
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Conclusion.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Conclusion.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes] Refer to Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Refer to
Appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Refer to Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Contents

1 Introduction 1
1.1 Linear Bandits with Safety Constraints . 2

2 Safe Best-Arm Identification in Linear Bandits 2
2.1 Algorithm Definition . 2
2.2 Main Result . 4
2.3 Optimality of BESIDE . 6
2.4 The Role of Experiment Design . 6

3 Experiments for Safe Best Arm Identification in Linear Bandits 7
3.1 Practical Algorithms for Active Classification Under Constraints 7

4 Related works 9

5 Conclusion 10

A Lower Bounds 16
A.1 Oracle Lower Bound . 16
A.2 Proof of Proposition 2 . 18

B Robust Mean Estimation 20

C RAGE✏ 21
C.1 Preliminaries . 21
C.2 Algorithm and Main Results . 21
C.3 Estimating the Gaps . 22
C.4 Bounding the Sample Complexity . 25

D Safe Best-Arm Identification 26
D.1 Preliminaries . 26
D.2 Algorithm and Main Result . 26
D.3 Estimating the Safety Value . 27
D.4 Tying Together Safety Estimation with Optimality Estimation 27
D.5 Algorithm Correctness and Sample Complexity 31
D.6 Proofs of Corollaries to Theorem 1 . 33

E Computationally Efficient Optimization 33
E.1 Computational Efficiency of RAGE✏ . 34

E.1.1 Solving for by` . 35
E.1.2 Solving for �` . 38

E.2 Computational Efficiency of BESIDE . 39

F Experimental details and additional results 39
F.1 Experimental details . 39
F.2 Additional results . 39

15

A Lower Bounds
A.1 Oracle Lower Bound
Theorem 3 (Oracle Lower Bound). Let ⌧ denote the stopping time for any (0, �)-PAC algorithm for
pure exploration in safe linear bandits. Then

E✓⇤,µ⇤
[⌧]

log 1
2.4�

� min
�24X

max

(
max

z2Z\z⇤
min

(
kzk2A(�)�1

p(��safe(z))2
,

kz � z⇤k2A(�)�1

p(�(z))2

)
,

kz⇤k2A(�)�1

(z>
⇤
µ⇤ � ↵)2

)
.

Comparing Complexity with Theorem 1. In the single-constraint setting, the complexity of
BESIDE reduces to

C · sup
e✏�✏

inf
�24X

max
z2Z

kzk2A(�)�1 · log(m|Z|

�)
�
|�safe(z)| + p(�e✏(z)) + e✏

�2

+ C · sup
e✏�✏

inf
�24X

max
z2Z

kz � z⇤k2A(�)�1 · log(|Z|

�)
�
p(��safe(z)) + p(�e✏(z)) + e✏

�2 + C0

Consider the case when �e✏(z) is “smooth” in e✏, in the sense that �e✏(z) � �(z)� e✏. This condition
corresponds to the case, for example, where z⇤ has a large safety gap (in which case we simply have
�e✏(z) = �(z) for moderate values of e✏), or where z⇤ might have a small safety gap, but where there
are arms placed at even intervals so that, as we let the safety gap get smaller, we are always able to
find better arms. Under this assumption, the complexity can be upper bounded as

C · inf
�24X

max
z2Z

kzk2A(�)�1 · log(m|Z|

�)
�
|�safe(z)| + p(�(z))

�2 + C · inf
�24X

max
z2Z\z⇤

kz � z⇤k2A(�)�1 · log(|Z|

�)
�
p(��safe(z)) + p(�(z))

�2 + C0

 C · inf
�24X

max
z2Z

kzk2A(�)�1 · log(m|Z|

�)
�
|�safe(z)| + p(�(z))

�2 + C · inf
�24X

max
z2Z\z⇤

kz � z⇤k2A(�)�1 · log(|Z|

�)
�
p(��safe(z)) + p(�(z))

�2 + C0

which can be upper bounded as

C log(m|Z|

�) ·

inf
�24X

max
z2Z

kzk2A(�)�1

max{�safe(z)2, p(�(z))2} + inf
�24X

max
z2Z\z⇤

kz � z⇤k2A(�)�1

max{p(��safe(z))2, p(�(z))2}

!
+ C0.

While this does not match the lower bound of Theorem 3 exactly, it scales in a similar manner. As in
Theorem 3, we pay only for the larger of the optimality gap, p(�(z)), and safety gap p(��safe(z))
(if the arm is unsafe). The primary difference between Theorem 3 and this complexity are the terms
in the numerator—in Theorem 3, the numerator scales as kz � z⇤k2A(�)�1 only if an arm is easier to
eliminate by showing it is suboptimal, while in our complexity it could scale this way in either case.

The primary difficulty in hitting the lower bound exactly is that Theorem 3 is a verification lower
bound. It assumes knowledge of the best arm, and is told whether every other arm has smaller safety
gap (if the arm is unsafe) or optimality gap. It can therefore simply use this knowledge to focus all
samples on verifying an arm is either unsafe, or suboptimal.

In practice, we do not have access to such information. Without knowing whether it is easier to
eliminate an arm by showing it is unsafe or suboptimal, the best we can hope to do is to seek to
estimate both the safety value and reward value of every arm, until we have estimated one well
enough to show the arm is suboptimal or unsafe.

We conjecture that the lower bound of Theorem 3 is loose, and that Theorem 1 is nearly optimal.
We believe the gap arises because, as noted, lower bound proof techniques, such as those proposed
in [22], which is what we rely on to prove Theorem 3, are lower bounding only the complexity of
verifying the optimal solution. In problem settings such as ours where the order matters—where we
will obtain a very different rate if we focus our attention on one arm versus another, to show it is safe
or unsafe—such techniques appear insufficient to obtain a tight lower bound. Indeed, we conjecture
that a “moderate-confidence” lower bound can be shown using techniques from [34], and that such a
lower bound may have a complexity nearly matching that of Theorem 1. We leave proving this for
future work.

16

Proof of Theorem 3. Following the proof of Theorem 1 of [13] and applying the Transportation
Lemma of [22], we have that any �-PAC algorithm must satisfy

X

x2X

E[Tx] � log
1

2.4�
· inf
�24X

1

min(✓,µ)2Calt

P
x2X

�xKL(⌫(✓⇤,µ⇤),i||⌫(✓,µ),i)

there Tx denotes the number of pulls to arm x, and Calt is the set of alternate instances defined in
Lemma 4. As we assume that the noise is N (0, 1), and since the noise is independent for the safety
observations and reward observations, we have

KL(⌫(✓⇤,µ⇤),i||⌫(✓,µ),i) =
1

2
(x>

i (✓⇤ � ✓))2 +
1

2
(x>

i (µ⇤ � µ))2.

Some algebra shows that
X

x2X

�xKL(⌫(✓⇤,µ⇤),i||⌫(✓,µ),i) =
1

2
k✓⇤ � ✓k2A(�) +

1

2
kµ⇤ � µk2A(�).

The result then follows by applying Lemma 4 to compute

min
(✓,µ)2Calt

1

2
k✓⇤ � ✓k2A(�) +

1

2
kµ⇤ � µk2A(�).

Lemma 4. Define the alternate set:

Calt = {(✓, µ) s.t. µ>
z
⇤
> ↵} [{(✓, µ) s.t. 9z0 6= z

⇤
, µ

>
z
0 ↵, ✓>(z⇤ � z

0) 0},

Then the projection to the alternate is

min
(✓,µ)2Calt

k✓ � ✓⇤k2A(�) + kµ� µ⇤k2A(�) = min

(
min
z 6=z⇤

p(z>µ⇤ � ↵)2
kzk2A(�)�1

+
p((z⇤ � z)>✓⇤)2

kz � z⇤k2A(�)�1

,
(z>

⇤
µ⇤ � ↵)2

kz⇤k2A(�)�1

)
.

Proof. For each arm x the associated and we want to solve

min
(✓,µ)2Calt

k✓ � ✓⇤k2P
x2X

�xxx> + kµ� µ⇤k2P
x2X

�xxx> .

To do so, we use that minx2A[B f(x) = minS2{A,B} minx2S f(x) on the quadratic objective by
defining the sets

A := {(✓, µ) s.t. µ>
z
⇤
> ↵} , B = {(✓, µ) s.t. 9z0 6= z

⇤
, µ

>
z
0 ↵, ✓>(z⇤ � z

0) 0},

such that their union is A [B = Calt.

Note that we know from [29] that

min
(✓,µ)2A

k✓ � ✓⇤k2P
x2X

�xxx> + kµ� µ⇤k2P
x2X

�xxx> =
(z>

⇤
µ⇤ � ↵)2

kz⇤k2A(�)�1

.

We now lift B to a set lift(B) that is defined as

lift(B) = {[✓, µ] s.t. 9z0 6= z
⇤
, [✓, µ]>[(z⇤ � z

0), 0; 0, z0] [0,↵]}.

Thus we can focus on Dz = { 2 R2n s.t. Az b} where Az = [(z⇤ � z
0), 0; 0, z0] 2 R

2⇥2n.
Now we want to solve

min
z2Z\{z⇤}

min
2R2n s.t. Azb

k� ⇤k�,

where � = I2
N�P

x2X
�xxx

>
�
.

17

Lemma 5. The optimal solution of

min
2R2n s.t. Ab

k� ⇤k�
2

is 0 = ⇤ � ��1
A

>(A��1
A

>)�1{A⇤ � b}+ and the optimal value is

1

2
p(A⇤ � b)>(A��1

A
>)�1p(A⇤ � b),

where p(·) is applied element-wise to A⇤ � b.

This translate to

min
(✓,µ)2B

k✓ � ✓⇤k2P
x2X

�xxx> + kµ� µ⇤k2P
x2X

�xxx> = min
z 6=z⇤

p(z>µ⇤ � ↵)2
kzk2A(�)�1

+
p((z⇤ � z)>✓⇤)2

kz � z⇤k2A(�)�1

,

and we get the desired result.

