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Abstract

We observe that given two (compatible) classes of functions F and H with small1

capacity as measured by their uniform covering numbers, the capacity of the2

composition class H ◦ F can become prohibitively large or even unbounded. We3

then show that adding a small amount of Gaussian noise to the output of F before4

composing it with H can effectively control the capacity of H ◦ F , offering a5

general recipe for modular design. To prove our results, we define new notions of6

uniform covering number of random functions with respect to the total variation7

and Wasserstein distances. We instantiate our results for the case of multi-layer8

neural networks. Preliminary empirical results indicate that the amount of noise9

required for our bound to improve over existing uniform bounds can be quite low.10

1 Introduction11

Let F be a class of functions from X to Y , and H a class of functions from Y to Z . Assuming12

that F and H have bounded “capacity”, can we bound the capacity of their composition, i.e.,13

H ◦ F = {h ◦ f | f ∈ F , h ∈ H}? Here, by capacity we mean learning-theoretic quantities such14

as VC dimension, fat-shattering dimension, and (uniform) covering numbers associated with these15

classes (see Vapnik (1999); Anthony et al. (1999); Shalev-Shwartz and Ben-David (2014); Mohri et al.16

(2018) for an introduction). Being able to control the capacity of composition of function classes17

is useful, as it offers a modular approach to design sophisticated classes (and therefore learning18

algorithms) out of simpler ones. To be concrete, we want to know if the uniform covering number19

(as defined in the next section) of H ◦ F can be “effectively” bounded as a function of the uniform20

covering numbers of F and H.21

The answer to the above questions is true when F is a set of binary valued functions (i.e., Y = {0, 1}22

in the above). More generally, the capacity of the composition class (as measured by the uniform23

covering number) can be bounded as long as |Y| is relatively small (see Proposition 7). But what if Y24

is an infinite set, such as the natural case of Y = [0, 1]? Unfortunately, in this case the capacity of25

H ◦ F (as measured by the covering number) can become unbounded (or excessively large) even26

when both F and H have bounded (or small) capacities; see Propositions 8 and 9.27

Given the above observation, we ask whether there is a general and systematic way to control the28

capacity of the composition of bounded-capacity classes. More specifically, we are interested in29

the case where the domain sets are multi-dimensional real-valued vectors (e.g., X ⊂ Rd, Y ⊂ Rp,30

Z ⊂ Rq). The canonical examples of such classes are those associated with neural networks.31

A common approach to control the capacity of H ◦ F is assuming that H and F have bounded32

capacity and H consists of Lipschitz functions (with respect to appropriate metrics). Then the33

capacity of H ◦ F can be bounded as long as H has a small “global cover” (see Remark 13). This34

observation has been used to bound the capacity of neural networks in terms of the magnitude of35
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their weights (Bartlett, 1996). More generally, the capacity of neural networks that admit Lipschitz36

continuity can be bounded based on their group norms and spectral norms (Neyshabur et al., 2015;37

Bartlett et al., 2017; Golowich et al., 2018). One benefit of this approach is that the composition of38

Lipschitz classes is still Lipschitz (although with a larger Lipschitz constant).39

While building classes of functions from composition of Lipschitz classes is useful, it does not40

necessarily work as a general recipe. In fact, some commonly used classes of functions do not admit41

a small Lipschitz constant. Consider the class of single-layer neural networks defined over bounded42

input domain [−B,B]d and with the sigmoid activation function. While the sigmoid activation43

function itself is Lipschitz, the Lipschitz constant of the network depends on the magnitude of the44

weights. Indeed, we empirically observe that this can turn Lipschitzness-based bounds on the covering45

number of neural networks worse than classic VC-based bounds.46

Another limitation of using Lipschitz classes is that they cannot be easily “mixed and matched” with47

other (bounded-capacity) classes. For example, suppose F is a class of L-Lipschitz functions (e.g.,48

multi-layer sigmoid neural networks with many weights but small magnitudes). Also, assume H49

is a non-Lipschitz class with bounded uniform covering number (e.g., one layer sigmoid neural50

network with unbounded weights). Then although both F and H have bounded capacity, H ◦ F is51

not Lipschitz and its capacity cannot be generally controlled.52

We take a different approach for composing classes of functions. A key observation that we make53

and utilize is that adding a little bit of noise while “gluing” two classes can help in controlling the54

capacity of their composition. In order to prove such results, we define and study uniform covering55

numbers of random functions with respect to total variation and Wasserstein metrics. The bounds for56

composition then come naturally through the use of data processing inequality for the total variation57

distance metric.58

Contributions and Organization.59

• Section 3 provides the necessary notations and includes the observations that composing60

real-valued functions can be more challenging than binary valued functions (Propositions 7,8,61

and 9).62

• In Section 4, we define a new notion of covering number for random functions (Definition 10)63

with respect to total variation (TV) and Wasserstein distances.64

• The bulk of our technical results appear in Section 5. These include a composition result65

for random classes with respect to the TV distance (Lemma 18) that is based on the66

data processing inequality. We also show how one can translate TV covering numbers to67

conventional ∥.∥2 counterparts (Theorem 17) and vice versa (Corollary 21). A useful tool is68

Theorem 20 which exploits kernel density estimation techniques to translate Wasserstein69

covers to TV covers when we add Gaussian noise to the output of functions.70

• Section 6 provides a stronger type of covering number for classes of single-layer noisy71

neural networks with the sigmoid activation function (Theorem 25).72

• In Section 7, we use the tools developed in the previous sections and prove a novel bound73

on the ∥.∥2 covering number of noisy deep neural networks (Theorem 26).74

• In Section 8 we define NVAC, a metric for comparing generalization bounds (Definition 28)75

based on the number of samples required to make the bound non-vacuous.76

• We offer some preliminary experiments, comparing various generalization bounds in Sec-77

tion 9. We observe that even a negligible amount of Gaussian noise can improve NVAC over78

other approaches without affecting the accuracy of the model on train or test data.79

2 Related work80

Adding various types of noise have been empirically shown to be beneficial in training neural81

networks. In dropout noise (Srivastava et al., 2014) (and its variants such as DropConnect (Wan et al.,82

2013)) the output of some of the activation functions (or weights) are randomly set to zero. These83

approaches are thought to act as a regularizer. Another example is Denoising AutoEncoders (Vincent84

et al., 2008) which adds noise to the input of the network while training stacked autoencoders.85

There has been efforts on studying the theory behind the effects of noise in neural networks. Jim et al.86

(1996) study the effects of different types of additive and multiplicative noise on convergence speed87
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and generalization of recurrent neural networks (RNN) and suggest that noise can help to speed up88

the convergence on local minima surfaces. Lim et al. (2021) formalize the regularization effects of89

noise in RNNs and show that noisy RNNs are more stable and robust to input perturbations. Wang90

et al. (2019) and Gao and Zhou (2016) analyze the networks with dropout noise and find bounds on91

Rademacher complexities that are dependent on the product of norms and dropout probability. It is92

noteworthy that our techniques and results are quite different, and require a negligible amount of93

additive noise to work, while existing bounds for dropout improve over conventional bounds only if94

the amount of noise is substantial. Studying dropout noise with the tools developed in this paper is a95

direction for future research.96

Studying PAC learning and its sample complexity is by now a mature field; see Vapnik (1999);97

Shalev-Shwartz and Ben-David (2014); Mohri et al. (2018). In the case of neural networks, standard98

Vapnik-Chervonenkis-based complexity bounds have been established (Baum and Haussler, 1988;99

Maass, 1994; Goldberg and Jerrum, 1995; Vidyasagar, 1997; Sontag et al., 1998; Koiran and Sontag,100

1998; Bartlett et al., 1998; Bartlett and Maass, 2003; Bartlett et al., 2019). These offer generalization101

bounds that depend on the number of parameters of the neural network. There is also another line102

of work that aims to prove a generalization bound that mainly depends on the norms of the weights103

and Lipschitz continuity properties of the network rather than the number of parameters (Bartlett,104

1996; Anthony et al., 1999; Zhang, 2002; Bartlett, 1996; Neyshabur et al., 2015; Bartlett et al., 2017;105

Neyshabur et al., 2018; Golowich et al., 2018; Arora et al., 2018; Nagarajan and Kolter, 2018; Long106

and Sedghi, 2020). We provide a more detailed discussion of some of these results in Appendix H.107

Finally, we refer the reader to Anthony et al. (1999) for an introductory discussion on this subject.108

The above-mentioned bounds are usually vacuous for commonly used data sets and architectures.109

Dziugaite and Roy (2017) (and later Zhou et al. (2019)) show how to achieve a non-vacuous bound110

using the PAC Bayesian framework. These approaches as well as compression-based methods (Arora111

et al., 2018) are, however, examples of “two-step” methods; see Appendix H for more details. It112

has been argued that uniform convergence theory may not fully explain the performance of neural113

networks (Zhang et al., 2021; Nagarajan and Kolter, 2019). One conjecture is that implicit bias of114

gradient descent (Gunasekar et al., 2017; Arora et al., 2019; Ji et al., 2020; Chizat and Bach, 2020; Ji115

and Telgarsky, 2021) can lead to benign overfitting (Belkin et al., 2018, 2019; Bartlett et al., 2020);116

see Bartlett et al. (2021) for a recent overview.117

3 Notations and background118

Notation. X ⊆ Rd and Y ⊆ Rp denote two (domain) sets. For x ∈ X , let ∥x∥1, ∥x∥2, and ∥x∥∞119

denote the ℓ1, ℓ2, and ℓ∞ norm of the vector x, respectively. We denote the cardinality of a set S by120

|S|. The set of natural numbers smaller or equal to m are denoted by [m]. A hypothesis is a Borel121

function f : Rd → Rp, and a hypothesis class F is a set of hypotheses.122

We also define the random counterparts of the above definitions and use an overline to distinguish123

them from the non-random versions. X denotes the set of all absolutely continuous random variables124

defined over X . We sometimes abuse the notation and write x ∈ X rather than x ∈ X (e.g., x ∈ Rd125

is a random variable taking values in Rd). By y = f(x) we denote a random variable that is the126

result of mapping x using a Borel function f : Rd → Rp. We use f : Rd → Rp to indicate that the127

mapping itself can be random. We use F to signal that the class can include random hypotheses.128

