Engineering and Computer Science

Pennsylvania State University
University Park, PA 16802, USA
{sfl5539,muz16}@psu.edu

Abstract

This paper considers the problem of recovering the policies of multiple interact-
ing experts by estimating their reward functions and constraints where the demon-
stration data of the experts is distributed to a group of learners. We formulate
this problem as a distributed bi-level optimization problem and propose a novel
bi-level “distributed inverse constrained reinforcement learning” (D-ICRL) algo-
rithm that allows the learners to collaboratively estimate the constraints in the
outer loop and learn the corresponding policies and reward functions in the inner
loop from the distributed demonstrations through intermittent communications.
We formally guarantee that the distributed learners asymptotically achieve con-
sensus which belongs to the set of stationary points of the bi-level optimization
problem. Simulations are done to validate the proposed algorithm.

1 Introduction

Multi-agent systems (MASs) have become an effective way to model large-scale networked systems,
e.g., multi-robot systems and the Internet-of-Things. Multi-agent reinforcement learning (MARL) is
a systematic framework to coordinate MASs. It extends RL to address the decision-making problem
of multiple interacting agents [1]. One challenge in (MA)RL is that manually crafting the reward
functions or predesigning the policies can be infeasible for humans when the tasks are too compli-
cated. Inverse reinforcement learning (IRL) presents a way to tackle this problem where a learner
aims to recover a reward function (and a corresponding policy) that best explains the behavior in the
demonstrations of an expert. Current state-of-the-arts on IRL [2, 3, 4, 5] can successfully solve the
reward function inference problem but still face two other major challenges in MARL and MASs:
(i) it is often the case that the expected behavior (experts’ behavior) is more precisely explained by
a reward function combined with a set of constraints instead of a single reward function; (ii) the
demonstration data in MASs is usually distributed over multiple learners and unable to be shared
due to some practical reasons including privacy concerns and communication burdens. This paper
aims to bridge the gap and proposes the first algorithm to solve the three challenges (i.e., reward
function inference, constraint inference, and distributed demonstration data) at once.

Related works. IRL is an ambiguous problem [6] as different reward functions could explain the
demonstrations. To solve this problem, several fundamental approaches are proposed including
feature expectation matching [7], maximum margin planning [8], maximum entropy (ME) [9], and
maximum causal entropy (MCE) [10]. Recently, some advanced techniques baring more features
are proposed. Paper [2] uses adversarial learning to learn reward functions robust to environmental
changes, paper [4] applies strongly convex regularizers to the learner’s policy to avoid the ambiguity
problem, and paper [5] proposes a scalable Bayesian-based method working for large control tasks.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In real-world settings, numerous constraints are present and a single reward function is not enough
to explain complicated behavior. Paper [11] extends ME IRL to environments with constraints,
formulates the constraint inference problem as a maximum likelihood estimation (MLE) problem,
and leverages a greedy method to solve the problem. Paper [12] extends paper [11] to continuous
environments. These two works both assume the access to the ground truth rewards.

While the discussions in the last two paragraphs are limited to single agents, there have been recent
works which extend IRL techniques to multiple agents [13, 14, 15, 16, 17]. Notice that previous
works on multi-agent IRL do not explicitly distinguish the notions of “experts” and “learners”,
their “multiple agents” means “multiple experts” and they only consider centralized learning (i.e.,
a single learner who obtains all demonstrated behavior of the multiple experts). In this paper, we
explicitly distinguish the notions of “experts” and “learners”, and use “multiple experts” to represent
the commonly used “multiple agents” in literature. Moreover, the aforementioned papers do not
consider the more general situation where the demonstrations are distributed over multiple learners
and unable to be shared. To handle this situation, the learners need to perform distributed learning.

As a basic topology in distributed learning, peer-to-peer (P2P) architecture has no central server and
each node can communicate with a subset of all the nodes. It reduces the risk of single points of
failures [18] in the system. This paper proposes D-ICRL based on the P2P structure where ICRL
can learn policies by estimating the reward functions and constraints through demonstrations and
distributed learners can perform ICRL without sharing the distributed demonstration data.

In specific, we formulate D-ICRL as a distributed bi-level optimization problem where the learners
cooperatively learn the constraints through the outer problem and estimate the corresponding reward
functions and policies through the inner problem. Paper [19] provides asymptotic convergence for
centralized bi-level optimization problems by assuming that the inner problem can be completely
solved and its optimal solution can be obtained. Papers [20, 21, 22] relax this assumption by partially
solving the inner problem and provide convergence rate analysis for problems with strongly convex
inner objective function. Paper [23] solves a special case of distributed bi-level optimization where
the outer and inner problems use identical decision variables. To the best of our knowledge, there is
no work on bi-level optimization which (i) assumes that the inner objective function is merely strictly
convex and partially solves the inner problem; (ii) solves the general form of bi-level optimization
in a distributed way. Notice that these two challenges arise in our D-ICRL problem.

Contribution statement. Our contributions are threefold. First, we extend IRL to a multi-expert-
multi-learner (MEML) setting where a group of learners collaboratively learn policies by estimating
the reward functions and constraints without sharing the distributed demonstrations performed by a
set of cooperative experts. We formulate this D-ICRL problem as a distributed bi-level optimization
problem. Second, we propose a distributed bi-level learning algorithm to solve this problem where
the learners cooperatively estimate the constraints in the outer problem and learn the corresponding
reward functions and policies in the inner problem. Third, we provide convergence rate analysis to
the optimal solution of the inner problem and asymptotic convergence to the set of stationary points
of the outer problem. Simulations are conducted to validate the proposed method.

