
Randomized Message-Interception Smoothing:
Gray-box Certificates for Graph Neural Networks

Yan Scholten1, Jan Schuchardt1, Simon Geisler1,
Aleksandar Bojchevski2 & Stephan Günnemann1

{y.scholten, j.schuchardt, s.geisler}@tum.de
bojchevski@cispa.de, s.guennemann@tum.de

1Dept. of Computer Science & Munich Data Science Institute, Technical University of Munich
2CISPA Helmholtz Center for Information Security

Abstract

Randomized smoothing is one of the most promising frameworks for certifying
the adversarial robustness of machine learning models, including Graph Neural
Networks (GNNs). Yet, existing randomized smoothing certificates for GNNs are
overly pessimistic since they treat the model as a black box, ignoring the underlying
architecture. To remedy this, we propose novel gray-box certificates that exploit
the message-passing principle of GNNs: We randomly intercept messages and
carefully analyze the probability that messages from adversarially controlled nodes
reach their target nodes. Compared to existing certificates, we certify robustness to
much stronger adversaries that control entire nodes in the graph and can arbitrarily
manipulate node features. Our certificates provide stronger guarantees for attacks
at larger distances, as messages from farther-away nodes are more likely to get
intercepted. We demonstrate the effectiveness of our method on various models and
datasets. Since our gray-box certificates consider the underlying graph structure, we
can significantly improve certifiable robustness by applying graph sparsification.1

1 Introduction

The core principle behind the majority of Graph Neural Networks (GNNs) is message passing –
the representation of a node is (recursively) computed based on the representations of its neighbors
(Gilmer et al., 2017). This allows for information to propagate across the graph, e.g. in a k-layer
GNN the prediction for a node depends on the messages received from its k-hop neighborhood. With
such models, if an adversary controls a few nodes in the graph, they can manipulate node features to
craft adversarial messages that in turn change the prediction for a target node.

Such feature-based adversarial attacks are becoming significantly stronger in recent years and pose a
realistic threat (Ma et al., 2020; Zou et al., 2021): Adversaries may arbitrarily manipulate features of
entire nodes in their control, for example in social networks, public knowledge graphs and graphs in
the financial and medical domains. Detecting such adversarial perturbations is a difficult unsolved
task even beyond graphs (Carlini and Wagner, 2017), meaning such attacks may go unnoticed.

How can we limit the influence of such adversarial attacks? We introduce a simple but powerful idea:
intercept adversarial messages. Specifically, we propose message-interception smoothing where
we randomly delete edges and/or randomly ablate (mask) nodes, and analyze the probability that
messages from adversarially controlled nodes reach the target nodes. By transforming any message-
passing GNN into a smoothed GNN, where the prediction is the majority vote under this randomized
message interception, we can provide robustness certificates (see Figure 1).

1Project page: https://www.cs.cit.tum.de/daml/interception-smoothing
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Figure 1: Randomized message-interception smoothing: We model adversaries that can arbitrarily
manipulate features of multiple nodes in their control (red) to alter the predictions for a target node v.
We intercept messages (gray) by randomly deleting edges and/or ablating (mask) all features of entire
nodes. Our certificates are based on the majority vote under this randomized message interception.

Experimentally we obtain significantly better robustness guarantees compared to previous (smoothing)
certificates for GNNs (compare Section 7). This improvement stems from the fact that our certificates
take the underlying architecture of the classifier into account. Unlike previous randomized smoothing
certificates which treat the GNN as a black-box, our certificates are gray-box. By making the
certificate message-passing aware we partially open the black-box and obtain stronger guarantees.

Our approach is also in contrast to white-box certificates that apply only to very specific models.
For example, Zügner and Günnemann (2019) only certify the GCN model (Kipf and Welling, 2017).
While newly introduced GNNs require such certificates to be derived from scratch, our approach is
model-agnostic and flexible enough to accommodate the large family of message-passing GNNs.

We evaluate our certificates on node classification datasets and analyze the robustness of existing GNN
architectures. By applying simple graph sparsification we further increase the certifiable robustness
while retaining high accuracy, as sparsification reduces the number of messages to intercept. In stark
contrast to previous probabilistic smoothing-based certificates for GNNs, our certificates require only
a few Monte-Carlo samples and are more efficient: For example, we can compute certificates on
Cora-ML in just 17 seconds and certify robustness against much stronger adversaries than previous
smoothing-based certificates (Bojchevski et al., 2020) that take up to 25 minutes.

In short, our main contributions are:

• The first gray-box smoothing-based certificates for GNNs that exploit the underlying
message-passing principle for stronger guarantees.