We conflate the notation for random hypotheses so that they can be applied to both random and129

non-random inputs (e.g., f(x) and f(x)).1130

Definition 1 (Composition of two hypothesis classes). We denote by h ◦ f the function h(f(x))131

(assuming the range of f and the domain of h are compatible). The composition of two hypothesis132

classes F and H is defined by H ◦F = {h ◦ f | h ∈ H, f ∈ F}. Composition of classes of random133

hypotheses is defined similarly by H ◦ F = {h ◦ f | h ∈ H, f ∈ F}.134

The following singleton class Gσ will be used to create noisy functions (e.g., using Gσ ◦ F).135

Definition 2 (The Gaussian Noise Class). The d-dimensional noise class with scale σ is denoted136

by Gσ,d = {gσ,d}. Here, gσ,d : Rd → Rd is a random function defined by gσ,d(x) = x + z, where137

z ∼ N (0, σ2Id). When it is clear from the context we drop d and write Gσ = {gσ}.138

1Technically, we consider f(x) to be f(δx), where δx is a random variable with Dirac delta measure on x.
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In the rest of this section, we define the standard notion of uniform covering numbers for hypothesis139

classes. Intuitively, classes with larger uniform covering numbers have more capacity/flexibility, and140

therefore require more samples to be learned.141

Definition 3 (Covering number). Let (X , ρ) be a metric space. We say that a set A ⊂ X is ϵ-covered142

by a set C ⊆ A with respect to ρ, if for all a ∈ A there exists c ∈ C such that ρ(a, c) ≤ ϵ. The143

cardinality of the smallest set C that ϵ-covers A is denoted by N(ϵ, A, ρ) and it is referred to as the144

ϵ-covering number of A with respect to metric ρ.145

Definition 4 (Extended metrics). Let (X , ρ) be a metric space. Let u = (a1, . . . , am), v =146

(b1, . . . , bm) ∈ Xm for m ∈ N. The ∞-extended and ℓ2-extended metrics over Xm are defined by147

ρ∞,m(u, v) = sup1≤i≤m ρ(ai, bi) and ρℓ2,m(u, v) =
√

1
m

∑m
i=1(ρ(ai, bi))

2, respectively. We drop148

m and use ρ∞ or ρℓ2 if it is clear from the context.149

Remark 5. The extended metrics are used in Definition 6 and capture the distance of two hypotheses150

on an input sample of size m. A typical example of ρ is the Euclidean distance over Rp, for which the151

extended metrics are denoted by ∥.∥∞,m
2 and ∥.∥ℓ2,m2 . Unlike ∞-extended metric, the ℓ2-extended152

metric is normalized by 1/
√
m, and therefore we have ρℓ2,m(u, v) ≤ ρ∞,m(u, v) for all u, v ∈ Xm.153

Definition 6 (Uniform covering number). Let (Y, ρ) be a metric space and F a hypothesis class154

of functions from X to Y . For a set of inputs S = {x1, x2, . . . , xm} ⊆ X , we define the restriction155

of F to S as F|S = {(f(x1), f(x2), . . . , f(xm)) : f ∈ F} ⊆ Ym. The uniform ϵ-covering156

numbers of hypothesis class F with respect to metrics ρ∞, ρℓ2 are denoted by NU (ϵ,F ,m, ρ∞) and157

NU (ϵ,F ,m, ρℓ2) and are the maximum values of N(ϵ,F|S , ρ
∞,m) and N(ϵ,F|S , ρ

ℓ2,m) over all158

S ⊆ X with |S| = m, respectively.159

It is well-known that the Rademacher complexity and therefore the generalization gap of a class can160

be bounded based on logarithm of the uniform covering number. For sake of brevity, we defer those161

results to Appendix F. Therefore, our main object of interest is bounding (logarithm of) the uniform162

covering number. The following propositions show that there is a stark difference between classes163

of functions with finite range versus continuous valued functions when it comes to bounding the164

uniform covering number of composite classes; the proofs can be found in Appendix B.165

Proposition 7. Let Y be a finite domain (|Y| = k) and ρ(y, ŷ) = 11{y ̸= ŷ} be a metric over Y .166

For any class F of functions from X to Y and any class H of functions from Y to Rd we have167

NU (ϵ,H ◦ F ,m, ∥.∥∞2 ) ≤ N1.NU (ϵ,H,mN1, ∥.∥∞2 ) where N1 = NU (0.5,F ,m, ρ∞).168

Proposition 8. Let F = {fw(x) = wx | w ∈ (0, 1), x ∈ (0, 1)} be a class of functions and169

H = {h(y) = 1/y | y ∈ (0, 1)} be a singleton class. Then, NU (ϵ,F ,m, ∥.∥ℓ22 ) ≤ ⌈2/ϵ2⌉ and170

NU (ϵ,H,m, ∥.∥ℓ22 ) = 1, but NU (ϵ,H ◦ F ,m, ∥.∥ℓ22 ) is unbounded.171

Proposition 9. For every ϵ > ϵ′ > 0, there exist hypothesis classes F and H such that for every m we172

have NU (ϵ
′,H,m, ∥.∥∞2 ) ≤ m+1 and NU (ϵ

′,F ,m, ∥.∥∞2 ) = 1, yet NU (ϵ,H◦F ,m, ∥.∥∞2 ) ≥ 2m.173

4 Covering random hypotheses174

We want to establish the benefits of adding (a little bit of) noise when composing hypothesis classes.175

Therefore, we need to analyze classes of random hypotheses. One way to do this is to replace each176

hypothesis with its expectation, creating a deterministic version of the hypothesis class. Unfortunately,177

this approach misses the whole point of having noisy hypotheses (and their benefits in composition).178

Instead, we extend the definition of uniform covering numbers to classes of random hypotheses F .179

The following is basically the random counterpart of Definition 6.180

Definition 10 (Uniform covering number for classes of random hypotheses). Let (Y, ρ) be a metric181

space and F a class of random hypotheses from X to Y . For a set of random variables S =182

{x1, x2, . . . , xm} ⊆ X , we define the restriction of F to S as F |S = {(f(x1), f(x2), . . . , f(xm)) :183

f ∈ F} ⊆ Ym
. Let Γ ⊆ X . The uniform ϵ-covering numbers of F with respect to Γ and metrics ρ∞184

and ρℓ2 are defined by185

NU (ϵ,F ,m, ρ∞,Γ) = sup
S⊆Γ,|S|=m

N(ϵ,F |S , ρ
∞,m),

NU (ϵ,F ,m, ρℓ2 ,Γ) = sup
S⊆Γ,|S|=m

N(ϵ,F |S , ρ
ℓ2,m).
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Remark 11. Unlike in Definition 6 where ρ is usually the ∥.∥2 metric in the Euclidean space, here in186

Definition 10 ρ is defined over random variables. More specifically, we will use the Total Variation187

and Wasserstein metrics as concrete choices for ρ.188

Remark 12. The specific choices that we use for Γ are189

• Γ = Xd: the set of all absolutely continuous random variables defined over Rd.190

• Γ = XB,d: the set of all absolutely continuous random variables defined over [−B,B]d.191

• Γ = ∆d = {δx | x ∈ Rd} and Γ = ∆B,d = {δx | x ∈ [−B,B]d}, where δx is the random192

variable associated with Dirac delta measure on x.193

• Γ = Gσ,d ◦ XB,d = {gσ,d(x) | x ∈ XB,d}: all members of XB,d after being “smoothed” by194

adding (convolving with) Gaussian noise.195

Remark 13. Some hypothesis classes that we work with have “global” covers, in the sense that the196

uniform covering number does not depend on m. We therefore use the following notation197

NU (ϵ,F ,∞, ρ∞,Γ) = lim
m→∞

NU (ϵ,F ,m, ρ∞,Γ).

We now define Total Variation (TV) and Wasserstein metrics over probability measures rather than198

random variables, but with a slight abuse of notation we will use them for random variables too.199

Definition 14 (Total Variation Distance). Let µ and ν denote two probability measures over X and200

let Ω be the Borel sigma-algebra over X . The TV distance between µ and ν is defined by201

dTV (µ, ν) = sup
B∈Ω

|µ(B)− ν(B)|.

Furthermore, if µ and ν have densities f and g then202

dTV (µ, ν) = sup
B∈Ω

∣∣∣ ∫
B

(f(x)− g(x))dx
∣∣∣ = 1

2

∫
X
|f(x)− g(x)| dx =

1

2
∥f − g∥1.

Definition 15 (Wasserstein Distance). Let µ and ν denote two probability measures over X , and203

Π(µ, ν) be the set of all their couplings. The Wasserstein distance between µ and ν is defined by204

dW(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

∥x− y∥2dπ(x, y)
)
.

The following proposition makes it explicit that the conventional uniform covering number with205

respect to ∥.∥2 (Definition 6) can be regarded as a special case of Definition 10.206

Proposition 16. Let F be a class of (deterministic) hypotheses from Rd to Rp. Then207

NU (ϵ,F ,m, ∥.∥∞2 ) = NU (ϵ,F , d∞W ,m,∆d) and NU (ϵ,F ,m, ∥.∥ℓ22 ) = NU (ϵ,F , dℓ2W ,m,∆d).208

The proposition is the direct consequence of the Definitions 6 and 10 once we note that the Wasserstein209

distance between Dirac random variables is just their ℓ2 distance, i.e., dW(δx, δy) = ∥x− y∥2.210

5 Bounding the uniform covering number211

This section provides tools that can be used in a general recipe for bounding the uniform covering212

number. The ultimate goal is to bound the (conventional) ∥.∥∞2 and ∥.∥ℓ22 uniform covering numbers213

for (noisy) compositions of hypothesis classes. In order to achieve this, we will show how one can214

turn TV covers into ∥.∥2 covers (Theorem 17) and vice versa (Corollary 21). But what is the point of215

going back and forth between ∥.∥2 and TV covers? Basically, the data processing inequality ensures216

an effective composition (Lemma 18) for TV covers. Our analysis goes through a number of steps,217

connecting covering numbers with respect to ∥.∥2, Wasserstein, and TV distances. The missing218

proofs of this section can be found in Appendix C.219

The following theorem considers the deterministic class H associated with expectations of random220

hypotheses from F , and shows that bounding the uniform covering number of F with respect to TV221

distance is enough for bounding the uniform covering number of H with respect to ∥.∥2 distance.222
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Theorem 17 (From a TV cover to a ∥.∥2 cover). Consider any class F of random hypotheses223

f : Rd → [−B,B]p with bounded output. Define the (nonrandom) hypothesis class H = {h : Rd →224

[−B,B]p | h(x) = Ef

[
f(x)

]
, f ∈ F}. Then for every ϵ > 0, m ∈ N these two inequalities hold:225

NU (2Bϵ
√
p,H,m, ∥.∥∞2 ) ≤ NU (ϵ,F ,m, d∞TV ,∆d) ≤ NU (ϵ,F ,m, d∞TV ,Xd),

NU (2Bϵ
√
p,H,m, ∥.∥ℓ22 ) ≤ NU (ϵ,F ,m, dℓ2TV ,∆d) ≤ NU (ϵ,F ,m, dℓ2TV ,Xd).

