Appendix: A Neural Pre-Condition Active Learning Algorithm to Reduce Label Complexity

Anonymous Author(s)
Affiliation
Address
email

A Proof of Theorem 1

Assume a non-degenerate training set $\left\|x_{i}-x_{j}\right\|>0, \forall i \neq j$. Theorem 1 in the main script is re-written:
Theorem 1. At each gradient descent iteration t with step size $\eta=\mathcal{O}\left(\lambda_{\text {min }}\left(\mathcal{K}_{0}\right)\right)$, the MSE loss \mathcal{L} suffered by a properly-initialized feedforward ReLU network decays as

$$
\begin{equation*}
\mathcal{L}_{t+1} \leq\left(1-\mathcal{O}\left(\eta \lambda_{\min }\left(\mathcal{K}_{t}\right)\right)\right) \mathcal{L}_{t} \tag{1}
\end{equation*}
$$

with high probability over initialization.
We adopt the convention that all gradients are flattened in vector form and use the Euclidean norms to represent their size. First we express training dynamics as a recursion:

Lemma 1. Feedforward DNNs with once-differentiable activation functions trained using gradient descent on the MSE loss \mathcal{L}_{t} with step size η follows the recursion:

$$
\begin{equation*}
\mathcal{L}_{t+1} \leq\left(1-\eta \lambda_{\min }\left(\mathcal{K}_{t}\right)\right) \mathcal{L}_{t}+\xi_{t}+\epsilon_{t} \tag{2}
\end{equation*}
$$

where $\xi_{t}=\int_{0}^{\eta} \nabla \mathcal{L}_{t}^{T}\left(\nabla \mathcal{L}_{t}-\nabla \mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right)\right) d \gamma$ and $\epsilon_{t}=\frac{1}{2}\left(f_{\theta_{t+1}}-f_{\theta_{t}}\right)^{2}$.
Proof. This derivation is mostly from Du et al. (2019), but we include the proof under our notations for completeness. Let $e_{t}=y-f_{\theta_{t}}$. A standard technique with triangular inequality gives

$$
\begin{equation*}
\mathcal{L}_{t+1} \leq \mathcal{L}_{t}+\left\|f_{\theta_{t+1}}-f_{\theta_{t}}\right\|^{2}-2 e_{t}^{T}\left(f_{\theta_{t+1}}-f_{\theta_{t}}\right) \tag{3}
\end{equation*}
$$

Let $h(\eta)=f\left(\theta_{t}-\eta \nabla \mathcal{L}_{t}\right)$. By the fundamental theorem of calculus,

$$
\begin{array}{r}
f_{\theta_{t+1}}-f\left(\theta_{t}\right)=h(\eta)-h(0) \\
=\int_{0}^{\eta} h^{\prime}(\gamma) d \gamma=\int_{0}^{\eta} h^{\prime}(0) d \gamma+\int_{0}^{\eta} h^{\prime}(\gamma)-h^{\prime}(0) d \gamma
\end{array}
$$

Since $h^{\prime}(0)=-\nabla f\left(\theta_{t}\right)^{T} \nabla \mathcal{L}_{t}=-e \nabla f_{\theta_{t}}^{T} \nabla f_{\theta_{t}}=-e \operatorname{Tr}\left(\mathcal{K}_{t}\right)$, we have

$$
e^{T}\left(f_{\theta_{t+1}}-f_{\theta_{t}}\right)=-\eta e^{T} \mathcal{K}_{t} e+\int_{0}^{\eta} h^{\prime}(\gamma)-h^{\prime}(0) d \gamma \leq-\eta \lambda_{\min }\left(\mathcal{K}_{t}\right) \mathcal{L}_{t}+\xi_{t}
$$

Substituting into Eq. 3 gives Eq. 2 together with $e_{t} \int_{0}^{\eta} h^{\prime}(\gamma)-h^{\prime}(0) d \gamma=$ $\int_{0}^{\eta} \nabla \mathcal{L}_{t}^{T}\left(\nabla \mathcal{L}_{t}-\nabla \mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right) d \gamma\right.$.

