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Abstract

The classic algorithm AdaBoost allows to convert a weak learner, that is an al-
gorithm that produces a hypothesis which is slightly better than chance, into a
strong learner, achieving arbitrarily high accuracy when given enough training data.
We present a new algorithm that constructs a strong learner from a weak learner
but uses less training data than AdaBoost and all other weak to strong learners to
achieve the same generalization bounds. A sample complexity lower bound shows
that our new algorithm uses the minimum possible amount of training data and is
thus optimal. Hence, this work settles the sample complexity of the classic problem
of constructing a strong learner from a weak learner.

1 Introduction

The field of boosting has been started from a classic question in learning theory asking whether
classifiers that are just slightly better than random guessing can be used to create a classifier with
arbitrarily high accuracy when given enough training data. This question was initially asked by
Kearns and Valiant [15, 16] and ignited the line of research that eventually lead to the development of
AdaBoost [7], the prototype boosting algorithm to date. AdaBoost carefully combines the predictions
of several inaccurate classifiers trained with a focus on different parts of the training data to come up
with a voting classifier that performs well everywhere.

We quantify the performance of an inaccurate learner by its advantage 𝛾 over random guessing. Said
loosely, a 𝛾-weak learner will correctly classify new data points with probability at least 1/2 + 𝛾. In
contrast, given 0 < Y, 𝛿 < 1 and enough training data a strong learner outputs with probability 1 − 𝛿

over the choice of the training data and possible random choices of the algorithm a hypothesis that
correctly classifies new data points with probability at least 1 − Y. The number of samples 𝑚(Y, 𝛿)
such that the learning algorithm achieves the desired accuracy and confidence levels is called the
sample complexity. The sample complexity is the key metric for the performance of a strong learner
and depends on the weak learner’s advantage 𝛾, the weak learner’s flexibility measured in terms of
the VC-dimension, as well as Y and 𝛿. Essentially, a construction with low sample complexity makes
the most out of the available training data.

AdaBoost [7] is the classic algorithm for constructing a strong learner from a 𝛾-weak learner. If
the weak learner outputs a hypothesis from a base set of hypotheses H , then AdaBoost constructs a
strong learner by taking a weighted majority vote among several hypotheses ℎ1, . . . , ℎ𝑡 from H . Each
of these hypotheses is obtained by invoking the 𝛾-weak learning algorithm on differently weighted
versions of a set of training samples 𝑆. The number of samples required by AdaBoost for strong
learning depends both on the advantage 𝛾 of the weak learner and the complexity of the hypothesis
set H . If we let 𝑑 denote the VC-dimension of H , i.e. the cardinality of the largest set of data points
𝑥1, . . . , 𝑥𝑑 such that every classification of 𝑥1, . . . , 𝑥𝑑 can be realized by a hypothesis ℎ ∈ H , then it
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is known that AdaBoost is a strong learner, which for error Y and failure probability 𝛿, requires

𝑂

(
𝑑 ln(1/(Y𝛾)) ln(𝑑/(Y𝛾))

Y𝛾2 + ln(1/𝛿)
Y

)
, (1)

samples. This sample complexity is state-of-the-art for producing a strong learner from a 𝛾-weak
learner. However, is this the best possible sample complexity? This is the main question we ask and
answer in this work.

First, we present a new algorithm for constructing a strong learner from a weak learner and prove
that it requires only

𝑂

(
𝑑

Y𝛾2 + ln(1/𝛿)
Y

)
samples. In addition to improving over AdaBoost by two logarithmic factors, we complement our
new algorithm by a lower bound, showing that any algorithm for converting a 𝛾-weak learner to a
strong learner requires

Ω

(
𝑑

Y𝛾2 + ln(1/𝛿)
Y

)
samples. Combining these two results, we have a tight bound on the sample complexity of weak to
strong learning. In the remainder of the section, we give a more formal introduction to weak and
strong learning as well as present our main results and survey previous work.

1.1 Weak and strong learning

Consider a binary classification task in which there is an unknown concept 𝑐 : X → {−1, 1} assigning
labels to a ground set X. The goal is to learn or approximate 𝑐 to high accuracy. Formally, we assume
that there is an unknown but fixed data distribution D over X. A learning algorithm then receives a
set 𝑆 of i.i.d. samples 𝑥1, . . . , 𝑥𝑚 from D together with their labels 𝑐(𝑥1), . . . , 𝑐(𝑥𝑚) and produces
a hypothesis ℎ with ℎ ≈ 𝑐 based on 𝑆 and the labels. To measure how well ℎ approximates 𝑐, it is
assumed that a new data point 𝑥 is drawn from the same unknown distribution D, and the goal is to
minimize the probability of mispredicting the label of 𝑥. We say that a learning algorithm is a weak
learner if it satisfies the following:

Definition 1. Let C ⊆ X → {−1, 1} be a set of concepts and A a learning algorithm. We say that
A is a 𝛾-weak learner for C, if there is a constant 𝛿0 < 1 and an integer 𝑚0 ∈ ℕ, such that for
every distribution D over X and every concept 𝑐 ∈ C, when given 𝑚0 i.i.d. samples 𝑆 = 𝑥1, . . . , 𝑥𝑚0
from D together with their labels 𝑐(𝑥1), . . . , 𝑐(𝑥𝑚0 ), it holds with probability at least 1 − 𝛿0 over the
sample 𝑆 and the randomness of A, that A outputs a hypothesis ℎ : X → {−1, 1} such that

LD (ℎ) = Pr
𝑥∼D

[
ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ 1/2 − 𝛾.

A 𝛾-weak learner thus achieves an advantage of 𝛾 over random guessing when given 𝑚0 samples.
Note that A knows neither the distribution D, nor the concrete concept 𝑐 ∈ C but achieves the
advantage 𝛾 for all D and 𝑐. We remark that in several textbooks (e.g. Mohri et al. [18]) a weak
learner needs to work for any arbitrary 𝛿 > 0 while Definition 1 only requires the existence of some
𝛿0. Thus, every weak learner satisfying the definition of Mohri et al. also satisfies Definition 1,
making our results more general.

