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Abstract

Proteomics is the interdisciplinary field focusing on the large-scale study of pro-
teins. Proteins essentially organize and execute all functions within organisms.
Today, the bottom-up analysis approach is the most commonly used workflow,
where proteins are digested into peptides and subsequently analyzed using Tan-
dem Mass Spectrometry (MS/MS). MS-based proteomics has transformed various
fields in life sciences, such as drug discovery and biomarker identification. Today,
proteomics is entering a phase where it is helpful for clinical decision-making.
Computational methods are vital in turning large amounts of acquired raw MS
data into information and, ultimately, knowledge. Deep learning has proved its
success in multiple domains as a robust framework for supervised and unsupervised
machine learning problems. In proteomics, scientists are increasingly leveraging
the potential of deep learning to predict the properties of peptides based on their
sequence to improve their confident identification. However, a reference dataset is
missing, covering several proteomics tasks, enabling performance comparison, and
evaluating reproducibility and generalization. Here, we present a large labeled pro-
teomics dataset spanning several tasks in the domain to address this challenge. We
focus on two common applications: peptide retention time and MS/MS spectrum
prediction. We review existing methods and task formulations from a machine
learning perspective and recommend suitable evaluation metrics and visualizations.
With an accessible dataset, we aim to lower the entry barrier and enable faster
development in machine learning for proteomics.

1 Introduction

Proteins are large multi-functional bio-molecules that are responsible for sustaining life. They
perform a vast array of functions that are not limited to providing structure for cells and enabling body
movement. Some proteins act as channels in the cell membrane and are responsible for delivering
oxygen to the body through the bloodstream. Others help build new molecules and act as catalysts to
regulate almost all chemical reactions in our cells. They also act as a line of defense in our body since
antibodies are made of proteins [1]. Finally, proteins play a vital role when developing treatments [2].
A prominent example is the development of the recent mRNA vaccines that were employed to fight
the COVID-19 pandemic, where they help trigger an immune response to the virus [3].
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The collection of all proteins expressed at a given time is called a proteome. While genetic information
remains mostly unchanged during an individual’s life, its proteome is highly dynamic [4]. It depends
on several factors, such as age, and constantly reacts to both internal and external influences. These
dynamics can therefore provide insights on fundamental biological questions and help understand
and treat diseases. [5].

Mass spectrometry (MS) [6] is an essential tool in proteomics for high throughput identification and
quantification of proteins. The objective is to measure the mass-to-charge (weight) of molecules and
number of molecules (intensity). In essence, we would like to figure out which molecules exist in
what abundance. In tandem mass spectrometry, individual peptides are fragmented. A fragmentation
spectrum is recorded for each peptide, allowing the deduction of their amino acid composition.
Through the analysis of spectra, the identity and quantity of proteins in the original sample can be
inferred. These identification and inference procedures are highly computerized, allowing researchers
to use them efficiently in large-scale experiments to identify a large number of peptides in a short
time frame [7]. Experimentally, we commonly see only up to 50% of the spectra being identified;
therefore, there is room to improve the process using predictions from machine learning models.

In recent years, machine learning algorithms successfully improved the identification of peptides,
which allows to infer the presence of proteins. Essentially, machine learning models are trained to
predict what the measurements in a mass spectrometer would look like for a given peptide. The
experimental measurements are then compared with the predicted measurements from the model
in order to identify peptides [8]. Both classical machine learning models such as Support Vector
Machines (SVMs) [9] and deep learning models [10, 11, 12, 13] were used to predict properties of
peptide sequences.

In this paper, We review different approaches and recent methods for formulating two main tasks
in proteomics as machine learning problems and introduce a reference annotated proteomics mass
spectrometry dataset (PROSPECT [14]). We also recommend evaluation metrics and plots for the
two tasks and report results from benchmarking on one recent deep learning model. Our dataset
provides a foundation for various proteomics applications and is not limited to the two tasks in focus.
With this work, we aim to streamline the efforts in training and evaluating machine learning models,
accelerate research, and improve reproducibility and comparison of results.