Proof of Lemma 5. Consider the Lagrangian

L(, µ) = 1

2
(� ⇤)>�(� ⇤) + µ

>(A� b)

L(0, µ) = 1

2

0>�0 + µ

>(A0 � b+A⇤)

minimized at 00 = ���1
A

>
µ. We have

max
µ�0

min
0

L(0, µ) = max
µ�0

1

2
(��1

A
>
µ)>�(��1

A
>
µ) + µ

>(�A��1
A

>
µ� b+A⇤)

= max
µ�0
�1

2
µ
>
A��1

A
>
µ+ µ

>(A⇤ � b)

maximized at µ0 = (A��1
A>)�1{A⇤ � b}+ where {[b1, b2]}+ = [max{b1, 0},max{b2, 0}].

Plugging µ0 back in the solution 00, we get the solution 0

0 = ⇤ � ��1
A

>(A��1
A

>)�1{A⇤ � b}+
and the optimal value follows.

A.2 Proof of Proposition 2
Proof of Proposition 2.

Proof for I1. Fix ↵ 2 (0, 0.1) and consider the following instance with m = 1:

X = {e1, e2}, Z = {z1, z2}, z1 = [1/4, 1/2], z2 = [3/4, 1/2 + ↵]

✓⇤ = e1, µ⇤ = [0, 1], � = 1/2 + ↵/2.

On this example, z1 is safe and z2 is unsafe with �safe(z2) = �↵/2.

Let A(�) = �1e1e
>

1 + �2e2e
>

2 denote the design matrix. Then the allocation that minimizes XYdi↵ :

max
z,z02Z

kz � z
0k2A(�)�1 =

1

4�1
+
↵
2

�2

is

�1 =
1

1 + 2↵
, �2 =

2↵

1 + 2↵
.

Denote this allocation as e�.

Applying the Transportation Lemma of [22], this implies that any �-PAC strategy must have

E[T1]KL(⌫(✓⇤,µ⇤),1||⌫(✓,µ),1) + E[T2]KL(⌫(✓⇤,µ⇤),2||⌫(✓,µ),2) � log
1

2.4�

18

for all (✓, µ) 2 Calt, where Calt is defined as in Lemma 4. If a learner plays e� for T steps, they will
have E[T1] = �1E[T],E[T2] = �2T . In this case, the above can be rewritten as

E[T] � log
1

2.4�
· 1

�1KL(⌫(✓⇤,µ⇤),1||⌫(✓,µ),1) + �2KL(⌫(✓⇤,µ⇤),2||⌫(✓,µ),2)

= log
1

2.4�
· 2

k✓⇤ � ✓k2A(e�)
+ kµ⇤ � µk2

A(e�)
.

where the equality follows by the same calculation as in the proof of Theorem 3. Take (✓, µ) to be
✓ = ✓⇤, µ = [0, 1� ↵

1+2↵] and note that (✓, µ) 2 Calt since with this choice of µ, arm z2 is now safe.
Now,

kµ⇤ � µk2
A(e�) = (

↵

1 + 2↵
)2 · 2↵

1 + 2↵
=

2↵3

(1 + 2↵)3
.

This gives a lower bound of

E[T] � log
1

2.4�
· 2(1 + 2↵)3

2↵3
� log

1

2.4�
· 1

↵4
.

This lower bound is for best-arm identification (✏ = 0), but setting ↵ 2✏� a for a arbitrarily small,
identifying an ✏-optimal, ✏-safe arm is equivalent to identifying the best arm, so this therefore holds
as a lower bound on (✏, �)-PAC algorithms.

The upper bound on the performance of BESIDE follows trivially since by setting �1 = �2, we can
make the numerator in both terms of the complexity O(1), and the denominator of each term will be
at least ✏2.

Proof for I2. Fix ↵ 2 (0, 0.1) and consider the following instance with m = 1:

X = {e1, e2}, Z = {z1, z2}, z1 = [1/2 + ↵
2
/2, 0], z2 = [1/2,↵/2]

✓⇤ = [1/2, 0], µ⇤ = [0, 0], � = 1.

On this instance, both z1 and z2 are safe, and z1 is optimal.

The XYsafe design minimizes:

max
z2Z

kzk2A(�)�1 = max

⇢
1 + 2↵+ ↵

2

4�1
,

1

4�1
+

↵
2

4�2

�
.

Some computation shows that, for ↵ small, the optimal settings are �1 = O(1) and �2 = O(↵)

(where here O(·) hides terms that are o(↵)). Denote this allocation as e�. Following the same argument
as above, we have

E[T] � log
1

2.4�
· 2

k✓⇤ � ✓k2A(e�)
+ kµ⇤ � µk2

A(e�)

for any (µ, ✓) 2 Calt. Let ✓ = [1/2, 2↵] and note that (µ⇤, ✓) 2 Calt since z2 is now the optimal arm
with this ✓. We then have

k✓⇤ � ✓k2A(e�) + kµ⇤ � µk2
A(e�) = O(↵3)

which gives a lower bound of

E[T] � ⌦

✓
1

↵3
· log 1

�

◆
.

This lower bound holds for the best-arm identification problem, but setting ↵
p
2✏ � a for a

arbitrarily small, finding an ✏-optimal arm is equivalent to finding the best arm, so the lower bound
applies in that setting as well.

To compute the sample complexity of BESIDE, we note that �safe(z1) = �safe(z2) = 1, so the first
term in the complexity is negligible. We also have that �e✏(z2) = ↵

2
/2 = O(✏) for e✏ 1. Thus, the

second term in the complexity scales as

eO

inf
�24X

max
z,z02Z

kz � z
0k2A(�)�1 · log 1/�

✏2

!
= eO

✓
inf

�24X

(↵4
/�1 + ↵

2
/�2) · log 1/�
✏2

◆

19

= eO
✓
↵
2 · log 1/�

✏2

◆

= eO
✓
log 1/�

✏

◆
.

B Robust Mean Estimation
In order to form estimates of z>✓⇤ and z

>
µ⇤,i, we will rely on the RIPS procedure proposed in [6],

instantiated with the robust Catoni estimator [8].

Catoni Estimation. The robust Catoni mean estimator proposed in [8] is defined as follows.

Definition 2 (Catoni Estimator). Consider real values X1, . . . , XT . Then the robust Catoni mean
estimator, cat↵[{Xt}Tt=1], with parameter ↵ > 0 is the unique root z of the function

fcat(z; {Xi}Ti=1,↵) :=
TX

t=1

 cat(↵(Xt � z)) for cat(y) :=

⇢
log(1 + y + y

2) y � 0
log(1� y + y

2) y < 0
.

The Catoni estimator satisfies the following guarantee.

Proposition 6. Let X1, . . . , XT be independent, identically distributed random variables with mean
⇣ and variance �2

< 1. Fix � 2 (0, 1) and assume T � 4 log(1/�). Then the Catoni estimator
cat↵[{Xt}Tt=1] with parameter

↵ =

r
2 log 1/�

T�2
(6)

satisfies, with probability at least 1� 2�,

|cat↵[{Xt}Tt=1]� ⇣|
r

8�2 log 1/�

T
.

Notably, the estimation error given by Proposition 6 scales only with the variance of the random
variables, and not with their magnitude.

Robust Inverse Propensity Score (RIPS) Estimator. We apply the Catoni estimator with the RIPS
estimator of [6]. In particular, consider running the following procedure.

Algorithm 3 Robust Inverse Propensity Score Estimation (RIPS)
1: input: samples {(xt, rt)}Tt=1 for xt ⇠ � and rt = ✓

>
xt + wt, active set Y , confidence �

2: For each y 2 Y , set W y cat↵[{y>A(�)�1
xtrt}Tt=1], for ↵ chosen as in (6) with � �

2|Y|
,

and A(�) =
P

x2X
�xxx

>.
3: Set

b✓ = argmin
✓

max
y2Y

|✓>y �W
y|

kykA(�)�1

.

4: return b✓

We have the following guarantee on this procedure.

Proposition 7 (Theorem 1 of [6]). If T � 4 log 2|Z|

� , then with probability at least 1 � �, for all
z 2 Z , the RIPS estimator of Algorithm 3 returns an estimate b✓ which satisfies:

|y>(b✓ � ✓⇤)| kykA(�)�1 ·
r

8 log(2|Z|/�)
T

.

The use of the RIPS estimator allows us to avoid sophisticated rounding procedures often found in the
linear bandit literature. Note that the RIPS estimator can be computed in time scaling polynomially
in |Y|, d, and T .

20

C RAGE✏

A note on constants. Throughout our algorithm definitions, in both this section and the following,
we use generic constants rather than precise numerical settings, and carry these generic constants
through our proofs. At various points in the proofs, we require that these constants satisfy certain
constraints. The following result shows that there exist suitable settings for all constants such that
these constraints are satisfied.

Lemma 8. There exist settings of ca, cb, cd, ce, cf , ce, cg, c1, c2, c3, c4, c� and c0 such that Equations
(11), (14), (15), (16), (17), (18), (19), (7), (8), and (9) are satisfied, and

c3(1 + cg)

1� c3
 0.2, cg 0.2, c0 � 0.0001.

Proof. First, note that in addition to the conditions listed above, we must also have

c1 cf , 3(cd + ce) c2.

Furthermore, by Lemma 20, it suffices to always take c� = 3cd + 3ce � cg . Direct computation then
shows that the following settings suffice, up to machine precision:

c1 = 0.05978841810030329

c2 = 0.0600087370242953

c3 = 0.1

c4 = 0.1

ca = 0.0013004532984432395

cb = 0.41043329378840077

cd = 0.01

ce = 0.01

cc = 0.0014065949472697806

cg = 0.178

cf = c1

Given these settings, we can bound

c3(1 + cg)

1� c3
 0.5.

C.1 Preliminaries
Assumptions and Definitions. For all y 2 Y , b�safe(y) � �c�✏. We will also assume that Y ✓ X .
We define

y? = argmin
y2Y

y
>
✓⇤

and

�(z) = ✓
>

⇤
(z � y?).

We will take � = 0, so we set A(�) =
P

x2X
�xxx

>.

C.2 Algorithm and Main Results
At a high-level, RAGE✏ attempts to estimate the difference between the performance of each z 2 Z
and the best y 2 Y . The safety gap estimate, b�safe(z), acts as a regularizer: if b�safe(z) < 0, then
we do not seek to estimate the gap of z with as high accuracy, since we can already eliminate it by
showing it is unsafe. The proof in this section follow closely the proof given in Section 6.4.4 of [17].