But what is the point of working with the TV distance? An important ingredient of our analysis is the226

use of data processing inequality which holds for the TV distance (see Lemma 29). The following227

lemma uses this fact, and shows how one can compose classes with bounded TV covers.228

Lemma 18 (Composing classes with bounded TV covers). Let F be a class of random hypotheses229

from Rd to Rp, and H be a class of random hypotheses from Rp to Rq . For every ϵ, ϵ′ > 0, and every230

m ∈ N these three inequalities hold:231

NU

(
ϵ+ ϵ′,H ◦ F ,m, d∞TV ,Xd

)
≤ NU

(
ϵ′,H,mN1, d

∞
TV ,Xp

)
.N1,

NU

(
ϵ+ ϵ′,H ◦ F ,m, d∞TV ,∆d

)
≤ NU

(
ϵ′,H,mN2, d

∞
TV ,Xp

)
.N2,

NU

(
ϵ+ ϵ′,H ◦ F ,m, dℓ2TV ,∆d

)
≤ NU

(
ϵ′,H,mN3, d

∞
TV ,Xp

)
.N3,

where N1 = NU

(
ϵ,F ,m, d∞TV ,Xd

)
, N2 = NU

(
ϵ,F ,m, d∞TV ,∆d

)
and N3 =232

NU

(
ϵ,F ,m, dℓ2TV ,∆d

)
.233

Remark 19. In Lemma 18, for H, we required the stronger notion of cover with respect to Xd (i.e.,234

the input to the hypotheses can be any random variable with a density function), whereas for F a235

cover with respect to ∆d sufficed in some cases. As we will see below, finding a cover with respect to236

∆d is easier since one can reuse conventional ∥.∥2 covers. However, finding covers with respect to237

Xd is more challenging. In the next section we show how to do this for a class of neural networks.238

The next step is bounding the uniform covering number with respect to the TV distance (TV covering239

number for short). It will be useful to be able to bound TV covering number with Wasserstein240

covering number. However, this is generally impossible since closeness in Wasserstein distance does241

not imply closeness in TV distance. Yet, the following theorem establishes that one can bound the242

TV covering number as long as some Gaussian noise is added to the output of the hypotheses.243

Theorem 20 (From a Wasserstein cover to a TV cover). Let F be a class of random hypotheses from244

Rd to Rp, and Gσ,p be a Gaussian noise class. Then for every ϵ > 0 and m ∈ N we have245

NU

(
9ϵ

2σ
,Gσ,p ◦ F ,m, d∞TV ,Xd

)
≤ NU (ϵ,F ,m, d∞W ,Xd),

NU

(
9ϵ

2σ
,Gσ,p ◦ F ,m, d∞TV ,∆d

)
≤ NU (ϵ,F ,m, d∞W ,∆d).

Intuitively, the Gaussian noise smooths out densities of random variables that are associated with246

applying transformation in F to random variables in Xd or ∆d. As a result, the proof of Theorem 20247

has a kernel density estimation step on the smooth densities. Finally, we can use Proposition 16 to248

relate the Wasserstein covering number with the ∥.∥2 covering number. The following corollary is249

the result of Proposition 16 and Theorem 20.250

Corollary 21 (From a ∥.∥2 cover to a TV cover). Let F be a class of hypotheses f : Rd → Rp and251

Gσ,p be a Gaussian noise class. Then for every ϵ > 0 and m ∈ N we have252

NU (
9ϵ

2σ
,Gσ,p ◦ F ,m, d∞TV ,∆d) ≤ NU (ϵ,F ,m, ∥.∥∞2 ),

NU (
9ϵ

2σ
,Gσ,p ◦ F ,m, dℓ2TV ,∆d) ≤ NU (ϵ,F ,m, ∥.∥ℓ22 ).

The following theorem shows that we can get a stronger notion of TV cover with respect to Gσ ◦XB,d253

from a ∥.∥2 global cover, given that some Gaussian noise is added to the output of hypotheses.254

However, finding a small ∥.∥2 global cover is usually a challenging task. The proof involves finding a255

Wasserstein covering number and using Theorem 20 to obtain TV covering number.256
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Theorem 22 (From a global ∥.∥2 cover to a global TV cover). Let F be a class of hypotheses257

f : Rd → Rp and Gσ,p be a Gaussian noise class. Then for every ϵ > 0 and m ∈ N we have258

NU

(
9ϵ

σ
,Gσ,p ◦ F ,∞, d∞TV ,Gσ,d ◦ XB,d

)
≤ NU (ϵ,F ,∞, ∥.∥∞2 ).

6 Uniform TV covers for single-layer neural networks259

In this section, we study the uniform covering number of single-layer neural networks with respect to260

the total variation distance. This will set the stage for the next section, where we want to use the tools261

from Section 5 to bound covering numbers of deeper networks. We start with the following definition262

for the class of single-layer neural networks.263

Definition 23 (Single-Layer Sigmoid Neural Networks). Let Φ : Rp → [0, 1]
p be the element-264

wise sigmoid activation function defined by Φ((x(1), . . . , x(p))) = (ϕ(x(1)), . . . , ϕ(x(p))), where265

ϕ(x) = 1
1+e−x is the sigmoid function. The class of single-layer neural networks with d inputs and p266

outputs is defined by NET[d, p] = {fW : Rd → [0, 1]p | fW (x) = Φ(W⊤x),W ∈ Rd×p}.267

Remark 24. We choose sigmoid function for simplicity, but our analysis for finding uniform covering268

numbers of neural networks (Theorem 25) is not specific to the sigmoid activation function. We269

present a stronger version of Theorem 25 in Appendix D which works for any activation function that270

is Lipschitz, monotone, and bounded.271

As mentioned in Remark 19, Lemma 18 requires stronger notion of covering numbers with respect272

to Xd and TV distance. In fact, the size of this kind of cover is infinite for deterministic neural273

networks defined above. In contrast, Theorem 25 shows that one can bound this covering number274

as long as some Gaussian noise is added to the input and output of the network. The proof is quite275

technical, starting with estimating the smoothed input distribution (gσ(x)) with mixtures of Gaussians276

using kernel density estimation. Then a cover for mixtures of Gaussians with respect to Wasserstein277

distance is found. Finally, Theorem 20 helps to find the cover with respect to total variation distance.278

For a complete proof of theorem see Appendix D.279

Theorem 25 (A global total variation cover for noisy neural networks with unbounded weights). For280

every p, d ∈ N, ϵ > 0, σ < 30d/ϵ we have281

NU (ϵ,Gσ ◦ NET[d, p],∞, d∞TV ,Gσ ◦ X1,d) ≤

(
282

d5/2
√

ln ((30d− ϵσ)/(ϵσ))

ϵ3/2σ2
ln

(
30d

ϵσ

))p(d+1)

.

Note that the dependence of the bound on 1/σ is polynomial. The assumption σ ≪ 30d/ϵ holds for282

any reasonable application (we will use σ ≪ 1 in the experiments). In contrast to the analyses that283

exploit Lipschitz continuity, the above theorem does not require any assumptions on the norms of284

weights. Theorem 25 is a key tool in analyzing the uniform covering number of deeper networks.285

7 Uniform covering numbers for deeper networks286

In the following, we discuss how one can use Theorem 25 and techniques provided in Section 5 to287

obtain bounds on covering number for deeper networks. For a T -layer neural network, it is useful to288

separate the first layer from the rest of the network. The following theorem offers a bound on the289

uniform covering number of (the expectation of) a noisy network based on the usual ∥.∥ℓ22 covering290

number of the first layer and the TV covering number of the subsequent layers.291

Theorem 26. Let NET[d, p1],NET[p1, p2], . . . ,NET[pT−1, pT ] be T classes of neural networks.292

Denote the T -layer noisy network by293

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[d, p1],

and let H = {h : Rd → [0, 1]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Denote the uniform covering294

numbers of compositions of neural network classes with the Gaussian noise class (with respect to295

d∞TV ) as296

Ni = NU

(
ϵ

2T
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ X1,pi−1

)
, 2 ≤ i ≤ T, (1)
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and the uniform covering number of Gσ ◦ NET[d, p1] with respect to ∥.∥ℓ22 as297

N1 = NU

(
2σϵ

18T
√
pT

,NET[d, p1],m, ∥.∥ℓ22
)
.

Then we have298

NU

(
ϵ,H,m, ∥.∥ℓ22

)
≤

T∏
i=1

Ni.