2 Related Work

Deep learning methods outperformed classical machine learning methods and other domain-specific
techniques used in proteomics to predict the properties of peptides. Inspired by models from natural
language processing (NLP), proteomics researchers developed and trained various model architectures
on different datasets. The datasets used for training are usually either measured, curated, and pre-
processed internally in each research laboratory or collected from public repositories such as PRIDE
[15] and MassIVE [16]. As summarized in Figure 1, we present a high-level overview of a typical
machine learning task setup, looking at inputs, common model architectures, and applications in
proteomics. This setup does not apply to each and every machine learning problem in proteomics
(e.g. De novo sequencing does not follow it), but can be considered a common ground for a variety
of tasks. For a listing of different tasks, we refer to Section H in the appendix.

2.1 Inputs and Encoding

The primary input in several proteomics applications is the peptide sequence, a variable-length
sequence of amino acids represented by alphabetical letters. Sequences go through two essential
pre-processing steps before being fed into a deep learning model: encoding and padding. Encoding is
required to allow for consuming the sequences by different neural network layers. One-hot encoding
is a common technique to numerically represent sequences by replacing each amino acid with a
one-hot vector. The resulting encoded representation of a sequence is a 2D matrix with dimensions
N × L, where N is the total number of unique amino acids in the data and L is the sequence
length. One-hot encoding is used in DeepLC [11]. An alternative encoding technique is to learn
representations for each amino acid by having an embedding layer, similar to NLP models. The
weights of the embedding layer are jointly trained with the other weights of the model. The size of
the embedding matrix is N ×D, where N is the total number of unique amino acids in the data and
D is a user-specified dimensionality for the embeddings. Note that after looking up the embedding
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Figure 1: High-level overview of a typical machine learning setup in proteomics for several tasks.

matrix, a sequence representation will be of dimensions D×L. Embeddings are used in DeepRT and
Prosit [10, 8, 17]. Padding is mandatory for models that require a fixed length for all sequences. Each
sequence is padded, mostly with zeros, up to a certain sequence length L, a user-specified parameter.
Padding is used in various models, such as in Prosit [10]. For models accepting a maximum fixed
sequence length, longer sequences are not truncated but rather ignored during training and prediction.

Several models leverage secondary inputs to provide the model with more context and information
about the sequences. In the proteomics literature, some models refer to these inputs as meta-data
[18] or global features [11], basically features coming from domain-specific information about the
sequences and the amino acids constituting each sequence. Sequence-level features include precursor
charge and mass, while features on the level of amino acids include atomic composition. Features
extracted from the data generation process can also be included, such as the used fragmentation
method. Features are generally numeric, either integer counts or floating-point values; therefore,
requiring no further encoding. Collision energy is, for example, a commonly used additional feature
[10, 18]. In cases where the model receives categorical features such as the fragmentation method,
they can then be one-hot encoded. Several models in the literature, such as [11, 10] utilize additional
features. From a dataset viewpoint, some features can be derived given the sequence (e.g., sequence
length). In contrast, others require feature extraction and look-ups (e.g., atomic composition) from
publicly available resources, such as Unimod [19].

2.2 Model Architectures

Due to the sequential nature of the data in proteomics, researchers adopted several model architectures
from the NLP domain. Most architectures process the input sequences with an encoder block, whether
they are one-hot encoded or represented as embeddings. The block consists of either convolutional
layers or recurrent layers. On the one hand, Convolutional Neural Networks (CNNs or ConvNets)
excelled in computer vision tasks because they can learn local features invariant to the location in the
input, given their local connections and parameter-sharing architecture. Pooling layers usually follow
convolutional layers to aggregate and merge the learned features [20]. For processing sequences,
convolutions can learn features from neighboring amino acids. DeepLC [11] is one of the models
mainly based on CNNs for encoding the sequences as well as some of the features. On the other
hand, Recurrent Neural Networks (RNNs) can capture relations in a sequential input due to their
architecture with feedback connections [21]. However, they come at the cost of additional difficulties
in training (vanishing and exploding gradients) and longer training time [22]. Two RNN variants are
commonly used in the proteomics literature; Long-Short-Term-Memory (LSTMs) [22] and Gated
Recurrent Units (GRUs) [23]. GRUs are generally faster to train than their equivalent LSTMs. Prosit
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[10, 8] encodes the sequences with GRUs, while pDeep [12] uses LSTMs. Several RNN-based
architectures employ bidirectional layers to process the sequence in both directions. The Transformer
architecture introduced by [24] outperformed several models for sequential data, specifically in
natural language applications. PrositTransformer [18] is a recent model that encodes the sequences
with a transformer architecture, leveraging positional encoding and the self-attention mechanism.