21

Algorithm 4 RAGE✏

1: input: active set Z , optimal set Y , tolerance ✏, confidence �, safety gap estimate {b�safe(z)}z2Z

2: Choose by0 arbitrarily from Y , set b�0(z) 0 for all z 2 Z
3: for ` = 1, 2, . . . , dlog(2/cf ✏)e do
4: ✏` 2

cf
· 2�`

5: Let ⌧` be the minimal value of ⌧ = 2j � 4 log 4|Z|
2`2

� such that the objective to the following
is no greater than cc✏`, and �` the corresponding optimal distribution

inf
�24X

max
z2Z

�ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) +

s
kz � by`�1k2A(�)�1 · log(4|Z|

2`2

�)

⌧
.

6: Sample xt ⇠ �`, collect observations {(xt, rt, st,1, . . . , st,m)}⌧`t=1
7: W {z � z

0 : z, z
0 2 Z}

8: b✓` RIPS({(xt, rt)}⌧`t=1,W,
�

2`2)
9: Set

by` argmin
y2Y

y
>b✓` + 8

vuutky � by`�1k2A(�`)�1 · log(4|Z|
2`2

�)

⌧`

b�`(y) (y � by`)>b✓` +

vuutky � by`k2A(�`)�1 · log(4|Z|
2`2

�)

⌧`

10: return {b�`(z)}z2Z

Theorem 1. With probability at least 1� �, RAGE✏ will terminate after collecting at most

C ·
dlog 2/cf ✏eX

`=1

inf
�24X

max
z2Z

kz � y?k2A(�)�1

(p(�b�safe(z)) + p(�(z)) + ✏`)2
· log(4|Z|

2`2

�) + 4dlog 2
cf ✏
e log(

4|Z|
2
dlog

2
cf ✏

e

�)

samples, for a universal constant C, and will output estimates of the gaps b�(z) such that, for all
z 2 Z ,

|b�(z)��(z)| cf

⇣
✏+ p(�(z)) + p(�b�safe(z))

⌘
.

C.3 Estimating the Gaps
Lemma 9. Let ERAGE✏ denote the event that for all ` and all z, z0 2 X , we have:

|(b✓` � ✓⇤)>(z � z
0)|

s

8kz � z0k2A(�`)�1 ·
log 4|Z|

2`2

�

⌧`
.

Then Pr[ERAGE✏] � 1� �.

Proof. Since ⌧` � 4 log 4|Z|
2`2

� , we can apply Proposition 7 to get that, with probability at least
1� �/2`2, for all w 2W ,

|(b✓` � ✓⇤)>w|

s

8kwk2A(�`)�1 ·
log 4|Z|

2`2

�

⌧`
.

The result then follows by a union bound since
1X

`=1

�

2`2
=
⇡
2

12
� �.

22

Lemma 10. On ERAGE✏ , for all z 2 Z and all `,

|b�`(z)� ✓>
⇤
(z � by`)| 8ca

⇣
p(b�`�1(z)) + p(�b�safe(z)) + p(b�`�1(by`))

⌘
+ 8(cc + ca + 2cac�)✏`.

Proof. By construction, we have that

max
z2Z

�ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) +

vuutkz � by`�1k2A(�`)�1 · log(4|Z|
2`2

�)

⌧`
 cc✏`.

This implies that, for all z 2 Z:
vuutkz � by`�1k2A(�`)�1 · log(4|Z|

2`2

�)

⌧`
 ca(p(�b�safe(z)) + p(b�`�1(z))) + (cc + ca)✏`.

On ERAGE✏ , we have

|b�`(z)� ✓>⇤ (z � by`)|

s

8kz � by`k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`

s

16kby`�1 � by`k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`
+

s

16kby`�1 � by`k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`

 8ca
⇣
p(�b�safe(z)) + p(b�`�1(z)) + p(�b�safe(by`)) + p(b�`�1(by`))

⌘
+ 8(cc + ca)✏`.

By construction we have that b�safe(by`) � �c�✏ � �2c�✏`, so p(�b�safe(by`)) 2c�✏`, which
proves the result.

Lemma 11. On ERAGE✏ and the event that b�`�1(y?) cb✏`, we have

�(by`) 6(cc + ca(1 + cb + 2c�))✏`.

Proof. By the definition of ERAGE✏ and by`, we can bound

✓
>

⇤
(by` � by`�1) (b✓`)>(by` � by`�1) +

s

8kby` � by`�1k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`

= min
y2Y

(b✓`)>(y � by`�1) +

s

8ky � by`�1k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`

 (b✓`)>(y? � by`�1) +

s

8ky? � by`�1k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`

 ✓>
⇤
(y? � by`�1) + 2

s

8ky? � by`�1k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`
.

By the definition of ⌧` and �`, we have

cc✏` � max
z2Z

�ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) +

vuutkz � by`�1k2A(�`)�1 · log(4|Z|
2`2

�)

⌧`

� �ca(p(�b�safe(y?)) + p(b�`�1(y?)) + ✏`) +

vuutky? � by`�1k2A(�`)�1 · log(4|Z|
2`2

�)

⌧`

(a)
� �ca(p(b�`�1(y?)) + (1 + 2c�)✏`) +

vuutky? � by`�1k2A(�`)�1 · log(4|Z|
2`2

�)

⌧`

23

(b)
� �ca(1 + cb + 2c�)✏` +

s

ky? � by`�1k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`

where (a) uses that b�safe(y?) � �c�✏ � �2c�✏`, by definition, and (b) follows by our assumption
on b�`�1(y?). This implies that

s

ky? � by`�1k2A(�`)�1 ·
log(4|Z|

2`2

�)

⌧`
 (cc + ca(1 + cb + 2c�))✏`.

Combining this with the above we have that

✓
>

⇤
(by` � by`�1) ✓>⇤ (y? � by`�1) + 6(cc + ca(1 + cb + 2c�))✏`.

Rearranging this proves the result.

Lemma 12. For all z 2 Z and all `, on the event ERAGE✏ ,

|b�`(z)��(z)| cf

⇣
✏` + p(�(z)) + p(�b�safe(z))

⌘
.

Proof. We prove this by induction. Assume that at `� 1, for all z 2 Z ,

|b�`�1(z)��(z)| cf

⇣
✏`�1 + p(�(z)) + p(�b�safe(z))

⌘
.

On ERAGE✏ and by Lemma 10 we can bound

|b�`(z)��(z)| = |b�`(z)� (R(z)�R(by`) +R(by`)�R(y?))|
 |b�`(z)� (R(z)�R(by`))| +�(by`)

 8ca
⇣
p(b�`�1(z)) + p(�b�safe(z)) + p(b�`�1(by`))

⌘
+ 8(cc + ca + 2cac�)✏` +�(by`).

By the inductive hypothesis, we can bound

p(b�`�1(z)) (1 + cf)p(�(z)) + cfp(�b�safe(z)) + cf ✏`�1

p(b�`�1(by`)) (1 + cf)p(�(by`)) + cfp(�b�safe(by`)) + cf ✏`�1.

By construction p(�b�safe(by`)) � �c�✏ � �2c�✏`, so

|b�`(z)��(z)| 8ca(1 + cf)p(�(z)) + 8ca(1 + cf)p(b�safe(z)) + (8ca(1 + cf) + 1)�(by`)
+ 8(cacf (1 + c�) + cc + ca + 2cac�)✏`.

It remains to bound �(by`) = R(by`)�R(y?). On the inductive hypothesis, we have that

|b�`�1(y?)��(y?)| cf

⇣
✏`�1 + p(�(y?)) + p(�b�safe(y?))

⌘
.

By definition, �(y?) = 0 and b�safe(y?) � �c�✏ � �2c�✏`, which implies that b�`�1(y?)
2cf (1 + c�)✏`. It follows that the conditions of Lemma 11 are met as long as

2cf (1 + c�) cb, (7)
so we can bound �(by`) 6(cc + ca(1 + cb + 2c�))✏`. Thus,

|b�`(z)��(z)| 8ca(1 + cf)p(�(z)) + 8ca(1 + cf)p(b�safe(z)) + 8(cacf (1 + c�) + cc + ca + 2cac�)✏`
+ (8ca(1 + cf) + 1)(6(cc + ca(1 + cb + 2c�)))✏`.

which proves the inductive hypothesis as long as
8(cacf (1 + c�) + cc + ca + 2cac�) + (8ca(1 + cf) + 1)(6(cc + ca(1 + cb + 2c�))) cf

8ca(1 + cf) cf (8)

For the base case, we need to show that

|b�0(z)��(z)| cf

⇣
✏0 + p(�(z)) + p(�b�safe(z))

⌘
.

By construction b�0(z) = 0 for all z, and p(�(z)) � 0, p(�b�safe(z)) � 0. Thus, it suffices to
show |�(z)| cf ✏0. However, by construction |�(z)| 1, and cf ✏0 = 1, which proves the base
case.

24

C.4 Bounding the Sample Complexity
Lemma 13. On the event ERAGE✏ , RAGE✏ will terminate after collecting at most

C ·
dlog(2/cf ✏)eX

`=1

inf
�24X

max
z2Z

kz � y?k2A(�)�1

(p(�b�safe(z)) + p(�(z)) + ✏`)2
· log(4|Z|

2`2

�) + 8dlog 2
cf ✏
e log(

4|Z|
2
dlog

2
cf ✏

e
2

�)

samples, for a universal constant C.

Proof. If, for all z 2 Z ,

⌧ �
kz � by`�1k2A(�)�1

(ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) + cc✏`)2
· log(4|Z|

2`2

�)

we will have that the objective on Algorithm 4 of RAGE✏ is less than cc✏`. Since we can take the
best-case � 2 4X , and since we have that ⌧` will be at most a factor of 2 from the optimal ⌧ , it
follows that

⌧` inf
�24X

max
z2Z

2kz � by`�1k2A(�)�1

(ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) + cc✏`)2
· log(4|Z|

2`2

�) _ 8 log 4|Z|
2`2

�

 inf
�24X

max
z2Z

2kz � by`�1k2A(�)�1

(ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) + cc✏`)2
· log(4|Z|

2`2

�) + 8 log 4|Z|
2`2

�

where the additional 8 log 4|Z|
2`2

� factor arises since we always require ⌧` � 4 log 4|Z|
2`2

� .