2 Model

In this section, we present the models for cooperative experts and distributed learners.

Experts. There are NE experts whose decision making is based on a constrained Markov game
(CMG) [24]. A CMG (S,A, γ, P0, P, rE , cE , b) is defined via state set S ≜

∏NE

i=1 S [i], action
set A ≜

∏NE

i=1 A[i], discount factor γ ∈ (0, 1), and initial state distribution P0. The state-action
space can be either discrete or continuous. The system state transition function is given by P such
that the probability (or probability density in continuous state-action space) of state transition to
s′ from s by taking action a ≜ (a[1], · · · , a[NE]) is P (s′|s, a). The reward function of expert i
is r

[i]
E : S × A → R and the experts are cooperative (i.e., rE ≜

∑NE

i=1 r
[i]
E). The cost function

of expert i is c
[i]
E : S × A → R+ and the cost function of the whole system is cE ≜

∑NE

i=1 c
[i]
E .

Expert i’s policy π
[i]
E (a[i]|s) represents the probability (or probability density) of expert i taking

action a[i] at state s and the joint policy of all the experts is denoted by πE(a|s) ≜
∏NE

i=1 π
[i]
E (a[i]|s).

Define JrE (π) ≜ Eπ
S,A[

∑∞
t=0 γ

trE(St, At)] as the expected cumulative reward where the initial

2

state is drawn from P0 and JcE (π) ≜ Eπ
S,A[

∑∞
t=0 γ

tcE(St, At)] as the expected cumulative cost.
The experts’ policy πE wants to maximize JrE (π) subject to JcE (π) ≤ b. Define the constraint
set indicated by c

[i]
E as C[i]

E ≜ {(s, a) ∈ S × A : c
[i]
E (s, a) > 0}. Following [12], we study the

case where b = 0, i.e., hard constraint. Thus, the constraint reduces to JcE (π) = 0, implying
that the probability of reaching any (s, a) ∈

⋃
i C

[i]
E is zero under policy π. These experts use πE

to demonstrate a set D ≜ {ζj}mj=1 of m trajectories, which is partitioned into NL subsets. Each
trajectory ζj ≜ sj0, a

j
0, s

j
1, a

j
1 · · · is a state-action sequence of the experts.

Learners. There is a group of NL learners where each learner v knows (S,A, γ, P0, P, b,D[v]) and
can communicate with other learners. The local demonstration subset D[v] has m[v] trajectories. The
learners choose an l

[i]
r -dimensional reward feature vector ϕ[i]

r : S×A → [0, d1]
l[i]r for expert i where

d1 is constant and it is assumed that r[i]E = (ω
[i]
rE)

⊤ϕ
[i]
r , where ω

[i]
rE ∈ Rl[i]r is the (unknown) reward

weight vector. The learners also choose an l
[i]
c -dimensional cost feature vector ϕ[i]

c : S × A →
[0, d2]

l[i]c where d2 is constant and it is assumed that c[i]E = (ω
[i]
cE)

⊤ϕ
[i]
c , where ω

[i]
cE is the (unknown)

cost weight vector and ω
[i]
cE ,j is the j-th component of ω[i]

cE . Let C[i]
j ≜ {(s, a) ∈ S×A : ϕ

[i]
c,j(s, a) >

0} be the constraint set indicated by the j-th cost feature ϕ
[i]
c,j of expert i. As the budget b = 0, the

effect of ω[i]
cE ,j > 0 is the same, i.e., C[i]

j cannot be visited, thus the learners assume ω
[i]
cE ,j ∈ [0, 1].

Communication network. The learners execute a two-time-scale learning algorithm over a com-
munication network. The fast-time-scale (inner) algorithm is executed at discrete time k over a
time-varying directed graph G(k) ≜ (V, E(k)) where V ≜ {1, · · · , NL} is the node (learner) set and
E(k) ⊆ V ×V is the set of directed edges (communication links) at time k. The edge (v, v′) ∈ E(k)
means that learner v receives information from learner v′ at time k and (v, v) ∈ E(k) for all k ≥ 0.
The adjacency matrix of the graph at time k is W (k) ≜ [W [vv′](k)]v,v′∈V ∈ RNL×NL where
W [vv′](k) = 0 if and only if (v, v′) /∈ E(k). We use N [v](k) ≜ {v′ ∈ V|(v, v′) ∈ E(k)} to denote
the set of neighbors of learner v at time k. The slow-time-scale (outer) algorithm is carried out at
discrete time n over a graph Ḡ(n) ≜ (V, Ē(n)), where Ē(n), W̄ (n) and N̄ [v](n) are defined in an
analogous way. The time unit for n is much larger than that for k.
Assumption 1. There exists an integer B ≥ 1 such that the graph (V, E(k) ∪ · · · ∪ E(k +B − 1))
is strongly connected for all k ≥ 0.
Assumption 2. The adjacency matrix W (k) has the following properties:
(i) (doubly stochastic) 1⊤W (k) = 1⊤ and W (k)1 = 1 where 1 is the column vector whose entries
are all ones. (ii) (non-degenerate) There is an ϵ ∈ (0, 1) such that W [vv](k) ≥ ϵ for all v ∈ V and
W [vv′](k) ≥ ϵ if (v, v′) ∈ E(k).
Assumption 3. The set N̄ [v](n) = V for any v ∈ V and n ≥ 0. The adjacency matrix W̄ (n) is
doubly stochastic and non-degenerate with constant ϵ̄.

