Appendix: A Neural Pre-Condition Active Learning Algorithm to Reduce Label Complexity

Anonymous Author(s)
Affiliation
Address
email

A Proof of Theorem 1

Assume a non-degenerate training set $\|x_i - x_j\| > 0, \forall i \neq j$. Theorem 1 in the main script is re-written:

Theorem 1. At each gradient descent iteration t with step size $\eta = O(\lambda_{\text{min}}(K_0))$, the MSE loss \mathcal{L} suffered by a properly-initialized feedforward ReLU network decays as

$$
\mathcal{L}_{t+1} \leq (1 - O(\eta \lambda_{\text{min}}(K_t))) \mathcal{L}_t
$$

with high probability over initialization.

We adopt the convention that all gradients are flattened in vector form and use the Euclidean norms to represent their size. First we express training dynamics as a recursion:

Lemma 1. Feedforward DNNs with once-differentiable activation functions trained using gradient descent on the MSE loss \mathcal{L}_t with step size η follow the recursion:

$$
\mathcal{L}_{t+1} \leq (1 - \eta \lambda_{\text{min}}(K_t)) \mathcal{L}_t + \xi_t + \epsilon_t,
$$

where

$$
\xi_t = \int_0^\eta \nabla L_t^T (\nabla L_t - \nabla L(\theta_t - \gamma \nabla L_t)) d\gamma \quad \text{and} \quad \epsilon_t = \frac{1}{2} (f_{\theta_{t+1}} - f_{\theta_t})^2.
$$

Proof. This derivation is mostly from Du et al. (2019), but we include the proof under our notations for completeness. Let $e_t = y - f_{\theta_t}$. A standard technique with triangular inequality gives

$$
\mathcal{L}_{t+1} \leq \mathcal{L}_t + \|f_{\theta_{t+1}} - f_{\theta_t}\|^2 - 2e_t^T (f_{\theta_{t+1}} - f_{\theta_t}).
$$

Let $h(\eta) = f(\theta_t - \eta \nabla L_t)$. By the fundamental theorem of calculus,

$$
f_{\theta_{t+1}} - f(\theta_t) = h(\eta) - h(0)
$$

Since $h'(0) = -\nabla f(\theta_t)^T \nabla L_t = -e \nabla f_{\theta_t}^T \nabla f_{\theta_t} = -e \text{Tr}(K_t)$, we have

$$
e^T (f_{\theta_{t+1}} - f_{\theta_t}) = -\eta e^T K_t e + \int_0^\eta h'(\gamma) - h'(0)d\gamma \leq -\eta \lambda_{\text{min}}(K_t) \mathcal{L}_t + \xi_t.
$$

Substituting into Eq. 3 gives Eq. 2 together with $e_t \int_0^\eta h'(\gamma) - h'(0)d\gamma = \int_0^\eta \nabla L_t^T (\nabla L_t - \nabla L(\theta_t - \gamma \nabla L_t)) d\gamma$.

The above bound sheds light on training dynamics, where the first term decreases linearly with rate determined by the Gram matrix’ eigenvalue. To establish Thm. 1 that states the loss descends at each gradient step, it remains to prove that residual terms ξ_t, ϵ_t grow (sub-)linearly with \mathcal{L}_t.

An extension of smoothness and convexity is defined following (Allen-Zhu et al., 2019);
\textbf{Definition 1} (Smoothness). A non-negative, once-differentiable function \(g \in C^1(\mathcal{X}) \) is \((\alpha, \beta)\)-smooth if for every \(x, y \in \mathcal{X} \),
\[g(y) \leq g(x) + \nabla g(x)^T (y - x) + \alpha \sqrt{g(x)} \|y - x\| + \beta \|y - x\|^2 \tag{4} \]

\textbf{Definition 2} (Near-Convexity). A non-negative function \(g \in C^1(\mathcal{X}) \) has gradients \(\nabla g \) that scale as \((\mu, M)\) if
\[\mu g(x) \leq \|\nabla g(x)\|^2 \leq M g(x), \forall x \in \mathcal{X}. \tag{5} \]

If a function’s gradients scale as \((\mu, M)\), we say the gradient scale is bounded.