We can upper bound
kz � by`�1k2A(�)�1 2kz � y?k2A(�)�1 + 2ky? � by`�1k2A(�)�1 .

By construction, p(�b�safe(by`�1)) 2c�✏`, so for any z, p(�b�safe(by`�1)) � 2c�✏`
p(�b�safe(z)). Furthermore, by definition,

b�`�1(by`�1) = 0

so p(b�`�1(z)) � p(b�`�1(by`�1)). Thus,

inf
�24X

max
z2Z

kz � by`�1k2A(�)�1

(cap(�b�safe(z)) + cap(b�`�1(z)) + (ca + cc)✏`)2

 inf
�24X

max
z2Z

2kz � y?k2A(�)�1

(cap(�b�safe(z)) + cap(b�`�1(z)) + (ca + cc)✏`)2

+
2kby`�1 � y?k2A(�)�1

(cap(�b�safe(by`�1)) + cap(b�`�1(by`�1)) + (ca + cc � 2cac�)✏`)2

 inf
�24X

max
z2Z

4kz � y?k2A(�)�1

(cap(�b�safe(z)) + cap(b�`�1(z)) + (ca + cc � 2cac�)✏`)2
.

By Lemma 12, we can lower bound
b�`�1(z) � �(z)� cf (✏` + p(�(z)) + p(�b�safe(z)))

so
cap(�b�safe(z)) + cap(b�`�1(z)) + (ca + cc � 2cac�)✏`

� ca(1� cf)p(�b�safe(z)) + ca(1� cf)p(�(z)) + (ca + cc � 2cac� � cacf)✏`.

The result follows by combining these inequalities and as long as
ca(1� cf) � c0, ca + cc � 2cac� � cacf � c0. (9)

Proof of Theorem 1. Theorem 1 follows directly from Lemma 13 and Lemma 12 since, by Lemma 9,
ERAGE✏ holds with probability at least 1� �.

25

Algorithm 5 Best Safe Arm Identification (BESIDE, defined with generic constants)
1: input: tolerance ✏, confidence �
2: ◆✏ dlog(2

min{c3,c4}·✏
)e, b�0

safe(z) 0, b�0(z) 0 for all z 2 Z
3: for ` = 1, 2, . . . , ◆✏ do
4: ✏` 2

min{c3,c4}
· 2�`

// Solve experiment to reduce uncertainty on safety constraints
5: Let ⌧` be the minimal value of ⌧ = 2j � 4 log 4m|Z|`2

� such that the objective to the following
is no greater than ce✏`, and �` the corresponding optimal distribution

inf
�24X

max
z2Z

�cd
✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z)) + ✏`

◆
+

s
kzk2A(�)�1 · log(4m|Z|`2

�)

⌧

6: Sample xt ⇠ �`, collect ⌧` observations {(xt, rt, st,1, . . . , st,m)}⌧`t=1

7: {bµi,`}mi=1 RIPS({(xt, st,i)}⌧`t=1,Z,
�

2m`2) // Estimate safety constraints

8: b�i,`
safe(z) � � z

>bµi,` + kzkA(�`)�1

q
⌧
�1
` log(4m|Z|`2

�) // Safety gap estimates
// Form set of arms guaranteed to be safe

9:

Y`
⇢
z 2 Z : 8cd

⇣
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))
⌘

+ 8(cd + ce)✏` b�i,`
safe(z), 8i 2 [n]

�
[Y`�1

// Refine estimates of optimality gaps
10: {b�`(z)}z2Z RAGE✏

⇣
Z,Y`, ✏`,

�
4`2 , {b�safe(z) maxj p(�b�j,`

safe(z))}z2Z

⌘

// Form set of arms guaranteed to be at most ✏-unsafe
11:

Yend
⇢
z 2 Z : 8cd

⇣
min
j

|b�j,◆✏
safe(z)| +max

j
p(�b�j,◆✏

safe(z)) + p(b�◆✏(z))
⌘

+ 8(cd + ce)✏� cg✏ b�i,◆✏
safe(z), 8i 2 [n]

�

// Find ✏-good arm out of ✏-safe arms
12: {b�end(z)}z2Yend RAGE✏(Yend,Yend, ✏, �)

13: return bz = argminz2Yend
b�end(z)

D Safe Best-Arm Identification
D.1 Preliminaries
In general we want to consider multiple safety constraints, and let m denote the number of constraints.
In such settings, we will denote �i

safe(z) the safety gap for safety constraint i.

Define
e�`(z) := ✓

>

⇤
z � min

y2Y`

✓
>

⇤
y.

D.2 Algorithm and Main Result
Theorem 14 (Full version of Theorem 1). With probability at least 1� 2�, Algorithm 1 returns an
arm bz such that

bz>✓⇤ � (z⇤)
>
✓⇤ � ✏, �safe(bz) � �✏ (10)

and terminates after collecting at most

C ·
◆✏X

`=1

inf
�24X

max
z2Z

kzk2A(�)�1 · log(4m|Z|`2

�)
⇣
minj |�j

safe(z)| +maxj p(��j
safe(z)) + p(�✏`�1(z)) + ✏`

⌘2

26

+ C log
1

✏
·

◆✏X

`=1

inf
�24X

max
z2Z

kz � z⇤k2A(�)�1 · log(8|Z|
2 log4(1/✏)

�)

(maxj p(��j
safe(z)) + p(�✏`(z)) + ✏`)2

+ C0

samples for a universal constant C, C0 = poly log(1✏ , |Z|) · log 1
� .

D.3 Estimating the Safety Value
Lemma 15. Let Esafe denote the event that, for all `, z 2 Z , i 2 [m]:

|z>(bµi,` � µ
i
⇤
)|

s

8kzk2A(�`)�1 ·
log(4m|Z|`2

�)

⌧`
.

Then Pr[Esafe] � 1� �.

Proof. This follows directly from Proposition 7 and a union bound, as in Lemma 9.

Lemma 16. On Esafe, for all z 2 Z , i 2 [m], and all `,

|b�i,`
safe(z)��i

safe(z)| 3cd

✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

◆
+ 3(cd + ce)✏`.

Proof. By construction, we have that

max
z2Z

�cd
✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z)) + ✏`

◆
+

vuutkzk2A(�`)�1 · log(4m|Z|`2

�)

⌧`
 ce✏`.

This implies that, for all z 2 Z ,
vuutkzk2A(�`)�1 · log(4m|Z|`2

�)

⌧`
 min

j
cd|b�j,`�1

safe (z)| +max
j

cdp(�b�j,`�1
safe (z)) + cdp(b�`�1(z)) + (cd + ce)✏`.

On Esafe, we have

|b�i,`
safe(z)��i

safe(z)|

vuut
8
kzk2A(�`)�1 · log(4m|Z|`2

�)

⌧`

 min
j

3cd|b�j,`�1
safe (z)| +max

j
3cdp(�b�j,`�1

safe (z)) + 3cdp(b�`�1(z)) + 3(cd + ce)✏`

which proves the result.

D.4 Tying Together Safety Estimation with Optimality Estimation
Definition D.1 (Optimality Good Event). Let E`

RAGE✏ denote the success event of RAGE✏ when called
at the `th epoch, and ERAGE✏ := [`E`

RAGE✏ .

Lemma 17. On the event Esafe \ ERAGE✏ , we have that:

1. For all ` ◆✏, y 2 Y`, and i 2 [m], y>µ⇤,i � .

2. For all ` and z 2 Z , e�`�1(z) e�`(z).

Proof. By Lemma 16, we have that

b�i,`
safe(z)� 3cd

✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

◆
� 3(cd + ce)✏` �i

safe(z).

Thus, if the inclusion condition of Y` is met, it must be the case that �i
safe(z) � 0 for all i.

The second conclusion follows directly since Y`�1 ✓ Y`.

27

Lemma 18 (Key Estimation Error Bound). On the event Esafe \ ERAGE✏ , for all z 2 Z , `, and i, we
have

|b�`(z)� e�`(z)| c3

✓
✏` + p(e�`(z)) + max

j
p(��j

safe(z))

◆

|b�i,`
safe(z)��i

safe(z)| c4

✓
✏` + p(e�`(z)) + min

j
|�j

safe(z)| +max
j

p(��j
safe(z))

◆
.

Proof. We prove this by induction. Assume that the above inequalities hold at epoch ` � 1. On
Esafe \ ERAGE✏ , by Lemma 12 and Lemma 16, we have

|b�`(z)� e�`(z)| c1(✏` + p(e�`(z)) + max
j

p(�b�j,`�1
safe (z)))

|b�i,`
safe(z)��i

safe(z)| c2(✏` + p(b�`�1(z)) + min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z))).

By the inductive hypothesis, we can bound

p(b�`�1(z)) p

✓
e�`�1(z) + c3(✏`�1 + p(e�`�1(z)) + max

j
p(��j

safe(z)))

◆

 (1 + c3)p(e�`�1(z)) + c3✏`�1 +max
j

c3p(��j
safe(z))

 (1 + c3)p(e�`(z)) + 2c3✏` +max
j

c3p(��j
safe(z))

where the last inequality follows since, by Lemma 17, e�`�1(z) e�`(z).

Furthermore, again applying the inductive hypothesis,

b�i,`�1
safe (z) �i

safe(z) + c4(✏`�1 + p(e�`�1(z)) + min
j

|�j
safe(z)| +max

j
p(��j

safe(z)))

 �i
safe(z) + 2c4✏` + c4p(e�`(z)) + min

j
c4|�j

safe(z)| +max
j

c4p(��j
safe(z))

 �i
safe(z) + 2c4✏` + c4p(e�`(z)) + c4|�i

safe(z)| +max
j

c4p(��j
safe(z)).

Similarly,

p(�b�i,`�1
safe (z)) p

✓
��i

safe(z) + 2c4✏` + c4p(e�`(z)) + min
j

c4|�j
safe(z)| +max

j
c4p(��j

safe(z))

◆

 p

✓
��i

safe(z) + min
j

c4|�j
safe(z)|

◆
+ 2c4✏` + c4p(e�`(z)) + max

j
c4p(��j

safe(z))

 p
�
��i

safe(z) + c4|�i
safe(z)|

�
+ 2c4✏` + c4p(e�`(z)) + max

j
c4p(��j

safe(z)).