Figure 1: Relation between experts and learners

Figure 1 provides an illustration of the relation between the experts and the learners. The experts
operate in a multi-agent system and demonstrate a set D of trajectories and the learners stand outside
the system where each learner v can observe a subset D[v] of the global demonstration.

3

3 Notions and notations

This section provides notions and notations which will be used in the remaining of the paper.

Reward feature expectation matching (RFEM). Given policy π, the reward feature expectation
vector of expert i is defined as µ

[i]
r (π) ≜ Eπ

S,A[
∑∞

t=0 γ
tϕ

[i]
r (St, At)] and the demonstration D is

needed to estimate µ
[i]
r (πE): µ̂

[i]
r ≜ 1

m

∑m
j=1

∑∞
t=0 γ

tϕ
[i]
r (sjt , a

j
t), where (sjt , a

j
t) ∈ ζj . The RFEM

requires µ[i]
r (π) = µ̂

[i]
r for every expert i. However, each learner v can only observe the subset D[v]

and its local estimate is µ̂[i,v]
r ≜ 1

m[v]

∑
ζj∈D[v]

∑∞
t=0 γ

tϕ
[i]
r (sjt , a

j
t).

Cost expectation matching (CEM). Similar to RFEM, CEM requires JcE (π) = JcE (πE). As the
true cost function cE is unknown, given an estimate cωc

=
∑NE

i=1(ω
[i]
c)⊤ϕ

[i]
c , we define the empirical

cost estimate of the experts as b̂ωc
≜ 1

m

∑m
j=1

∑∞
t=0 γ

tcωc
(sjt , a

j
t). The local estimate from learner

v is b̂[v]ωc ≜ 1
m[v]

∑
ζj∈D[v]

∑∞
t=0 γ

tcωc(s
j
t , a

j
t).

Remark 1. As RFEM is a standard notion in IRL literature, it is “natural” to follow this and use
“cost feature expectation matching” (CFEM). However, here we use CEM instead of CFEM because
we want to leverage the budget information provided in CMG. We still use RFEM instead of “reward
expectation matching” (REM) because REM does not embed any additional useful information as
CMG does not have any “budget information” for cumulative reward.

Notations. We use µ̂r ≜ [(µ̂
[1]
r)⊤, · · · , (µ̂[NE]

r)⊤]⊤ to represent the concatenated empirical reward
feature expectation vector. Similarly, we define learner v’s concatenated empirical reward feature
expectation vector estimate µ̂

[v]
r , concatenated reward feature expectation vector µr(π) under π,

and concatenated cost feature vector ϕc. Let Π be the set of all valid stochastic policies such that
every π ∈ Π satisfies π(a|s) ≥ 0 for any s ∈ S and a ∈ A and

∫
a∈A π(a|s)da = 1 for any

s ∈ S . We define the expected cumulative cost of policy π under cost function estimate cωc
as

Jωc
(π) ≜ Eπ

S,A[
∑∞

t=0 γ
tcωc

(St, At)] and use ProjectΩc
(·) to denote the projection onto the set Ωc.

4 Problem formulation

In an MEML D-ICRL problem, each learner v aims to use all the available information to collab-
oratively recover the policy πE through communications by estimating the reward function rE and
the cost function cE . In the learning process, learner v is unwilling to share its private data (i.e.,
local demonstration and local estimate of reward feature expectation and cost expectation). Notice
that estimating cE is in essence estimating the constraint set

⋃
i C

[i]
E . We formulate the constraint

learning problem as a distributed MLE problem:

max
ωc∈Ωc

F (ωc) =

NL∑
v=1

F [v](ωc), (1)

where Ωc ≜ [0, 1]
∑NE

i=1 l[i]c , F [v](ωc) ≜
∑

j∈D[v]

∑∞
t=0 γ

t lnπωc
(ajt |s

j
t) is learner v’s local likeli-

hood function and πωc
is a policy parameterized by ωc. To find a statistical distribution model for

πωc
, we formulate the following problem based on MCE scheme:

max
π∈Π

H(π), s.t. µ[i]
r (π) = µ̂[i]

r ∀i ∈ I, Jωc
(π) = b̂ωc

, (2)

where H(π) ≜
∑∞

t=0 ES,A[−γt lnπ(At|St)] is the (infinite-horizon) causal entropy [25].
Remark 2. Directly matching the ground truth budget (i.e., Jωc

(π) = b) may cause infeasibility of
(2), i.e., the feasible set of (2) is not guaranteed to be nonempty. Therefore, we match b̂ωc

, which is
an estimate of Jωc

(πE), to ensure the feasibility because now, πE is a feasible solution of (2).