• Novel randomized smoothing certificates for strong threat models where adversaries can
arbitrarily manipulate features of multiple nodes in their control.

2 Preliminaries and Background

Threat model. We develop certificates for feature perturbations given evasion threat models. Specifi-
cally, we model adversaries that attack GNNs by entirely perturbing attributes of a few ρ nodes in
the graph at inference. Given an attributed graph G = (A,X) ∈ G encoded via adjacency matrix
A ∈ {0, 1}n×n and feature matrix X ∈ Rn×d with n nodes and d features, we formally define the
threat model of feature perturbations as a ball centered at a given graph G = (A,X):

Bρ(G) ≜ {G′ = (A′,X ′) | A = A′, δ(G,G′) ≤ ρ}

where δ(G,G′) ≜
∑n

v=1 1xv ̸=x′
v

denotes the number of nodes whose features differ in at least one
dimension when comparing the clean graph G and the perturbed graph G′. Intuitively, this means
adversaries control up to ρ nodes in the graph and can arbitrarily manipulate node features.

Graph neural networks. We design robustness certificates for GNNs that instantiate the so-called
message-passing framework (Gilmer et al., 2017). The message-passing framework describes a large
family of GNN architectures that are based on the local aggregation of information from neighboring
nodes in the graph. To compute a new representation h

(ℓ)
v of node v, each message-passing layer

Ψ(ℓ) transforms and aggregates the representations h
(ℓ−1)
v and h

(ℓ−1)
u of all nodes u in the local

neighborhood N (v) ≜ {u | Auv = 1} of node v.
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We can formally describe a message-passing layer as follows: h(ℓ)
v ≜ Ψ

(ℓ)
u∈N (v)∪{v}

(
h
(ℓ−1)
v ,h

(ℓ−1)
u

)
.

For node classification, message-passing GNNs with k GNN-layers can be described as parametrized
functions f : G → {1, . . . , C}n that assign each node v in graph G class fv(G) ≜ argmaxc h

(k)
v,c ,

where h
(0)
v ≜ xv ∈ Rd denotes the input and h

(k)
v ∈ RC the final representation of node v.

Randomized smoothing. Our robustness certificates for GNNs build upon the randomized smoothing
framework (Cohen et al., 2019; Lecuyer et al., 2019): Given any base classifier f , for example a
message-passing GNN, we can build a “smoothed” classifier g that classifies randomly perturbed
input samples, and then takes the “majority vote” among all predictions. The goal is to construct a
smoothed classifier that behaves similar to f (for example in terms of accuracy) and for which we
can prove (probabilistic) robustness certificates.

Randomized ablation (Levine and Feizi, 2020b) is a smoothing-based certificate that “ablates” the in-
put: Unlike in randomized smoothing where the input is randomly perturbed (e.g. by adding Gaussian
noise to images), in randomized ablation the input is randomly masked, for example by replacing
parts of the input with a special ablation token that “hides” the original information. If the perturbed
input is masked for the majority of predictions, we can issue certificates for the smoothed classifier g.

3 Randomized Message-Interception Smoothing for Graph Neural Networks

The main idea of our gray-box smoothing certificates is to intercept messages from perturbed nodes by
(1) deleting edges to disconnect nodes, and/or (2) ablating nodes to mask their features (cf. Figure 1).

To implement this we introduce two independent smoothing distributions ϕ1(A) and ϕ2(X) that
randomly apply these changes to the input graph: The first smoothing distribution ϕ1(A) randomly
deletes edges in the adjacency matrix (1 → 0) with probability pd. The second smoothing distribution
ϕ2(X) randomly ablates all features of nodes with probability pa by replacing their feature represen-
tations with a fixed representation token t ∈ Rd for ablated nodes. The ablation representation t is
a trainable parameter of our smoothed classifier and can be optimized during training. Introducing
two independent smoothing distributions is important since our base classifiers f are GNNs, which
behave differently under structural changes in the graph than to feature ablation of nodes in practice.

We use this message-interception smoothing distribution ϕ(G) ≜ (ϕ1(A), ϕ2(X)) to randomly
sample and then classify different graphs with a message-passing GNN f . Finally, our smoothed
classifier g takes the majority vote among the predictions of f for the sampled graphs ϕ(G). We
formally describe our smoothed classifier g as follows:

gv(G) ≜ argmax
y∈{1,...,C}

pv,y(G) pv,y(G) ≜ p(fv(ϕ(G)) = y)

where pv,y(G) denotes the probability that the base GNN f classifies node v in graph G as class y
under the smoothing distribution ϕ(G) = (ϕ1(A), ϕ2(X)).