Note that if �i
safe(z) 0, then

p(��i
safe(z) + c4|�i

safe(z)|) = p(��i
safe(z)� c4�

i
safe(z)) = (1 + c4)p(��i

safe(z))

and if �i
safe(z) > 0, then for c4 < 1, ��i

safe(z) + c4|�i
safe(z)| 0, so

p(��i
safe(z) + c4|�i

safe(z)|) = 0 = (1 + c4)p(��i
safe(z)).

Thus,

p(�b�i,`�1
safe (z)) (1 + c4)p(��i

safe(z)) + 2c4✏` + c4p(e�`(z)) + max
j

c4p(��j
safe(z)).

Combining these inequalities, it follows that

|b�i,`
safe(z)��i

safe(z)| c2

✓
✏` + p(b�`�1(z)) + min

j
|b�j,`�1

safe (z)| +max
j

p(�b�j,`�1
safe (z))

◆

 c2(1 + 2c3 + 4c4)✏` + c2(1 + c3 + 2c4)p(e�`(z))

28

+ c2(1 + c3 + 3c4)max
j

p(��j
safe(z)) + c2(1 + c4)min

j
|�j

safe(z)|

and

|b�`(z)� e�`(z)| c1(✏` + p(e�`(z)) + max
j

p(�b�j,`�1
safe (z)))

 c1(1 + 2c4)✏` + c1(1 + c4)p(e�`(z)) + c1(1 + 2c4)max
j

p(��j
safe(z)).

This proves the inductive hypothesis, as long as

c1(1 + 2c4) c3, c2(1 + 2c3 + 4c4) c4. (11)

For the base case, we need to show that

|b�0(z)� e�0(z)| c3(✏0 + p(e�0(z)) + max
j

p(��j
safe(z)))

|b�0
safe(z)��safe(z)| c4(✏0 + p(e�0(z)) + min

j
|�j

safe(z)| +max
j

p(��j
safe(z))).

By construction, b�0(z) = b�0
safe(z) = 0. Thus, it suffices to show |e�0(z)| c3✏0 and |�safe(z)|

c4✏0. However, both of these are true by our choice of ✏0.

Lemma 19. On the event Esafe \ ERAGE✏ , for all z 2 Z and all `, we will have

e�`(z) � �✏`(z) where �✏`(z) = max
y2Z : ✏`mini �i

safe(y)
y
>
✓⇤ � z

>
✓⇤.

Proof. By definition, we will have z 2 Y` if

8cd

✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

◆
+ 8(cd + ce)✏` b�i,`

safe(z).

The following claim allows us to obtain a sufficient condition to guarantee z 2 Y`.

Claim D.1. On the event Esafe \ ERAGE✏ ,

min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

 2(c3 + 2c4)✏` + (1 + c3 + 2c4)p(e�`(z)) + (1 + 2c4)min
j

|�j
safe(z)| + (1 + c3 + 2c4)max

j
p(��j

safe(z)).

Proof of Claim D.1. By Lemma 17 and Lemma 18, we can bound

min
j

|b�j,`�1
safe (z)| (1 + c4)min

j
|�j

safe(z)| + 2c4✏` + c4p(e�`(z)) + c4 max
j

p(��j
safe(z))

max
j

p(�b�j,`�1
safe (z)) (1 + c4)max

j
p(��j

safe(z)) + 2c4✏` + c4p(e�`(z)) + c4 min
j

|�j
safe(z)|

p(b�`�1(z)) (1 + c3)p(e�`(z)) + 2c3✏` + c3 max
j

p(��j
safe(z)).

The claim follows by summing these upper bounds.

Thus, by Claim D.1, we can bound

3cd

✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

◆
+ 3(cd + ce)✏`

 3(cd + ce + 2cdc3 + 4cdc4)✏` + 3cd(1 + c3 + 2c4)p(e�`(z))

+ 3cd(1 + 2c4)min
j

|�j
safe(z)| + 3cd(1 + c3 + 2c4)max

j
p(��j

safe(z)).

Furthermore, by Lemma 18,

�i
safe(z)� c4

✓
✏` + p(e�`(z)) + min

j
|�j

safe(z)| +max
j

p(��j
safe(z))

◆
 b�i,`

safe(z)

29

It follows that a sufficient condition for z 2 Y` is

(3cd + 3ce + 6cdc3 + 12cdc4 + c4)

✓
✏` + p(e�`(z)) + min

j
|�j

safe(z)| +max
j

p(��j
safe(z))

◆

 �i
safe(z), 8i 2 [m].

(12)

If y` = argmaxy2Z : ✏`mini �i
safe(y)

y
>
✓⇤ is in Y`, then we are done. Assume then that y` 62 Y`. By

construction, since �i
safe(y`) > 0 for all i, maxj p(��j

safe(z)) = 0. Using that (12) is a sufficient
condition for inclusion in Y`, this implies that

9i 2 [m] s.t. (3cd + 3ce + 6cdc3 + 12cdc4 + c4)

✓
✏` + p(e�`(y`)) + min

j
|�j

safe(y`)|
◆

> �i
safe(y`).

which implies

9i 2 [m] s.t. (3cd + 3ce + 6cdc3 + 12cdc4 + c4)
⇣
✏` + p(e�`(y`)) + |�i

safe(y`)|
⌘
> �i

safe(y`).

(13)

By construction, though, �i
safe(y`) � ✏`. If we assume that

3cd + 3ce + 6cdc3 + 12cdc4 + c4 1/4, (14)

then (13) can only hold if p(e�`(y`)) > 0. This implies that maxy2Y` y
>
✓⇤ > y

>

` ✓⇤. Thus, in this
case,

e�`(z) = max
y2Y`

y
>
✓⇤ � z

>
✓⇤ > y

>

` ✓⇤ � z
>
✓⇤ = �✏`(z)

which proves the result.

Lemma 20. On Esafe \ ERAGE✏ , for all z 2 Yend we have

�i
safe(z) � �cg✏, 8i 2 [m],

b�i,◆✏
safe(z) � (3cd + 3ce � cg)✏, 8i 2 [m].

Furthermore, z⇤ 2 Yend.

Proof. Recall that

Yend = {z 2 Z : 3cd

✓
min
j

|b�j,◆✏
safe(z)| +max

j
p(�b�j,◆✏

safe(z)) + p(b�◆✏(z))

◆

+ 3(cd + ce)✏� cg✏ b�i,◆✏
safe(z), 8i 2 [m]}

On Esafe, we have

b�i,◆✏
safe(z) �i

safe(z) + 3cd

✓
min
j

|b�j,◆✏
safe(z)| +max

j
p(�b�j,◆✏

safe(z)) + p(b�◆✏(z))

◆
+ 3(cd + ce)✏

so it follows that if z 2 Yend, then

�cg✏ �i
safe(x).

To see that z⇤ 2 Yend, note that by definition of Yend, using a calculation analogous to (12), a
sufficient condition for z 2 Yend is

(3cd + 3ce + 6cdc3 + 12cdc4 + c4 � cg)✏+ (3cd + 3cdc3 + 6cdc4 + c4)p(e�◆✏(z))

+ (3cd + 6cdc4 + c4)min
j

|�j
safe(z)| + (3cd + 3cdc3 + 6cdc4 + c4)max

j
p(��j

safe(z))

 �i
safe(z), 8i 2 [m].

30

By definition of z⇤ and since, by Lemma 17, all z 2 Y◆✏ are safe, we have �✏◆✏ (z⇤) 0. Furthermore,
by definition we also have �j

safe(z⇤) � 0 for all j, so p(��j
safe(z⇤)) = 0. Thus, assuming that

3cd + 3ce + 6cdc3 + 12cdc4 + c4 � cg 0 (15)

a sufficient condition to guarantee z⇤ 2 Yend is that

(8cd + 16cdc4 + c4)min
j

|�j
safe(z⇤)| �i

safe(z⇤), 8i 2 [m].

However, as long as

3cd + 6cdc4 + c4 1, (16)

this is true, since by definition �i
safe(z⇤) � 0.

D.5 Algorithm Correctness and Sample Complexity
Lemma 21 (Correctness). On Esafe \ ERAGE✏ , we will have that

bz>✓⇤ � (z⇤)
>
✓⇤ �

c3(1 + cg)

1� c3
✏, �i

safe(bz) � �cg✏, 8i 2 [m].

Proof. We choose bz to be any z 2 Yend such that b�end(z) = 0. By Lemma 20, we have that
�i

safe(bz) � �cg✏ for all i 2 [m]. If e�end(bz) 0, we are done, since by Lemma 20, z⇤ 2 Yend, so
bz>✓⇤ � (z⇤)>✓⇤. Assume that e�end(bz) > 0. By Lemma 18, we have that

e�end(bz) c3✏+ c3p(e�end(bz)) + c3 max
j

p(��j
safe(bz)).

By Lemma 20, since bz 2 Yend, p(��j
safe(bz)) cg✏ for all j, so we can bound

e�end(bz) c3(1 + cg)✏+ c3p(e�end(bz)) = c3(1 + cg)✏+ c3
e�end(bz).

We can rearrange this as

e�end(bz) c3(1 + cg)

1� c3
✏

which proves the result, since, by Lemma 20, �end(bz) = maxy2Yend y
>
✓⇤ � bz>✓⇤ � (z⇤)>✓⇤ �

bz>✓⇤.

Lemma 22. On ERAGE✏ \ Esafe, the total complexity of Algorithm 1 is bounded by

C ·
◆✏X

`=1

inf
�24X

max
z2Z

kzk2A(�)�1 · log(4m|Z|`2

�)
⇣
minj |�j

safe(z)| +maxj p(��j
safe(z)) + p(�✏`�1(z)) + ✏`

⌘2 + 4◆✏ log(
4m|Z|◆2✏

�)

for an absolute constant C.

Proof. Applying the same argument as in Claim D.1 but in the opposite direction, we have

min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z))

� �2(c3 + 2c4)✏` + (1� c3 � 2c4)p(e�`(z)) + (1� 2c4)min
j

|�j
safe(z)| + (1� c3 � 2c4)max

j
p(��j

safe(z)).