The dual function of (2) is G(ωr, λ;ωc) ≜ maxπ∈Π H(π)+
∑NE

i=1(ω
[i]
r)⊤(µ

[i]
r (π)−µ̂

[i]
r)+λ(Jωc

(π)

− b̂ωc) where the dual variable ωr = [(ω
[1]
r)⊤, · · · , (ω[NE]

r)⊤]⊤ is to estimate ωrE . Let η ≜
[ω⊤

r , λ]
⊤, it is well-known that G(η;ωc) is convex in η since it is the pointwise maximum of a

family of affine functions of η. As G(η;ωc) is global, we introduce the local convex dual function
G[v](η;ωc) ≜ maxπ∈Π H(π) +

∑NE

i=1(ω
[i]
r)⊤(µ

[i]
r (π)− µ̂

[i,v]
r) + λ(Jωc(π)− b̂

[v]
ωc).

4

Lemma 1. (i) The optimal solution of problem (2) is the constrained soft Bellman policy πη∗(ωc);ωc
,

where η∗(ωc) is an optimal solution of minη G(η;ωc). (ii) The local dual function G[v](η;ωc) is
differentiable and its gradient is [(µr(πη;ωc

)− µ̂
[v]
r)⊤, Jωc

(πη;ωc
)− b̂

[v]
ωc]

⊤.

The proof of Lemma 1 is similar to [10, 25, 26]. For the sake of completeness, we still include the
proof and the expression of the constrained soft Bellman policy in the Appendix.

Lemma 1 indicates that πη∗(ωc);ωc
is the statistical model we need in problem (1). Therefore, prob-

lem (1) can be reformulated as the following distributed bi-level optimization problem:

max
ωc∈Ωc

F (ωc, η
∗(ωc)) =

NL∑
v=1

F [v](ωc, η
∗(ωc)), (3)

s.t. η∗(ωc) = argmin
η

NL∑
v=1

m[v]G[v](η;ωc), (4)

where F [v] and m[v]G[v] are known only to learner v.

Remark 3. Problem (4) and argminη G(η;ωc) are equivalent because
∑NL

v=1 m
[v]G[v](η;ωc) =∑NL

v=1 m
[v]H(πη;ωc

)+
∑NL

v=1 m
[v]

∑NE

i=1(ω
[i]
r)⊤(µ

[i]
r (πη;ωc

)− µ̂
[i,v]
r)+λ

∑NL

v=1 m
[v](Jωc

(πη;ωc
)−

b̂
[v]
ωc) = mH(πη;ωc) +m

∑NE

i=1(ω
[i]
r)⊤(µ

[i]
r (πη;ωc)− µ̂

[i]
r) + λm(Jωc(πη;ωc)− b̂ωc) = mG(η;ωc).

5 Algorithm and convergence guarantee

In this section, we develop a bi-level distributed learning algorithm to solve problem (3)-(4) and pro-
vide convergence rate to the optimal solution of the inner problem (4) and asymptotic convergence
to the set of stationary points of the outer problem (3).

Algorithm 1 MEML D-ICRL

Input: {ω[v]
c (0)}NL

v=1, {η[v](0)}
NL
v=1,W (k), W̄ (n)

Output: ω[v]
c (n), η̄[v](ω[v]

c (n)), π
η̄[v](ω

[v]
c (n));ω

[v]
c (n)

∀v ∈ V
1: for n = 0, 1, · · · do
2: for v ∈ V do
3: Receives ω[v′]

c (n) from v′ ∈ N̄ [v](n)

4: η̄[v](ω
[v]
c (n)), π

η̄[v](ω
[v]
c (n));ω

[v]
c (n)

= Inner process(ω[v]
c (n))

5: if n = 0 then
6: ∇̄[v](0) = ∇̄F [v](ω

[v]
c (0), η̄[v](ω

[v]
c (0)))

7: else
8: Receives ∇̄[v′](n− 1) from v′ ∈ N̄ [v](n)

9: ∇̄[v](n) =
∑NL

v′=1 W̄
[vv′](n)∇̄[v′](n − 1) + ∇̄F [v](ω

[v]
c (n), η̄[v](ω

[v]
c (n))) −

∇̄F [v](ω
[v]
c (n− 1), η̄[v](ω

[v]
c (n− 1)))

10: end if
11: ω̃

[v]
c (n) = ProjectΩc

(
ω
[v]
c (n) +NL∇̄[v](n)

)
12: ω

[v]
c (n+ 1/2) = ω

[v]
c (n) + β(n)(ω̃

[v]
c (n)− ω

[v]
c (n))

13: Receives ω[v′]
c (n+ 1/2) from v′ ∈ N̄ [v](n)

14: ω
[v]
c (n+ 1) =

∑NL

v′=1 W̄
[vv′](n)ω

[v′]
c (n+ 1/2)

15: end for
16: end for

At outer iteration n in Algorithm 1, the learners first cooperatively solve the inner problem for
each learner through Inner process (lines 3-4) and then use the obtained result η̄[v](ω[v]

c (n)) to

5

collaboratively solve the outer problem (3) through the outer process (lines 5-14). In what follows,
we will elaborate each process.