4 Provable Gray-box Robustness Certificates for Graph Neural Networks

We derive provable certificates for the smoothed classifier g. To this end, we develop a condition
that guarantees gv(G) = gv(G

′) for any graph G′ ∈ Bρ(G): We make the worst-case assumption
that adversaries alter the prediction for a target node whenever it receives at least one message from
perturbed nodes. Let E denote the event that at least one message from perturbed nodes reaches
a target node v. Then the probability ∆ ≜ p(E) quantifies how much probability mass of the
distribution pv,y(G) over classes y is controlled by the worst-case adversary:
Proposition 1. Given target node v in graph G, and adversarial budget ρ. Let E denote the event
that the prediction fv(ϕ(G)) receives at least one message from perturbed nodes. Then the change
in label probability |pv,y(G) − pv,y(G

′)| is bounded by the probability ∆ = p(E) for all classes
y ∈ {1, . . . , C} and graphs G′ with G′ ∈ Bρ(G): |pv,y(G)− pv,y(G

′)| ≤ ∆.

Proof sketch (Proof in Appendix A). Whenever we intercept all adversarial messages, adversaries
cannot alter the prediction. Thus |pv,y(G)− pv,y(G

′)| is bounded by ∆. □

Note that we derive an upper bound on ∆ in Section 5.
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We first consider the special case of node ablation smoothing, discuss its relation to randomized
ablation for image classifiers (Levine and Feizi, 2020b), and then we derive our provably stronger
guarantees for the general case of message-interception smoothing.

Special case of node ablation smoothing. For the special case of node feature ablation smoothing
only (pd = 0), we can directly determine the probability ∆ (Proof in Appendix B):
Proposition 2. For node feature ablation smoothing only (pd = 0), we have ∆ = 1− pρa.

In this special case, our certificates for GNNs are theoretically related to the randomized ablation
certificates for image classifiers (Levine and Feizi, 2020b). We could apply their smoothing distribu-
tion to GNNs by randomly ablating features of entire nodes, instead of pixels in an image. However,
their approach is specifically designed for image classifiers and comes with serious shortcomings
when applied to GNNs. Notably, our robustness cetificates are provably tighter and experimentally
stronger even in this special case without edge deletion smoothing (pd = 0): Given that ∆L denotes
the bounding constant as defined by Levine and Feizi (2020b), we show ∆ < ∆L in Appendix B.
We carefully discuss such differences with more technical details in Appendix B. Most importantly,
their certificate applied to GNNs ignores the underlying graph structure.

General case of message-interception smoothing. In contrast, our message-interception certifi-
cates are specifically designed for graph-structured data, message-passing aware, and consider the
interception of messages via edge deletion as follows:

Consider a fixed target node v in the graph. The formal condition for intercepting messages from a
fixed target node v to itself is ϕ2(xv) = t, since we only intercept messages from the target node to
the target node itself if we ablate its features. To model the interception of messages from perturbed
nodes B other than the target node, we take the graph structure A into account: We consider all simple
paths P k

wv = {(e1, . . . , ei) | i ≤ k} from perturbed nodes w ∈ B to target node v of length at most k
(where k is the number of GNN layers).2 Intuitively, if any edge e on path p ∈ P k

wv is deleted, or the
features of w are ablated, messages via path p get intercepted. If all messages from perturbed nodes
get intercepted, adversaries cannot alter the prediction for the target node (Proof in Appendix A):
Lemma 1. Given a fixed target node v and perturbed nodes B in the graph with v /∈ B. Then
fv(ϕ(G)) = fv(ϕ(G

′)) for any graph G′ ∈ Bρ(G) if

∀w ∈ B :
(
∀p ∈ P k

wv : ∃(i, j) ∈ p : ϕ1(A)ij = 0
)
∨ (ϕ2(xw) = t)

Since k-layer message-passing GNNs aggregate information over local neighborhoods, only features
of nodes in the receptive field affect the prediction for a target node (only via paths with a length of at
most k to v). For any perturbed node w ∈ B outside of the receptive field we have P k

wv = ∅ and the
message-interception condition of Lemma 1 is always fulfilled.

In practice, however, we do not know which nodes in the graph are controlled by the adversary. To
account for this, we assume adversaries control nodes indicated by ρv ∈ {0, 1}n that maximize the
probability of the event E(ρv) that target node v receives perturbed messages:
Theorem 1. The worst-case change in label probability |pv,y(G)− pv,y(G

′)| is bounded by

∆ = max
||ρv||0≤ρ

p (E(ρv))

for all classes y ∈ {1, . . . , C} and any graph G′ ∈ Bρ(G).

