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Abstract

The rank of neural networks measures information flowing across layers. It is
an instance of a key structural condition that applies across broad domains of
machine learning. In particular, the assumption of low-rank feature representations
leads to algorithmic developments in many architectures. For neural networks,
however, the intrinsic mechanism that yields low-rank structures remains vague and
unclear. To fill this gap, we perform a rigorous study on the behavior of network
rank, focusing particularly on the notion of rank deficiency. We theoretically
establish a universal monotonic decreasing property of network rank from the basic
rules of differential and algebraic composition, and uncover rank deficiency of
network blocks and deep function couplings. By virtue of our numerical tools,
we provide the first empirical analysis of the per-layer behavior of network rank
in practical settings, i.e., ResNets, deep MLPs, and Transformers on ImageNet.
These empirical results are in direct accord with our theory. Furthermore, we reveal
a novel phenomenon of independence deficit caused by the rank deficiency of
deep networks, where classification confidence of a given category can be linearly
decided by the confidence of a handful of other categories. The theoretical results
of this work, together with the empirical findings, may advance understanding of
the inherent principles of deep neural networks. Code to detect the rank behavior
of networks can be found in https://github.com/RuiLiFeng/Rank-Diminishing-in-
Deep-Neural-Networks.

1 Introduction

In mathematics, the rank of a smooth function measures the volume of independent information
captured by the function [25]. Deep neural networks are highly smooth functions, thus the rank
of a network has long been an essential concept in machine learning that underlies many tasks
such as information compression [55, 65, 40, 63, 56], network pruning [35, 64, 6, 29, 10], data
mining [7, 28, 11, 66, 21, 32], computer vision [68, 67, 34, 30, 32, 70, 69, 17, 18], and natural
language processing [9, 31, 8, 12]. Numerous methods are either designed to utilize the mathematical
property of network ranks, or are derived from an assumption that low-rank structures are to be
preferred.

Yet a rigorous investigation to the behavior of rank of general networks, combining both theoretical
and empirical arguments, is still absent in current research, weakening our confidence in the being able
to predict performance. To the best of our knowledge, there are only a few previous works discussing
the rank behavior of specific network architectures, like attention blocks [15] and BatchNorms [13, 5]
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in pure MLP structures. The empirical validation of those methods are also limited to shallow
networks, specific architectures, or merely the final layers of deep networks, leaving the global
behavior of general deep neural networks mysterious due to prohibitive space-time complexity for
measuring them. Rigorous work on network rank that combines both strong theoretical and empirical
evidence would have significant implications.

In this paper, we make several contributions towards this challenging goal. We find that the
two essential ingredients of deep learning, the chain rules of differential operators and matrix
multiplications, are enough to establish a universal principle—that network rank decreases
monotonically with the depth of networks. Two factors further enhance the speed of decreasing: a)
the explicit rank deficiency of many frequently used network modules, and b) an intrinsic potential
of spectrum centralization enforced by the nature of coupling of massive composite functions. To
empirically validate our theory, we design numerical tools to efficiently and economically examine
the rank behavior of deep neural networks. This is a non-trivial task, as rank is very sensitive to
noise and perturbation, and computing ranks of large networks is computationally prohibitive in time
and space. Finally, we uncover an interesting phenomenon of independence deficit in multi-class
classification networks. We find that many classes do not have their own unique representations in
the classification network, and some highly irrelevant classes can decide the outputs of others. This
independence deficit can significantly deteriorate the performance of networks in generalized data
domains where each class demands a unique representation. In conclusion, the results of this work,
together with the numerical tools we invent, may advance understanding of intrinsic properties of
deep neural networks, and provide foundations for a broad study of low-dimensional structures in
machine learning.