In contrast to a weak learner, a strong learner can obtain arbitrarily high accuracy:

Definition 2. Let C ⊆ X → {−1, 1} be a set of concepts and A a learning algorithm. We say
that A is a strong learner for C, if for all 0 < Y, 𝛿 < 1, there is some number 𝑚(Y, 𝛿) such that
for every distribution D over X and every concept 𝑐 ∈ C, when given 𝑚 = 𝑚(Y, 𝛿) i.i.d. samples
𝑆 = 𝑥1, . . . , 𝑥𝑚 from D together with their labels 𝑐(𝑥1), . . . , 𝑐(𝑥𝑚), it holds with probability at least
1 − 𝛿 over the sample 𝑆 and the randomness of A, that A outputs a hypothesis ℎ : X → {−1, 1}
such that

LD (ℎ) = Pr
𝑥∼D

[
ℎ(𝑥) ≠ 𝑐(𝑥)

]
≤ Y.
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The definition of a strong learner is essentially identical to the classic notion of (Y, 𝛿)-PAC learning
in the realizable setting. Unlike the 𝛾-weak learner, we here require the learner to output a classifier
with arbitrarily high accuracy (Y small) and confidence (𝛿 small) when given enough samples 𝑆.

Kearns and Valiant [15, 16] asked whether one can always obtain a strong learner when given access
only to a 𝛾-weak learner for a 𝛾 > 0. This was answered affirmatively by Schapire [21] and is the
motivation behind the design of AdaBoost [7]. If we let H denote the set of hypotheses that a 𝛾-weak
learner may output from, then AdaBoost returns a voting classifier 𝑓 (𝑥) = sign(∑𝑡

𝑖=1 𝛼𝑖ℎ𝑖 (𝑥)) where
each ℎ𝑖 ∈ H is the output of the 𝛾-weak learner when trained on some carefully weighted version of
the training set 𝑆 and each 𝛼𝑖 is a real-valued weight. In terms of sample complexity 𝑚(Y, 𝛿), the
number of samples stated in Eq. (1) is sufficient for AdaBoost. There are several ways to prove this.
For instance, it can be argued that when given 𝑚 samples, AdaBoost combines only 𝑡 = 𝑂 (𝛾−2 ln𝑚)
hypotheses ℎ1, . . . , ℎ𝑡 from H in order to produce an 𝑓 that perfectly classifies all the training data
𝑆, i.e. 𝑓 (𝑥𝑖) = 𝑐(𝑥𝑖) for all 𝑥𝑖 ∈ 𝑆. Using that the class H 𝑡 can generate at most 𝑂 (

(𝑚
𝑑

) 𝑡 ) distinct
classifications of 𝑚 points (i.e. its growth function is bounded by this), one can intuitively invoke
classic generalization bounds for PAC-learning in the realizable case to conclude that the hypothesis
𝑓 satisfies

LD ( 𝑓 ) ≤ 𝑂

(
𝑡𝑑 ln(𝑚/𝑑) + ln(1/𝛿)

𝑚

)
= 𝑂

(
𝑑 ln(𝑚/𝑑) ln𝑚

𝛾2𝑚
+ ln(1/𝛿)

𝑚

)
(2)

with probability at least 1 − 𝛿 over 𝑆 (and potentially the randomness of the weak learner). Using
LD ( 𝑓 ) = Y and solving Eq. (2) for 𝑚 gives the sample complexity stated in Eq. (1). This is the best
sample complexity bound of any weak to strong learner prior to this work.

Our main upper bound result is a new algorithm with better sample complexity than AdaBoost and
other weak to strong learners. It guarantees the following:
Theorem 1. Assume we are given access to a 𝛾-weak learner for some 0 < 𝛾 < 1/2, using a base
hypothesis set H ⊆ X → {−1, 1} of VC-dimension 𝑑. Then there is a universal constant 𝛼 > 0 and
an algorithm A, such that A is a strong learner with sample complexity 𝑚(Y, 𝛿) satisfying

𝑚(Y, 𝛿) ≤ 𝛼 ·
(
𝑑𝛾−2

Y
+ ln(1/𝛿)

Y

)
.

We remark that it is often required that a strong learner runs in polynomial time given a polynomial-
time weak learner. This is indeed the case for our new algorithm.

Next, we complement our algorithm from Theorem 1 by the following lower bound:
Theorem 2. There is a universal constant 𝛼 > 0 such that for all integers 𝑑 ∈ ℕ and every
2−𝑑 < 𝛾 < 1/80, there is a finite set X, a concept class C ⊂ X → {−1, 1} and a hypothesis set
H ⊆ X → {−1, 1} of VC-dimension at most 𝑑, such that for every (Y, 𝛿) with 0 < Y < 1 and
0 < 𝛿 < 1/3, there is a distribution D over X such that the following holds:

1. For every 𝑐 ∈ C and every distribution D ′ over X, there is an ℎ ∈ H with
Pr𝑥∼D′ [ℎ(𝑥) ≠ 𝑐(𝑥)] ≤ 1/2 − 𝛾.

2. For any algorithm A, there is a concept 𝑐 ∈ C such that A requires at least

𝑚 ≥ 𝛼 ·
(
𝑑𝛾−2

Y
+ ln(1/𝛿)

Y

)
samples 𝑆 and labels 𝑐(𝑆) to guarantee LD (ℎ𝑆) ≤ Y with probability at least 1 − 𝛿 over 𝑆,
where ℎ𝑆 is the hypothesis produced by A on 𝑆 and 𝑐(𝑆).

The first statement of Theorem 2 says that the concept class C can be 𝛾-weakly learned. The second
point then states that any learner requires as many samples as our new algorithm. Moreover, the
lower bound does not require the algorithm to even use a 𝛾-weak learner, nor does it need to run in
polynomial time for the lower bound to apply. Furthermore, the algorithm is even allowed to use the
full knowledge of the set C and the distribution D. The only thing it does not know is which concept
𝑐 ∈ C provides the labels 𝑐(𝑆) to the training samples. The lower bound thus matches our upper
bound except possibly for very small 𝛾 < 2−𝑑 . We comment further on this case in Section 5.