Proof in Appendix A. Finally, we provide conservative robustness certificates for the smoothed
classifier g by exploiting that perturbed nodes are disconnected and/or ablated and cannot send
messages for the majority of predictions:
Corollary 1 (Multi-class certificate). Given ∆ as defined in Proposition 1. Then we can certify the
robustness gv(G) = gv(G

′) for any graph G′ ∈ Bρ(G) if

pv,y∗(G)−∆ > max
ỹ ̸=y∗

pv,ỹ(G) + ∆

where y∗ ≜ gv(G) denotes the majority class, and ỹ the follow-up (second best) class.

Proof in Appendix A. We also provide a certificate for binary node classification in Appendix A.
2We consider simple paths (all nodes appear only once), since we only receive perturbed messages via more

complex paths iff we receive perturbed messages via the simple part of the complex path.
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Figure 2: Single source bounding constant ∆i for different edge deletion probabilities pd and node
feature ablation probabilities pa. White isolines indicate ∆i = 0.5 and separate the theoretically
certifiable region (∆i < 0.5) from the uncertifiable region (∆i ≥ 0.5). (a) For the target node, pd
does not affect ∆i. (b) Direct neighbor of target node, single edge. (c) Second-hop neighbor, single
path (two edges). (a-c) More distant nodes have larger theoretically certifiable regions.

5 Practical Interception Smoothing Certificates

Message-interception certificates constitute two challenges in practice: (1) computing the bounding
constant ∆ for arbitrary graphs, and (2) computing the label probabilities pv,y∗(G) and pv,ỹ(G).
We address the first problem by providing upper bounds on ∆ (i.e. lower bounds on the certifiable
robustness). For the second problem we follow existing literature and estimate the smoothed classifier.

Lower bound on certifiable robustness. Computing ∆ of Theorem 1 poses two problems: First,
finding the worst-case nodes in arbitrary graphs involves a challenging optimization over the powerset
of nodes in the receptive field. Second, computing the probability p(E(ρv)) to receive perturbed
messages is challenging even for fixed ρv, since in general, it involves evaluating the inclusion-
exclusion principle (Appendix C). We can compute ∆ exactly only for special cases such as small or
tree-structured receptive fields (Appendix D). Notwithstanding the challenges, we provide practical
upper bounds on ∆. Instead of assuming a fixed ρv , we solve both problems regarding ∆ at once and
directly bound the maximum over all possible ρv by assuming independence between paths. Due to
Corollary 1, any upper bound on ∆ result in lower bounds on the certifiable robustness.

We first derive an upper bound on ∆ for a single perturbed node, and then generalize to multiple nodes.
Let Ew denote the event that the target node v receives messages from node w, and ∆w ≜ p(Ew).
Note in the special case of the target node v = w we just have ∆w = 1− pa, since the features xv of
the target node v are used for the prediction independent of any edges. For any w ̸= v in the receptive
field we can derive the following upper bound for single sources (Proof in Appendix E):
Theorem 2 (Single Source Multiplicative Bound). Given target node v and source node w ̸= v in
the receptive field of a k-layer message-passing GNN f with respect to v. Let P k

wv denote all simple
paths from w to v of length at most k in graph G. Then ∆w ≤ ∆w for:

∆w ≜

1− ∏
q∈Pk

wv

(
1− (1− pd)

|q|
) (1− pa)

where |q| denotes the number of edges on the simple path q ∈ P k
wv from w to v.

We visualize ∆w for different pd and pa in Figure 2. The upper bound for single sources is tight for
one- and two-layer GNNs (∆ = ∆w), since then all paths from a single source to the target node are
independent (Appendix E). The single source multiplicative bound on ∆w can only be used to certify
a radius of ρ = 1. For multiple nodes (ρ > 1), we generalize Theorem 2 as follows:
Theorem 3 (Generalized multiplicative bound). Assume an adversarial budget of ρ nodes and let
∆1, . . . ,∆ρ denote the ρ largest ∆i for nodes i in the receptive field. Then we have ∆ ≤ ∆M for

∆M ≜ 1−
ρ∏

i=1

(1−∆i)

Proof in Appendix E. Notably, the multiplicative bound is tighter than a union bound. We specifically
address the approximation error in detail in Appendix F.
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Estimating the smoothed classifier in practice. Computing the probabilities pv,y∗(G) and pv,ỹ(G)
exactly is challenging in practice. We instead estimate them similar to previous work by drawing
Monte-Carlo samples from ϕ (Cohen et al., 2019; Levine and Feizi, 2020b; Bojchevski et al., 2020).
We first identify the majority class y∗ and follow-up class ỹ using a few samples. We then draw more
samples to estimate a lower bound pv,y∗(G) on pv,y∗(G) and an upper bound pv,ỹ(G) on pv,ỹ(G). We
use the Clopper-Pearson Bernoulli confidence interval and apply Bonferroni correction to ensure that
the bounds hold simultaneously with significance level α (with probability of at least 1−α). Moreover,
our smoothed classifier abstains from predicting if pv,y∗(G) ≤ pv,ỹ(G), meaning if the estimated
probabilities are too similar. We experimentally analyze abstained predictions in Appendix H.