We assume that c3, c4, and c0 are chosen such that

1� 2c3 � 4c4 � c0, (17)

which allows us to bound:

inf
�24X

max
z2Z

�cd
✓
min
j

|b�j,`�1
safe (z)| +max

j
p(�b�j,`�1

safe (z)) + p(b�`�1(z)) + ✏`

◆
+

s
kzk2A(�)�1 · log(4m|Z|`2

�)

⌧

31

 inf
�24X

max
z2Z

�cdc0
✓
min
j

|�j
safe(z)| +max

j
p(��j

safe(z)) + p(e�`�1(z)) + ✏`

◆
+

s
kzk2A(�)�1 · log(4m|Z|`2

�)

⌧
.

It follows that if, for all z 2 Z ,

⌧ �
kzk2A(�)�1

⇣
cdc0 minj |�j

safe(z)| + cdc0 maxj p(��j
safe(z)) + cdc0p(e�`�1(z)) + (cdc0 + ce)✏`

⌘2 · log 4m|Z|`2

�

we will have that this is less than ce✏`. Since we can take the best-case � 2 4X , and since ⌧` is
always within a factor of 2 of the optimal, it follows that

⌧` inf
�24X

max
z2Z

2kzk2A(�)�1 · log 4m|Z|`2

�⇣
cdc0 minj |�j

safe(z)| + cdc0 maxj p(��j
safe(z)) + cdc0p(e�`�1(z)) + (cdc0 + ce)✏`

⌘2

+ 4 log 4m|Z|`2

�

The result then follows by summing over epochs and lower bounding e�`�1(z) by �✏`�1(z) using
Lemma 19, and assuming that

cdc0 + ce � c0. (18)

Proof of Theorem 14. By Lemma 15 we have that Esafe holds with probability at least 1 � �. By
Lemma 9, we have that E`

RAGE✏ holds with probability at least 1 � �/(4`2). It follows then that
Esafe [([`E`

RAGE✏) holds with probability at least

1� � �
X

`

�

4`2
� 1� 2�.

Assume henceforth that Esafe [([`E`
RAGE✏) holds. Equation (10) follows by Lemma 21. The total

number of samples collected on Algorithm 1 can be bounded by Lemma 22. It remains to bound the
total number of samples used by RAGE✏.

By Lemma 13, at epoch ` RAGE✏ will collect at most

Cdlog 2

cf ✏`
e · inf

�24X

max
z2Z

kz � y
`
?k2A(�)�1 · log(8|Z|

2 log4(1/✏)
�)

(maxj p(�b�j,`�1
safe (z)) + p(e�`(z)) + ✏`)2

+ 8dlog 2
cf ✏
e log(

4|Z|
2
dlog

2
cf ✏

e
2

�)

samples, where y
`
? = argmaxy2Y`

y
>
✓⇤. Assume that maxj p(��j

safe(z)) > 0, then we can upper
bound minj |�j

safe(z)| maxj p(��j
safe(z)), and by Lemma 18 we can lower bound

max
j

p(�b�j,`�1
safe (z)) � (1� 2c4)max

j
p(��j

safe(z))� c4p(e�`�1(z))� c4✏`�1.

Assume instead that maxj p(��j
safe(z)) = 0. Then again by Lemma 18:

max
j

p(�b�j,`�1
safe (z)) � 0 = max

j
p(��j

safe(z)) � (1� 2c4)max
j

p(��j
safe(z))� c4p(e�`�1(z))� c4✏`�1.

By Lemma 17, it follows that

max
j

p(�b�j,`�1
safe (z)) + p(e�`(z)) + ✏`

� (1� 2c4)max
j

p(��j
safe(z)) + (1� c4)p(e�`(z)) + (1� 2c4)✏`.

By definition and Lemma 17 and Lemma 20 for all ` including ` = end, we can bound
p(��j

safe(y
`
?)) cg✏. Furthermore, by definition p(e�`(y`?)) = 0. Putting all of this together,

we have:

inf
�24X

max
z2Z

kz � y
`
?k2A(�)�1 · log(8|Z|

2 log4(1/✏)
�)

(maxj p(�b�j,`�1
safe (z)) + p(e�`(z)) + ✏`)2

32

 inf
�24X

max
z2Z

kz � y
`
?k2A(�)�1 · log(8|Z|

2 log4(1/✏)
�)

((1� 2c4)maxj p(��j
safe(z)) + (1� c4)p(e�`(z)) + (1� 2c4)✏`)2

 inf
�24X

max
z2Z

2kz � z⇤k2A(�)�1 · log(8|Z|
2 log4(1/✏)

�)

((1� 2c4)maxj p(��j
safe(z)) + (1� c4)p(e�`(z)) + (1� 2c4)✏`)2

+ inf
�24X

2kz⇤ � y
`
?k2A(�)�1 · log(8|Z|

2 log4(1/✏)
�)

((1� 2c4)maxj p(��j
safe(y

`
?)) + (1� c4)p(e�`(y`?)) + (1� 2c4 � cg)✏`)2

 inf
�24X

max
z2Z

4kz � z⇤k2A(�)�1 · log(8|Z|
2 log4(1/✏)

�)

((1� 2c4)maxj p(��j
safe(z)) + (1� c4)p(e�`(z)) + (1� 2c4 � cg)✏`)2

As long as

1� 2c4 � cg � c0, (19)

summing over the epochs and lower bounding e�`(z) by �✏`(z) via Lemma 19 gives the result.
Finally, the settings of the constants follows from Lemma 8.

D.6 Proofs of Corollaries to Theorem 1
Proof of Corollary 1. If m = 1, µ⇤,1 = 0, and � = 1, then we have �safe(z) = 1 for each z, and
�e✏(z) = �(z) for ✏ 1. The result follows directly from this and some algebra.

Proof of Corollary 2. We can trivially upper bound the complexity given in Theorem 1 by

C · inf
�24X

max
z2Z

kzk2A(�)�1 · log(m|Z|

�)

✏2
+ C · inf

�24X

max
z2Z

kz � z⇤k2A(�)�1 · log(|Z|

�)

✏2
+ C0

 C · inf
�24X

max
z2Z

kzk2A(�)�1 · log(m|Z|

�)

✏2
+ C0.

In the case when X = Z , we can bound inf�24X
maxz2Z kzk2A(�)�1 d by Kiefer-Wolfowitz [26],

which proves the result.

E Computationally Efficient Optimization
Throughout, we will let R(z; ⇠1, . . . , ⇠n) denote some generic weighted risk estimate of the form

R(z; ⇠1, . . . , ⇠n) =
TX

t=1

ft(⇠1, . . . , ⇠n)I{z(ut) 6= vt}

for some weights ft(⇠1, . . . , ⇠n) and observations (ut, vt). The exact setting of R will change from
line to line—we simply use it as a stand-in for an objective that a cost-sensitive-classification oracle
can efficiently minimize. We will also use f(⇠1, . . . , ⇠n) to refer to some generic function (the
particular form of which is not important).

Lemma E.1. Consider some z, ez 2 4H. Denote

⇢�(h, h
0) = EU⇠⌫

I{h(U) 6= h

0(U)}
�(U)/⌫(U)

�
= kh� h

0k2A(�)�1

and overload notation so that z =
P

h2H
zhh denotes the feature vector for the mixed classifier z.

Then,

X

h,h02H

zhezh0⇢�(h, h
0) = EU⇠⌫

(z(U)� ez(U))2

�(U)/⌫(U)

�
= kz � ezk2A(�)�1 .

33

Proof. Note that

⇢�(h, h
0) = EU⇠⌫

I{h(U) 6= h

0(U)}
�(U)/⌫(U)

�
= EU⇠⌫

|h(U)� h

0(U)|
�(U)/⌫(U)

�
= EU⇠⌫

(h(U)� h

0(U))2

�(U)/⌫(U)

�

where the final equality holds because |h(U)� h
0(U)| is always either 0 or 1. Thus,

X

h,h02H

zhezh0⇢�(h, h
0) =

X

h,h02H

zhezh0EU⇠⌫

(h(U)� h

0(U))2

�(U)/⌫(U)

�

= EU⇠⌫

"P
h,h02H

zhezh0(h(U)� h
0(U))2

�(U)/⌫(U)

#

= EU⇠⌫

P
h,h02H

zhezh0(h(U) + h
0(U)� 2h(U)h0(U))

�(U)/⌫(U)

�
. (20)

However, X

h,h02H

zhezh0h(U) =
X

h2H

zhh(U) = z(U),
X

h,h02H

zhezh0h
0(U) = ez(U)

and X

h,h02H

zhezh0h(U)h0(U) = (
X

h2H

zhh(U))(
X

h02H

ezh0h
0(U)) = z(U)ez(U).

Thus,

(20) = EU⇠⌫

(z(U)� ez(U))2

�(U)/⌫(U)

�

which proves the first equality. To prove the second, recall that [h]u = ⌫(u)h(u), so [z]u =P
h2H

zh[h]u = ⌫(u)z(u). It follows that,

kz � ezk2A(�)�1 =
X

u

⌫(u)2

�(u)
(z(u)� ez(u))2 = EU⇠⌫

(z(U)� ez(U))2

�(U)/⌫(U)

�

which proves the second equality.

E.1 Computational Efficiency of RAGE✏

RAGE✏ requires solving the optimization

inf
�24X

max
z24H

min
↵2A

�ca(p(�b�safe(z)) + p(b�`�1(z)) + ✏`) + ↵kz � by`�1k2A(�)�1 +
log(2|Z|2|A|`2/�)

↵⌧
.

(21)
Here we take ⌧ to be fixed, and recall that

by` argmin
y2Y

min
↵2A

eR↵
` (y)� eR↵

` (by`�1) + 2↵ky � by`�1k2A(�`)�1 +
2 log(2|Z|2|A|`2/�)

↵⌧`

b�`(y) min
↵2A

eR↵
` (y)� eR↵

` (by`) + ↵ky � by`k2A(�`)�1 +
log(2|Z|2|A|`2/�)

↵⌧`
.

Furthermore, Y will be a set of the form
`0[

k=1

Yk =
`0[

k=1

⇢
z 2 Z : c(✏k + p(b�k�1(z)) + max

j2[n]
p(�b�j,k�1

safe (z)) + min
j2[n]

|b�j,k�1
safe (h)|) b�i,k

safe(h), 8i 2 [n]

�

Recall also that

kh� h
0k2A(�)�1 = EU⇠⌫

I{h(U) 6= h

0(U)}
(9�(U)/10 + 1/10d)/⌫(U)

�
=
X

U2X

⌫(U)2

9�(U)/10 + 1/10d
I{h(U) 6= h

0(U)}

and

eR↵
` (h) =

1

⌧`

⌧X̀

t=1

1

wt + ↵
I{h(ut) 6= vt}.