In the next section, we present the overall ideas in our new algorithm, as well as a new generalization
bound for voting classifiers that is key to our algorithm. Finally, we sketch the main ideas in the lower
bound. Due to the space requirements, several proofs have been moved to the supplementary material.
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1.2 Main ideas and voting classifiers

One of the key building blocks in our new algorithm is voting classifiers. To formally introduce voting
classifiers, define from a hypothesis set H ⊆ X → {−1, 1} the set of all convex combinations Δ(H)
of hypotheses in H . That is, Δ(H) contains all functions 𝑓 of the form 𝑓 (𝑥) = ∑𝑡

𝑖=1 𝛼𝑖ℎ𝑖 (𝑥) with
𝛼𝑖 > 0 and

∑
𝑖 𝛼𝑖 = 1. AdaBoost can be thought of as producing a voting classifier 𝑔(𝑥) = sign( 𝑓 (𝑥))

for an 𝑓 ∈ Δ(H) by appropriate normalization of the weights it uses.

Classic work on understanding the surprisingly high accuracy of AdaBoost introduced the notion
of margins [2]. For a function 𝑓 ∈ Δ(H), and a sample 𝑥 with label 𝑦, the margin of 𝑓 on (𝑥, 𝑦) is
𝑦 𝑓 (𝑥). Notice that the margin is positive if and only if sign( 𝑓 (𝑥)) correctly predicts the label 𝑦 of 𝑥.
It was empirically observed that AdaBoost produces voting classifiers 𝑔(𝑥) = sign( 𝑓 (𝑥)) where 𝑓
has large margins. This inspired multiple generalization bounds based on the margins of a voting
classifier, considering both the minimum and the 𝑘-th margin [12, 4, 3, 19, 20, 17]. The simplest
bound when all margins are assumed to be at least 𝛾, is Breiman’s min margin bound:
Theorem 3 (Breiman [4]). Let 𝑐 ∈ X → {−1, 1} be an unknown concept, H ⊆ X → {−1, 1} a
hypothesis set of VC-dimension 𝑑 and D an arbitrary distribution over X. With probability at least
1 − 𝛿 over a set of 𝑚 samples 𝑆 ∼ D𝑚, it holds for every voting classifier 𝑔(𝑥) = sign( 𝑓 (𝑥)) with
𝑓 ∈ Δ(H) satisfying 𝑐(𝑥) 𝑓 (𝑥) ≥ 𝛾 on all 𝑥 ∈ 𝑆, that:

LD (𝑔) = 𝑂

(
𝑑 ln(𝑚/𝑑) ln𝑚

𝛾2𝑚

)
The resemblance to the generalization performance of AdaBoost in Eq. (2) is no coincidence. Indeed,
a small twist to AdaBoost, presented in the AdaBoost∗a algorithm [20], ensures that the voting
classifier produced by AdaBoost∗a from a 𝛾-weak learner has all margins at least 𝛾/2. This gives an
alternative way of obtaining the previous best sample complexity in Eq. (1). We remark that more
refined generalization bounds based on margins exist, such as the 𝑘-th margin bound by Gao and
Zhou [8] which is known to be near-tight [10]. These bounds take the whole sequence of margins
𝑐(𝑥𝑖) 𝑓 (𝑥𝑖) of all samples 𝑥𝑖 ∈ 𝑆 into account, not only the smallest. However, none of these bounds
leads to better generalization from a 𝛾-weak learner.

We note that the notion of margins has not only been considered in the context of boosting algorithms
but also plays a key role in understanding the generalization performance of Support Vector Machines,
see e.g. the recent works [14, 11] giving tight SVM generalization bounds in terms of margins.

In our new algorithm, we make use of a voting classifier with good margins as a subroutine. Concretely,
we invoke AdaBoost∗a to obtain margins of at least 𝛾/2 on all training samples. At first sight, this
seems to incur logarithmic losses, at least if the analysis by Breiman is tight. Moreover, Grønlund et al.
[9] proved a generalization lower bound showing that there are voting classifiers with margins 𝛾 on
all training samples, but where at least one of the logarithmic factors in the generalization bound must
occur. To circumvent this, we first notice that the lower bound only applies when 𝑚 is sufficiently
larger than 𝑑𝛾−2. We carefully exploit this loophole and prove a new generalization bound for voting
classifiers:
Theorem 4. Let 𝑐 ∈ X → {−1, 1} be an unknown concept, H ⊆ X → {−1, 1} a hypothesis set of
VC-dimension 𝑑 and D an arbitrary distribution over X. There is a universal constant 𝛼 > 0, such
that with probability at least 1 − 𝛿 over a set of 𝑚 ≥ 𝛼(𝑑𝛾−2 + ln(1/𝛿)) samples 𝑆 ∼ D𝑚, every
voting classifier 𝑔(𝑥) = sign( 𝑓 (𝑥)) with 𝑓 ∈ Δ(H) satisfying 𝑐(𝑥) 𝑓 (𝑥) ≥ 𝛾 on all 𝑥 ∈ 𝑆 achieves

LD (𝑔) ≤ 1
200 .

The value 1/200 is arbitrary and chosen to match the requirements in the proof of Theorem 1.
Notice how our new generalization bound avoids the logarithmic factors when aiming merely
at generalization error 1/200. Breiman’s bound would only guarantee that 𝑑𝛾−2 ln(1/𝛾) ln(𝑑/𝛾)
samples suffice for such a generalization error. While the focus of previous work on generalization
bounds was not on the constant error case, we remark that any obvious approaches to modify the
previous proofs could perhaps remove the ln𝑚 factor but not the ln(𝑚/𝑑) factor. The ln(𝑚/𝑑) factor
turns into Θ(ln(1/𝛾)) when solving for 𝑚 in 𝑑 ln(𝑚/𝑑)/(𝛾2𝑚) = 1/200 and is insufficient for our
purpose.

With the new generalization bound on hand, we can now construct our algorithm for producing a
strong learner from a 𝛾-weak learner. Here we use as template the sample optimal algorithm by
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Hanneke [13] for PAC learning in the realizable case (which improved over a previous near-tight result
by Simon [22]). Given a training set 𝑆, his algorithm carefully constructs a number of sub-samples
𝑆1, 𝑆2, . . . , 𝑆𝑘 of 𝑆 and trains a hypothesis ℎ𝑖 on each 𝑆𝑖 using empirical risk minimization. As the
final classifier, he returns the voter 𝑔(𝑥) = sign

(
(1/𝑘)∑𝑘

𝑖=1 ℎ𝑖 (𝑥)
)
.