2 Preliminaries

Settings We consider the general deep neural network with L layers. It is a smooth vector-valued
function F : R® ¥ R<, where R™ and R? are the ambient space of inputs and outputs, respectively.
Deep neural networks are coupling of multiple layers, thus we write F as

F=fl fl! Tl (1)
For simplicity, we further write the K-th sub-network” of F as
Fo=f" L @)

and we use Fj, = F;(X) to denote the feature space of the k-th sub-network on the data domain X.
We are more interested in the behavior of network rank in the feature spaces rather than scalar outputs
(which trivially have rank 1). Thus, for classification or regression networks that output a scalar value,
we will consider F = F, as the transformation from the input space to the final feature space instead.
Thus, we always have n landd 1. For example, for ResNet-50 [23] architecture on ImageNet,
we only consider the network slice from the inputs to the last feature layer with 2,048 units.

Rank of Function The rank of a function f = (fy;:::; F;)7 : R® ¥ R refers to the highest rank
of its Jacobian matrix J¢ over its input domain X, which is defined as

Rank(T) = Rank(Jr) = max Rank ((€T:(x)=0x;)nxa) - 3)

It is well-known that the region of non-highest rank is a zero-measure set on the feature manifold
by Sard’s theorem [25], so we are safe to ignore them in the definition of the function ranks. The
rank of a function represents the volume of information captured by it in the output [25]. That is
why it is so important to investigate the behavior of neural networks and many practical applications.
Theoretically, by the rank theorem and Sard’s theorem of manifolds [25], we can know that rank of
the function equals the intrinsic dimension of its output feature space, as in the following lemma.’

Lemma 1. Suppose that € : R* 1 R% is smooth almost everywhere. Let Rank(F) = r. If data
domain X is a manifold embedded in R™ and : U Y O is a smooth bijective parameterization
from an open subset U  R® 10O X, then we have dim(F(X)) = Rank(J¢, ) r. Thus, the
rank of function ¥ gives an upper bound for the intrinsic dimension dim(f (X)) of the output space.

*In this paper, sub-network means network slice from the input to some intermediate feature layer; layer
network means an independent component of the network, without skip connections from the outside to it, like
bottleneck layer of ResNet-50.

3Due to space limitation, all the related proofs are attached in the Appendix.



It is worth mentioning that the intrinsic dimension dim(F (X)) of the feature space is usually hard to
measure, so the rank of the network gives an operational estimate of it.

3 Numerical Tools

Validating the rank behavior of deep neural networks is a challenging task because it involves
operations of high complexity on large-scale non-sparse matrices, which is infeasible both in time
and space. Computing the full Jacobian representation of sub-networks of ResNet-50, for example,
consumes over 150G GPU memory and several days at a single input point. In accuracy, this is
even more challenging as rank is very sensitive to small perturbations. The numerical accuracy of

0at32, 1:19e 7 [45], cannot be trivially neglected in computing matrix ranks. Thus, in this section
we establish some numerical tools for validating our subsequent arguments, and provide rigorous
theoretical support for them.

3.1 Numerical Rank: Stable Alternative to Rank

The rank of large matrices is known to be unstable: it varies significantly under even small noise
perturbations [48]. Matrices perturbed by even small Gaussian noises are almost surely of full rank,
regardless of the true rank of the original matrix. Thus in practice we have to use an alternative: we
count the number of singular values larger than some given threshold as the numerical rank of the
matrix. Let W 2 R™*? be a given matrix. Its numerical rank with tolerance is

Rank. (W) =#fi 2N, :i minfn;dg; ; kW kog; 4)

where KW K5 is the “5 norm (spectral norm) of matrix W, ;;i = 1;:::; minfn; dg are its singular
values, and # is the counting measurement for finite sets. We can prove that the numerical rank is
stable under small perturbations. Based on Weyl inequalities [57], we have the following theorem.

Theorem 1. For any given matrix W , almost every tolerance = 0, and any perturbation matrix D,
there exists a positive constant () such that8 2 [0; nax()), Rank. (W + D) = Rank.(W).
If W is a low-rank matrix without random perturbations, then there is a .x such that for any

< max Rank.(W + D) = Rank.(W) = Rank(W) forall 2[0; max()).

This property of the numerical rank metric makes it a suitable tool for investigating the rank behavior
of neural networks. Possible small noises can be filtered out in Jacobian matrices of networks by
using numerical rank. It is worth mentioning that random matrices no longer have full rank almost
surely under the numerical rank. Instead their rank distribution can be inferred from the well-known
Marcenko—Pastur distribution [38] of random matrices. So under numerical rank, low-rank matrices
will be commonly seen. In this paper, we always use the numerical rank when measuring ranks.