Models encode the additional features with a simpler encoder architecture depending on their
representation (i.e., values and dimensionality). Using conditioning [25], models involving extra
features other than the sequences combine both encoded representations (the two latent spaces). The
most common conditioning techniques are element-wise multiplication, used in Prosit [10], and
concatenation, used in DeepLC [11].

Later in the architecture, a decoder with mostly fully-connected layers processes the combined
representation and outputs predictions in supervised learning tasks. Throughout the model, from one
layer to the next, the output is passed through a non-linear function (activation function). Rectified
linear unit (ReLU) [26] is the most popular activation function or a variant thereof [20]. Prosit [10]
and DeepRT [13, 17] use ReLUs, while DeepLC [11] uses Leaky ReLUs [27]. The output layer of
the model has almost always a linear activation function, where the regressed values in supervised
learning tasks are passed without transformation.

2.3 Applications

Trained deep learning models following the aforementioned general overview produced good predic-
tions of peptide sequence properties in a supervised setting. They outperformed classical machine
learning methods as well as traditional domain-specific methods such as index-based, modeling-based,
and look-up methods [28].

We focus on two main supervised learning tasks in proteomics: retention time prediction and MS/MS
spectrum prediction. Retention time prediction is a regression task where the model predicts the
retention time value for a peptide sequence.

The second task is to predict the MS/MS spectrum. The spectrum is two-dimensional, with tuples
of values (m/z, I)i for mass-charge ratios and intensities. This task is more complex than retention
time prediction and is modeled as a multi-output regression task. As shown in Figure 1, we could
group the different methods of formulating this task as a machine learning problem under three main
categories. The first category is to predict all m/z values and their corresponding intensities. The
second approach is to bin the m/z values into a fixed number of bins, k for example, and predict the
corresponding intensities, as in [29]. Lastly, the third one predicts the intensities for a pre-defined set
of m fragment ions, such as in [10, 18, 30, 12]. The two latter approaches are simpler formulations
than the first one since the positions of the intensity values in the predicted vector are fixed, either for
an m/z bin or a fragment ion type. The first approach is difficult due to the precision and range of
the measurements, parts-per-million (10−6) for m/z and percent (10−2) for intensities.

2.4 Data

In the proteomics community, there exists several datasets that are used to train and evaluate models
for both spectrum and retention time prediction. We observed that ProteomeTools [31] is one of the
most commonly used raw datasets in literature, or sometimes a subset of it. Table 1 shows a summary
of recent publications for both tasks, highlighting the datasets used, the associated labels, and the
maximum supported sequence length. Comparing performance of new models or training approaches
becomes challenging given the size of the datasets, the custom in-house data preparation workflow,
and the different data splits.

3 Dataset

ProteomeTools [31] is the base for our dataset. It contains multimodal liquid chromatography-tandem
mass spectrometry analysis for over a million synthetic peptides, representing all canonical human
gene products. PROSPECT (PROteometools SPECTrum compendium) is our annotated dataset
leveraging the raw data from ProteomeTools. We chose ProteomeTools for three main reasons. First,
it is one of the most common datasets used in the proteomics machine learning literature, as seen in
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Table 1: Summary of datasets used in literature for training

Name Task Data Labels Peptide
Length

pDeep2 [32] Spectrum ProteomeTools + others b/y ions dynamic
MS2PIP [30] Spectrum Multiple datasets b/y ions 28
Predfull [29] Spectrum ProteomeTools + others Binned m/z 30
Prosit Transformer [18] Spectrum ProteomeTools b/y ions 32
DeepLC [11] Retention Time ProteomeTools + others RT 60
DeepRT+ [17] Retention Time ProteomeTools + others RT 50
Prosit [10, 8] Both ProteomeTools RT & b/y ions 30

Mass Spectrometry

Raw mass
spectrum data

Database Search

Peptide
spectrum
matches 

Annotation

Annotated 
mass spectra

Pre-processing,
Encoding for Machine

Learning

Scaled
features,
encoded

sequences

Proteomics-specific Workflow Machine Learning Workflow

Machine Learning
Pipeline

Training 
Validation 
Inference

traceable to raw data

Figure 2: Data workflow and stages in proteomics.