Algorithm 2 Inner process(ω[v]
c)

Input: ω[v]
c , {η[v](0)}NL

v=1, W (k)

Output: η̄[v](ω[v]
c), π

η̄[v](ω
[v]
c);ω

[v]
c

1: for k = 0, 1, · · · ,K − 2 do
2: for v̄ ∈ V do
3: Receives η[v̄

′](ω
[v]
c , k) from v̄′ ∈ N [v̄](k)

4: η[v̄](ω
[v]
c , k + 1) =

∑NL

v′=1 W
[v̄v̄′](k)η[v̄

′](ω
[v]
c , k)− α(k)m[v̄]∇ηG

[v̄](η[v̄](ω
[v]
c , k);ω

[v]
c)

5: end for
6: end for
7: η̄[v](ω

[v]
c) ≜

∑K−1
k=0 α(k)η[v](ω[v]

c ,k)∑K−1
k=0 α(k)

8: π
η̄[v](ω

[v]
c);ω

[v]
c

is the corresponding constrained soft Bellman policy.

Inner process. As N̄ [v](n) = V , learner v knows the cost weight vector of all the learners. Given
ω
[v]
c , at inner iteration k, each learner v̄ receives η[v̄

′](ω
[v]
c , k) from neighbors and updates its estimate

of the reward weight vector (embedded in η[v̄]). In specific, at line 4 in Algorithm 2, the first term
(convex combination) on the right hand side encourages consensus and the second term (gradient)
drives to the optimal solution. It is shown in Lemma 3 that each learner can reach η∗(ω

[v]
c) at the

rate of O(1√
logK

).

Outer process. Once obtaining η̄[v](ω
[v]
c), each learner v faces three challenges in solving the outer

problem: (i) the gradient of F [v](ω
[v]
c , η∗(ω

[v]
c)) cannot be obtained because the inner problem is not

fully solved, i.e., learner v does not find η∗(ω
[v]
c) but its approximation η̄[v](ω

[v]
c), (ii)

∑
v′ ̸=v F

[v′]

is unknown, and (iii) the local likelihood function F [v] is non-convex. To solve these challenges
respectively, we propose three techniques: local gradient approximation (LGA), global gradient
approximation (GGA), and local successive convex approximation (LSCA). By subtly designing
these three approximations, our algorithm is guaranteed to converge to the set of stationary points.
Notice that the second challenge also arises in the inner problem but we solve it in a simpler way
because the inner problem is convex.

To approximate the local gradient ∇F [v](ωc, η
∗(ωc)), we propose the following LGA of learner

v: ∇̄F [v](ωc, η̄(ωc)) =
∑

ζj∈D[v]

∑∞
t=0 γ

tϕc(s
j
t , a

j
t)−m[v]E

πη̄(ωc);ωc

S,A [
∑∞

t=0 γ
tϕc(St, At)], whose

derivation is based on the strict convexity of G(η;ωc) and G[v](η;ωc). The derivation and the proof
of strict convexity are both included in the Appendix. Moreover, it can be shown (in the Appendix)
that the approximation error (defined in the Appendix) is upper bounded and reduces to zero as
K → ∞.

While learner v can use LGA to get a sound approximation of ∇F [v], in order to solve prob-
lem (3), it still needs the knowledge of the gradients

∑
v′ ̸=v ∇F [v′] of other learners to get

the global gradient. Therefore, we leverage a GGA ∇̄[v] (lines 5-10) who aims to track the
average global gradient 1

NL
∇F (ω

[v]
c , η∗(ω

[v]
c)). However, ∇F (ω

[v]
c , η∗(ω

[v]
c)) is not available

due to the inaccessibility of η∗(ω
[v]
c). Therefore, ∇̄[v] is designed to track the approximation

1
NL

∑NL

v′=1 ∇̄F [v′](ω
[v′]
c , η̄[v

′](ω
[v′]
c)) of the average global gradient.

To tackle the non-convexity issue, learner v solves a LSCA problem (line 11) and then follows
two-step updates of the local cost weight vector ω[v]

c . LSCA proposes to solve a local convexifica-
tion of problem (3). In specific, learner v solves the problem argmaxωc∈Ωc

F̃ [v](ωc;ω
[v]
c) where

−F̃ [v](ωc;ω
[v]
c) is a local strongly-convex surrogate of −F (ωc, η

∗(ωc)) at ω[v]
c satisfying the gra-

dient consistency condition ∇F̃ [v](ωc;ω
[v]
c) = NL∇̄[v]. An attractive property of LSCA [27] is

6

that its fixed point exists and is a stationary point of functions with gradient NL∇̄[v] under certain
conditions (in the Appendix).

Once obtaining ω̃
[v]
c , learner v executes two-step updates. The first update towards ω̃

[v]
c (line 12)

drives learner v to a stationary point of problem (3) and the second update (lines 13-14) encourages
the consensus among different learners.

Lemma 2. The result ω̃[v]
c (n) at line 11 in Algorithm 1 is the optimal solution of a LSCA problem

at ω[v]
c (n) under the GGA NL∇̄[v](n).

Lemma 3. (Convergence rate of the inner problem) Suppose Assumptions 1 and 2 hold and let
α(k) = ᾱ

k+1 where ᾱ is a positive constant. Then, for every learner v ∈ V in Algorithm 2,

||η̄[v](ωc)− η∗(ωc)|| ≤
C

[v]
1

logK
+

C
[v]
2√

logK
,

where C
[v]
1 and C

[v]
2 are positive constants whose expression can be found in the Appendix.