3.2 Partial Rank of the Jacobian: Estimating Lower Bound of Lost Rank in Deep Networks

To enable the validation of trend of the network ranks, we propose to compute only the rank of
sub-matrices of the Jacobian as an alternative. Those sub-matrices are also the Jacobian matrices
with respect to a fixed small patch of inputs. Rigorously, given a function ¥ and its Jacobian J¢, we
denote partial rank of the Jacobian as the rank of a sub-matrix of the Jacobian that consists of the
J1-th, jo-th,...,j x-th column of the original Jacobian

PartialRank(J¢) = Rank(Sub(J+;j1; 5 jx)) = Rank((@F;=0X;, )ax x); (5)

where 1 j; < ::: < Jx  n: The partial rank can be efficiently computed and the variance
of partial ranks of adjacent sub-networks gives a lower bound on the variance of their ranks. We
demonstrate this in appendix F.

3.3 C(lassification Dimension: Estimating Final Feature Dimension

Measuring the intrinsic dimension of feature manifolds is known to be intractable. So we turn to
an approximation procedure. For most classification networks, a linear regression over the final
feature manifold decides the final network prediction and accuracy. So we can estimate the intrinsic
dimension as the minimum number of principal components in the final feature space to preserve a
high classification accuracy. Let cls : R? ¥ R¢ be the classification predictions based on the final



Networks ResNet-18 ResNet-50 GluMixer-24 ResMLP-S24 Swin-T  ViT-T
ClsDim 149 131 199 196 344 109

Ambient Dim. 512 2048 384 384 768 192

Table 1: Classification dimensions (with respect to 95% classification performance of the ambient
feature space R?) and ambient dimensions of the final feature manifolds of different networks. All
networks have low intrinsic dimensions for final features.

feature representation F (X), Proy be the operator that project a vector to the subspace spanned by
the top-k PCA components of the final feature representations, and 1.,,4 the indicator for condition
cond. The classification dimension is then defined as

ClsDim(F (X)) = mingfk : E(x y)~px.v [1cis@rocFx)==y] 1 G (6)

which is the minimum dimensionality needed to reconstruct the classification accuracy of the whole
model.

4 Simple Principle of Rank Diminishing for General Networks

The specific designs of neural networks are vast and diverse, but most of them share two fundamental
ingredients of deep networks, i.e., the chain rule and matrix multiplication. This provides us a chance
to analyze the behavior of deep networks that is architecture-agnostic. So in the theoretical aspect,
we will focus on how these two intrinsic structures endow impetus of rank diminishing to neural
networks.

A most straightforward observation comes from the basic rule of matrix multiplication that for
any two matrices A and B, we have Rank(AB) minfRank(A); Rank(B)g [26]. Taking
this into the chain rule of differential of Jg = JguJdgr 1:::J¢1, we then have Rank(Jg, ) =
Rank(Jexor, ,) = Rank(JexJdgr, ,)  Rank(Jg, ,);k = 2;::L; which is Eq. (7). We can
then get the following principle of rank diminishing.

Theorem 2 (Principle of Rank Diminishing). Suppose that each layer ¥;;1 = 1;:::; L of network F
is almost everywhere smooth* and data domain X is a manifold, then both the rank of sub-networks
and intrinsic dimension of feature manifolds decrease monotonically by depth:

Rank(f;) Rank(fy f;) :: Rank(fp_; :: Ff;) Rank(Fp); @)
dim(X) dim(F;) dim(Fy) ::: dim(F.): (8)

This principle describes the behavior of generic neural networks with almost everywhere smooth
components, which exhibits the monotonic decreasing (but not strictly) of network ranks and intrinsic
dimensionality of feature manifolds.