Practical robustness certificates. Finally, our robustness certificates also hold when bounding ∆
and the label probabilities as the following Corollary shows (Proof in Appendix A):

Corollary 2. We guarantee gv(G) = gv(G
′) with probability of at least 1− α for any G′ ∈ Bρ(G)

if pv,y∗(G)−∆ > pv,ỹ(G) + ∆, where y∗ denotes the majority class, and ỹ the follow-up class.

6 Discussion

Our certificates require knowledge about the graph structure A and can only account for structure
perturbations if the perturbed adjacency matrix A′ is known. While adversarial edge deletion
potentially increases robustness (due to less messages to intercept), adversaries could arbitrarily
increase the number of messages via edge insertion. Moreover, the number of simple paths in the
graph can be huge. We argue, however, that (1) graphs are usually sparse, (2) the number of paths
can be reduced via sparsification, and (3) we have to compute paths only once for each graph.

Limitations of ablation certificates. Since the probability to receive messages from perturbed nodes
increases the more nodes are adversarial, ∆ is monotonously increasing in ρ. Thus, the certifiable
radius is bounded independent of the label probabilities (uncertifiable region for ∆ ≥ 0.5 due to
Corollary 1). This bound depends on the graph structure and changes for each target node, but in the
case of node feature ablation smoothing we can directly determine the bound (Proof in Appendix I):

Proposition 3. Given fixed pa > 0 and pd = 0, it is impossible to certify a radius ρ if pa ≤ ρ
√
0.5.

This bound is only determined by the parameters of the smoothing distribution (pd, pa) and does not
depend on the base GNN f . The existence of an upper bound is in stark contrast to certificates whose
largest certifiable radius depends on the inverse Gaussian CDF of the label probabilities (Cohen
et al., 2019). Such certificates are theoretically tighter than ablation certificates: For example, if
the base classifier f classifies all samples from ϕ the same (py∗ = 1), they would certify a radius
of ∞, whereas the radius of ablation-based certificates is bounded. We leave the development of even
stronger gray-box certificates for GNNs to future work.

Limitations of probabilistic certificates. Our certificates are probabilistic and hold with significance
level α. Notably, our method still yields strong guarantees for significantly smaller confidence levels
(we show additional experiments for varying α in Appendix H). We found that α has just a minor
effect on the certificate strength, since increasing it cannot increase the largest certifiable radius,
which is theoretically bounded. Recent works also “derandomize” probabilistic certificates, that is
they compute the label probabilities exactly (Levine and Feizi, 2020a, 2021). In Appendix J we
propose the first derandomization technique that leverages message-passing structures. We believe
future work can build upon it towards even more efficient derandomization schemes.

Threat model extensions. Notably, edge-deletion smoothing (pd > 0) also yields guarantees for
adversarial node insertion and deletion, as disconnected nodes cannot alter the prediction.3 As
discussed above, we can only evaluate such certificates with structural information, that is how
inserted/deleted nodes are connected to target nodes: Given clean graphs (as in our evaluation), we
know which nodes adversaries could delete. Given perturbed graphs, we know which nodes could
have been inserted. Note that although we can technically extend our method to certify adversarial
edge deletion, we focus on the novel problem of arbitrary feature manipulations of entire nodes since
there are already certificates against edge-modification attacks (Bojchevski et al., 2020).

3We cannot certify node insertion/deletion with feature ablation smoothing, since e.g. new nodes affect the
smoothed classifier independent of whether features are ablated or not (unless we delete nodes entirely).
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7 Experimental Evaluation

We evaluate our certificates for different GNN architectures trained on node classification datasets.
Our certificates work in standard transductive learning settings used throughout the literature and we
report such results in Appendix H. However, combining transductive learning with an evasion threat
model comes with serious shortcomings for the evaluation of certificates, since no separate test data is
available. For example, we can usually achieve high accuracy by overfitting a Multi-Layer Perceptron
(MLP) to labels predicted by GNNs during training. MLPs do not propagate information through
the graph at test time and are robust to adversarial messages. Instead, we evaluate our certificates in
semi-supervised inductive learning settings with hold-out test nodes:

Experimental setup. As labelled nodes, we draw 20 nodes per class for training and validation, and
10% of the nodes for testing. We use the labelled training nodes and all remaining unlabeled nodes as
training graph, and successively insert (hold-out) validation and test nodes. We train on the training
graph, optimize hyperparameters against validation nodes, assume adversaries control nodes at test
time, and compute certificates for all test nodes. We also delete edges and ablate node features during
training (Appendix G). We use n0 = 1,000 samples for estimating the majority class, n1 = 3,000
samples for certification, and set α = 0.01. We conduct five experiments for random splits and model
initializations, and report averaged results including standard deviation (shaded areas in the plots).
When comparing settings (e.g. architectures), we run 1,000 experiments for each setting and draw
deletion and ablation probabilities from [0, 1] for each experiment (sampling separately for training
and inference). Then, we compute dominating points on the Pareto front for each setting. For brevity,
we only show points with clean accuracy of at most 5% below the maximally achieved performance.

Datasets and models. We train our models on citation datasets: Cora-ML (Bojchevski and Günne-
mann, 2018; McCallum et al., 2000) with 2,810 nodes, 7,981 edges and 7 classes; Citeseer (Sen et al.,
2008) with 2,110 nodes, 3,668 edges and 6 classes; and PubMed (Namata et al., 2012) with 19,717
nodes, 44,324 edges and 3 classes. We implement smoothed classifiers for four architectures with
two message-passing layers: Graph convolutional networks (GCN) (Kipf and Welling, 2017), graph
attention networks (GAT and GATv2) (Velickovic et al., 2018; Brody et al., 2022), and soft medoid
aggregation networks (SMA) (Geisler et al., 2020). More details in Appendix G. We also compute
certificates for the larger graph ogbn-arxiv (Hu et al., 2020) in Appendix H.

Evaluation metrics. We report the classification accuracy of the smoothed classifier on the test
set (clean accuracy), and the certified ratio, that is the number of test nodes whose predictions are
certifiable robust for a given radius. Since all nodes have different receptive field sizes, we also divide
the certifiable radius by the receptive field size. The resulting normalized robustness better reflects
how much percentage of the “attack surface” (that is the number of nodes the adversary could attack)
can be certified. Moreover, we report the area under this (normalized) certified ratio curve (AUCRC).
For completeness, we also report the certified accuracy in Appendix H, that is the number of test
nodes that are correctly classified (without abstaining) and certifiable robust for a given radius.
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Figure 3: Smoothed GAT on Cora-ML: (a) Robustness at different distances to target nodes (pd=0.31,
pa=0.794, with skip, ACC=0.79). (b) Robustness normalized by receptive field size (“attack surface”).
(c) Naïve baseline comparison (base certificate (Bojchevski et al., 2020), 105 samples, α=0.01).

Message-interception smoothing. In Figure 3 (a,b) we demonstrate our certificates for specific
edge deletion probabilities pd and node feature ablation probabilities pa. By making our certificates
message-passing aware, we can (1) certify robustness against arbitrary feature perturbations of entire
nodes, (2) analyze robustness locally in the receptive fields by incorporating the “attack surface”, and
(3) provide stronger guarantees for attacks against nodes at larger distances to target nodes.
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First certificate for stronger adversaries. Experimentally we obtain significantly better robustness
guarantees compared to previous (smoothing-based) certificates for Graph Neural Networks. Specifi-
cally, existing certificates for GNNs only certify perturbations to a few attributes ρ̃ in the entire graph.
Our certificates are novel as they provide guarantees for much stronger adversaries that can arbitrarily
manipulate features of a multiple nodes in the graph. To compare these two approaches, consider a
naïve baseline that certifies ρ = ρ̃/d nodes, where d is the number of attributes per node.4 If each
node in the graph had just a single feature, the number of certifiable nodes ρ is high. As the number
of features d per node increases, however, the baseline dramatically deteriorates. In contrast, our
certificates are entirely independent of the dimension d and hold regardless of how high-dimensional
the underlying node data might be. We demonstrate this comparison in Figure 3 (c) for the first
smoothing-based certificate for GNNs (Bojchevski et al., 2020), assuming attribute deletions against
second-hop nodes (p+=0, p−=0.6). However, the superiority of our certificate regarding robustness
against all features of entire nodes holds for any other GNN certificate proposed so far.
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Figure 4: (a,b) Sparsification significantly improves certifiable robustness of our gray-box certificates
to second-hop attacks since sparsification reduces (a) messages to intercept, and (b) receptive field
sizes and thus the “attack surface” (Smoothed GAT, Cora-ML, pd = 0.31, pa = 0.71, with skip-
connection, ACC = 0.8). (c) Our certificate with largest certifiable radius of 4 with varying samples
for certification (Smoothed GAT, Cora-ML, pd = 0, pa = 0.85). Our certificates are more sample
efficient than existing smoothing-based certificates for GNNs.

