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A Proof of Theorem 11

Assume a non-degenerate training set ∥xi − xj∥ > 0,∀i ̸= j. Theorem 1 in the main script is2

re-written:3

Theorem 1. At each gradient descent iteration t with step size η = O(λmin (K0)), the MSE loss L4

suffered by a properly-initialized feedforward ReLU network decays as5

Lt+1 ≤ (1−O (ηλmin (Kt)))Lt (1)

with high probability over initialization.6

We adopt the convention that all gradients are flattened in vector form and use the Euclidean norms7

to represent their size. First we express training dynamics as a recursion:8

Lemma 1. Feedforward DNNs with once-differentiable activation functions trained using gradient9

descent on the MSE loss Lt with step size η follows the recursion:10

Lt+1 ≤ (1− ηλmin (Kt))Lt + ξt + ϵt, (2)

where ξt =
∫ η

0
∇LT

t (∇Lt −∇L(θt − γ∇Lt)) dγ and ϵt =
1
2 (fθt+1 − fθt)

2.11

Proof. This derivation is mostly from Du et al. (2019), but we include the proof under our notations12

for completeness. Let et = y − fθt . A standard technique with triangular inequality gives13

Lt+1 ≤ Lt + ∥fθt+1 − fθt∥2 − 2eTt
(
fθt+1 − fθt

)
. (3)

Let h(η) = f(θt − η∇Lt). By the fundamental theorem of calculus,14

fθt+1
− f(θt) = h(η)− h(0)

=

∫ η

0

h′(γ)dγ =

∫ η

0

h′(0)dγ +

∫ η

0

h′(γ)− h′(0)dγ

Since h′(0) = −∇f(θt)
T∇Lt = −e∇fT

θt
∇fθt = −eTr (Kt), we have15

eT (fθt+1
− fθt) = −ηeTKte+

∫ η

0

h′(γ)− h′(0)dγ ≤ −ηλmin (Kt)Lt + ξt.

Substituting into Eq. 3 gives Eq. 2 together with et
∫ η

0
h′(γ) − h′(0)dγ =16 ∫ η

0
∇LT

t (∇Lt −∇L(θt − γ∇Lt) dγ.17

The above bound sheds light on training dynamics, where the first term decreases linearly with rate18

determined by the Gram matrix’ eigenvalue. To establish Thm. 1 that states the loss descends at each19

gradient step, it remains to prove that residual terms ξt, ϵt grow (sub-)linearly with Lt.20

An extension of smoothness and convexity is defined following (Allen-Zhu et al., 2019):21
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Definition 1 (Smoothness). A non-negative, once-differentiable function g ∈ C1(X ) is (α, β)-smooth22

if for every x, y ∈ X ,23

g(y) ≤ g(x) +∇g(x)T (y − x) + α
√

g(x)∥y − x∥+ β∥y − x∥2 (4)

Definition 2 (Near-Convexity). A non-negative function g ∈ C1(X ) has gradients ∇g that scale as24

(µ,M) if25

µg(x) ≤ ∥∇g(x)∥2 ≤ Mg(x),∀x ∈ X . (5)
If a function’s gradients scale as (µ,M), we say the gradient scale is bounded.26

First we invoke the following lemma (Thms. 3 & 4 in Allen-Zhu et al. (2019)) to show that the MSE27

loss remains semi-smooth and nearly convex throughout training for wide ReLU networks:28

Lemma 2. For sufficiently small ∥θ − θ0∥ and ∥θ − θ′∥, the loss remains nearly convex29

∥∇L (θ)∥2 = Θ(L (θ))

and semi-smooth30

L (θ′) ≤ L (θ) +∇L (θ) (θ′ − θ) +O
(
L (θ)

1/2 ∥θ′ − θ∥
)
+O

(
∥θ′ − θ∥2

)
with high probability hiding constants depending on architecture width, depth, and dataset size.31

Above we use Θ(·) as upper and lower bounds matching up to multiplicative constants.32

Next we bound the residual terms in Lemma 1:33

Lemma 3. If the loss function Lt remains smooth and near-convex as defined above,34

ϵt, ξt ≤ O(η2)Lt

with high probability over initialization.35

Proof. The following inequality will be used for (α, β)-smooth functions.36

Proposition 1. If g is (α, β)-smooth,37

(∇g(y)−∇g(x))(y − x) ≤ α(
√

g(x) +
√

g(y))∥y − x∥+ 2β∥y − x∥2 (6)

Proof. Expanding the LHS in terms of x and y then summing their upper bounds gives the inequality.38

39

Bound on ξt Proposition 1 with L at θt and θt − γ∇Lt can be used to bound the integrand.40

(∇Lt −∇L(θt − γ∇Lt))∇Lt ≤ α∥∇Lt∥
(√

Lt +
√

L(θt − γ∇Lt)
)
+ 2γβ∥∇Lt∥2 .