A flaw of the above principle is that it does not tell whether the rank must decrease. So we need
further analysis for the chance of strictly decreasing. A most direct reason to support the strictly
decreasing comes from the structural impetus of rank deficiency of numerous network components.
Frequently used operations like pooling, downsampling, and dense layer can loose ranks considerably
as they explicitly decrease the ambient dimensions of feature representations, or have low rank weight
matrices [39]. Specifically, we can have a global criterion for whether a network component will lose
ranks as follows.

Theorem 3 (Structural Impetus of Strictly Decreasing). > Roughly speaking, if almost everywhere
on the input feature manifold, there is a direction such that moving along this direction keeps the
output invariant, then the intrinsic dimension of the output feature manifold will be strictly lower
than that of the input. The maximum number of independent such directions gives a lower bound on
the number of lost intrinsic dimensions.

For example, the ReLLU activation gives the same output for all inputs that only differs from each
other in the negative parts. Thus the feature manifold after a ReLu activation will lose the dimension

It means having arbitrary order gradients except for a zero measure set in the input domain
3The rigorous version is given in the Appendix.



Figure 1: Partial rank of Jacobian matrices of CNN, MLP, and Transformer architecture networks for
different layers on ImageNet (top row); rank of Jacobian matrices and feature dimensions of linear
MLP network following conditions of Theorem 5 (bottom row). All the models show a similar trend

of fast decreasing of ranks as predicted by Theorems 4 and 5.

Figure 2: Classi cation Accuracy (top-1) of using subspaces spanned bg%opigenvectors
(principal components) of the nal feature manifolds. For all networks a small percentage (see Tab. 1)
of eigenvectors is enough to reproduce the classi cation accuracy of the whole network, indicating a
low intrinsic dimension of nal feature manifold$\ote that the x-axes are non-linear.

for those negative parts. For general linear layerg.(pure convolution and dense layers), the feature
dimensions that belong to the orthogonal complementary spaces of the weights will be lost after
applying the linear transformations, as the weight matrices are inactive to changes in their orthogonal
complementary spaces.

5 Limiting Behavior of Network Ranks for In nitely Deep Networks

From a theoretical perspective, it is of great interest to consider the limiting behavior—the rank of
in nitely deep neural networks. However, it is infeasible to directly consider this problem and give
any rigorous analysis for general cases— it is impossible to exhaust the tedious discussion of how
speci ¢ structures can in uence network ranks. Thus we need to concentrate on a simpli ed but still
representative math model of this problem.

Theory Setup and Its Necessity In brief, we will assume in this section that the Jacobi matrices
are random matrices independently following some distributions in a xed Euclidean space. We
then consider the limiting behavior of the singular values of sédgs gt -, . Modeling the Jacobi



Figure 3: PCA dimension of feature spaces and rank of Jacobian matrix for commonly seen network
components under standard Gaussian inputs and randomized weights. Convolution and FC layers tend
to lose rank considerably; normalization layers, like InstanceNorm @K]) LayerNorm (LN) [2],

and GroupNorm (GN) [60], lose rank modestly. But none can preserve rank.

matrices with random matrices allows us to neglect the in uence of speci c architectures and reveal
the intrinsic property using large number law of probability. While limiting them in the same space is

a common practice in analyzing in nitely deep network€][42, 46, 3, 36], as it offers the feasibility

to de ne limits of variables. For example, if the sizes of Jacobi matrices change from time to time,
some singular values may suddenly disappear or appear in thefskiegt -, , thus it is unable to

de ne limits for them.

After this simpli cation, the problem is still representative for understanding what happens in reality.
The transformer, recurrent neural networks, and some very deep CNN architectures with constant
width [61] can be viewed as examples of this setting. Another interesting setting is to assume that the
Jacobi matrices follow the most simple distribution—Gaussian distributions. This can lead to a much
stronger yet intuitive result on network ranks. So we are most interested in the limiting behavior
when the Jacobi matrices follow weak regularized distributions and the Gaussian distributions. These
two cases then lead to Theorems 4 and 5 correspondingly.