For our new algorithm, we use Hanneke’s approach to construct sub-samples 𝑆1, . . . , 𝑆𝑘 of a training
set 𝑆. We then run AdaBoost∗a on each 𝑆𝑖 to produce a voting classifier 𝑔𝑖 (𝑥) = sign( 𝑓𝑖 (𝑥))
for an 𝑓𝑖 ∈ Δ(H) with margins 𝛾/2 on all samples in 𝑆𝑖 . We finally return the voter ℎ(𝑥) =

sign((1/𝑘)∑𝑘
𝑖=1 𝑔𝑖 (𝑥)). Our algorithm thus returns a majority of majorities.

To prove that our algorithm achieves the desired sample complexity 𝑚(Y, 𝛿) claimed in Theorem 1,
we then revisit Hanneke’s proof and show that it suffices for his argument that the base learning
algorithm (in his case empirical risk minimization, in our case AdaBoost∗a) achieves an error of at
most 1/200 when given 𝜏 samples. If this is the case, then his proof can be modified to show that the
final error of the output voter drops to 𝑂 (𝜏/𝑚). Plugging in the 𝜏 = 𝛼(𝑑𝛾−2 + ln(1/𝛿)) from our new
generalization bound in Theorem 4 completes the proof.

Let us remark that a lower bound by Grønlund et al. [9] shows the existence of a voting classifier
with simultaneously large margins and a generalization error with an additional log-factor. It is
thus conceivable that a simple majority vote is not sufficient and a majority of majorities is indeed
necessary, although the lower bound only guarantees the existence of a ‘bad’ voter with good margins
and not that all such voters are ‘bad’.

In the following, we start by proving our new generalization bound (Theorem 4) in Section 2. We then
proceed in Section 3 to present our new algorithm and sketch the proof that it gives the guarantees in
Theorem 1. Finally, in Section 4 we give the proof ideas of the lower bound in Theorem 2.

2 New margin-based generalization bounds for voting classifiers

In this section, we prove the new generalization bound stated in Theorem 4. For ease of notation,
we write that D is a distribution over X × {−1, 1} (and not just a distribution over X) and implicitly
assume that the label of each 𝑥 ∈ X is 𝑐(𝑥) for the unknown concept 𝑐. Moreover, for a voting
classifier 𝑔(𝑥) = sign( 𝑓 (𝑥)) with 𝑓 ∈ Δ(H), we simply refer to 𝑓 as the voting classifier and just
remark that one needs to take the sign to make a prediction. Finally, we think of the sample 𝑆 as a set
of pairs (𝑥𝑖 , 𝑦𝑖) with 𝑥𝑖 ∈ X and 𝑦𝑖 = 𝑐(𝑥𝑖) ∈ {−1, 1}.
The key step in the proof of Theorem 4 is to analyze the generalization performance for a voting
classifier obtained by combining randomly drawn hypotheses among the hypotheses ℎ1, . . . , ℎ𝑡
making up a voting classifier 𝑓 =

∑
𝑖 𝛼𝑖ℎ𝑖 from Δ(H). We then relate that to the generalization

performance of 𝑓 itself. Formally, we define a distribution D 𝑓,𝑡 for every 𝑓 and look at a random
hypothesis from D 𝑓,𝑡 . We start by defining this distribution.

Let 𝑓 (𝑥) = ∑
ℎ 𝛼ℎℎ(𝑥) ∈ Δ(H) be a voting classifier. Let D 𝑓 be the distribution over H (the base

hypotheses used in 𝑓 ) where ℎ has probability 𝛼ℎ. Consider drawing 𝑡 i.i.d. hypotheses ℎ′1, . . . , ℎ
′
𝑡

from D 𝑓 and then throwing away each ℎ′
𝑖

independently with probability 1/2. Let 𝑡 ′ be the number
of remaining hypotheses, denote them ℎ1, . . . , ℎ𝑡′ , and let 𝑔 = 1

𝑡′
∑𝑡′

𝑖=1 ℎ𝑖 . One can think of 𝑔 as a
sub-sampled version of 𝑓 with replacement. Denote by D 𝑓,𝑡 the distribution over 𝑔.

Key properties of D𝒇, 𝒕 . In the following, we analyze how a random 𝑔 from D 𝑓,𝑡 behaves and show
that while it behaves similar to 𝑓 it produces with good probability predictions that are big in absolute
value (even if 𝑓 (𝑥) ≈ 0). The proofs of the following three lemmas are given in the supplementary
material. First, we note that predictions made by a random 𝑔 are often close to those made by 𝑓 and
then observe that 𝑔 rarely makes predictions 𝑔(𝑥) that are small in absolute value.

Lemma 1. For any 𝑥 ∈ X, any 𝑓 ∈ Δ(H), and any ` > 0: Pr𝑔∼D 𝑓,𝑡
[| 𝑓 (𝑥) −𝑔(𝑥) | ≥ `] < 5𝑒−`2𝑡/32.

Lemma 2. For any 𝑥 ∈ X, any 𝑓 ∈ Δ(H), and any ` ≥ 1/𝑡: Pr𝑔∼D 𝑓,𝑡
[|𝑔(𝑥) | ≤ `] ≤ 2`

√
𝑡.

Lemma 2 states that even if 𝑓 (𝑥) ≈ 0 for an unseen sample 𝑥, 𝑔(𝑥) will still be large with good
probability. Thus we can think of 𝑔 as having large margins (perhaps negative) also on unseen data.
This is crucial for bounding the generalization error. The proof follows from an invocation of Erdős’
improved Littlewood-Offord lemma [6].
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As the last property, we look at the out-of-sample and in-sample error of a random 𝑔 and start
with relating the generalization error of 𝑓 to that of a random 𝑔. To formalize this, define for
any distribution D, the loss L𝑡

D ( 𝑓 ) := Pr(𝑥,𝑦)∼D, 𝑔∼D 𝑓,𝑡

[
𝑦𝑔(𝑥) ≤ 0

]
and when writing L𝑡

𝑆
( 𝑓 ) we

implicitly assume 𝑆 to also denote the uniform distribution over all (𝑥, 𝑦) ∈ 𝑆. We then have:
Lemma 3. For any distribution D over X × {−1, 1}, any 𝑡 ≥ 36 and any voting classifier 𝑓 ∈ Δ(H)
for a hypothesis set H ⊂ X → {−1, 1}, we have LD ( 𝑓 ) ≤ 3L𝑡

D ( 𝑓 ).