For z 2 4H, we denote eR↵
` (z) =

P
h2H

zh
eR↵
` (h) and R(z;↵) =

P
h2H

zhR(h;↵). Finally, we
assume that b�safe(z) = min↵2A R(z;↵) + f(↵).

34

E.1.1 Solving for by`
Using Lemma E.1, we can write the optimization for by` as

min
k2[`0]

min
y2Yk

min
↵2A

1

⌧`

⌧X̀

t=1

1

wt + ↵

X

h2H

yhI{h(ut) 6= vt} + ↵

X

h,h02H

yhby`�1,h0

X

U2X

⌫(U)2

9�`(U)/10 + 1/10d
I{h(U) 6= h

0(U)}

� eR↵
` (by`�1) +

log(2|Z|2|A|`2/�)
↵⌧`

We can rewrite

X

h,h02H

yhby`�1,h0

X

U2X

⌫(U)2

9�`(U)/10 + 1/10d
I{h(U) 6= h

0(U)} =
X

h2H

yh

kby`�1k0|X |X

i=1

wiI{h(ui) 6= vi}

for some weights wi. It follows that if kby`�1k0 is polynomial in problem parameters then the
optimization for by` can be written as

min
k2[`0]

min
y2Yk

min
↵2A

R(y;↵) + f(↵)

for R(y;↵) a CSC loss over only polynomially many points (as well as linear in y and convex in ↵),
and f(↵) convex in ↵. Note also that, for any y, we can upper bound R(y;↵) O(1

↵ + d↵). Here
Yk a set of the form
(
z 2 4H :

X

h2H

zhc

⇣
✏k + p(b�k�1(h)) + max

j2[n]
p(�b�j,k�1

safe (h)) + min
j2[n]

|b�j,k�1
safe (h)|

⌘

X

h2H

zh
b�i,k
safe(h), 8i 2 [n]

)

by` will be the element in Yk minimizing the, for the k achieving the minimum. The dual of this
problem has the form

min
k2[`0]

min
z24H

min
↵2A

max
µi�0,i2[n]

R(z;↵) + f(↵)

+
nX

i=1

µi

X

h2H

zhc

⇣
✏k + p(b�k�1(h)) + max

j2[n]
p(�b�j,k�1

safe (h)) + min
j2[n]

|b�j,k�1
safe (h)|

⌘
�
X

h2H

zh
b�i,k
safe(h)

!
.

Note that we can swap the min over ↵ and z without issue. Furthermore, for a fixed µ, the objective
is linear in z, and for a fixed z, the objective is linear in µ. By the minimax theorem, we can then
swap the min and max to obtain the equivalent optimization:

min
k2[`0]

min
↵2A

max
µi�0,i2[n]

min
z24H

R(z;↵) + f(↵)

+
nX

i=1

µi

X

h2H

zhc

⇣
✏k + p(b�k�1(h)) + max

j2[n]
p(�b�j,k�1

safe (h)) + min
j2[n]

|b�j,k�1
safe (h)|

⌘
�
X

h2H

zh
b�i,k
safe(h)

!
.

We can simply enumerate over k and ↵, as there are a finite number of each of these constraints. For
a fixed k and ↵, to solve the inner maxmin problem, we can apply the approach proposed in [1]. In
particular, we alternate between running the exponential gradient algorithm for the µ player, and
computing the best-response for the z player. The update to the µ player is trivial, as the problem is
simply linear in µ (in practice, as in [1], we will also upper bound the domain of µi by some value B,
to ensure this is finite).

Computing the best-response for the z player (with µ fixed) is slightly trickier. Ignoring all other
parameters, which are all currently fixed, the minimization over z can be written as

min
z24H

X

h2H

zh

X

t

atI{h(ut) 6= ot}

+
nX

i=1

µi

X

h2H

zhc

⇣
✏k + p(b�k�1(h)) + max

j2[n]
p(�b�j,k�1

safe (h)) + min
j2[n]

|b�j,k�1
safe (h)|

⌘
�
X

h2H

zh
b�i,k
safe(h)

!
.

= min
z24H

X

h2H

zh

✓X

t

atI{h(ut) 6= ot}

35

+
X

i2[n]

ci

⇣
✏k + p(b�k�1(h)) + max

j2[n]
p(�b�j,k�1

safe (h)) + min
j2[n]

|b�j,k�1
safe (h)|� b�i,k

safe(h)
⌘◆

.

Now note that maxj2[n] p(�b�j,k�1
safe (z)) = supe�24n

P
j2[n]

e�jp(�b�j,k�1
safe (z)), and similarly for

minj2[n] |b�j,k�1
safe (z)|. Using this, we can rewrite the above optimization as

min
z24H

max
e�1h24n,h2H

min
e�2h24n,h2H

X

h2H

zh

✓X

t

atI{h(ut) 6= ot}

+
X

i2[n]

ci

⇣
✏k + p(b�k�1(h)) +

X

j2[n]

e�1hj p(�b�j,k�1
safe (h)) +

X

j2[n]

e�2hj |b�j,k�1
safe (h)|� b�i,k

safe(h)
⌘◆

.

We also have:

p(�b�j,k�1
safe (z)) = max

�2[0,1]
�� b�j,k�1

safe (z), |b�j,k�1
safe (z)| = max

�2[�1,1]
� b�j,k�1

safe (z).

So we can further simplify the above to:

min
z24H

max
e�1h24n,h2H

min
e�2h24n,h2H

max
�h
1 ,�

hj
2 2[0,1],�hj

3 2[�1,1],h2H

X

h2H

zh

✓X

t

atI{h(ut) 6= ot}

+
X

i2[n]

ci

⇣
✏k + �

h
1
b�k�1(h)�

X

j2[n]

e�1hj �
hj
2
b�j,k�1
safe (h) +

X

j2[n]

e�2hj �
hj
3
b�j,k�1
safe (h)� b�i,k

safe(h)
⌘◆

.

Note that the objective is linear in � and e�2, and both have continuous, compact, convex constraint
sets, so we can swap the min and max to get that the above is equivalent to

min
z24H

max
e�1h24n,h2H

max
�h
1 ,�

hj
2 2[0,1],�hj

3 2[�1,1],h2H

min
e�2h24n,h2H

X

h2H

zh

✓X

t

atI{h(ut) 6= ot}

+
X

i2[n]

ci

⇣
✏k + �

h
1
b�k�1(h)�

X

j2[n]

e�1hj �
hj
2
b�j,k�1
safe (h) +

X

j2[n]

e�2hj �
hj
3
b�j,k�1
safe (h)� b�i,k

safe(h)
⌘◆

.

We can write this in the form

min
z24H

max
e�1,�

g(z; e�1,�) (22)

for

g(z; e�1,�) := min
e�2h24n,h2H

X

h2H

zh

✓X

t

atI{h(ut) 6= ot}

+
X

i2[n]

ci

⇣
✏k + �

h
1
b�k�1(h)�

X

j2[n]

e�1hj �
hj
2
b�j,k�1
safe (h) +

X

j2[n]

e�2hj �
hj
3
b�j,k�1
safe (h)� b�i,k

safe(h)
⌘◆

.

To solve this, we will apply a version of Frank-Wolfe that handles adversarial losses to the outer
player (see Section 4.2 of [15]), and will play best response for the inner player.

From the perspective of the outer player, at iteration t of the algorithm given in [15], they must
optimize the function

ft(z) = g(z; e�1t ,�t) =
X

h2H

zhch(e�1t ,�t)

for some ch(e�1t ,�t). Note that this is L = maxh |ch(e�1t ,�t)| Lipschitz in the `1-norm, and that we
can bound this L for all t by something like O(1

↵ + d↵+ n). The algorithm introduced in Section
4.2 of [15] computes the standard FW update

ezt = argmin
z24H

rFt(zt)
>
z, zt+1 = (1� t

�1/4)zt + t
�1/4ezt

36

for

Ft(z) =
1

t

tX

⌧=1

rf⌧ (z⌧)>z + �tkz � z1k22

for �t = (L/D)t�1/4 for D = maxz1,z224H
kz1 � z2k1 (note that in that work, the function seems

to be Lipschitz in the `2 norm while here we use `1—this does not seem to change their result at all).
It is shown in [15] that running this procedure we obtain the bound, for any z 2 4H,

TX

t=1

(ft(zt)� ft(z)) 57LDT
3/4

.

It follows that if we are able to compute ezt efficiently, and if the max player plays best response (and
the best response can be computed efficiently), using analysis similar to that in [1], we can show that
an approximate solution to (22) will be found in a polynomial number of iterations.

Computing the Best Response for e�1,�. For the inner player, they must solve

max
e�1,�

g(zt; e�1,�).

Assume that keztk0 m for each t, and that kz1k0 = 1. Then zt will be (mt+ 1)-sparse, so the sum
in g(zt; e�1,�) will contain at most (mt+ 1) values. Note that the optimization over �h and e�1h is
completely independent, so to compute the best-response, we need to solve the following problem at
most (mt+ 1) times:

max
e�1h24n

max
�h
1 ,�

hj
2 2[0,1],�hj

3 2[�1,1]
min

e�2h24n

X

i2[n]

ci

⇣
�
h
1
b�k�1(h)�

X

j2[n]

e�1hj �
hj
2
b�j,k�1
safe (h) +

X

j2[n]

e�2hj �
hj
3
b�j,k�1
safe (h)

⌘
.

The optimization over the first two terms is trivial and can be solved by enumerating. The third
term now is a maxmin problem, however, this can also be solved trivially as it is equivalent to
minj2[n] |b�j,k�1

safe (h)|. Note that each of these gap terms is themself the solution to an optimization
over ↵ 2 A, but that can be solved easily for each (since there are at most polynomial of them), so
they can be regarded as constants.

Thus, we conclude that the best response for e�1,� can be computed efficiently, assuming that
m is polynomial in problem parameters. Note that the values of �h and e�1h do not matter for
h 62 support(zt) do not matter to compute the best response, so we can set them to the same value
for all h 62 support(zt).