Table 1. Second, it contains high-quality spectra with less noise in the data by reducing co-elution.
Third, it contains measurements on synthetic samples of peptides and hence does not contain any
reference to human samples. Having only synthetic peptides in the raw data has two advantages.
First, we know beforehand which peptides exist in each measurement, achieving a lower rate of false
identification in our pipeline. Second, since no human samples are involved, no ethical concerns are
associated with the dataset from this perspective.

We refer to the ProteomeTools original publication [31] for more details on its advantages. In the
appendix Section G, we also discuss in more details the added value PROSPECT brings on top of
ProteomeTools to serve as a reference dataset for machine learning in proteomics.

This section briefly describes the data workflow in proteomics, introduces the dataset schema, and
provides some summary statistics and exploratory analyses. Although the dataset enables research in
various directions and tasks, we focus on retention time and MS/MS spectrum prediction.

3.1 Data Generation and Processing Workflow

The workflow for MS data involves multiple steps before feeding the data to a machine learning
pipeline, as depicted in Figure 2. First, samples of peptides are analyzed with the mass spectrometer,
which measures them/z ratio. Through tandem MS, we get spectra for the different peptides. Second,
we identify peptides in our samples through a database search. We used MaxQuant [33] in this step,
a quantitative proteomics software package. Since our base dataset, ProteomeTools, contains only
synthetic peptides, we know which ones to expect, leading to lower false-positive matches. Based
on the peptides identified by MaxQuant, we used an expert annotation system [34] to annotate y
and b fragment ions (up to triple-charged) as well as possible neutral losses. Providing training data
with annotation of neutral losses is up to our knowledge novel, where we annotated 26 different
neutral losses and combination thereof, supporting two concurrent neutral losses. Since the variation
in the intensity values is high, we scaled the intensities to be in the range between zero and one.
Nevertheless, users can always trace the spectra back to the raw data and retrieve the raw intensities.
Our implementation of the annotation pipeline is available in a dedicated GitHub repository [35].
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Figure 3: Data schema and a visualized example spectrum with the structure of the data files.

Table 2: Summary statistics of the dataset.

Packages Pools Unique
Peptides Precursors Spectra Annotated

Peaks
Raw
Peaks1

12 983 838 K 1.24 M 61.7 M 5.7 B 24 B
1 Available in the raw ProteomeTools dataset [36, 37, 38].

3.2 Dataset Schema

The dataset consists of 12 packages and has two main parquet file formats; meta-data and annotation
files. There is one meta-data file for each package, while the annotations file is split into multiple
files per package to facilitate reading the data. Annotation files are sub-organized by pools, where a
pool is a set of 1k peptides measured in one analysis run. In both files, a unique identifier to trace
back any example to its original raw data file in ProteomeTools is provided. This identifier is the
combination of the raw file ID and the scan number. The original ProteomeTools dataset is available
on PRIDE [36, 37, 38] and has the same identifier names. We provide a pre-defined data split that is
random with one condition; namely, examples for the same peptide sequence should appear in only
one of the three splits (training, validation, and test), similar to the logic in [39]. Figure 3 depicts the
structure of the files and visualizes one spectrum with its annotations. The files contain sequences,
annotations (targets), features, and other meta-data. The complete dataset is hosted on Zenodo [14].
Table 2 shows summary statistics for the data.

The sequences are represented as strings to allow for flexibility of using the dataset in different
encoding and machine learning pipelines. Various modifications can occur on the sequences and its
constituting amino acids. Two common types of modifications exist in the data; Carboxyamidomethy-
lation which is applied to all cysteine amino acids and oxidation which happens frequently on the
methionine. The amino acids are represented by their corresponding letters and the modifications are
encoded in Unimod IDs [19], a common database of protein modifications for mass spectrometry.
The representation of the sequence follows one of the recommended notations of ProForma [40], a
standard notation for writing sequences with modifications. An example sequence is shown in Figure
3. More statistics about the modifications and their occurrences in the dataset are in Section F in the
appendix.
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Figure 4: Left: Diversity of peptide sequences based on the Levenshtein distance [43]. Right:
Retention times for different sequence lengths.

Since these two aforementioned modifications are the most frequently observed ones introduced
during sample preparation in proteomics, we did not include samples with other modifications to
reduce the complexity of the dataset and to first establish a reference benchmarking dataset across
the proteomics community. Adding more modifications would be more challenging as it will add
another aspect of complexity, where we have to be confident of the position of the modification in the
sequence[41, 42].