We define the set of KKT points (also called stationary points) of problem (3)-(4) as [28] [29]: Ω∗
c ≜

{ω∗
c ∈ Ωc : maxωc∈Ωc

{(∇F (ω∗
c , η

∗(ω∗
c)))

⊤(ωc − ω∗
c)} = 0}, and study the convergence property

of the following metric [30]: J(ωc(n)) ≜ maxωc∈Ωc{(∇F (ωc(n), η
∗(ωc(n))))

⊤(ωc − ωc(n))}.

Theorem 1. (Asymptotic convergence of the outer problem) Suppose Assumptions 1, 2, and 3 hold.
Let β(n) ∈ (0, 1),

∑∞
n=0 β(n) = +∞, and

∑∞
n=0(β(n))

2 < +∞, then in Algorithm 1:

(consensus) : lim
n→∞

max
v,v′∈V

||ω[v]
c (n)− ω[v′]

c (n)|| = 0,

(convergence) : lim sup
n→∞

J(ω[v]
c (n)) ≤ M̄√

logK
,

where M̄ is a positive constant whose existence is proved in the Appendix.

Lemma 3 and Theorem 1 show that the distributed learners can achieve common values of ωc and η.
As the constrained soft Bellman policy is continuous in (ωc, η) (proved in the Appendix), they will
also achieve a common policy.

6 Simulation

This section presents two simulation examples. In the first example, the experts are programmed to
follow the optimal policy under discrete state and action spaces. In the second example, the experts
are humans, i.e., may not be optimal, and the states and actions are both continuous.

6.1 Synthetic grid world

We consider the grid world introduced in [11]. Different from paper [11]’s MDP, we imple-
ment a CMG on this environment where three experts perform motion planning from s0/s

′
0/s

′′
0

to sG/s
′
G/s

′′
G while avoiding collision with obstacles and each other. The environment consists of

a 9-by-9 grid of states, and the actions of each expert are to stay still, move up, down, left, right, or
diagonally by one cell. The dynamics is stochastic as each action of an expert has 20% probabil-
ity of failure, resulting in staying still. While the grid world looks small, the CMG has more than
387, 000, 000 state-action pairs due to multiple experts. Each state-action pair produces a distance-
relevant reward feature and the ground truth reward of each expert increases if the distance to its
goal decreases. The true CMG (Figure 2a), from which the experts generate demonstration, in-
cludes constraints (i.e., obstacles) and the nominal MG does not. We use heat maps to show the
relevant visitation frequency of each state and action pair. Each expert will terminate its motion if
violating a constraint, i.e, colliding with an obstacle.

In our algorithm, there are four distributed learners where each learner can only respectively get
10, 20, 30, 40 demonstrated trajectories of the experts. Notice that the learners and experts are
not the same entities, i.e., the learners stand aside observing the experts. The four learners jointly

7

recover the experts’ policies by learning the constraints and the reward functions over an underlying
communication network. The detailed simulation setup is included in the Appendix.

Furthermore, we use the following three baselines for comparisons:
ME-greedy: This method is introduced in [11] where a greedy method is used to estimate the
constraints based on the ME framework.
MCE-greedy: We construct this method by extending ME-greedy to the same greedy method based
on the MCE framework which is more suitable for stochastic environments.
Centralized inverse constrained inverse reinforcement learning (C-ICRL): This method is a
special case of D-ICRL where there is a centralized learner obtaining all the demonstration data.

Notice that ME-greedy and MCE-greedy assume the access to the ground truth rewards while C-
ICRL does not have this assumption. All the three baselines are centralized learning where a single
learner can get the total 100 demonstrated trajectories. Our algorithm is distributed learning and does
not obtain the ground truth rewards, therefore, it solves a more difficult problem than the baselines
do. However, the simulation shows that our algorithm can be on par with and even outperform the
baselines in some aspects. In our bi-level algorithm, the outer loop is to estimate the constraints
and the inner loop is to recover the corresponding policy by estimating the reward function. To
reason about the performance of our algorithm, we use five metrics: cumulative rewards (CR),
false positive rate (FPR), false negative rate (FNR), constraint violation rate (CVR), and reward
function distance (RFD). The CR, commonly used in IRL and imitation learning literature [31, 32],
illustrates the total reward collected by the three experts in an episode, FPR, introduced in [11], is
the proportion of learned constraints that are not the ground truth constraints, FNR is the proportion
of the ground truth constraints that are not learned, CVR [12] is the average percentage of the three
experts’ violating any constraint in an episode. Since the reward function is a linear combination
of the reward features, we propose RFD to measure the distance between the learned reward weight
vector ωr and experts’ reward weight vector ωrE : ||ωr − ωrE ||/||ωrE ||.

(a) True CMG (b) Learned CMG (c) CR

(d) FPR (e) FNR (f) CVR (g) RFD

Figure 2: Algorithm performance on a synthetic grid world CMG. In subfigures 2a 2b, each state and
action cell is colored according to the relevant visitation frequency and the red crosses represent the
constraints. In subfigures 2c-2g, D-learners 1-4 are distributed learners in our algorithm. Because
ME-greedy and MCE-greedy are not bi-level, we only include their curves against outer iterations.