Computing ezt. It remains to show that we can efficiently find a near-optimal ezt such that keztk0 m.
The optimization for ezt will have the form

ezt = argmin
z24H

tX

⌧=1

rf⌧ (z⌧)>z + 2�t(zt � z1)
>
z

for

[rf⌧ (z⌧)]h = ch(e�1⌧ ,�⌧)

= min
e�2h24n

X

j

ajI{h(uj) 6= oj} +
X

i2[n]

ci

⇣
✏k + �

h
1⌧
b�k�1(h)�

X

j2[n]

e�1hj⌧ �
hj
2⌧
b�j,k�1
safe (h)

+
X

j2[n]

e�2hj �
hj
3⌧
b�j,k�1
safe (h)� b�i,k

safe(h)
⌘
.

Let Ct ✓ H denote the classifiers supported on zt and assume that z1 is only supported on a single
classifier h0. Note from our discussion on computing the best-response for the e�1 and � player, we
have that �h and e�1h are identical for all h 62 Ct. We can therefore rewrite the above objective as
(dropping the ⌧ subscript and denoting, e.g. �h

1 =
Pt

⌧=1 �
h
1⌧):

min
e�2h24n,h2H

X

h2H\Ct

zh

✓X

j

ajI{h(uj) 6= oj} +
X

i2[n]

ci

⇣
✏k + �1

b�k�1(h)�
X

j2[n]

e�1j�
j
2
b�j,k�1
safe (h)

37

+
X

j2[n]

e�2hj �
j
3
b�j,k�1
safe (h)� b�i,k

safe(h)
⌘◆

+
X

h2Ct

✓X

j

ajI{h(uj) 6= oj} +
X

i2[n]

ci

⇣
✏k + �

h
1⌧
b�k�1(h)�

X

j2[n]

e�1hj⌧ �
hj
2⌧
b�j,k�1
safe (h)

+
X

j2[n]

e�2hj �
hj
3⌧
b�j,k�1
safe (h)� b�i,k

safe(h)
⌘
+ 2�tzt

◆
� 2�tzh0 .

We will focus first on the sum over H\Ct. Note that b�k�1(h) and b�j,k
safe(h) are both of the form

min
↵2A

X

t

1

wt + ↵
I{h(ut) 6= ot} + ↵

X

t

ewtI{h(ut) 6= ot} +
c

↵
.

Given this, we can rewrite the minimization over the first term as (where the e↵ correspond to the gaps
that have negative coefficients, which is where the max comes from):

min
z24H

min
e�2h24n,h2H

min
↵h2Ak,h2H

max
e↵h2Ak,h2H

X

h2H\Ct

zh

✓
R(h;↵h

, e↵h
, e�2h) + f(↵h

, e�2h) + g(e↵h
, e�2h)

◆

for R convex in ↵, and concave in e↵, f convex in ↵, and g concave in e↵, and all functions are linear
in e�2. Normally A is a discrete set, but if we let eA be a continuous relaxation of it, we can rewrite
the above as

min
z24H

max
e↵h2Ak,h2H

min
e�2h24n,h2H

min
↵h2Ak,h2H

X

h2H\Ct

zh

✓
R(h;↵h

, e↵h
, e�2h) + f(↵h

, e�2h) + g(e↵h
, e�2h)

◆
.

To solve this we can again apply the FW algorithm of [15] with the max player playing best-response.
As before, as long as zt (where zt denotes the update for this inner optimization) is sparse, we can
efficiently compute the best-response for the e↵ player, since we only need to compute it for h 2 zt.
The FW-style update will then have the form

min
z24H

min
e�2h24n,h2H

min
↵h2Ak,h2H

X

h2H\Ct

zh

✓
R(h;↵h

, e↵h
t ,
e�2h) + f(↵h

, e�2h) + g(e↵h
t ,
e�2h)

◆

= min
e�2h24n,h2H

min
↵h2Ak,h2H

min
h2H\Ct

R(h;↵h
, e↵h

t ,
e�2h) + f(↵h

, e�2h) + g(e↵h
t ,
e�2h)

where the equality follows since we can always swap min, and since there will always be an optimal
solution supported on a single h. We can solve the inner min using a CSC oracle that is able to
optimize over a set H\Ct, and by enumerating e�2 and ↵ (since we can always find an optimal solution
supported on a single h, we can set e�2h,↵h identical for all h and will arrive at the same minimum).

This will converge in polynomially many steps, and will produce some zt0 which is m-sparse (for m
polynomial in parameters). It follows that zt0 is the near-optimal value for ezt supported on H\Ct. To
pick a final value for ezt, we can simply enumerate over the (polynomially many) h 2 Ct, compute
their loss values, and then pick the minimum out of those and the value achieved by zt0 . This
procedure will always return some ezt supported on at most polynomially many h, so m can be chosen
suitably to make the best-response of the max player efficient.

Putting all of this together, we can efficiently solve for by`.

E.1.2 Solving for �`
We turn now to solving the optimization (21). Using arguments similar to what we have already
shown, we have that

(21) = inf
�24X

max
z2Z

min
↵2A,↵2,...,↵p2A

max
�1,...,�m2B

R(z;↵,↵2, . . . ,↵p,�1, . . . ,�m)

+ 2↵
X

U2X

⌫(U)2

9�(U)/10 + 1/10d
I{z(U) 6= bz`�1(U)} + f(↵,↵2, . . . ,↵p,�1, . . . ,�m).

38

As before, we can simply enumerate over all possible choices of ↵ and �. For a fixed setting of ↵ and
�, to solving the inf over �, we can apply Mirror Descent. In this case we choose the mirror map to
be the negative entropy, which is strongly convex with respect to the `1 norm.

Given this, to solve this in a computationally efficient manner, all we need is that the objective is
convex (which it is) and Lipschitz with respect to the `1 norm. Let g(�) denote the objective of the
above optimization. By the Mean Value Theorem,

|g(�)� g(e�)| = rg((1� c)�+ ce�)>(�� e�)

for some c 2 [0, 1]. So, for any �, e� 2 4X , we can bound

|g(�)� g(e�)|

sup
�024X

krg(�0)k1

!
· k�� e�k1.

We have,

d

dt

X

U2X

⌫(U)2

9�(U)/10 + 1/10d+ 9t�0(U)/10
I{z(U) 6= bz`�1(U)}|t=0

=
X

U2X

��0(U)⌫(U)2

(9�(U)/10 + 1/10d)2
I{z(U) 6= bz`�1(U)}.

It follows that

sup
�024X

krg(�0)k1 100d2

so we can apply Mirror Descent to optimize the above with computational complexity scaling only
polynomially in problem parameters.

E.2 Computational Efficiency of BESIDE

The primary computational cost of BESIDE is incurred by calling RAGE✏, and solving the optimization
on Line 6 of Algorithm 1. We have already shown that RAGE✏ can be run in a computationally
efficient manner. The optimization on Line 6 has a form very similar to the optimization we solve in
RAGE✏, so the same argument and solution approach (applying Mirror Descent) allows us to compute
the optimal distribution, �`, here as well.

F Experimental details and additional results
F.1 Experimental details
All code was written in Python and run on a Intel Xeon 6226R CPU with 64 cores.

Algorithm 6 is the precise implementation of BESIDE using elimination. It largely resemble to
Algorithm 1, with the difference that it explicitly eliminates arms.

F.2 Additional results
We evaluate Algorithm 2 and the passive baseline on two other datasets. Recall that the passive
baseline selects points uniformly at randoms from the pool of examples X and then retrains the model
using the same Constrained Empirical Risk Minimization oracle (CERM).

Half circle dataset. We consider a two-dimensional half circle dataset, visualized on Figure 10.
We report in Figures 11 and 12 the precision and (respectively) the recall obtained when varying the
number of labels given to each method. The confidence intervals are obtained over 25 repetitions.
We observe that Algorithm 2 allows us to provide a classifier satisfying a given recall or precision in
far fewer queries. This is in line with the results of [16] on One Dimensional Thresholds, where the
sample complexity of the active strategy is O(log(n)) while the sample complexity of the passive
strategy is at least of order n.

39

Algorithm 6 Best Safe Arm Identification with Elimination
1: input: tolerance ✏, confidence �
2: ◆✏ dlog(1✏)e, Z0

active Z , Z0
safe ;

3: for ` = 1, 2, . . . , ◆✏ do
4: ✏` 2�`

5: Compute allocation XYsafe on Z`�1
active and sample from it ⌧` = O(XYsafe(Z`�1

active)/✏
2
`) times

6: bµ` RIPS({(xt, st,i)}⌧`t=1,Z,
�

2`2)

7: Set b�`
safe(z) � � z

>bµ` for all z 2 Z`�1
active and

eZ`
active = {z 2 eZ`�1

active : b�`
safe(z) 2 [�✏`, 2✏`]} eZ`

safe = {z 2 eZ`�1
active : b�`

safe(z) � 2✏`]}

8: Z`
active,Z`

safe RAGE-ELIM✏
⇣
eZ`

active [eZ`
safe [Z`�1

safe , eZ`
safe [Z`�1

safe , ✏`

⌘

9: Zfinal, ; RAGE-ELIM✏
⇣
Z`

active [Z`
safe,Z`

active [Z`
safe, ✏`

⌘

10: return Any arm in Zfinal.

Algorithm 7 RAGE-ELIM✏

1: input: active set Z , optimal set Y , tolerance ✏
2: ◆✏ dlog(1✏)e, Z0 Z , Y0 Y
3: for ` = 1, 2, . . . , ◆✏ do
4: ✏` 2�`

5: Compute allocation XYdi↵ on (Z`�1 [Y`�1
,Y`�1) and sample from it ⌧` = O(Z`�1 [

Y`�1
,Y`�1)/✏2`) times

6: b✓` RIPS({(xt, st,i)}⌧`t=1,Z,
�

2`2)

7: Set b�`(z) maxy2Y`�1 y
>b✓` � z

>b✓` for all z 2 Z [Y and

Z` = {z 2 Z`�1 : b�`(z) ✏`} Y` = {y 2 Y`�1 : b�`(y) ✏`]}

8: return Z`
,Y`

Figure 10: Half circle dataset. Figure 11: Precision Figure 12: Recall

40