Theorem 4. Let the network b& = ft f 1, and all the ambient dimensions of feature
manifolds be the same as the ambient dimension of inputsf Ke:,R" I R";k = 1;:::;L.
Suppose the Jacobian matrix of each laygrindependently follows some distribution and
E [maxflogkJ, Jko:0g] < 1 . Let i denote thék-th largest singular value af ¢ . Then there is

-almost everywhere,

k
kJe ko

exp( L x)! Ok=r:::;n; asL !l 9)

meaning that for any tolerance> 0, Rank (F) drops below +1 asL !'1

Theorem 5. Let the network b& = f- :: f1 and all the ambient dimensions of feature
manifolds be the same as the ambient dimension of inputd, f.e.R" ! R";k =1;::; L. Suppose
thatJ; independently follows the standard Gaussian distribution. Ledenote theé-th largest
singular value ofl £ . Then almost surely

1
. K t 1 n k+1 n
- 4L Y <1k=z2:n
Jim ks Ky exp5;  (———) (5 <Lk=2i0m (10)
where = = %and isthe Gamma function. That means for a latigeand any tolerance,

Rank (F) drops tol exponentially with speeaiCl, whereC < 1is a positive constant that only
depends om.

The proofs of these two theorems rely on the advances of random matrix theory, especially the study
of Lyapunov exponents of linear co-cycle systefik b9, 19, 47, 33] (see appendix A for detail).

Both of the two theorems reveal that in nitely deep networks have an intrinsic intention to drop ranks
rapidly and centralize energy in the largest singular vectors. This intention is purely aroused by the
two essential ingredients, chain rule and matrix multiplication, as here we omit the consideration of
speci ¢ network designs, but focus on the large number law of coupling of massive smooth functions.



These two theorems point out that the ratio of non-largest singular value divided by the largest one
will converge to zero with an exponential speed. As a result, the numerical rank of the network will
decrease quickly after the layer is deep enough. While this is not the hard rank we use in Theorem 2,
we can still use it to infer the low rank structure of feature representationgj;Let ;q, be the
singular vectors ad ¢ corresponding to the singular values in Theorem 4, and h x=k xk»;qii,
thgpwhenthedeptp!1 and xissmall, we havép(x+ x)= F(x)+Jg x+o(k xkp)=

1 Gt 1 ;‘:2 Ly + ok xkp) 1 i iGi, which means the neighborhood
of datax is mapped into an-dimensional subspace spanned by the singular vectors of the largest
singular values.

This can also explain why layer-wise regularization techniques are helpful for training deep networks,
as those regularization techniques re-normalize the singular value distributions of deep networks,
easing the trend of the ratielr becoming in nitesimal. Speci cally, if the data distribution nearis

assumed to be standard Gaussian, then the feature distribubiogFi¢x ); J £ J¢ ), which has a very

low rank covariance matrix due tq;i r is tiny. Then applying Batch Normalization will try to

pull this feature distribution back to Gaussian with identity covariance, thus ease the trend of feature
dimension collapse. This has also been discussed in related work of the Batch Normalizatijn [

We will discuss some other techniques to remiss the rank diminishing in the Appendix.

These two theorems are also connected with the famous gradient explosion issue of deep neural
networks fi, 44], where the largest singular value of the Jacobian matrix tends to in nity when

the layer gets deeper. This issue could be viewed as a special case of Theorem 5 that investigates
the behavior of all singular values of deep neural networks. The behavior of network ranks in fact
manipulates the well-known gradient explosion issue. Rigorously, we have the following conclusion.

Corollary 1. Under the condition of Theorem 5, then almost surely gradient explosion happens at an
exponential speed, i.dagkJr k, =log 3 %(Iog 2+ (n=2))!1 whenlL islarge.

6 Validating the Rank Behavior

6.1 Validating Rank Diminishing by Depth

In this section, we numerically validate our theory in three types of architectures of benchmark deep
neural networks, CNNs, MLPs, and Transformers, in the ImageNgtata domain. Information of

those networks is listed in Tab. A2. For validating the tendency of network rank of Jacobian matrices,
we use the numerical rank of sub-matrices of Jacobian on the c&6tral6 3image patch of input
images. We report the results of other choices of patches in the Appendix. Details of the experiment
setup can be found in appendix E.