Moreover, if 𝑓 has margins 𝛾 on all training samples (𝑥, 𝑦) ∈ 𝑆, then 𝑔 is correct on most of 𝑆
provided that we set 𝑡 big enough:
Lemma 4. Let 𝑆 be a set of 𝑚 samples in X × {−1, 1} and assume 𝑓 is a voting classifier with
𝑦 𝑓 (𝑥) ≥ 𝛾 for all (𝑥, 𝑦) ∈ 𝑆. For 𝑡 ≥ 1024𝛾−2, we have L𝑡

𝑆
( 𝑓 ) ≤ 1/1200.

Proof. By Lemma 1, it holds for all (𝑥, 𝑦) ∈ 𝑆, that | 𝑓 (𝑥) − 𝑔(𝑥) | ≥ 𝛾 with probability at most
5 exp

(
−𝛾2𝑡/32

)
≤ 5𝑒−32 ≪ 1/1200. Since 𝑦 𝑓 (𝑥) ≥ 𝛾, this implies sign

(
𝑔(𝑥)

)
= sign

(
𝑓 (𝑥)

)
= 𝑦. □

The last ingredient for the proof of Theorem 4 is to relate L𝑡
𝑆
( 𝑓 ) and L𝑡

D ( 𝑓 ). For the proof we
use Lemma 2 to infer that with good probability |𝑔(𝑥) | = Ω(𝛾), i.e. has large absolute value. We
use this to argue that sign(𝑔) often belongs to a class with small VC-dimension and then apply a
growth-function argument to relate L𝑡

𝑆
( 𝑓 ) and L𝑡

D ( 𝑓 ). Formally, we prove the following lemma.
Lemma 5. Let D be an arbitrary distribution over X × {−1, 1} and let H ⊂ X → {−1, 1} be a
hypothesis set of VC-dimension 𝑑. There is a universal constant 𝛼 > 0 such that for any 𝑡 ∈ ℕ and
any 𝑚 ≥ 𝛼𝑡𝑑, it holds that:

Pr
𝑆

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L𝑡
D ( 𝑓 ) | > 1

1200

]
≤ 𝛼 · exp(−𝑚/𝛼).

Before we prove Lemma 5, we show how to use it to prove Theorem 4. Since we are only aiming to
prove the generalization of voting classifiers 𝑓 with 𝑦 𝑓 (𝑥) ≥ 𝛾 for all samples (𝑥, 𝑦) ∈ 𝑆, Lemma 4
tells us that such 𝑓 have small L𝑡

𝑆
( 𝑓 ) when 𝑡 ≥ 1024𝛾−2. We thus fix 𝑡 = 1024𝛾−2 and get that

L𝑡
𝑆
( 𝑓 ) ≤ 1/1200 from Lemma 4. By Lemma 5, with probability at least 1 − 𝛼 exp(−𝑚/𝛼) over the

sample 𝑆, we have for all 𝑓 ∈ Δ(H) that |L𝑡
𝑆
( 𝑓 ) − L𝑡

D ( 𝑓 ) | ≤ 1/1200 and thus L𝑡
D ( 𝑓 ) ≤ 1/600.

Finally, Lemma 3 gives us that LD ( 𝑓 ) ≤ 3L𝑡
D ( 𝑓 ) for all 𝑓 ∈ Δ(H). Together we thus have

L𝑡
D ( 𝑓 ) ≤ 1/600 ⇒ LD ( 𝑓 ) ≤ 1/200 for any 𝑚 ≥ 𝛼𝑡𝑑 ≥ 𝛼′𝑑𝛾−2 where 𝛼′ > 0 is a universal

constant. By observing that 𝛼 exp(−𝑚/𝛼) < 𝛿 for 𝑚 ≥ 𝛼 ln(𝛼/𝛿), this completes the proof of
Theorem 4. What remains is thus to prove Lemma 5 which we do in the remainder of this section.

2.1 Relating L
t
S

(

f
)

and L
t
D

(

f
)

The last remaining step to show Theorem 4 is thus to relate L𝑡
𝑆
( 𝑓 ) to L𝑡

D ( 𝑓 ), i.e. to prove Lemma 5.
In the proof, we rely on the classic approach for showing generalization for classes H of bounded
VC-dimension and introduce a ghost set that only exists for the sake of analysis. In addition to the
sample 𝑆, we thus consider a ghost set 𝑆′ of another 𝑚 i.i.d. samples from D. This allows us to
prove:
Lemma 6. For 𝑚 ≥ 24002 any 𝑡 and any 𝑓 , it holds that:

Pr
𝑆

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L𝑡
D ( 𝑓 ) | > 1

1200

]
≤ 2 · Pr

𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L𝑡
𝑆′ ( 𝑓 ) | > 1

2400

]
.

As the proof is standard, it can be found in the supplementary material.

We thus only need to bound Pr𝑆,𝑆′ [sup 𝑓 ∈Δ(H) |L𝑡
𝑆
( 𝑓 ) − L𝑡

𝑆′ ( 𝑓 ) | > 1/2400]. To do this, consider
drawing a data set 𝑃 of 2𝑚 i.i.d. samples from D and then drawing 𝑆 as a set of 𝑚 uniform samples
from 𝑃 without replacement and letting 𝑆′ be the remaining samples. Then 𝑆 and 𝑆′ have the same
distribution as if they were drawn as two independent sets of 𝑚 i.i.d. samples each. From here on, we
thus think of 𝑆 and 𝑆′ as being sampled via 𝑃.

Now consider a fixed set 𝑃 in the support of D2𝑚 and define Δ`

𝛿
(H , 𝑃) as the set of voting classifiers

𝑓 ∈ Δ(H) for which Pr(𝑥,𝑦)∼𝑃 [| 𝑓 (𝑥) | ≥ `] ≥ 1 − 𝛿. These are the voting classifiers that make
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predictions of large absolute value on most of both 𝑆 and 𝑆′ (if 𝛿 ≪ 1/2). The crucial point, and the
whole reason for introducing 𝑔, is that regardless of what 𝑓 is, a random 𝑔 ∼ D 𝑓,𝑡 often lies in the set
Δ
`

𝛿
(H , 𝑃):

Lemma 7. For any data set 𝑃, parameters 0 < 𝛿 < 1 and 𝑡, and every ` ≤ 𝛿/(9600
√
𝑡), we have

Pr𝑔∼D 𝑓,𝑡
[𝑔 ∉ Δ

`

𝛿
(H , 𝑃)] ≤ 1/4800.