Using the definition of smoothness41

L(θt − γ∇Lt) ≤ Lt + γ
(
α
√

Lt∥∇Lt∥ − ∥∇Lt∥2
)
+ βγ2∥∇Lt∥2 ,

and by near-convexity,42

≤
(
1 + γ(α

√
M − µ) + βγ2

)
Lt. (7)

Let b =
(
α
√
M − µ

)
/2β and c = 1/β − b2.43 √

Lt +
√

L(θt − γ∇Lt) ≤
√
Lt

(
1 +

√
β
(
γ + |b|+

√
|c|
))

=:
√
Lt

(√
βγ + c′

)
by the triangle inequality. Again, ∥∇Lt∥2 ≤ MLt, and we have a bound on the integrand as44

α∥∇Lt∥
(√

Lt +
√
L(θt − γ∇Lt)

)
+ 2γβ∥∇Lt∥2 ≤

(
α
√
M

(√
βγ + c′

)
+ 2γβM

)
Lt

=: (a′γ + c′′)Lt

⇒ ξt ≤ Lt

∫ η

0

a′γ + c′′dγ = O
(
η2
)
Lt.
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where we hide constants that depend on the architecture and dataset size.45

Bound on ϵt It is sufficient that ϵt ≤
(
aη2 + λminη

)
Lt for any a so that Lt is guaranteed to decrease46

for small η. This proof is quite involved and relies on analytic expressions for ReLU networks. To47

this end, we follow the setting in Allen-Zhu et al. (2019) and WLOG fix the last layer’s weights as B,48

denoting pre- and post- activations by gl, hl respectively and an ‘active-indicator’ matrix Dl ∈ Rd×d,49

Dl
k,k = 1

{
glk,k ≥ 0

}
, and weight matrices Wl ∈ Rd×d for each layer l ∈ [L], where d denotes the50

width of the hidden layers and L is the number of layers.51

Notice that for ReLU networks, we can write the post-activations at every layer as hl
t+1 − hl

t =52

Dl
t+1Wt+1h

l−1
t+1 −Dl

tW
l
th

l−1
t .53

Proposition 2 (Distributive diagonal matrices). There exists D̃ =
(
D̃1, . . . , D̃L

)
with D̃l ∈54

[−1, 1]d×d for every l such that55

Dl
t+1W

l
t+1h

l
t+1 −Dl

tW
l
th

l−1
t =

(
Dl

t + D̃l
) (

W l
t+1h

l−1
t+1 −W l

th
l−1
t

)
.

The above proposition follows from case-by-case considerations of ReLU activations, see Proposition56

11.3 in Allen-Zhu et al. (2019).57

Proposition 3 (Linear expansion of post-activations). There exists some D̃l ∈ [−1, 1]d×d at each l58

such that59

hl
t+1 − hl

t = −η

l∑
r=1

(
Dl

t + D̃l
)
W l

t · · ·W r+1
t

(
Dr

t + D̃r
)
×

(
∇W r

t
Lt

)
hr−1
t+1

The following proposition due to Allen-Zhu et al. (2019) (Lemma 8.6b and Lemma 7.1, respectively)60

gives bounds on the first line on the RHS and last term:61

Proposition 4. For every l ∈ [L] and r ∈ [l],62

∥
(
Dl

t + D̃l
)
W l

t · · ·W r+1
t

(
Dr

t + D̃r
)
∥ ≤ O(

√
L)∥hr−1

t+1 ∥ ≤ o(1).

Applying Cauchy-Schwartz inequality and the fact that norm of sums ≤ sum of norms to Propositions63

2 and 3,64

∥fθt+1
− fθt∥ = ∥B

(
hL
t+1 − hL

t

)
∥,≤ ηO(L1.5

√
d)∥∇Lt∥.

Since ∥∇Lt∥ ≤
√
MLt,65

ϵt = ∥fθt+1 − fθt∥2 ≤ O(L3dM)η2Lt = O(η2)Lt. (8)

66

Theorem 1 is a direct consequence of Lemmas 1 and 3, and the step-size can be selected based on K067

because Kt remains in a neighborhood of K0 throughout training (Arora et al., 2019).68
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