First we invoke the following lemma (Thms. 3 & 4 in Allen-Zhu et al. [2019]) to show that the MSE loss remains semi-smooth and nearly convex throughout training for wide ReLU networks:

\textbf{Lemma 2.} For sufficiently small \(\|\theta - \theta_0\| \) and \(\|\theta - \theta'\| \), the loss remains nearly convex
\[\|\nabla \mathcal{L}(\theta)\|^2 = \Theta(\mathcal{L}(\theta)) \]
and semi-smooth
\[\mathcal{L}(\theta') \leq \mathcal{L}(\theta) + \nabla \mathcal{L}(\theta) (\theta' - \theta) + O \left(\mathcal{L}(\theta)^{1/2} \|\theta' - \theta\| \right) + O(\|\theta' - \theta\|^2) \]
with high probability hiding constants depending on architecture width, depth, and dataset size.

Above we use \(\Theta(\cdot) \) as upper and lower bounds matching up to multiplicative constants.

Next we bound the residual terms in Lemma 1:

\textbf{Lemma 3.} If the loss function \(\mathcal{L}_t \) remains smooth and near-convex as defined above,
\[\epsilon_t, \xi_t \leq O(\eta^2) \mathcal{L}_t \]
with high probability over initialization.

\textbf{Proof.} The following inequality will be used for \((\alpha, \beta)\)-smooth functions.

\textbf{Proposition 1.} If \(g \) is \((\alpha, \beta)\)-smooth,
\[(\nabla g(y) - \nabla g(x))(y - x) \leq \alpha(\sqrt{g(x)} + \sqrt{g(y)}) \|y - x\| + 2\beta \|y - x\|^2 \tag{6} \]

\textbf{Proof.} Expanding the LHS in terms of \(x \) and \(y \) then summing their upper bounds gives the inequality. \(\square \)

Bound on \(\xi_t \) Proposition 1 with \(\mathcal{L} \) at \(\theta_t \) and \(\theta_t - \gamma \nabla \mathcal{L}_t \) can be used to bound the integrand.
\[(\nabla \mathcal{L}_t - \nabla \mathcal{L}(\theta_t - \gamma \nabla \mathcal{L}_t)) \nabla \mathcal{L}_t \leq \alpha \|\nabla \mathcal{L}_t\| \left(\sqrt{\mathcal{L}_t} + \sqrt{\mathcal{L}(\theta_t - \gamma \nabla \mathcal{L}_t)} \right) + 2\gamma \beta \|\nabla \mathcal{L}_t\|^2. \]

Using the definition of smoothness
\[\mathcal{L} (\theta_t - \gamma \nabla \mathcal{L}_t) \leq \mathcal{L}_t + \gamma \left(\alpha \sqrt{\mathcal{L}_t} \|\nabla \mathcal{L}_t\| - \|\nabla \mathcal{L}_t\|^2 \right) + \beta \gamma^2 \|\nabla \mathcal{L}_t\|^2, \]
and by near-convexity,
\[\leq \left(1 + \gamma (\alpha \sqrt{M} - \mu) + \beta \gamma^2 \right) \mathcal{L}_t. \tag{7} \]

Let \(b = (\alpha \sqrt{M} - \mu) / 2\beta \) and \(c = 1 / \beta - b^2 \).
\[\sqrt{\mathcal{L}_t} + \sqrt{\mathcal{L}(\theta_t - \gamma \nabla \mathcal{L}_t)} \leq \sqrt{\mathcal{L}_t} \left(1 + \sqrt{\beta \left(\gamma + |b| + \sqrt{|c|} \right)} \right) =: \sqrt{\mathcal{L}_t} \left(\sqrt{\beta \gamma + c'} \right) \]
by the triangle inequality. Again, \(\|\nabla \mathcal{L}_t\|^2 \leq M \mathcal{L}_t \), and we have a bound on the integrand as
\[\alpha \|\nabla \mathcal{L}_t\| \left(\sqrt{\mathcal{L}_t} + \sqrt{\mathcal{L}(\theta_t - \gamma \nabla \mathcal{L}_t)} \right) + 2\gamma \beta \|\nabla \mathcal{L}_t\|^2 \leq \left(\alpha \sqrt{M} \left(\sqrt{\beta \gamma + c'} \right) + 2\gamma \beta M \right) \mathcal{L}_t \]
\[=: (d' \gamma + c'') \mathcal{L}_t \]
\[\Rightarrow \xi_t \leq \mathcal{L}_t \int_0^\infty a' \gamma + c'' d\gamma = O(\eta^2) \mathcal{L}_t. \]
where we hide constants that depend on the architecture and dataset size.