The ∥.∥ℓ22 covering number of the first layer (i.e., N1 in above) can be bounded using standard299

approaches in the literature. For instance, in Appendix H we will use the bound of Lemma 14.7 in300

Anthony et al. (1999). Other Ni’s can be bounded using Theorem 25. The above bound does not301

depend on the norm of weights and therefore we can use it for networks with large weights.302

The proof of Theorem 26 involves applying Corollary 21 to turn the ∥.∥2 cover of first layer into a TV303

cover. We then find a TV cover for rest of the network by combining Theorem 26 and Lemma 18. We304

will compose the first layer with the rest of the network and bound the covering number by another305

application of Lemma 18. Finally, we turn the TV covering number (of the entire network) back into306

∥.∥ℓ22 covering number using Theorem 17. The complete proof can be found in Appendix E.307

One can generalize the above analysis in the following way: instead of separating the first layer, one308

can basically “break” the network from any layer, use existing ∥.∥2 covering number bounds for the309

first few layers, and Theorem 25 for the rest. See Lemma 35 in Appendix E for details.310

8 NVAC: a metric for comparing generalization bounds311

We want to provide tools to compare different approaches in finding covering numbers and their312

suggested generalization bounds. First, we define the notion of a generalization bound for clas-313

sification. Let Y = [k] and F be a class of functions from X to Rk. Let A be an algorithm314

that receives a labeled sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and outputs a func-315

tion ĥ ∈ F . Note that the output of this function is a real vector so it can capture margin-based316

classifiers too. Let l0−1 : Rk × [k] → {0, 1} be the “thresholded” 0-1 loss function defined by317

l0−1(u, y) = 11{argmaxiu
(i) ̸= y} where u(i) is the i-th dimension of u.318

Definition 27 (Generalization Bound for Classification). A (valid) generalization bound for A with319

respect to l0−1 and another (surrogate) loss function l is a function GB : F × (X × Y)m → R such320

that for every distribution D over X × Y , if S ∼ Dm, then with probability at least 0.99 (over the321

randomness of S) we have322 ∣∣∣∣∣∣ 1m
∑

(x,y)∈S

l(ĥ(x), y)− E(x,y)∼D

[
l0−1(ĥ(x), y)

]∣∣∣∣∣∣ ≤ GB(ĥ, S).

For example, GB(ĥ, S) = 2 is a useless but valid generalization bound. Various generalization323

bounds that have been proposed in the literature are examples of a GB. Note that GB can depend324

both on S (for instance on |S|) and on ĥ (for example, on the norm of the weights of network).325

It is not straightforward to empirically compare generalization bounds since they are often vacuous326

for commonly used applications. Jiang et al. (2019) address this by looking at other metrics, such as327

the correlation of each bound with the actual generalization gap. While these metrics are informative,328

it is also useful to know how far off each bound is from producing a “non-vacuous” bound (Dziugaite329

and Roy, 2017). Therefore, we will take a more direct approach and propose the following metric.330

Definition 28 (NVAC). Let ĥ be a hypothesis, S ∈ (X × Y)m a sample, and GB a generalization331

bound for algorithm A. Let Sn denote a sample of size mn which includes n copies of S. Let n∗ be332

the smallest integer such that the following holds:333

GB(ĥ, Sn∗
) +

1

|Sn∗ |
∑

(x,y)∈Sn∗

l(ĥ(x), y) ≤ 1.

We define NVAC to be |Sn∗ | = mn∗.334
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Informally speaking, NVAC is an upper bound on the minimum number of samples required to obtain335

a non-vacuous generalization bound. Approaches that get tighter upper bounds on covering number336

will generally result in smaller NVACs. In Appendix G, we will show how one can calculate NVAC337

using the uniform covering number bounds.338

9 Experiments339

In this section, we empirically compare different approaches in bounding the covering number using340

the NVAC metric. We compare the following approaches in bounding covering number: Theorem 26,341

Norm-based (Theorem 14.17 in Anthony et al. (1999)), Lipschitzness-based (Theorem 14.5 in342

Anthony et al. (1999)), Pseudo-dim-based (Theorem 14.2 in Anthony et al. (1999)), and Spectral343

(Bartlett et al. (2017)). More details about these bounds can be found in Appendix H.344

We train fully connected neural networks on MNIST dataset. We use a network with an input layer, an345

output layer, and three hidden layers each containing 250 hidden neurons as the baseline architecture.346

See Appendix I for the details of the learning settings. The left two graphs in Figure 1 depict NVACs347

as functions of the depth and width of the network. It can be observed that our approach achieves the348

smallest NVAC. The Norm-based bound is the worst and is removed from the graph (see Appendix I).349

Overall, bounds that are based on the norm of the weights (even the spectral norm) perform poorly350

compared to those that are based on the parameter count. This is an interesting observation since351

we have millions of parameters (≈ 3× 109) in some of the wide networks and one would assume352

approaches based on norm of weights should be able to explain generalization behaviour better.353

There are several reasons why our bound performs better. First, the dependence of NVAC on 1/ϵ is354

linear for the Spectral approach and polynomial for Norm-based approach while the dependence is355

logarithmic in our approach. Second, norm-based bounds depend on product of norms and group356

norms which can get quite large. Finally, our method works naturally for multi-output layers, while357

the Pseudo-dim-based approach works for real-valued output (and therefore one needs to bound the358

cover for each output separately).359

The covering number bound of Theorem 26 has a polynomial dependence on 1/σ. Therefore, NVAC360

has a mild logarithmic dependence on 1/σ (see Appendix G for details). The third graph in Figure 1361

corroborates that even a negligible amount of noise (σ ≈ 10−240) is sufficient to get tighter bounds362

on NVAC compared to other approaches. Finally, the right graph in Figure 1 shows that even with a363

considerable amount of noise (e.g, σ = 0.2), the train and test accuracy of the model remain almost364

unchanged. This is perhaps expected, as the dynamics of training neural networks with gradient365

descent is already noisy even without adding Gaussian noise. Overall, our preliminary experiment366

shows that small amount of noise does not affect the performance, yet it enables us to prove tighter367

generalization bounds.368
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Figure 1: The left two graphs depict NVAC of different generalization bounds as a function of the
number of hidden layers and width of the network. The Norm-based approach is excluded because
of its excessively high NVAC (see Appendix I). The third graph plots NVAC against log10(σ) (σ is
standard deviation of noise) for the two best approaches. The rightmost graph plots the train/test 0-1
losses for different values of σ. The gaps between the train and test losses are shown for σ = 0, 0.3.

Limitations and Future Work. Our analysis is based on the assumption that the activation function369

is bounded. Therefore, extending the results to ReLU neural networks is not immediate, and is left for370

future work. Also, our empirical analysis is preliminary and is mostly used as a sanity check. Further371

empirical evaluations can help to better understand the role of noise in training neural networks.372
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A Miscellaneous facts533

Lemma 29 (Data processing inequality for TV distance). Given two random variables x1, x2 ∈ X ,534

and a (random) Borel function f : X → Y ,535

dTV (f(x1), f(x2)) ≤ dTV (x1, x2).

The next theorem, bounds the total variation distance between two Gaussian random variables.536

Theorem 30 (Total variation distance between Gaussians with same covariance). Let N (µ1, σ
2Id)537

and N (µ2, σ
2Id) be two Gaussian random variables, where Id is the d-by-d identity matrix. Then538

we have,539

dTV (N (µ1, σ
2Id),N (µ2, σ

2Id)) ≤
1

2σ
∥µ1 − µ2∥2 .

Proof. Form Pinsker’s inequality we know that for any two distributions P and Q we have540

dTV (P,Q) ≤
√

1

2
dKL(P,Q), (2)

where dKL(P,Q) is the Kullback-Liebler (KL) divergence between P and Q. We can the find the541

KL divergence between N (µ1, σ
2Id) and N (µ2, σ

2Id) as (see e.g., Diakonikolas et al. (2019))542

dKL

(
N (µ1, σ

2Id),N (µ2, σ
2Id)

)
≤ 1

2σ2
∥µ1 − µ2∥22. (3)

Combining Equations 2 and 3 concludes the result.543

Lemma 31. Let Y ∼ χ2
n be a chi-squared random variable with n degrees of freedom. Then we544

have (Laurent and Massart, 2000)545

P[Y − n ≥ 2
√
nt+ 2t] ≤ e−t.
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Lemma 32. Let x =
∑m

i=1 wigi be a random variable, where gi are d-dimensional Gaussian random546

variables with means µi ∈ [−B,B]d and covariance matrices of σ2Id. We have547

P
[
∥x∥2 ≥ (B + σ)

√
d+ σ

√
2t
]
≤ e−t.

Proof. We know that for any R ∈ R548

P
[
∥x∥22 ≥ R2

]
=

m∑
i=1

wiP
[
∥gi∥22 ≥ R2

]
=

m∑
i=1

wiP
[
∥σyi + µi∥22 ≥ R2

]
=

m∑
i=1

wiP [∥σyi + µi∥2 ≥ R] ,

where yi ∼ N (0, Id) are standard normal random variables. Using triangle inequality we can rewrite549

the above equation as550

P
[
∥x∥22 ≥ R2

]
≤

m∑
i=1

wiP [∥σyi∥2 + ∥µi∥2 ≥ R] ≤
m∑
i=1

wiP
[
∥σyi∥2 +B

√
d ≥ R

]
.

We can, therefore, conclude that551

P
[
∥x∥22 ≥ R2

]
≤ P

∥yi∥22 ≥

(
R−B

√
d

σ

)2
 .

Setting R = (B + σ)
√
d+ σ

√
2t, we can write552

P
[
∥x∥2 ≥ (B + σ)

√
d+ σ

√
2t
]

= P
[
∥x∥22 ≥

(
(B + σ)

√
d+ σ

√
2t
)2]

≤ P
[
∥yi∥22 ≥ (

√
d+

√
2t)2

]
≤ P

[
∥yi∥22 ≥ d+ 2t+ 2

√
dt
]

≤ e−t.

553

B Proofs of propositions in Section 3554

B.1 Proof of Proposition 7555

Proof. Fix an input set S = {x1, . . . , xm}. Let C = {f̂i|S | f̂i ∈ F , i ∈ [r1]} be 0.5-cover for F|S556

with respect to ρ∞. Therefore, given any f|S ∈ F|S there exists f̂i|S ∈ C such that557

ρ∞
(
(f(x1), . . . , f(xm)), (f̂i(x1), . . . , f̂i(xm))

)
≤ 0.5 (4)

Since ρ
(
f(x), f̂i(x)

)
= 11{f(x) ̸= f̂i(x)}, Equation 4 suggests that f(xl) = f̂i(xk) for any558

k ∈ [m]. Let S′ = {f̂i(xk) | i ∈ [r1], k ∈ [m]} and C ′ = {ĥj |S′ | ĥj ∈ H, j ∈ [r2]} be an ϵ-cover559

for H|S′ with respect to ∥.∥∞2 . We know that |S′| ≤ mr1. Denote Q̂ = {ĥj ◦ f̂i | i ∈ [r1], j ∈ [r2]}.560

We will prove that Q̂|S is an ϵ-cover for (H ◦ F)|S with respect to ∥.∥∞2 . Consider (h ◦ f)|S =561

(h(f(x1)), . . . , h(f(xm))) ∈ (H ◦ F)|S . Since C is a 0.5-cover for F|S , from equation 4, we know562

that there exists f̂i ∈ F such that f(xk) = f̂i(xk) for any k ∈ [m]. On the other hand, for any563

k ∈ [m], f̂i(xk) is an element of S′, consequently, there exists ĥj ∈ H such that564 ∥∥∥(h(f̂i(x1)), . . . , h(f̂i(xm)))− (ĥj(f̂i(x1)), . . . , ĥj(f̂i(xm)))
)∥∥∥∞

2

=
∥∥∥(h(f(x1)), . . . , h(f(xm)))− (ĥj(f̂i(x1)), . . . , ĥj(f̂i(xm)))

)∥∥∥∞
2

≤ ϵ
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From the above equation, we can conclude that (H ◦ F)|S is ϵ-covered by Q̂|S . Clearly,
∣∣∣Q̂|S

∣∣∣ ≤565

r1r2 and we know that mr1 ≤ mN1. Therefore, N(ϵ,H|S′ , ∥.∥∞2 ) ≤ NU (ϵ,H,mr1, ∥.∥∞2 ) ≤566

NU (ϵ,H,mN1, ∥.∥∞2 ) This result holds for any input set S ⊂ Xm with |S| = m, therefore, it567

follows that568

NU (ϵ,H ◦ F ,m, ∥.∥∞2 ) ≤ N1.NU (ϵ,H,mN1, ∥.∥∞2 ).