3.3 Exploratory Data Analysis

To illustrate the diversity of the peptide sequences in the dataset, we compute the Levenshtein distance
[43] among the different peptides. Figure 4 (left) depicts the distribution of Levenshtein distances
against the sequence length.

Data for Retention Time Prediction

Liquid Chromotography (LC) processes a sample by separating peptides in time according to one
of their chemical properties. For instance in Reversed-Phase-LC (RP-LC), which is based on
hydrophobicity, peptides with more aliphatic non-polar amino acids such as leucine and isoleucine
are more hydrophobic and tend to elute later [44]. The time it takes peptides to elute is denoted as the
retention time.

In many cases, models are trained to predict the indexed Retention Time (iRT) instead of the actual
experimental retention time. This unitless quantity is calculated by choosing two, or sometimes more,
reference peptides as pillars and regressing a line between their retention times. Prosit and DeepLC
adopted this approach [10, 8, 11]. In our dataset, we provide the experimental and indexed retention
time [45] in the meta-data file. Figure 4 (right) visualizes the distribution of retention time values for
different sequence lengths in the dataset.

Data for MS/MS Spectrum Prediction

Predicting the MS/MS spectrum is a more challenging task. We explained the three main approaches
of formulating the prediction as a machine learning task in section 2. Our dataset supports all
three approaches. While retention time is determined mainly by the peptide sequence, the spectrum
depends on other factors, particularly on the fragmentation method, collision energy, and the charge
of the precursor ion.

In the annotations file, all annotated peaks with their intensities and the corresponding m/z values
are listed. An example of how a spectrum looks like is depicted in Figure 3. Annotations for y and b
ions are included along with neutral losses.

Figure 5 visualizes the distribution of the precursor charge and the average number of peaks per
amino acid for different sequence lengths. We can see that the precursor charge tends to be low for
shorter peptide sequences and high for longer ones. This distribution shows that the annotations in
our dataset cover a wide range of peptides in terms of length and charge states.
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The differences between y and b ions with and without neutral losses are visualized in Figure 6. We
see that the peaks for neutral losses has lower intensity overall; however, they are useful to explore a
different part of the spectrum that is disregarded in traditional search [46].

3.4 Impact and Downstream Tasks

Predicting retention times accurately can make MS workflows more efficient by aiding in precursor
selection and eliminating ambiguities in peptide identification [47].

Since intensities are usually ignored in traditional database searching [48, 49], being able to predict
them quickly and reliably means that valuable new information can be added to traditional pipelines.
This re-scoring algorithm improves peptide identification in multiple domains, especially when
peptides are very similar. In immunopeptidomics, for example, adding extra features such as peak
intensities and retention time helps separate targets and decoys, which significantly boost peptide
identifications [8, 10, 50]. Another promising application domain is intelligent mass spectrometric
data acquisition, where peptide identifications can help decrease the total time required for experimen-
tation. Peptide features and the validated scoring can be used in real-time to reduce long acquisition
cycles and hence increase the efficiency of acquisition [47, 51].

4 Experimental Results and Evaluation

One of the main objectives of learning to predict retention times and intensity spectra is to improve
peptide identification. One way to evaluate the performance of such models is by integrating them
into an application and quantifying their contribution to the overall performance improvement. Such
evaluation relies on an extrinsic metric, where we evaluate an improvement in a component to
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know if it will benefit the task at hand [52]. In several cases, having a quick metric to evaluate the
model enables faster iteration and improvement of the component at hand. This intrinsic approach
helps avoid the costly integration into an end-to-end pipeline and measures the model’s performance
independent of a larger system or pipeline [52]. The setup is similar to evaluating language models
independently with an intrinsic evaluation metric such as perplexity, against evaluating them by
embedding them into a speech recognition application [52]. We focus on the intrinsic evaluation of
the two tasks mentioned earlier, recommend respective metrics and visualizations, and report results
for training Prosit (a recent deep learning model) with our dataset. More experimental details can be
found in Section I in the appendix.