The above bound sheds light on training dynamics, where the first term decreases linearly with rate determined by the Gram matrix' eigenvalue. To establish Thm. 1 that states the loss descends at each gradient step, it remains to prove that residual terms ξ_{t}, ϵ_{t} grow (sub-)linearly with \mathcal{L}_{t}.

An extension of smoothness and convexity is defined following (Allen-Zhu et al., 2019):

Bound on ξ_{t} Proposition 1 with \mathcal{L} at θ_{t} and $\theta_{t}-\gamma \nabla \mathcal{L}_{t}$ can be used to bound the integrand.

$$
\left(\nabla \mathcal{L}_{t}-\nabla \mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right)\right) \nabla \mathcal{L}_{t} \leq \alpha\left\|\nabla \mathcal{L}_{t}\right\|\left(\sqrt{\mathcal{L}_{t}}+\sqrt{\mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right)}\right)+2 \gamma \beta\left\|\nabla \mathcal{L}_{t}\right\|^{2} .
$$

${ }_{1}$ Using the definition of smoothness

$$
\mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right) \leq \mathcal{L}_{t}+\gamma\left(\alpha \sqrt{\mathcal{L}_{t}}\left\|\nabla \mathcal{L}_{t}\right\|-\left\|\nabla \mathcal{L}_{t}\right\|^{2}\right)+\beta \gamma^{2}\left\|\nabla \mathcal{L}_{t}\right\|^{2}
$$

and by near-convexity,

$$
\begin{equation*}
\leq\left(1+\gamma(\alpha \sqrt{M}-\mu)+\beta \gamma^{2}\right) \mathcal{L}_{t} \tag{7}
\end{equation*}
$$

Let $b=(\alpha \sqrt{M}-\mu) / 2 \beta$ and $c=1 / \beta-b^{2}$.

$$
\sqrt{\mathcal{L}_{t}}+\sqrt{\mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right)} \leq \sqrt{\mathcal{L}_{t}}(1+\sqrt{\beta}(\gamma+|b|+\sqrt{|c|}))=: \sqrt{\mathcal{L}_{t}}\left(\sqrt{\beta} \gamma+c^{\prime}\right)
$$

by the triangle inequality. Again, $\left\|\nabla \mathcal{L}_{t}\right\|^{2} \leq M \mathcal{L}_{t}$, and we have a bound on the integrand as

$$
\begin{aligned}
\alpha\left\|\nabla \mathcal{L}_{t}\right\|\left(\sqrt{\mathcal{L}_{t}}+\sqrt{\mathcal{L}\left(\theta_{t}-\gamma \nabla \mathcal{L}_{t}\right)}\right)+2 \gamma \beta\left\|\nabla \mathcal{L}_{t}\right\|^{2} & \leq\left(\alpha \sqrt{M}\left(\sqrt{\beta} \gamma+c^{\prime}\right)+2 \gamma \beta M\right) \mathcal{L}_{t} \\
& =:\left(a^{\prime} \gamma+c^{\prime \prime}\right) \mathcal{L}_{t} \\
\Rightarrow \xi_{t} \leq \mathcal{L}_{t} \int_{0}^{\eta} a^{\prime} \gamma+c^{\prime \prime} d \gamma & =O\left(\eta^{2}\right) \mathcal{L}_{t}
\end{aligned}
$$

where we hide constants that depend on the architecture and dataset size.
Bound on ϵ_{t} It is sufficient that $\epsilon_{t} \leq\left(a \eta^{2}+\lambda_{\min } \eta\right) \mathcal{L}_{t}$ for any a so that \mathcal{L}_{t} is guaranteed to decrease for small η. This proof is quite involved and relies on analytic expressions for ReLU networks. To this end, we follow the setting in Allen-Zhu et al. (2019) and WLOG fix the last layer's weights as B, denoting pre- and post- activations by g^{l}, h^{i} respectively and an 'active-indicator' matrix $D^{l} \in \mathbb{R}^{d \times d}$, $D_{k, k}^{l}=\mathbf{1}\left\{g_{k, k}^{l} \geq 0\right\}$, and weight matrices $W_{l} \in \mathbb{R}^{d \times d}$ for each layer $l \in[L]$, where d denotes the width of the hidden layers and L is the number of layers.
Notice that for ReLU networks, we can write the post-activations at every layer as $h_{t+1}^{l}-h_{t}^{l}=$ $D_{t+1}^{l} W_{t+1} h_{t+1}^{l-1}-D_{t}^{l} W_{t}^{l} h_{t}^{l-1}$.