Figure 2b shows the constraints learned by our algorithm (each learner recovers the same con-
straints). Several action constraints are not recovered due to the reason that the experts will barely
take these actions even if they are feasible. Figures 2c 2f show that our learning algorithm can suc-
cessfully imitate the experts’ behavior according to CR and CVR. Figures 2d 2e show that D-ICRL

8

and C-ICRL have better FPR performance compared to the greedy-based methods while MCE-
greedy has the best FNR performance. From Figure 2e and the small window in Figure 2c, we can
see that the distributed learners can quickly achieve consensus even if they start from different initial
conditions in both outer and inner loops. Figures 2c and 2g show the performance of inner process
in the last outer iteration. Figure 2g shows that D-ICRL and C-ICRL can approach the ground truth
reward functions and stabilize.

Table 1: Performance Comparisons. Here, D means distributed and NATR means no access to the
(ground truth) rewards.

D NATR CR FPR FNR CVR RFD
Experts (ground truth) N/A N/A 2002.59± 125.71 N/A N/A 0.000 0.000

D-ICRL (our
method)

D-Learner 1 ✓ ✓ 1890.67± 135.22 0.00 0.18 0.013 0.748
D-Learner 2 ✓ ✓ 1873.07± 162.14 0.00 0.18 0.020 0.750
D-Learner 3 ✓ ✓ 1878.51± 131.55 0.00 0.18 0.020 0.749
D-Learner 4 ✓ ✓ 1884.85± 167.16 0.00 0.18 0.010 0.749

C-ICRL × ✓ 1884.74± 158.90 0.00 0.18 0.013 0.731
ME-greedy × × 1162.24± 132.66 0.18 0.24 0.010 N/A

MCE-greedy × × 1776.84± 300.61 0.09 0.12 0.057 N/A
Experts (nominal) N/A N/A 18.64± 3.02 N/A N/A 1.000 0.000

Table 1 shows the comparison result where each learner in our distributed algorithm can be on par
with C-ICRL in all the five metrics. Our algorithm can outperform ME-greedy introduced in [11] in
almost every metric except being on par with it in CVR. While MCE-greedy is centralized learning
and assumes the access to the ground truth rewards, our method can still outperform it in three
metrics, i.e., CR, FPR, and CVR.

6.2 Drones motion planning with obstacles

In the second example, we simulate in a physical setting with continuous state-action space. We
build a simulator in Gazebo where each drone aims to reach the door in its diagonal direction while
avoiding collisions. We first control the simulated drones to their target doors, record nine pairs
of trajectories, and distribute four and five pairs to two learners respectively. The demonstration is
shown in Figure 3b and each cell in the figure represents the constraint set indicated by a cost feature
of each expert, i.e., C[i]

j . We define the reward feature of each state as its location multiplied with a
coefficient. Figure 3c shows the learned constraints and trajectories.

(a) Simulator environment (b) Demonstrated trajectories (c) Learned trajectories

Figure 3: Drones motion planning with obstacles

We keep the three metrics, FPR, FNR, and CVR in last example. Because the ground truth reward
is not accessible in this physical setting, we cannot use RFD and we use success rate (SR) instead

9

of CR. The SR is defined as the percentage of the drones’ successfully reaching the doors without
any collision. We use the reward function learned from D-ICRL as the input reward function of
ME-greedy. Because this environment is deterministic, MCE-greedy reduces to ME-greedy.

Table 2: Performance Comparisons.
D NATR FPR FNR CVR SR

D-ICRL D-Learner 1 ✓ ✓ 0.028 0.00 0.03 0.97
D-Learner 2 ✓ ✓ 0.028 0.00 0.03 0.97

C-ICRL × ✓ 0.018 0.00 0.02 0.98
M(C)E-greedy × × 0.037 0.13 0.16 0.84

7 Discussion and future work

We propose D-ICRL, the first multi-expert-multi-learner MCE ICRL framework that is effective to
CMG with both discrete and continuous environments. We employ MLE to estimate the constraints,
use an MCE-based optimization problem to learn the corresponding reward function and policy,
and derive our algorithm based on a novel distributed bi-level optimization theoretical framework.
Experimental results show that D-ICRL can imitate the experts’ behavior as well as recover the
environmental constraints. Despite its benefits, the limitations are that (i) the learners assume that
the reward/cost function is a linear combination of some features; (ii) the communication between
learners is frequent. We will address the issues in the future.

8 Acknowledgements

This work is partially supported by National Science Foundation through grants CNS 1830390,
ECCS 1846706, and ECCS 2140175. We would like to thank the reviewers for their insightful and
constructive suggestions.

10

References
[1] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective overview

of theories and algorithms,” Handbook of Reinforcement Learning and Control, pp. 321–384,
2021.

[2] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial inverse reinforcement
learning,” in International Conference on Learning Representations, 2018.

[3] L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse reinforcement learning,” in
International Conference on Machine Learning, pp. 7194–7201, 2019.

[4] W. Jeon, C.-Y. Su, P. Barde, T. Doan, D. Nowrouzezahrai, and J. Pineau, “Regularized inverse
reinforcement learning,” in International Conference on Learning Representations, 2020.

[5] M. Imani and S. F. Ghoreishi, “Scalable inverse reinforcement learning through multifidelity
Bayesian optimization,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–
8, 2021.