Proof. Define an indicator 𝑋𝑖 for each (𝑥𝑖 , 𝑦𝑖) ∈ 𝑃 taking the value 1 if |𝑔(𝑥𝑖) | ≤ `. By Lemma 2, we
have 𝔼[∑𝑖 𝑋𝑖] ≤ |𝑃 | 2`

√
𝑡 ≤ |𝑃 | 𝛿/4800. By Markov’s inequality Pr[∑𝑖 𝑋𝑖 ≥ 𝛿 |𝑃 |] ≤ 1/4800. □

If we had just considered 𝑓 , we had no way of arguing that 𝑓 makes predictions of large absolute
value on 𝑆′, since the only promise we are given is that it does so on 𝑆. That 𝑔 makes predictions of
large absolute value even outside of 𝑆 is crucial for bounding the generalization error in the following.

Let us now define Δ̂
`

𝛿
(𝑃) = sign

(
Δ
`

𝛿
(H , 𝑃)

)
which means that Δ̂`

𝛿
(𝑃) contains all the hypotheses

that are obtained by voting classifiers in Δ
`

𝛿
(H , 𝑃) when taking the sign. Since 𝑔 is in Δ

`

𝛿
(H , 𝑃)

except with probability 1/4800 by Lemma 7, we can prove:

Lemma 8. For any 0 < 𝛿 < 1, every 𝑡, and every ` ≤ 𝛿/(9600
√
𝑡), we have

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)

��L𝑡
𝑆 ( 𝑓 ) − L𝑡

𝑆′ ( 𝑓 )
�� > 1

2400

]
≤ sup

𝑃

2
��Δ̂`

𝛿
(𝑃)

�� exp
(
− 2𝑚/96002) .

Again, the proof of the lemma can be found in the supplementary material. What Lemma 8 gives us,
is that it relates the generalization error to the growth function |Δ̂`

𝛿
(𝑃) |. The key point is that Δ̂`

𝛿
(𝑃)

was obtained from voting classifiers with predictions of large absolute value on all but a 𝛿 fraction of
points in 𝑃. This implies that we can bound the VC-dimension of Δ̂`

𝛿
(𝑃) when restricted to the point

set 𝑃 using Rademacher complexity:
Lemma 9. Let H be a hypothesis set of VC-dimension 𝑑. For any 𝛿, ` > 0 and point set 𝑃, we
have that the largest subset 𝑃′ of 𝑃 that Δ̂`

𝛿
(𝑃) = sign

(
Δ
`

𝛿
(H , 𝑃)

)
can shatter, has size at most

|𝑃′ | = 𝑑 ′ < max{2𝛿 |𝑃 |, 4𝛼2`−2𝑑}, where 𝛼 > 0 is a universal constant.

Proof. Recall that the VC-dimension of H is 𝑑. Thus the Rademacher complexity of H for any
point set 𝑃′ is:

𝔼
𝜎∈𝑃′→{−1,1}

[
1
|𝑃′ | sup

ℎ∈H

�����∑︁
𝑥∈𝑃′

ℎ(𝑥)𝜎(𝑥)
�����
]

< 𝛼

√︄
𝑑

|𝑃′ |
for a universal constant 𝛼 > 0 (see e.g. [23]). Assume 𝑃′ ⊆ 𝑃 with |𝑃′ | = 𝑑 ′ can be shattered. Fix
any labeling 𝜎 ∈ 𝑃′ → {−1, 1}. Let ℎ𝜎 ∈ Δ̂

`

𝛿
(𝑃) be the hypothesis generating the dichotomy 𝜎

(which exists since 𝑃′ is shattered). Since ℎ𝜎 ∈ Δ̂
`

𝛿
(𝑃), there must be some 𝑔 ∈ Δ

`

𝛿
(H , 𝑃) such that

ℎ𝜎 = sign(𝑔) on the point set 𝑃′. If |𝑃′ | ≥ 2𝛿 |𝑃 |, then by definition of Δ`

𝛿
(H , 𝑃), there are at least

|𝑃′ | −𝛿 |𝑃 | ≥ |𝑃′ |/2 points 𝑥 ∈ 𝑃′ for which |𝑔(𝑥) | ≥ `. This means that (1/|𝑃′ |)∑𝑥∈𝑃′ 𝑔(𝑥)𝜎(𝑥) ≥
(1/2)`. But 𝑔(𝑥) is a convex combination of hypotheses from H , hence there is also a hypothesis
ℎ ∈ H for which (1/|𝑃′ |)∑𝑥∈𝑃′ ℎ(𝑥)𝜎(𝑥) ≥ (1/2)`. Since this holds for all 𝜎, by the bound on the
Rademacher complexity, we conclude 𝛼

√︁
𝑑/|𝑃′ | > (1/2)` =⇒ |𝑃′ | < 4𝛼2`−2𝑑. We thus conclude

that the largest set that Δ̂`

𝛿
(𝑃) can shatter, has size less than max

{
2𝛿 |𝑃 |, 4𝛼2`−2𝑑

}
. □

We remark that it was crucial to introduce the random hypothesis 𝑔, since all we are promised about
the original hypothesis 𝑓 is that it has large margins on 𝑆, i.e. on only half the points in 𝑃. That case
would correspond to 𝛿 = 1/2 in Lemma 9 and would mean that we could potentially shatter all of 𝑃.
In order for the bound to be useful, we thus need 𝛿 ≪ 1/2 and thus large margins on much more than
half of 𝑃 (which we get by using 𝑔).

For a 0 < 𝛿 < 1 to be determined, let us now fix ` = 𝛿/(9600
√
𝑡) and assume that the number

of samples 𝑚 satisfies 𝑚 ≥ max{𝛼2`−2𝑑/𝛿, 24002} where 𝛼 is the constant from Lemma 9. By
Lemma 8, we have

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L𝑡
𝑆′ ( 𝑓 ) | > 1

2400

]
≤ sup

𝑃

2|Δ̂`

𝛿
(𝑃) | exp(−2𝑚/96002).
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Algorithm 1: Sub-Sample(𝐴, 𝐵) (Hanneke [13])
Input: Sets 𝐴 and 𝐵

1 if |𝐴| ≤ 3 then // stop when 𝐴 is too small to recurse
2 return 𝐴 ∪ 𝐵
3 else
4 Let 𝐴0 denote the first |𝐴| − 3⌊|𝐴|/4⌋ elements of 𝐴, // split 𝐴 evenly

𝐴1 the next ⌊|𝐴|/4⌋ elements,
𝐴2 the next ⌊|𝐴|/4⌋ elements, and
𝐴3 the remaining ⌊|𝐴|/4⌋ elements.

