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We report further evaluations of MOVE that could not be included in the main paper. An important
component of MOVE is the Masked Autoencoder. We perform additional analysis to show how
MAE encodes image tiles and also how this changes between a GAN or MSE trained MAE. We also
examine the mask losses when they are used at multiple scales. In other methods, the bilateral solver
is used to refine the predicted masks. We show that our segmenter produces already accurate masks
even without the bilateral filter. Finally, we show additional quantitative and qualitative results on
other training and test datasets.

Table A.1: Inpainting error for a pre-trained MAE on 5000 images from the ImageNet validation set:
Feeding a subset of tokens to the encoder (Default) vs soft-masking before the decoder (Modified). A
is the mean squared error between the inpainted regions for two methods

MAE Model Default Modified A
w/ GAN 0.0683 £ 0.0427 0.0647 £ 0.0398 0.0070 4 0.0059
w/ MSE 0.0639 + 0.0411 0.0617 £ 0.0390 0.0055 4= 0.0056

A MAE as a differentiable inpainter

Masked Autoencoders (MAE) consist of a Transformer Encoder, which takes as input only a subset
of unmasked patches during training, and a Transformer Decoder, which takes as input the encoded
patches and, in addition, a learnable MSK token replicated at all the locations where the (masked)
patches were not fed to the encoder. The decoder is trained to reconstruct the masked patches.

In MOVE, we need the pre-trained MAE to work as a differentiable inpainter. To that end, we feed all
the patches to the encoder. Then, we only do a soft-masking between the MSK token and the encoded
patches via a convex combination, before feeding the embeddings to the decoder (see section 2] and
Figure[3). This is different from how MAE was trained: During training the encoder had no way to
encode the information about the missing patches. Since in MOVE we feed all the patches to the
encoder, it is possible that the encoded embeddings contain information about their neighbors. In
particular, there is the risk that the unmasked encoded patches would contain information about the
masked patches. If that were the case, the decoder would be able to inpaint the masked object even
when the entire object is masked at the decoder input. We show empirically and quantitatively that
this is not the case. Using the same pre-trained MAE, we compare the reconstruction error for the
original inference vs. our modified soft-masking inference. We run the evaluation on a subset of
5000 images from the ImageNet validation set [1]], randomly masking between 80% and 95% of the
tokens. We show the mean squared error of the intensity for intensity range [0; 1] in Table and
comparison of reconstructed images in Figure [A.T|for both MAE trained with a GAN loss or with
an MSE loss. We find that the difference in the inpainting error is not significant. Moreover, we
observe visually that the reconstructions through the Modified soft-masking (MOVE) do not show a
better reconstruction of the masked patches than in the Default case where the masked patches are
not provided to MAE.
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Figure A.1: Comparison of MAE sparse input vs differentiable mask inpainting. We show the input
and masked input image in the two first columns. For MAE trained with a GAN loss or with an
MSE loss we show the reconstructed image when we feed a sparse subset of tokens to the encoder
(orig.) and when we feed all the tokens to the encoder and mask only before feeding the embeddings
to the decoder (mod.). No significant difference can be observed between these two reconstruction
modalities or when we change the MAE training.
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Figure B.1: Obtaining an inpainting mask from a predicted mask via max pooling downsampling.
Due to small artifacts in the mask, all patches might be selected as masked and thus, the entire
background might get inpainted. The grid on the right is just for reference purposes.

B Inpainter mask and downsampled mask losses

As specified in section EL we obtain a low-res inpainting mask 72 via a maxpoolp with stride P
operation on the union of the predicted mask and its shifted version, where P is the patch size that
MAE tokens embed. We use max pooling for downsampling, because we want to make sure that
we mask all the patches containing even only parts of the object. This is important, otherwise the
inpainter may partly reconstruct the object. However, using max pooling for downsampling might
result in inpainting more than necessary due to the artifacts in the mask. An extreme case of this
is illustrated in Figure [B.I] where the entire background would get inpainted due to a single pixel
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