[6] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,” in International
Conference on Machine Learning, pp. 663–670, 2000.

[7] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in In-
ternational Conference on Machine Learning, pp. 1–8, 2004.

[8] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin planning,” in Interna-
tional Conference on Machine Learning, pp. 729–736, 2006.

[9] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse rein-
forcement learning,” in National Conference on Artificial intelligence, vol. 8, pp. 1433–1438,
2008.

[10] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling interaction via the principle of maxi-
mum causal entropy,” in International Conference on Machine Learning, pp. 1255–1262, 2010.

[11] D. R. Scobee and S. S. Sastry, “Maximum likelihood constraint inference for inverse reinforce-
ment learning,” in International Conference on Learning Representations, 2019.

[12] S. Malik, U. Anwar, A. Aghasi, and A. Ahmed, “Inverse constrained reinforcement learning,”
in International Conference on Machine Learning, pp. 7390–7399, 2021.

[13] S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and J. Shavlik, “Multi-agent
inverse reinforcement learning,” in International Conference on Machine Learning and Appli-
cations, pp. 395–400, 2010.

[14] T. S. Reddy, V. Gopikrishna, G. Zaruba, and M. Huber, “Inverse reinforcement learning for
decentralized non-cooperative multiagent systems,” in IEEE International Conference on Sys-
tems, Man, and Cybernetics, pp. 1930–1935, 2012.

[15] J. Inga, E. Bischoff, F. Köpf, M. Flad, and S. Hohmann, “Inverse cooperative and non-
cooperative dynamic games based on maximum entropy inverse reinforcement learning,” arXiv
preprint arXiv:1911.07503, 2019.

[16] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani, “Forecasting interactive dynamics of pedes-
trians with fictitious play,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 774–782, 2017.

[17] K. Bogert and P. Doshi, “Multi-robot inverse reinforcement learning under occlusion with
interactions,” in International Conference on Autonomous Agents and Multi-agent Systems,
pp. 173–180, 2014.

[18] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A
survey on distributed machine learning,” ACM Computing Surveys, vol. 53, no. 2, pp. 1–33,
2020.

11

[19] N. Couellan and W. Wang, “On the convergence of stochastic bi-level gradient methods,” Op-
timization, 2016.

[20] S. Ghadimi and M. Wang, “Approximation methods for bilevel programming,” arXiv preprint
arXiv:1802.02246, 2018.

[21] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale framework for bilevel optimiza-
tion: Complexity analysis and application to actor-critic,” arXiv preprint arXiv:2007.05170,
2020.

[22] K. Ji, J. Yang, and Y. Liang, “Bilevel optimization: Convergence analysis and enhanced de-
sign,” in International Conference on Machine Learning, pp. 4882–4892, 2021.

[23] F. Yousefian, “Bilevel distributed optimization in directed networks,” in American Control
Conference, pp. 2230–2235, 2021.

[24] E. Altman and A. Shwartz, “Constrained markov games: Nash equilibria,” in Advances in
Dynamic Games and Applications, pp. 213–221, 2000.

[25] Z. Zhou, M. Bloem, and N. Bambos, “Infinite time horizon maximum causal entropy inverse
reinforcement learning,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 2787–
2802, 2017.

[26] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep energy-
based policies,” in International Conference on Machine Learning, pp. 1352–1361, 2017.

[27] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms for nonconvex big
data optimization,” IEEE Transactions on Signal Processing, vol. 63, no. 7, pp. 1874–1889,
2015.

[28] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic gradient
algorithm for non-convex optimization,” IEEE Transactions on Automatic Control, vol. 58,
no. 2, pp. 391–405, 2012.

[29] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[30] H.-T. Wai, J. Lafond, A. Scaglione, and E. Moulines, “Decentralized frank–wolfe algorithm for
convex and nonconvex problems,” IEEE Transactions on Automatic Control, vol. 62, no. 11,
pp. 5522–5537, 2017.

[31] X. Wang and D. Klabjan, “Competitive multi-agent inverse reinforcement learning with sub-
optimal demonstrations,” in International Conference on Machine Learning, pp. 5143–5151,
2018.

[32] V. Tangkaratt, N. Charoenphakdee, and M. Sugiyama, “Robust imitation learning from noisy
demonstrations,” in International Conference on Artificial Intelligence and Statistics, pp. 298–
306, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We have the formal contribution statement in Section
1.

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations in
Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

12

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We have the
formal assumption statements in Section 2

(b) Did you include complete proofs of all theoretical results? [Yes] We include all the
proofs in the Appendix (Section 9)

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include the
simulation setups in Section 6 and also in the Appendix (Section 10). We also include
the code in the supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We include some details in Section 6 and the rest details are
included in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In the first experiment (subsection 6.1), we include the
mean and standard deviation of the cumulative reward.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The compute type is included in
the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The first experiment

uses the environment in a reference and we cite it. The second experiment is in Gazebo
based on hector quadrotor.

(b) Did you mention the license of the assets? [Yes] We include the licenses in the sup-
plementary materials.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] In the second experiment, we create a new simulator in Gazebo based on hec-
tor quadrotor.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [No]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We do not conduct research on human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] We do not conduct research on human
subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We do not conduct research on human
subjects.

13