569

B.2 Proof of Proposition 8570

Proof. The proof for the bound of NU (ϵ,F ,m, ∥.∥ℓ22 ) can be found under Theorem 3 in Zhang571

(2002). Since H is a singleton class, it is easy to verify NU (ϵ,H,m, ∥.∥∞2 ) = 1. We prove that the572

covering number of H ◦ F is unbounded by contradiction. Let S = {x1, . . . , xm} ∈ (0, 1)m be an573

input set where 0 < x1 ≤ . . . ≤ xm. Denote C = {(h◦f̂i)|S = ( 1
ŵix1

, . . . , 1
ˆwixm

) | f̂i ∈ F , i ∈ [r]}574

to be an ϵ-cover for (H ◦ F)|S where |C| = r1 is finite. We know that ŵi > 0 for i ∈ [r]. Denote575

w∗ = mini∈[r],ŵi>0 ŵi. Take any w <
1

1
w∗ + x1ϵ

≤ 1
1
ŵi

+ x1ϵ
and denote the corresponding576

function by f ∈ F , i.e., f(x) = wx. we know that for every i ∈ [r]577

1

wx1
>

w

ŵix1
+ ϵ.

This means that578 ∥∥∥∥( w

x1
, . . . ,

w

xm

)
−
(
ŵi

x1
, . . . ,

ŵi

xm

)∥∥∥∥
2

=

√√√√ 1

m

m∑
i=1

(
w

x1
− ŵi

x1

)2

≥ ϵ

Therefore, there is no (h ◦ f̂i)|S ∈ C such that ∥(h ◦ f̂i)|S − (h ◦ f)|S∥ℓ22 ≤ ϵ, which contradicts579

with the assumption that C is an ϵ-cover for (H ◦ F)|S .580

B.3 Proof of Proposition 9581

Proof. Let Fγ,ϵ denote the class of all functions fγ,ϵ from X to R such that |f(x) − x| ≤ γ for582

any x ∈ X , where γ ≤ ϵ/2. Fix an input set S = {x1, . . . , xm}. We know that given any583

fγ,ϵ, f
′
γ,ϵ ∈ Fγ,ϵ and i ∈ [m],584

∥fγ,ϵ(xi)− f ′
γ,ϵ(xi)∥ ≤ ∥fγ,ϵ(xi)− xi∥+ ∥xi − f ′

γ,ϵ(xi)∥ ≤ ϵ.

Therefore, it is easy to conclude that NU (ϵ,Fγ,ϵ,m, ∥.∥∞2 ) = 1. Let H to be the class of all585

threshold functions ha from R to [0, 1], where ha(x) = 11{x ≥ a}. Consider an input set S =586

{x1, . . . , xm} where x1 ≤ . . . ≤ xm. Given any k ∈ [m] we can find a ∈ R such that xi < a587

for 1 ≤ i ≤ k and xi ≥ a for k < i ≤ m, e.g., set a = (xk + xk+1)/2. We also know that588

for any i, j ∈ [m], ha(xi) ̸= ha(xj) only if xi < a ≤ xj . Therefore, it is easy to verify that589

H|S = m + 1 and that for any ha|S and ha′ |S in H|S we have
∥∥ha′ |S − ha|S

∥∥
2
≥ 1. We can590

therefore conclude that NU (ϵ,H,m, ∥.∥∞2 ) = m+ 1. Next, consider the class H ◦ Fγ,ϵ. We prove591

that NU (ϵ
′,H ◦ Fγ,ϵ,m, ∥.∥∞2 ) = 2m.592

We first mention the fact that given any (y1, . . . , ym) and (y′1, . . . , y
′
m) in {0, 1}m if there exists593

i ∈ [m] such that yi ̸= y′i, then ∥(y′1, . . . , y′m)− (y1, . . . , ym)∥2 ≥ 1. Also, the range of the594

functions in H ◦ F is [0, 1], therefore, we are only interested in ϵ′ < 1. In the following, we prove595

that for any m there exists a set S′ with |S′| = m such that the restriction of H ◦ F to set S′ has 2m596

elements and the result follows.597

Consider the input set S′ = {z1, . . . , zm} such that 0 ≤ z1 < . . . < zm ≤ ϵ/2. Given any598

(y1, . . . , ym) ∈ {0, 1}m we map (z1, . . . , zm) to (e1, . . . , em) as follows: for any i ∈ [m] if yi = 1599

we define ei = zi + ϵ/2, otherwise we define ei = zi − ϵ/2. This mapping can be done by some600

function fγ,ϵ from Fγ,ϵ since for any i ∈ [m] we have |ei − zi| = ϵ/2. Let a = ϵ/4. We know that601

ha(ei) is 1 if yi = 1 and 0 otherwise. Therefore, we can conclude that for every element (y1, . . . , ym)602
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in {0, 1}m, there exists (ha ◦ fγ,ϵ)|S′ in (H◦Fγ,ϵ)|S′ such that (H◦Fγ,ϵ)|S′ = (y1, . . . , ym). Since603

|{0, 1}m| = 2m, we can say that N(ϵ′, (H ◦ Fγ,ϵ)|S , ∥.∥∞,m
2 ) = 2m. Therefore,604

NU (ϵ
′,H ◦ Fγ,ϵ,m, ∥.∥∞2 ) = sup

|S|=m

{
N(ϵ′, (H ◦ Fγ,ϵ)|S), ∥.∥∞,m

2 )
}
≥ 2m.

605

C Proofs of theorems and lemmas in Section 5606

Notation. For a (random) function f and an input set S = {x1, . . . , xm}, we define the restriction607

of f to S as f|S = (f(x1), . . . , f(xm)). Therefore, the restriction of the class F to S can be denoted608

as F|S = {f|S : f ∈ F}. We also denote by D(x) the probability density functions of the random609

variable x. For two Borel functions f1 and f2, we denote by π∗(f1(x), f2(x)) a coupling between610

random variables f1(x), f2(x) such that611

Mπ∗(A) =

{
Mx(B) ∃B ⊂ B(X ) such that A = f1(B)× f2(B)

0 otherwise,

where B(X ) is the set of all Borel sets over X , Mπ∗(A) is the measure that π∗ assigns to the612

Borel set A, and Mx(B) is the measure that random variable x assigns to Borel set B. Let Ωπ∗ =613

∪{B|Mx(B) ̸=0}B.614

C.1 Proof of Theorem 17615

Proof. It is easy to verify that NU (ϵ,F ,m, d∞TV ,∆d) ≤ NU (ϵ,F ,m, d∞TV ,Xd). Since we know that616

∆d ⊂ Xd, we have617

NU (ϵ,F ,m, d∞TV ,∆d) = sup
S⊂∆d

|S|=m

{
N(ϵ,F |S , d

∞
TV )

}
≤ sup

S⊂Xd

|S|=m

{
N(ϵ,F |S , d

∞
TV )

}
= NU (ϵ,F ,m, d∞TV ,Xd).

(5)
Let S = {x1, . . . , xm} ⊂ Rd be an input set. Denote S = {δx1

, . . . , δxm
} ⊂ ∆d and let C =618

{f̂1|S , . . . , f̂r |S | f̂r ∈ F , i ∈ [r]} be an ϵ-cover for F |S with respect to d∞TV . Define a new set of619

non-random functions Ĥ =
{
ĥi(x) = E

f̂i

[
f̂i(x)

]
| i ∈ [r]

}
.620

Given any random function f ∈ F and considering the fact that C is an ϵ-cover for F |S and that621

f |S ∈ F |S , we know there exists f̂i, i ∈ [r] such that622

d∞TV

(
f̂i|S , f |S

)
= d∞TV

(
(f̂i(δx1

), . . . , f̂i(δxm
)), (f(δx1

), . . . , f(δxm
))
)
≤ ϵ. (6)

From Equation 6 we can conclude that for any k ∈ [m], dTV

(
f̂i(δxk

), f(δxk
)
)
≤ ϵ. Further, for the623

corresponding h, ĥi ∈ H, we know that624

ĥi(xk) = E
f̂i

[
f̂i(δxk

)
]
=

∫
Rd

xD(f̂i(δxk
))(x)dx,

h(xk) = Ef

[
f(δxk

)
]
=

∫
Rd

xD(f(δxk
))(x)dx.

Denote I = D(f(δxk
)) and Î = D(f̂i(δxk

)). Define two new density functions Idiff and Îdiff as625

Idiff (x) =


I(x)− Î(x)

dTV (I, Î)
I(x) ≥ Î(x)

0 otherwise,

Îdiff (x) =


Î(x)− I(x)

dTV (I, Î)
Î(x) ≥ I(x)

0 otherwise.
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Also, we define Imin as626

Imin(x) =
min{I(x), Î(x)}∫
min{I(x), Î(x)}dx

=
min{I(x), Î(x)}
1− dTV (I, Î)

.

It is easy to verify that627

I(x) =
(
1− dTV (I, Î)

)
Imin(x) + dTV (I, Î).Idiff (x)

Î(x) =
(
1− dTV (I, Î)

)
Imin(x) + dTV (I, Î).Îdiff (x).