5 return Sub-Sample(𝐴0, 𝐴2∪𝐴3∪𝐵) ∪ // recurse in leave-one-out fashion
Sub-Sample(𝐴0, 𝐴1∪𝐴3∪𝐵) ∪
Sub-Sample(𝐴0, 𝐴1∪𝐴2∪𝐵)

Algorithm 2: Optimal weak-to-strong learner
Input: Set 𝑆 of 𝑚 samples.

1 {𝐶1, . . . , 𝐶𝑘} = Sub-Sample(𝑆, ∅) // create highly overlapping subsamples of 𝑆

2 for 𝑖 = 1, . . . , 𝑘 do
3 ℎ𝑖 = A∗

a (𝐶𝑖) // run AdaBoost∗a on all those sub-samples
4 return ℎ(𝑥) = sign

( ∑𝑘
𝑖=1 ℎ𝑖 (𝑥)

)
. // return unweighted majority vote

Lemma 9 gives us that the largest subset 𝑃′ ⊆ 𝑃 that Δ̂
`

𝛿
(𝑃) shatters has size at most 𝑑 ′ <

max{2𝛿 |𝑃 |, 4𝛼2`−2𝑑}. By our assumption on 𝑚, the term 2𝛿 |𝑃 | = 4𝛿𝑚 is at least 4𝑐2`−2𝑑 and thus
2𝛿 |𝑃 | = 4𝛿𝑚 takes the maximum in the bound on 𝑑 ′. By the Sauer-Shelah lemma, we have that
|Δ̂`

𝛿
(𝑃) | ≤ ∑4𝛿𝑚−1

𝑖=0
(2𝑚
𝑖

)
. For 𝛿 ≤ 1/4, this is at most

( 2𝑚
4𝛿𝑚

)
≤ (𝑒𝛿−1/2)4𝛿𝑚 = exp

(
4𝛿𝑚 ln(𝑒𝛿−1/2)

)
.

As conclusion we have:

Pr
𝑆,𝑆′

[
sup

𝑓 ∈Δ(H)
|L𝑡

𝑆 ( 𝑓 ) − L𝑡
𝑆′ ( 𝑓 ) | > 1

2400

]
≤ 2 exp(4𝛿𝑚 ln(𝑒𝛿−1/2)) exp(−2𝑚/96002).

Let us now fix 𝛿 = 10−10. We then have

2 exp
(
4𝛿𝑚 ln(𝑒𝛿−1/2)

)
exp(−2𝑚/96002)

= 2 exp
(
𝑚(4𝛿 ln(𝑒𝛿−1/2) − 2/96002)

)
≤ 2 exp

(
−𝑚/108)

where the last step is a numerical calculation. By Lemma 6, this in turn implies:

Pr
𝑆

[
sup

𝑓 ∈Δ(H)

��L𝑡
𝑆 ( 𝑓 ) − L𝑡

D ( 𝑓 )
�� > 1

1200

]
≤ 4 exp(−𝑚/108).

Since we only required 𝑚 ≥ max{𝛼2`−2𝑑/𝛿, 24002} and we had ` = 𝛿/(9600
√
𝑡), this is satisfied

for 𝑚 ≥ 𝛼′𝑡𝑑 for a large enough constant 𝛼′ > 0. This completes the proof of Lemma 5 and thus also
finishes the proof of Theorem 4.

3 Weak to strong learning

In this section, we give our algorithm for obtaining a strong learner from a 𝛾-weak learner with
optimal sample complexity and sketch the main proof idea.

The algorithm obtaining the guarantees of Theorem 1 is as follows: Let A∗
a be an algorithm that on a

sample 𝑆 outputs a classifier 𝑔 = sign( 𝑓 ), where 𝑓 is a voting classifier with margins at least 𝛾/2 on all
samples in 𝑆 such as AdaBoost∗a [20]. Given a set 𝑆 of 𝑚 i.i.d. samples from an unknown distribution
D, we run A∗

a on a number of samples 𝐶1, 𝐶2, . . . , 𝐶𝑘 ⊂ 𝑆 obtaining hypotheses ℎ1, ℎ2, . . . , ℎ𝑘 .
We then return the (unweighted) majority vote among ℎ1, . . . , ℎ𝑘 as our final hypothesis ℎ∗. The
subsets 𝐶𝑖 are chosen by the algorithm Sub-Sample (shown in Algorithm 1) as in the optimal PAC
learning algorithm by Hanneke [13]. The final algorithm (Algorithm 2) calls A∗

a on all subsets
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returned by Algorithm 1 and returns the majority vote. Note that the final hypothesis returned by
Algorithm 2 is a majority of majorities since A∗

a already returns a voting classifier. Let us also
remark that in Theorem 4 we have a failure probability 𝛿0 > 0, while the analysis of AdaBoost∗a
assumes 𝛿0 = 0, i.e. that the weak learner always achieves an advantage of at least 𝛾. If one knows 𝛾
in advance, this is not an issue as AdaBoost∗a only calls the weak learner on distributions over the
training data 𝑆 and one can thus compute the advantage from the training data. After in expectation
1/(1 − 𝛿0) invocations of the weak learner, we thus get a hypothesis with advantage 𝛾.

In total there are 𝑘 = 3 ⌈log4 (𝑚)⌉ ≈ 𝑚0.79 calls to the weak learner, each with a sub-sample of linear
size. Since AdaBoost∗a runs in polynomial time on its input, given that the weak learner is polynomial,
Algorithm 2 is polynomial under the same condition.