Stronger certificates for sparser graphs. Notably, our gray-box certificates incorporate graph
structure and become stronger for sparser graphs. This is in contrast to black-box certificates that
ignore the underlying message-passing principles of GNNs. We demonstrate this by applying graph
sparsification, which significantly improves robustness while retaining high clean accuracy: First,
sparsification reduces the number of paths in the graph and thus reduces the number of messages
to intercept. Second, sparsification reduces the number of nodes in the receptive fields and thus the
“attack surface”, that is the number of nodes that send messages. In Figure 4 (a,b) we apply GDC
preprocessing (Gasteiger et al., 2019) to the Cora-ML graph at test time. GDC preprocessing yields
directed graphs and reduces the number of edges in the graph from 15,962 to 14,606 (we set the
sparsification threshold of GDC to ϵ = 0.022 and ignore resulting edge attributes). Interestingly,
evaluating the model on the sparsified graph yields significantly higher certifiable robustness, although
both approaches show high clean accuracy of 80%. Note that for the validity of our certificates we
assume adversaries perturb nodes after sparsification and cannot attack the sparsification itself.

Efficient message-interception smoothing. Drawing Monte-Carlo samples from ϕ to estimate the
smoothed classifier is usually the most costly part when computing smoothing-based certificates
(Cohen et al., 2019). In Figure 4 (c) we show that our certificates are much more sample efficient as
we do not benefit from more than a few thousand samples from ϕ. This is in stark contrast to existing
smoothing-based certificates for GNNs (Bojchevski et al., 2020). For a fair comparison, we adopt
their transductive setting and compute certificates for pd = 0.3 and pa = 0.85. Bojchevski et al.
(2020) use 106 Monte-Carlo samples for certifying test nodes on Cora-ML, which takes up to 25
minutes. In contrast, our certificates saturate already for 2,000 Monte-Carlo samples in this setting,
which takes only 17 seconds (preprocessing Cora-ML takes 8 additional seconds). Our gray-box
certificates are significantly more sample-efficient while also providing guarantees against much
stronger adversaries. We hypotheise that our certificates saturate much faster as the certifiable radius
does not depend on the inverse Gaussian CDF of the label probabilities as discussed in Section 6.

4We are the first to certify such strong adversaries. Thus no baselines exist so far and we compare our method
against existing certificates for GNNs using the naïve baseline we propose above.
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Figure 5: Second-hop attacks on Cora-ML: (a) Robustness-accuracy tradeoffs for different GNN
architectures. (b) Skip-connections yield improved robustness-accuracy tradeoffs for node feature ab-
lation smoothing. (c) Ablating less during training yields better robustness-accuracy tradeoffs (GAT).

Different classifiers. In Figure 5 (a) we compare robustness-accuracy tradeoffs for different GNNs
against second-hop attacks. Attention-based message-passing GNNs (Velickovic et al., 2018) are
dominating. We hypothesize that the degree-normalization of GCN (Kipf and Welling, 2017) may be
problematic for the performance under randomized edge deletion. Our approach may promote novel
message-passing architectures, specifically designed for smoothed classifiers.

Skip-connections. With higher node feature ablation probability, more messages from the target
node itself will be intercepted, which may be detrimental for the accuracy. Assuming adversaries do
not attack target nodes, we can modify the architecture for improved robustness-accuracy tradeoffs
(Figure 5b). To this end, we forward the non-ablated input graph through the GNN without edges,
and add the resulting final representation of each node to the final representation when forwarding the
(ablated) graph with graph structure. We use the same weights of the base GNN, but more complex
skip-connections are straightforward. Such skip-connections yield better robustness-accuracy trade-
offs against second-hop attacks, but we also loose guarantees for the target node itself. To account for
that, future work could deploy existing smoothing methods for features of target nodes separately:
e.g., if nodes represent images, we could deploy Gaussian smoothing (Cohen et al., 2019) on node
features send through the skip-connection and still obtain robustness guarantees for target nodes.

Training-time smoothing parameters. In Figure 5 (c) we show that ablating less during training
can improve the robustness-accuracy tradeoffs. Note that only inference-time smoothing parameters
determine the strength of our certificates, and the probabilities pd, pa during training are just hyperpa-
rameters that we can optimize to improve the robustness-accuracy tradeoffs. In detail, we experiment
with three different settings: Using the same ablation probabilities during training and inference
(pt = pe), ablating 10% more during training (pt = pe+0.1), and ablating 10% less during training
(pt=pe−0.1). Note that we use max(min(pt, 1), 0) to project the training-time parameters into [0, 1].
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Figure 6: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GAT models
(without skip). Edge deletion and node ablation dominates on Cora-ML (a) and Citeseer (b). On
PubMed (c), edge deletion is stronger. Lines connect dominating points on the Pareto front.