Rank Diminishing of Jacobians As is discussed in Sec. 3.2 and Lemma 2, the partial rank of the
Jacobian is a powerful weapon for us to detect the behavior of huge Jacobian matrices, which are
infeasible to compute in practice. The decent value of partial ranks of adjacent sub-networks provides
a lower bound to that of full ranks of them. Fig. 1 (a,b,c) report the partial rank of Jacobian matrices
of three types of architectures, where we can nd consistent diminishing of partial ranks in each layer,
indicating a larger rank losing for the full rank of Jacobian matrices.

Implicit Impetus Theorem 5 gives an exponential speed of rank decent by layers. We nd that

it corresponds well with practice. We investigate this exponential law in a toy network of MLP-50,
which is composed of 50 dense layers, each with 1,000 hidden units. The MLP-50 network takes
Gaussian noise vectors Bf°? as inputs, and returns a prediction of 1,000 categories. As all the
feature manifolds are linear subspaces in this case, their intrinsic dimensions can be directly measured
by the numerical rank of their covariance matrices. We report the full rank of Jacobian matrices
and intrinsic dimensions of feature manifolds under three different randomly chosen weights in
Fig. 1 (d,e,f). Due to the digital accuracy okt32 , we stop calculation in each setting when the
absolute values of elements of the matrices are lowerltide 7. We can nd standard curves of
exponential laws in all cases for both ranks of Jacobian and intrinsic dimensions of features.

Structural Impetus  We validate the structural impetus in Fig. 3. To give an estimation for general
cases, here we use Gaussian noises with the siZ23f8 8as inputs, and randomize weights of the
network components to be validated. We plug those components into a simple fully-connected (FC)



Figure 4: Independence de cit. Classi cation con dence of some ImageNet categories are lineally
decided by a few other categories with xed coef cients in the whole data domain. We illustrate this
phenomenon in (a). Here we present some results from ResNet-50, GluMixer-24, and Swin-T. In the
(b,c,d) we illustrate the categoriesief :::; ik (in the surrounding) to linearly decide categoryn

the center) and their corresponding weights; :::; j, . The classi cation accuracy on the validation

set of using Eq. (12), instead of the true logits, to predict the label is reportédar(if tested on
positive samples only, the accuracy rates are 98%, 90%, 82% for cases in (b,c,d) correspondingly).
For comparison, the original accuracy for the corresponding categories are repartedrinWe

can nd that 1) a few other categories can decide the con dence of the target categ@pisome

very irrelevant categories contribute the largest weights. For example in (c), the logits of class “junco’
is the negative of “triumphal arch'. Both of them indicate a rather drastic competition of different
categories for independent representations in nal features due to the tight rank budgets.

layer of 8,192 hidden units. As the structure is simple, we directly measure the intrinsic dimension of
feature spaces and the full rank of Jacobian matrices before and after the features pass the network
components to be measured. The dimension is determined by the number of PCA eige@vahfgs [

larger thanl:19% 7 N max » WhereN is the number of PCA eigenvalues, angsx is the

largest PCA eigenvalue. The batch size is set to 5,000. We nd that the convolution (the kernel size
is3 3) and FC layers (the weight size is 8,192) tend to lose rank considerably, while different
normalization layers also lose rank modestly. But none of them can preserve rank invariant.

6.2 Validating Low-Rank Terminal Spaces

This section seeks evidence to support a low-rank terminal feature space of deep networks, which can
then support the signi cant diminishing of ranks in the previous layers. The evidence is consisted
of a numerical validation that investigates the classi cation dimension of the terminal feature layer,
together with a semantic validation that reveals the independence de cit of deep networks.

Numerical Validation To get an estimation of how many dimensions remain in the nal feature
representation, we measure the classi cation dimension in Fig. 2 and Tab. 1. We report the
classi cation accuracy produced by projecting nal feature representations to its#ogigenvectors

in Fig. 2. We choose a threshold osuch that this procedure can reprod@&8s of the original
accuracy of the network. The correspond@igDim is reported in Tab. 1. As discussed in Sec. 3.3,
this gives an estimation of the intrinsic dimension of the nal feature manifold. We can nd a
universal low-rank structure for all types of networks.