The formal proof that Algorithm 2 has the guarantees of Theorem 1 is given in the supplementary
material due to space constraints. It follows the proof of Hanneke [13] pretty much uneventfully,
although carefully using that a generalization error of 1/200 suffices for each call of A∗

a . The
key observation is that each of the recursively generated sub-samples in Algorithm 1 leaves out a
subset 𝐴𝑖 of the training data, whereas the two other recursive calls always include all of 𝐴𝑖 in their
sub-samples. If one considers a hypothesis ℎ trained on the data leaving out 𝐴𝑖 , then 𝐴𝑖 serves as an
independent sample from D. This implies that if ℎ has large error probability over D, then many of
the samples in 𝐴𝑖 will be classified incorrectly by ℎ. Now, since the two other recursive calls always
include 𝐴𝑖 , any hypothesis ℎ′ trained on a sub-sample from those calls will have margin at least 𝛾/2
on all points misclassified by ℎ in 𝐴𝑖 . But the generalization bound in Theorem 2 then implies that
ℎ′ makes a mistake only with probability 1/200 on the conditional distribution D( · | ℎ errs). Thus,
the probability that they both err at the same time is at most the probability that ℎ errs, times 1/200.
Applying this reasoning inductively gives the conclusion that it is very unlikely that the majority of
all trained hypotheses err at the same time which then finishes the proof.

4 Lower bound

In this section, we sketch the proof of Theorem 2 which gives a lower bound that matches the sample
complexity from Theorem 1. The full proof is given in the supplementary material. Informally,
Theorem 2 says that there exists a weakly learnable concept class C such that the hypothesis A(𝑆) of
any learning algorithm A satisfies

LD (A(𝑆)) ≥ 𝛼

(
𝑑

𝛾2𝑚
+ ln(1/𝛿)

𝑚

)
.

Here, the term ln(1/𝛿)/𝑚 follows from previous work. In particular, we could let C = H and invoke
the tight lower bounds for PAC-learning in the realizable setting [5].

Thus, we let 𝛿 = 1/3 and only prove that the loss of A(𝑆) is at least 𝛼𝑑/(𝛾2𝑚) with probability 1/3
over 𝑆 when |𝑆 | = 𝑚 for some weakly learnable concept class C. This proof uses a construction
from Grønlund et al. [9] to obtain a hypothesis set H over a domain X = {𝑥1, . . . , 𝑥𝑢} of cardinality
𝑢 = 𝛼𝑑𝛾−2 such that a constant fraction of all concepts in X → {−1, 1} can be 𝛾-weakly learned from
H . We then create a distribution D where the first point 𝑥1 is sampled with probability 1 − 𝑢/(4𝑚)
and with the remaining probability, we receive a uniform sample among 𝑥2, . . . , 𝑥𝑢. The key point is
that we only expect to see 1 + 𝑚 · 𝑢/(4𝑚) ≈ 𝑢/4 distinct points from X in a sample 𝑆 of cardinality
𝑚. Thus, if we consider a random concept that can be 𝛾-weakly learned, the labels it assigns to points
not in the sample are almost uniform random and independent. This in turn implies that the best
any algorithm A can do is to guess the labels of points in X \ 𝑆. In that way, A fails with constant
probability if we condition on receiving a sample other than 𝑥1. This happens with probability
𝑢/(4𝑚) = 4𝛼𝑑𝛾−2/𝑚 and the lower bound follows.

To formally carry out the intuitive argument above, we first argue that for a random concept 𝑐 ∈ C,
the Shannon entropy of 𝑐 is high, even conditioned on 𝑆 and the labels 𝑐(𝑆). Secondly, we argue that
if A(𝑆) has a small error probability under D, then it must be the case that the hypothesis A(𝑆)
reveals a lot of information about 𝑐, i.e. the entropy of 𝑐 is small conditioned on A(𝑆). Since A(𝑆)
is a function of 𝑆 and 𝑐(𝑆), the same holds if we condition on 𝑆 and 𝑐(𝑆). This contradicts that 𝑐 has
high entropy and thus we conclude that A(𝑆) cannot have a small error probability.
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5 Conclusion

Overall, we presented a new weak to strong learner with a sample complexity that removes two
logarithmic factors from the best-known bound. By accompanying the algorithm with a matching
lower bound for all 𝑑 and 2−𝑑 < 𝛾 < 1/80, we showed that the achieved sample complexity of our
algorithm is indeed optimal. Our algorithm uses the same sub-sampling technique as Hanneke [13]
and computes a voting classifier with large margins for each sample for example with AdaBoost∗a
[20]. The analysis of our algorithm uses a new generalization bound for voting classifiers with large
margins.

Although we determined the exact sample complexity of weak to strong learning (up to multiplicative
constants), there are a few connected open problems. Currently, our construction uses 3log4 (𝑚) ≈ 𝑚0.79

many sub-samples of linear size as input to AdaBoost∗a . For very large datasets, it would be great to
reduce the number and size of these calls. We conjecture that the most promising way to do so is to
revisit Hanneke’s optimal PAC learner and improve the sub-sampling strategy there. This could lead
to an improvement for the realizable case as well as to faster weak-to-strong learners.

Next, the output of our algorithm is a majority vote over majority voters. It is unclear whether a
simple voter could achieve the same bounds. We believe that a majority of majorities is actually
necessary. This is supported by a lower bound showing that there are voters with large margin and
poor generalization (paying a logarithmic factor) and thus the learning algorithm has to avoid this
‘bad’ voter. We currently see no indication of how a variant of AdaBoost could do that.

For the regime of 𝛾 < 2−𝑑 which our lower bound does not capture, is it possible to use fewer
samples? A recent result by Alon et al. [1] might suggest so. Concretely, they show that if a
concept class C can be 𝛾-weak learned from a base hypothesis set H of VC-dimension 𝑑, then the
VC-dimension of C is no more than 𝑂𝑑 (𝛾−2+2/(𝑑+1) ), where 𝑂𝑑 (·) hides factors only depending on
𝑑. Interestingly, the part 𝛾2/(𝑑+1) becomes non-trivial precisely when our lower bound stops applying,
i.e. when 𝛾 < 2−𝑑 . This could hint at a possibly better dependency on 𝛾 for 𝛾 < 2−𝑑 .

We have a new generalization bound for large-margin classifiers, which is better than the 𝑘-th
margin bound (Gao and Zhou [8]) for constant error. Can the 𝑘-th margin bound in general be
improved, perhaps by one logarithmic factor? One of our key new ideas is the application of the
Littlewood-Offord lemma which might also be helpful for the more general case of non-constant
error.
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