Bound on \(\epsilon_t \) It is sufficient that \(\epsilon_t \leq (\alpha^2 + \lambda_{\min} \eta) \mathcal{L}_t \) for any \(\alpha \) so that \(\mathcal{L}_t \) is guaranteed to decrease for small \(\eta \). This proof is quite involved and relies on analytic expressions for ReLU networks. To this end, we follow the setting in \cite{Allen-Zhu2019} and WLOG fix the last layer’s weights as \(B \), denoting pre- and post- activations by \(g^t, h^r \) respectively and an “active-indicator” matrix \(D^t \in \mathbb{R}^{d \times d} \), \(D^t_{k,k} = 1 \{ g^t_{k,k} \geq 0 \} \), and weight matrices \(W_l \in \mathbb{R}^{d \times d} \) for each layer \(l \in [L] \), where \(d \) denotes the width of the hidden layers and \(L \) is the number of layers.

Notice that for ReLU networks, we can write the post-activations at every layer as \(h_{t+1}^l = D_{t+1}^l W_t h_t^{l-1} \).

Proposition 2 (Distributive diagonal matrices). There exists \(\tilde{D} = (\tilde{D}^1, \ldots, \tilde{D}^L) \) with \(\tilde{D}^l \in [−1, 1]^{d \times d} \) for every \(l \) such that
\[
D_{t+1}^l W_t h_{t+1}^l - D_t^l W_t h_t^{l-1} = \left(\tilde{D}_t^l + \tilde{D}_{t+1} \right) \left(W_t h_{t+1}^{l-1} - W_t h_t^{l-1} \right) .
\]

The above proposition follows from case-by-case considerations of ReLU activations, see Proposition 11.3 in \cite{Allen-Zhu2019}.

Proposition 3 (Linear expansion of post-activations). There exists some \(\tilde{D}^l \in [−1, 1]^{d \times d} \) at each \(l \) such that
\[
h_{t+1}^l - h_t^l = -\eta \sum_{r=1}^L \left(\tilde{D}_r^l + \tilde{D}_{r+1} \right) W_r^l \cdots W_t^l \left(D_t^r + \tilde{D}_r \right) \times (\nabla W_{r+1} \mathcal{L}_t) h_{r+1}^{r-1}
\]

The following proposition due to \cite{Allen-Zhu2019} (Lemma 8.6b and Lemma 7.1, respectively) gives bounds on the first line on the RHS and last term:

Proposition 4. For every \(l \in [L] \) and \(r \in [l] \),
\[
\| \left(D_t^r + \tilde{D}_r \right) W_t^r \cdots W_{r+1} \left(D_{r+1}^r + \tilde{D}_{r+1} \right) \| \leq O(\sqrt{L}) \| h_{r+1}^{r-1} \| \leq o(1).
\]

Applying Cauchy-Schwartz inequality and the fact that norm of sums \(\leq \sum \) of norms to Propositions 2 and 3
\[
\| f_{\theta_{t+1}} - f_{\theta_t} \| = \| B (h_{t+1}^l - h_t^l) \|, \leq \eta O(L^{1.5} \sqrt{d}) \| \nabla \mathcal{L}_t \| .
\]

Since \(\| \nabla \mathcal{L}_t \| \leq \sqrt{\mu \mathcal{L}_t^2} \),
\[
\epsilon_t = \| f_{\theta_{t+1}} - f_{\theta_t} \|^2 \leq O(L^3 d M) \eta^2 \mathcal{L}_t = O(\eta^2 \mathcal{L}_t).
\]

Theorem 3 is a direct consequence of Lemmas 2 and 3 and the step-size can be selected based on \(K_0 \) because \(K_t \) remains in a neighborhood of \(K_0 \) throughout training \cite{Arora2019}.

References