Robustness-accuracy. We compare robustness-accuracy tradeoffs of three different settings: (1) edge
deletion and feature ablation (pd > 0, pa > 0), (2) edge deletion only (pd > 0, pa = 0), and
(3) feature ablation only (pd = 0, pa > 0). Our experiments show that edge deletion and feature
ablation smoothing achieves significantly better robustness-accuracy tradeoffs against attribute attacks
to the second-hop neighborhood and dominates on Cora-ML and Citeseer (Figure 6b,c). On PubMed,
edge deletion smoothing dominates. More results (e.g. with skip-connections) in Appendix H.
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8 Related Work

GNN robustness. The vast majority of GNN robustness works focus on heuristic defenses, including
adversarial graph detection (Zhang and Ma, 2020; Zhang et al., 2019a); architecture modifications
(Brody et al., 2022; Zhang et al., 2019b); robust aggregations (Geisler et al., 2020); robust training
procedures (Xu et al., 2019; Zügner and Günnemann, 2019), transfer learning (Tang et al., 2020);
and graph preprocessing techniques such as edge pruning (Zhang and Zitnik, 2020; Wu et al., 2019),
low-rank approximations (Entezari et al., 2020), and graph anomaly detection (Ma et al., 2021).

The effectiveness of such seemingly robust defenses on the adversarial robustness of GNNs can only
be assessed against existing adversarial attacks. Heuristic defenses do not guarantee robustness, and
may even be broken by stronger attacks later on (Mujkanovic et al., 2022). Instead, we are interested
in robustness certificates that provably guarantee the stability of predictions. However, robustness
certificates for GNNs are still in their infancy (Günnemann, 2022):

Certificates for GNNs. Most certificates for GNNs are designed for specific architectures (Zügner
and Günnemann, 2020; Jin et al., 2020; Bojchevski and Günnemann, 2019; Zügner and Günnemann,
2019). Despite providing provable robustness guarantees, their applicability is limited to specific
architectures. Bojchevski et al. (2020) present the first tight and efficient smoothing-based, model-
agnostic certificate for graph-structured data. However, their method comes with crucial limitations:
First, their method cannot certify robustness against arbitrary feature modifications of entire nodes.
Second, their black-box certificate deletes edges but completely ignores the underlying message-
passing principle. Third, their certificate requires an expensive evaluation of the smoothed classifier,
which questions the practicability of their certificate beyond theoretical robustness assessments.

Randomized ablation certificates for image classifiers (Levine and Feizi, 2020b) are another approach
for discrete data. Such certificates have already been applied to point cloud classifiers (Liu et al.,
2021) and even for individual attribute perturbations in GNNs (Bojchevski et al., 2020). However,
Bojchevski et al. (2020) show that their method outperforms such ablation certificates for individual
attributes. In contrast, we propose to certify entire nodes, instead of only a few of their attributes. As
already discussed, applying their ablation certificates for image classifiers directly to GNNs comes
with serious shortcomings that we overcome (Section 4 and details in Appendix B).

Gray-box certificates. Exploiting model knowledge to derive tighter randomized smoothing certifi-
cates constitutes a widely unexplored research problem. The first works derive tighter guarantees
using information about the model’s gradients (Mohapatra et al., 2020; Levine et al., 2020). Recently
proposed collective certificates (Schuchardt et al., 2021) incorporate knowledge about the receptive
fields of GNNs. Their certificates are orthogonal to ours, and our certificates could lead to significant
improvements in such collective settings, as adversaries cannot attack first-hop neighbors of all
nodes simultaneously. Schuchardt and Günnemann (2022) propose tight gray-box certificates for
models that are invariant to spatial transformations.

9 Conclusion

We propose novel gray-box, message-passing aware robustness certificates for GNNs against strong
threat models where adversaries can arbitrarily manipulate all features of multiple nodes in the
graph. The main idea of our certificates is to intercept adversarial messages by randomly deleting
edges and/or masking features of entire nodes. Our certificates are significantly stronger and more
sample-efficient than existing methods. Future enhancements could smooth specific edges and
nodes with different probabilities, for example to intercept messages from central nodes with higher
probability. Our gray-box certificates could lead to novel architectures, training techniques and graph
preprocessing techniques to further strengthen the robustness of GNNs against adversarial examples.
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