We can then find the ℓ2 distance between ĥi(xk) and h(xk) by628 ∥∥∥ĥi(xk)− h(xk)
∥∥∥
2

=

∥∥∥∥∫
Rd

xÎ(x)dx−
∫
Rd

xI(x)dx

∥∥∥∥
2

=

∥∥∥∥∫
Rd

x
[(

1− dTV (I, Î)
)
Imin(x) + dTV (I, Î).Îdiff (x)

]
−x
[(

1− dTV (I, Î)
)
Imin(x) + dTV (I, Î).Idiff (x)

]
dx
∥∥∥
2

=

∥∥∥∥∫
Rd

xdTV (I, Î)
[
Îdiff (x)− Idiff (x)

]
dx

∥∥∥∥
2

= dTV (I, Î)

∥∥∥∥∫
Rd

x
[
Îdiff (x)− Idiff (x)

]
dx

∥∥∥∥
2

≤ 2B
√
p dTV

(
f(δxk

), f̂i(δxk
)
)

(Bounded domain [−B,B]p and triangle inequality)

≤ 2Bϵ
√
p.

Since this result holds for any k ∈ [m], we have629 ∥∥∥ĥi|S − h|S

∥∥∥∞
2

=
∥∥∥(ĥi(x1), . . . , ĥi(xm))− (h(x1), . . . , h(xm))

∥∥∥∞
2

≤ 2Bϵ
√
p. (7)

In other words, for any h|S ∈ H|S there exists a ĥi|S ∈ Ĥ|S such that
∥∥∥ĥi|S − h|S

∥∥∥∞
2

≤ 2Bϵ
√
p.630

Therefore, Ĥ|S is a 2Bϵ
√
p cover for H|S with respect to ∥.∥∞2 and |Ĥ|S | = r.631

The bound in Equation 7 holds for any subset S of Rd with |S| = m. Therefore,632

NU (2Bϵ
√
p,H,m, ∥.∥∞2 ) ≤ NU (ϵ,F ,m, d∞TV ,∆d). (8)

Putting Equations 5 and 8 together, we conclude633

NU (2Bϵ
√
p,H,m, ∥.∥∞2 ) ≤ NU (ϵ,F ,m, d∞TV ,∆d) ≤ NU (ϵ,F ,m, d∞TV ,Xd).

To prove the second part that involves covering number with respect to ∥.∥ℓ22 , we can follow the same634

steps. Similarly, we know that635

NU (ϵ,F ,m, dℓ2TV ,∆d) = sup
S⊂∆d

|S|=m

{
N(ϵ,F |S , d

ℓ2
TV )

}
≤ sup

S⊂Xd

|S|=m

{
N(ϵ,F |S , d

ℓ2
TV )

}
= NU (ϵ,F ,m, dℓ2TV ,Xd).

Consider the same input sets S and S and let and let C̃ = {f̃1|S , . . . , f̃r |S | f̃t ∈ F , i ∈ [t]}636

be an ϵ-cover for F |S with respect to dℓ2TV . Define a new set of non-random functions H̃ =637 {
h̃i(x) = E

f̃i

[
f̃i(x)

]
| i ∈ [r]

}
.638

Similarly, consider f|S and f̃i|S such that639

dℓ2TV

(
f̃i|S , f |S

)
= dℓ2TV

(
(f̃i(δx1), . . . , f̃i(δxm)), (f(δx1), . . . , f(δxm))

)
≤ ϵ.
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Using the same analysis as before, we can conclude that for any k ∈ [m],640 ∥∥∥h̃i(xk)− h(xk)
∥∥∥
2
≤ 2B

√
p dTV

(
f(δxk

), f̃i(δxk
)
)
.

We can then conclude that641

∥h̃i|S − h|S∥ℓ22

=

√√√√ 1

m

k∑
i=1

∥∥∥h̃i(xk)− h(xk)
∥∥∥2
2

≤

√√√√ 1

m

k∑
i=1

(2B
√
p)2
(
dTV

(
f(δxk

), f̃i(δxk
)
))2

≤ 2B
√
p

√√√√ 1

m

k∑
i=1

(
dTV

(
f(δxk

), f̃i(δxk
)
))2

≤ 2B
√
p dℓ2TV

(
f̃i|S , f |S

)
≤ 2Bϵ

√
p.

We can then say that H̃|S is a 2Bϵ
√
p cover for H|S with respect to ∥.∥ℓ22 and |Ĥ|S | = t. It follows642

that643

NU (2Bϵ
√
p,H,m, ∥.∥ℓ22 ) ≤ NU (ϵ,F ,m, dℓ2TV ,∆d) ≤ NU (ϵ,F ,m, dℓ2TV ,Xd).

644

C.2 Proof of Lemma 18645

Proof. Denote Q = H ◦ F . Consider an input set of random variables S = {x1, . . . , xm} ⊂ Xd.646

Denote r1 = N(ϵ,F |S , d
∞
TV ) and let C = {f̂1|S , . . . , f̂r1 |S | f̂i ∈ F , i ∈ [r1]} be an ϵ-cover for647

F |S with respect to d∞TV and S′ = {f̂i(xk) | i ∈ [r1], k ∈ [m]}. Clearly, |S′| ≤ mr1. Also, let C ′ =648

{ĥ1|S′ , . . . , ĥr2 |S′ | ĥj ∈ H, j ∈ [r2]} be an ϵ′-cover for H|S′ with respect to d∞TV metric, where649

r2 = N(ϵ′,H|S′ , d∞TV ) is the cardinality of the cover set C ′. Denote Q̂ = {ĥj◦f̂i | i ∈ [r1], j ∈ [r2]}.650

We claim that Q̂|S is an (ϵ+ ϵ′)-cover for Q|S with respect to d∞TV . Since the cardinality of Q̂|S is651

no more than r1r2, we can conclude that N(ϵ,Q|S , d
∞
TV ) ≤ N(ϵ,F |S , d

∞
TV )N(ϵ′,H|S′ , d∞TV ).652

Consider (h ◦ f)|S =
(
h(f(x1), . . . , h(f(xm)

)
∈ Q|S , where f ∈ F and h ∈ H. Since F |S is653

ϵ-covered by C, we know that there exists f̂i ∈ F such that654

d∞TV

(
(f̂i(x1), . . . , f̂i(xm)), (f(x1), . . . , f(xm))

)
≤ ϵ.

By data processing inequality for total variation distance (Lemma 29), we conclude that655

dTV

(
h(f̂i(xk)), h(f(xk))

)
≤ ϵ for k ∈ [m]. Therefore,656

d∞TV

(
(h(f̂i(x1)), . . . , h(f̂i(xm))), (h(f(x1)), . . . , h(f(xm)))

)
≤ ϵ. (9)

Since f̂i|S = (f̂i(x1), . . . , f̂i(xm)) ∈ C, we know that f̂i(xk) ∈ S′ for k ∈ [m]. We also know that657

H|S′ is ϵ′-covered by C ′, therefore, there exists ĥj ∈ H such that658

d∞TV

(
(ĥj(f̂i(x1)), . . . , ĥj(f̂i(xm))), (h(f̂i(x1)), . . . , h(f̂i(xm)))

)
≤ ϵ′ (10)

Combining Equations 9 and 10 and by using triangle inequality for total variation distance, we659

conclude that660

d∞TV

(
(ĥj(f̂ i(x1)), . . . , ĥj(f̂i(xm))),

(
h(f(x1)), . . . , h(f(xm))

))
≤ ϵ+ ϵ′,
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which suggests that for any (h ◦ f)|S ∈ Q|S , there exists (ĥj ◦ f̂i)|S ∈ Q̂|S such that661

d∞TV

(
(h ◦ f)|S , (ĥj ◦ f̂i)|S

)
≤ ϵ+ ϵ′.

In other words, Q|S is (ϵ+ ϵ′)-covered by Q̂|S .662

Let N1 = NU (ϵ,F ,m, d∞TV ,Xd). We know that mr1 ≤ mN1 and, therefore, N(ϵ′,H|S′ , d∞TV ) ≤663

NU (ϵ
′,H,mr1, d

∞
TV ,Xd) ≤ NU (ϵ

′,H,mN1, d
∞
TV ,Xd). Since the result holds for any input S ⊂ Xd664

of cardinality m and we know that r1 ≤ NU (ϵ,F ,m, d∞TV ,Xd), it follows that665

NU (ϵ+ ϵ′,Q,m, d∞TV ,Xd) ≤ NU (ϵ
′,H,mN1, d

∞
TV ,Xd).NU (ϵ,F ,m, d∞TV ,Xd).

The bound for ∆d is almost exactly the same as that of Xd. The only difference is that S =666

{δx1
, . . . , δxm

} ⊆ ∆d, and we have a uniform ϵ-covering number with respect to ∆d. We conclude667

that668

NU

(
ϵ+ ϵ′,H ◦ F ,m, d∞TV ,∆d

)
≤ NU

(
ϵ′,H,mN2, d

∞
TV ,Xd

)
.NU (ϵ,F ,m, d∞TV ,∆d).

The bound with respect to dℓ2TV follows the same analysis. Consider a new set Sz =669

{δz1, . . . , δzm} ⊂ ∆d. Denote t1 = N(ϵ,F |Sz
, dℓ2TV ) and let Cz = {f̃1|Sz

, . . . , f̃t1 |Sz
| f̃i ∈670

F , i ∈ [t1]} be an ϵ-cover for F |Sz
with respect to dℓ2TV and S′

z = {f̃i(δzk) | i ∈ [t1], k ∈ [m]}.671

Clearly, |S′
z| ≤ mt1. Let C ′

z = {h̃1|S′
z
, . . . , h̃t2 |S′

z
| h̃j ∈ H, j ∈ [t2]} be an ϵ′-cover for H|S′

z
with672

respect to d∞TV metric, where t2 = N(ϵ′,H|S′
z
, d∞TV ) is the cardinality of the cover set C ′

z . Denote673

Q̃ = {h̃j ◦ f̃i | i ∈ [t1], j ∈ [t2]}. We claim that Q̃|Sz
is an (ϵ+ ϵ′)-cover for Q|Sz

with respect to674

dℓ2TV . We can then conclude that N(ϵ,Q|Sz
, dℓ2TV ) ≤ N(ϵ,F |Sz

, dℓ2TV ).N(ϵ′,H|S′
z
, d∞TV ).675

Consider (h ◦ f)|Sz
=
(
h(f(δz1), . . . , h(f(δzm)

)
∈ Q|Sz

, where f ∈ F and h ∈ H. Since F |Sz
is676

ϵ-covered by Cz , we know that there exists f̃i ∈ F such that677

dℓ2TV

(
(f̃i(δz1), . . . , f̃i(δzm)), (f(δz1), . . . , f(δzm))

)
=

√√√√ 1

m

m∑
k=1

(
dTV (f̃i(δzk), f(δzk))

)2
≤ ϵ.