Proposition 2 (Distributive diagonal matrices). There exists $\tilde{D}=\left(\tilde{D}^{1}, \ldots, \tilde{D}^{L}\right)$ with $\tilde{D}^{l} \in$ $[-1,1]^{d \times d}$ for every l such that

$$
D_{t+1}^{l} W_{t+1}^{l} h_{t+1}^{l}-D_{t}^{l} W_{t}^{l} h_{t}^{l-1}=\left(D_{t}^{l}+\tilde{D}^{l}\right)\left(W_{t+1}^{l} h_{t+1}^{l-1}-W_{t}^{l} h_{t}^{l-1}\right)
$$

The above proposition follows from case-by-case considerations of ReLU activations, see Proposition 11.3 in Allen-Zhu et al. (2019).

Proposition 3 (Linear expansion of post-activations). There exists some $\tilde{D}^{l} \in[-1,1]^{d \times d}$ at each l such that

$$
h_{t+1}^{l}-h_{t}^{l}=-\eta \sum_{r=1}^{l}\left(D_{t}^{l}+\tilde{D}^{l}\right) W_{t}^{l} \cdots W_{t}^{r+1}\left(D_{t}^{r}+\tilde{D}^{r}\right) \times\left(\nabla_{W_{t}^{r}} \mathcal{L}_{t}\right) h_{t+1}^{r-1}
$$

The following proposition due to Allen-Zhu et al. (2019) (Lemma 8.6b and Lemma 7.1, respectively) gives bounds on the first line on the RHS and last term:

Proposition 4. For every $l \in[L]$ and $r \in[l]$,

$$
\left\|\left(D_{t}^{l}+\tilde{D}^{l}\right) W_{t}^{l} \cdots W_{t}^{r+1}\left(D_{t}^{r}+\tilde{D}^{r}\right)\right\| \leq O(\sqrt{L})\left\|h_{t+1}^{r-1}\right\| \leq o(1)
$$

Applying Cauchy-Schwartz inequality and the fact that norm of sums \leq sum of norms to Propositions 2 and 3 .

$$
\left\|f_{\theta_{t+1}}-f_{\theta_{t}}\right\|=\left\|B\left(h_{t+1}^{L}-h_{t}^{L}\right)\right\|, \leq \eta O\left(L^{1.5} \sqrt{d}\right)\left\|\nabla \mathcal{L}_{t}\right\| .
$$

Since $\left\|\nabla \mathcal{L}_{t}\right\| \leq \sqrt{M \mathcal{L}_{t}}$,

$$
\begin{equation*}
\epsilon_{t}=\left\|f_{\theta_{t+1}}-f_{\theta_{t}}\right\|^{2} \leq O\left(L^{3} d M\right) \eta^{2} \mathcal{L}_{t}=O\left(\eta^{2}\right) \mathcal{L}_{t} \tag{8}
\end{equation*}
$$

Theorem 1 is a direct consequence of Lemmas 1 and 3 and the step-size can be selected based on \mathcal{K}_{0} because \mathcal{K}_{t} remains in a neighborhood of \mathcal{K}_{0} throughout training (Arora et al., 2019).

References

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for deep learning via over-parameterization. arXiv preprint arXiv:1811.03962, 2019.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and Wang, R. On exact computation with an infinitely wide neural net. CoRR, abs/1904.11955, 2019.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient descent finds global minima of deep neural networks. volume 97 of Proceedings of Machine Learning Research, pp. 1675-1685, Long Beach, California, USA, 09-15 Jun 2019. PMLR.