4.1 Retention Time Prediction

Since retention time models predict a single continuous value, error metrics, such as mean squared
error or mean absolute error, provide an indication of the performance and are usually used as loss
functions during model training. Another common metric is the Pearson Correlation Coefficient
(PCC or R) [53] between the predicted and the observed retention times. Given that models perform
relatively well on predicting single values of retention times (values of PCC close to 0.99) [10, 11,
17], the time delta metric provides more fine-grained and domain-specific insights into the model
performance [17, 10, 11]. The time delta at 95% ∆t95% is the minimal time window containing
the errors (residuals) between observed and predicted retention times for 95% of the peptides [13].
The 95% threshold corresponds to 2σ of the residuals. This threshold can be increased to a higher
percentage for stricter evaluation of model performance. A high correlation value is not always
guaranteeing good performance in down-stream tasks. The time delta 95 with its domain-specific
interpretation can give a clear indication on the time window for identification of eluting peptides.
Figure 7 visualizes the linear relationship between measured and predicted iRT values from training
and evaluating a Prosit [10] model on our dataset. We recommend a similar visualization for assessing
model performance, along with R and ∆t95%. We provide code to compute the metrics in our data
GitHub repository [54].

4.2 MS/MS Spectrum Prediction

Evaluation of models predicting MS/MS spectra involves using a distance or a similarity metric
between the predicted and the observed intensity vectors. We recommend the normalized spectral
angle as an evaluation metric [10] and provide code to compute it in our dataset GitHub repository
[54]. It is defined as follows for Va and Vb being the observed and predicted intensity vectors:

SA = 1 − 2
π cos−1( Va·Vb

‖Va‖·‖Vb‖ )
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A typical evaluation approach is to see how models perform for different subgroups in the data. For
example, models usually perform worse on longer sequences, which can be observed by plotting the
spectral angle against sequence length. Similarly, we can evaluate performance for different frag-
mentation methods (e.g. Collision Induced Dissociation and Higher-energy Collisional Dissociation,
CID and HCD) or for different precursor charges. Figure 8 shows our recommended violin plot for
evaluation of different fragmentation methods and precursor charges. Figure 9 shows the spectral
angle for different peptide lengths. The results are from training and evaluating a Prosit model [10]
on our dataset with the recommended split.

5 Conclusion and Limitations

In this work, we introduced PROSPECT, an annotated dataset for MS proteomics research based
on ProteomeTools [31]. Although the dataset is not limited to retention time and MS/MS spectrum
prediction, we focused on the two tasks and recommended metrics and visualizations for model
evaluation. PROSPECT provides an annotated dataset for both tasks, allowing for multiple extensions
with respect to MS/MS spectra prediction. Along with common annotations for fragment ions (y and
b), it includes annotation for neutral losses and multiple charge states. The dataset does not include
any reference to human samples since it is based on synthetic samples from ProteomeTools [31].

Our dataset represents a starting point to align the efforts in proteomics research. Since the dataset
includes a limited number of modifications on peptides, there is potential for extending it with more
examples of modified peptides. Similarly, we focused on two supervised learning tasks; however,
the dataset enables researchers to formulate and explore new tasks. Examples of supervised tasks
include fragment presence prediction [55], de novo sequencing [56, 57] and prediction of the elution
profile for retention time instead of one single value. Additionally, the data can be used for self-
supervised learning tasks such as learning embeddings of peptide sequences and spectra, [58, 59]
and unsupervised tasks, such as clustering of spectra [60]. Detailed listing of supported tasks is in
Section H in the appendix.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] We propose a reference annotated dataset and
recommend evaluation metrics for two machine learning tasks in Proteomics.

(b) Did you describe the limitations of your work? [Yes] See Sections 3 and 5.
(c) Did you discuss any potential negative societal impacts of your work? We do not know

of specific negative impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A] We propose
the dataset and evaluation metrics, we believe benchmarking on such a large dataset
should be addressed in another publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [N/A] We provide code to generate a pre-defined train/test split. However,
users have the possibility to split the data differently.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our raw data comes

from ProteomeTools [31], more details are in Setion 3.
(b) Did you mention the license of the assets? [Yes] The dataset [14] is licensed under

Creative Commons 4.0 and the code [54] is licensed under MIT License.
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] The URL and DOI for the dataset are stated in the references [14]. The GitHub
repository contains supplementary code to the dataset.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] The raw ProteomeTools dataset is publicly available under a
Creative Commons license and the European Bioinformatics Institute (EMBL-EBI)
terms of use.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The raw data comes from synthetic peptides,
no human samples were included. See Section 3.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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