Similarly, by data processing inequality, we conclude that dTV

(
h(f̃i(δzk)), h(f(δzk))

)
≤678

dTV

(
f̃i(δzk), f(δzk)

)
for k ∈ [m]. Therefore,679

dℓ2TV

(
(h(f̃i(δz1)), . . . , h(f̃i(δzm))), (hf(δz1)), . . . , h(f(δzm)))

)
=

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk)))

)2

≤

√√√√ 1

m

m∑
k=1

(
dTV (f̃i(δzk), f(δzk))

)2
≤ ϵ.

(11)

Now, using the fact that f̃i|Sz
= (f̃i(δz1), . . . , f̃i(δzm)) ∈ Cz , we know that f̃i(δzk) ∈ S′

z for680

k ∈ [m]. We also know that H|S′
z

is ϵ′-covered by C ′
z with respect to d∞TV . Therefore, there exists681

h̃j ∈ H such that682

d∞TV

(
(h̃j(f̃i(δz1)), . . . , h̃j(f̃i(δzm))), (h(f̃i(δz1)), . . . , h(f̃i(δzm)))

)
≤ ϵ′. (12)
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From Equation 12 we can conclude that dTV

(
(h̃j(f̃i(δzk)), (h(f̃i(δzk))

)
≤ ϵ′ for k ∈ [m]. Using683

triangle inequality for total variation distance, we can write684

dTV

(
(h̃j(f̃i(δzk)), (h(f(δzk))

)
≤ dTV

(
(h̃j(f̃i(δzk)), (h(f̃i(δzk))

)
+ dTV

(
h(f̃i(δzk)), h(f(δzk))

)
≤ dTV

(
h(f̃i(δzk)), h(f(δzk))

)
+ ϵ′.

(13)

We can then conclude that685

dℓ2TV

(
(h̃j(f̃i(δz1)), . . . , h̃j(f̃i(δzm))), (h(f(δz1)), . . . , h(f(δzm)))

)
=

√√√√ 1

m

m∑
k=1

(
dTV (h̃j(f̃i(δzk)), h(f(δzk)))

)2

≤

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk))) + ϵ′

)2
(From Equation 13)

≤

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk)))

)2
+

1

m

m∑
k=1

ϵ′2

≤

√√√√ 1

m

m∑
k=1

(
dTV (h(f̃i(δzk)), h(f(δzk)))

)2
+

√√√√ 1

m

m∑
k=1

ϵ′2

≤ ϵ+ ϵ′. (From Equation 11)

As a result, Q|Sz
is (ϵ+ ϵ′)-covered by Q̃|Sz

. Let N3 = NU (ϵ,F ,m, dℓ2TV ,∆d). Since mt1 ≤ mN3,686

we can write N(ϵ′,H|S′ , d∞TV ) ≤ NU (ϵ
′,H,mt1, d

∞
TV ,Xd) ≤ NU (ϵ

′,H,mN3, d
∞
TV ,Xd). We687

know that the result holds for any input Sz ⊂ ∆d of cardinality m and t1 ≤ NU (ϵ,F ,m, dℓ2TV ,∆d),688

therefore, it follows that689

NU (ϵ+ ϵ′,Q,m, dℓ2TV ,∆d) ≤ NU (ϵ
′,H,mN3, d

∞
TV ,Xd)NU (ϵ,F ,m, dℓ2TV ,∆d).

690

C.3 TV distance of composition of a class with Gaussian noise class691

The following lemma, which bounds the total varaition distance by Wasserstein distance, is borrowed692

from Chae and Walker (2020).693

Lemma 33 (Bounding TV distance by Wasserstein distance). Given a density function K over Rd694

and two probability measures µ, ν over X with probability density functions Iµ and Iν , respectively,695

the total variation distance can be upper bounded in terms of Wasserstein distance between µ and ν.696

∥K ∗ Iµ −K ∗ Iν∥1 ≤ sup
y ̸=z

∥K(x− y)−K(x− z)∥1
∥y − z∥2

dW(µ, ν)

Proof. For any coupling π of µ and ν, we have697

K ∗ Iµ(x)−K ∗ Iν(x) =
∫
(K(x− y)−K(x− z))dπ(y, z).
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Therefore,698

∥K ∗ (Iµ − Iν)∥1 =

∫ ∣∣∣∣∫ ((K(x− y)−K(x− z)) dπ(y, z)

∣∣∣∣ dx
≤
∫ ∫

|(K(x− y)−K(x− z)| dπ(y, z)dx (By Jensen’s inequality)

=

∫
∥K(x− y)−K(x− z)∥1 dπ(y, z) (By Fubini’s theorem)

≤ sup
y ̸=z

{
∥K(x− y)−K(x− z)∥1

∥y − z∥2

}∫
∥y − z∥2dπ(y, z)

Since this holds for any coupling π of µ and ν we conclude that699

∥K ∗ (Iµ − Iν)∥1 ≤ sup
y ̸=z

{
∥K(x− y)−K(x− z)∥1

∥y − z∥2

}
dW(µ, ν)

700

C.4 Proof of Theorem 20701

Proof. Fix an input set S = {x1, . . . , xm} ⊂ Rd. Let C = {f̂1|S , . . . , f̂r |S : f̂i ∈ F , i ∈ [r]} be an702

ϵ-cover for F |S with respect to d∞W metric. Denote Q = Gσ ◦ F .We define a new class of random703

functions Q̂ = {gσ ◦ f̂i | i ∈ [r]}. We show that Q|S is ( 9ϵ
2σ )-covered by Q̂|S and since |Q̂|S | = r,704

the result follows.705

Let Iσ denote the probability density function of N (0, σ2Id). For any f ∈ F , we have gσ(f(x)) =706

f(x) + z, where z is a random variable with probability density function Iσ , therefore, we know that707

D(gσ(f(x)) = D(f(x)) ∗ Iσ .708

Given (gσ ◦ f)|S = (gσ(f(x1)), . . . , gσ(f(xm))) ∈ Q|S , we know that f |S = (f(x1), . . . , f(xm))709

is in set F |S . Therefore, there exists f̂i ∈ F such that d∞W(f̂i|S , f |S) ≤ ϵ, i.e.,710

d∞W

(
(f̂i(x1), . . . , f̂i(xm)), (f(x1), . . . , fxm))

)
≤ ϵ. (14)

From Equation 14, we know that dW(f̂i(xk), f(xk)) ≤ ϵ for all k ∈ [m]. From Lemma 33, we can711

conclude that712

1

2

∥∥∥Iσ ∗ D(f̂i(xk)− Iσ ∗ D(f(xk)))
∥∥∥
1

≤ 1

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
dW(f̂i(xk), fxk))

≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
.

(15)

Moreover, Iσ ∗ D(f̂i(xk) and Iσ ∗ D(f(xk)) are probability density functions of gσ(f̂i(xk)) and713

gσ(f(xk)), respectively. Therefore, from Equation 15,714

dTV

(
gσ(f̂i(xk)), gσ(f(xk))

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
. (16)

Since Equation 16 holds for all k ∈ [m], it follows that715

d∞TV

(
gσ(f̂i(xk)), gσ(f(xk))

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
.
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This shows that for any (gσ ◦ f)|S ∈ Q|S there exists (gσ ◦ f̂i)|S ∈ Q̂|S such that716

d∞TV

(
(gσ ◦ f)|S , (gσ ◦ f̂i)|S

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
. (17)

It is only left to bound the supremum term in Equation 17.717

Based on Theorem 30, we know that for two Gaussian distributions N (µ1, σ
2I) and N (µ2, σ

2I)718

their total variation distance can be bounded by719

dTV

(
N (µ1, σ

2I),N (µ2, σ
2I)
)
≤ 9

2
min

{
1,

∥µ1 − µ2∥2
σ

}
. (18)

We also know that ∥Iσ(x− y)− Iσ(x− z)∥1 = 2dTV (N (y, σ2I),N (z, σ2I)). Combining Equa-720

tions 17 and 18, we can write721

d∞TV

(
(gσ ◦ f)|S , (gσ ◦ f̂i)|S

)
≤ ϵ

2

sup
y ̸=z

9
min

{
1, ∥y−z∥2

σ

}
∥y − z∥2


 ≤ 9

2

ϵ

σ
. (19)

From Equation 19 it follows that Q|S is ( 9ϵ
2σ )-covered by Q̂|S . Since the result holds for any subset S722

of Xd with cardinality m, we can conclude that723

NU

(
9ϵ

2σ
,Gσ ◦ F ,m, d∞TV ,Xd

)
≤ NU (ϵ,F ,m, d∞W ,Xd).

The second part of the proof is similar. We consider a set of inputs Sz = {δz1 , . . . , δzm} ⊂ ∆d.724

We can then consider an ϵ-cover Cz = {f̃1|S , . . . , f̃t|S : f̃i ∈ F , i ∈ [t]} for F |Sz
. We will then725

construct a class of functions Q̃ = {gσ ◦ f̃i | i ∈ [t]} and show that Q|Sz
is ( 9ϵ

2σ )-covered by726

Q̃|Sz
. The proof follows the same steps as the previous part. Particularly, let f̃i ∈ F be such that727

d∞W(f̃i|Sz
, f |Sz

) ≤ ϵ. For any k ∈ [m], we can write that728

1

2

∥∥∥Iσ ∗ D(f̃i(δzk)− Iσ ∗ D(f(δzk)))
∥∥∥
1

≤ 1

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
dW(f̃i(δzk), f(δzk))

≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
.

(20)

Using the same arguments as the previous part, we will have that729

dTV

(
gσ(f̃i(δzk)), gσ(f(δzk))

)
≤ ϵ

2

(
sup
y ̸=z

{
∥Iσ(x− y)− Iσ(x− z)∥1

∥y − z∥2

})
≤ 9

2

ϵ

σ
.

Therefore, we can conclude that for any f ∈ F there exists f̃i, i ∈ [t] such that730

d∞TV

(
(gσ ◦ f)|Sz

, (gσ ◦ f̃i)|Sz

)
≤ 9

2

ϵ

σ
,

which means that QSz
is ( 9ϵ

2σ )-covered by Q̃|Sz
. Since the result holds for every Sz ⊂ ∆d of731

cardinality m, we can conclude that732

NU

(
9ϵ

2σ
,Gσ ◦ F ,m, d∞TV ,∆d

)
≤ NU (ϵ,F ,m, d∞W ,∆d).

733
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C.5 Proof of Corollary 21734

Proof. First, from Proposition 16, we can conclude that735

NU (ϵ,F , d∞W ,m,∆d) = NU (ϵ,F ,m, ∥.∥∞2 ). (21)

Then, consider an input set Sz = {δx1
, . . . , δxm

} ⊂ ∆d. Let Cz = {f̂1|Sz
, . . . , f̂r |Sz

| f̂i ∈ F , i ∈736

[r]} be an ϵ-cover for F|Sz
with respect to d∞W , then for a given f|Sz

∈ F|Sz
and f̂i|Sz

∈ Cz , where737

d∞W(f|Sz
, f̂i|Sz

) ≤ ϵ, from Equations 15 and 19, we know that for all k ∈ [m]738

dTV (gσ(f̂i(δxk
)), gσ(f(δxk

))) = dTV

(
N (f̂i(xk), σ

2Ip),N (f(xk), σ
2Ip)

)
≤ 9

2
min

{
1,

∥f̂i(xk)− f(xk)∥2
σ

}
≤ 9

2

dW

(
f̂i(δxk

), f(δxk
)
)

σ

≤ 9ϵ

2σ
.

Therefore, we can conclude that739

d∞TV

(
(gσ ◦ f̂i)|Sz

, (gσ ◦ f)|Sz

)
= d∞TV

(
(gσ(f̂i(δx1

)), . . . , gσ(f̂i(δxm
))), (gσ(f(δx1

)), . . . , gσ(f(δxm
)))
)

≤ 9

2

ϵ

σ
,

It follows that for any (gσ ◦ f)|Sz
∈ (Gσ ◦ F)|Sz

, there exists f̂i|Sz
∈ Cz such that740

d∞TV

(
(gσ ◦ f̂i)|Sz

, (gσ ◦ f)|Sz

)
≤ 9ϵ

2σ . Therefore,741

N(
9ϵ

2σ
, (Gσ ◦ F)|Sz

, d∞TV ) ≤ N(ϵ,F|Sz
, d∞W).

Since this results holds for any Sz ⊂ ∆d, we can conclude that742

NU (
9ϵ

2σ
,Gσ ◦ F ,m, d∞TV ,∆d) ≤ NU (ϵ,F ,m, d∞W ,∆d) = NU (ϵ,F ,m, ∥.∥∞2 ).

The proof of the second part again follows from Proposition 16. We can write that743

NU (ϵ,F , dℓ2W ,m,∆d) = NU (ϵ,F ,m, ∥.∥ℓ22 ).

Consider the input set Sz ⊂ ∆d as defined above and let C̃z = {f̃1|Sz
, . . . , f̃t|Sz

| f̃i ∈ F , i ∈ [t]}744

be an ϵ-cover for F|Sz
with respect to dℓ2W . Now, for a given f|Sz

∈ F|Sz
and the corresponding745

f̃i|Sz
∈ C̃z , where dℓ2W(f|Sz

, f̃i|Sz
) ≤ ϵ, we know that for all k ∈ [m]746

dTV (gσ(f̃i(δxk
)), gσ(f(δxk

))) = dTV

(
N (f̃i(xk), σ

2Ip),N (f(xk), σ
2Ip)

)
≤ 9

2
min

{
1,

∥f̃i(xk)− f(xk)∥2
σ

}
≤ 9

2

dW

(
f̃i(δxk

), f(δxk
)
)

σ
.

Therefore,747

dℓ2TV

(
(gσ ◦ f̃i)|Sz

, (gσ ◦ f)|Sz

)
=

√√√√ 1

m

m∑
k=1

(
dTV

(
gσ(f̃i(δxk

)), gσ(f(δxk
))
))2

≤

√√√√√ 1

m

m∑
k=1

(
9 dW

(
f̃i(δxk

), f(δxk
)
))2

(2σ)2

≤ 9

2σ
dℓ2W(f̃i|Sz

, f|Sz
) ≤ 9

2

ϵ

σ
.
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Therefore, for any (gσ ◦ f)|Sz
∈ (Gσ ◦ F)|Sz

, there exists f̃i|Sz
∈ Cz such that748

dℓ2TV

(
(gσ ◦ f̃i)|Sz

, (gσ ◦ f)|Sz

)
≤ 9ϵ

2σ . As a result,749

N(
9ϵ

2σ
, (Gσ ◦ F)|Sz

, dℓ2TV ) ≤ N(ϵ,F|Sz
, dℓ2W).

Since this results holds for any Sz ⊂ ∆d, we can conclude that750

NU (
9ϵ

2σ
,Gσ ◦ F ,m, dℓ2TV ,∆d) ≤ NU (ϵ,F ,m, dℓ2W ,∆d) = NU (ϵ,F ,m, ∥.∥ℓ22 ).

751

C.6 Proof of Theorem 22752

Proof. Let Q = Gσ ◦ F and Z = Gσ ◦ XB,d. Denote by r = NU (ϵ,F ,∞, ∥.∥∞2 ). Let C = {f̂i(x) |753

f̂i ∈ F ,∀x ∈ Rd, i ∈ [r]} be a global ϵ-cover for F with respect to ∥.∥2 metric. We will show754

that for all (gσ ◦ f)|Z , f ∈ F , there exists f̂i ∈ C such that d∞TV

(
(gσ ◦ f)|Z , (gσ ◦ f̂i)|Z

)
≤ 9ϵ

2σ .755

Clearly, |C| ≤ r and the result follows.756

For any x ∈ XB,d and its smoothed version z ∈ Z with probability density function Iz , from757

Lemma 56, we know that we can estimate Iz by a mixture h =
∑m

i=1 wigi of m = ⌈B
η ⌉

d Gaussian758

random variables with covariance matrix σ2Id and means as defined in Equation 43 such that759

dTV (h, z) ≤ 18
√
dη/σ. Let H denote the set containing all mixtures of this kind.760

Since C covers the restriction of F to Rd, for any f ∈ F , there exists f̂i such that ∥f(x)− f̂i(x))∥2 ≤761

ϵ for every x ∈ Rd. Next, for the coupling π∗(f(h), f̂i(h)) as defined in Notations we can write762 ∫
Rd×Rd

∥x− y∥2dπ∗(x, y) ≤ ϵ

∫
Rd×Rd

dπ∗(x, y) ≤ ϵ,

which comes from the fact that f̂i is “globally close” to f with respect to ∥.∥2 distance. We, therefore,763

know that764

dW(f(h), f̂i(h)) = inf
π∈Π(f(h),f̂i(h))

∫
Rd×Rd

∥x− y∥2dπ(x, y) ≤
∫
Rd×Rd

∥x− y∥2dπ∗(x, y) ≤ ϵ.

Since this holds for any h ∈ H, we can conclude that765

d∞W

(
f|H, f̂i|H

)
≤ ϵ.

Next, from the arguments in Theorem 20, we know that766

d∞TV

(
(gσ ◦ f)|H, (gσ ◦ f̂i)|H

)
≤ 9

2σ
d∞W

(
f|H, f̂i|H

)
≤ 9ϵ

2σ
.

We can now say that for any z ∈ Z and the h ∈ H that estimates it with respect to total variation767

distance, we have768

dTV

(
gσ(f(z)), gσ(f̂i(z))

)
≤ dTV

(
gσ(f(z)), gσ(f(h))

)
+ dTV

(
gσ(f(h)), gσ(f̂i(h))

)
+ dTV

(
gσ(f̂i(h)), gσ(f̂i(z))

)
≤ 36

√
dη/σ +

9ϵ

2σ
.

where we used triangle and data processing inequalities for total variation distance. Setting η =769

ϵ/8
√
d we have dTV

(
gσ(f(z)), gσ(f̂i(z))

)
≤ 9ϵ/σ.770

Since we have this result for every h ∈ H, we know that for any z ∈ Z ,771

d∞TV

(
(gσ ◦ f)|Z , (gσ ◦ f̂i|Z)

)
≤ 9ϵ

σ
,
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which is exactly what we wanted to prove. Therefore, the size of the TV cover for Gσ ◦ F can be772

bounded by the size of ∥.∥2 cover of F773

NU (
9ϵ

σ
,Gσ ◦ F ,∞, d∞TV ,Gσ ◦ XB,d) ≤ NU (ϵ,F ,∞, ∥.∥∞2 ).

774

D Proofs of lemmas in Section 6775

Notation. For a vector V ∈ Rd, we denote its angle by ∠V . By ∠(V1, V2), we are referring to776

the angle between two vectors V1 and V2. Also, we denote by 11{x = a} the indicator function that777

outputs 1 if x = a and 0 if x ̸= a. We also denote by ⟨V1, V2⟩ the inner product between between778

vectors V1 and V2. We denote by D(x) the probability density functions of the random variable779

x. For two Borel functions f1 and f2, we denote by π∗(f1(x), f2(x)) a coupling between random780

variables f1(x), f2(x) such that781

Mπ∗(A) =

{
Mx(B) ∃B ⊂ B(X ) such that A = f1(B)× f2(B)

0 otherwise,

where B(X ) is the set of all Borel sets over X , Mπ∗(A) is the measure that π∗ assigns to the Borel782

set A, and Mx(B) is the measure that random variable x assigns to Borel set B. We also denote by783

Balld(x,R) the d dimensional ball of radius R centered at x.784

D.1 Proof of Theorem 25785

In the following we state a stronger version of Theorem 25 which presents a uniform covering number786

bound for neural network classes that have a general activation function that is Lipschitz continuous,787

monotone, and has a bounded domain.788

Theorem 34 (Stronger version of Theorem 25). Consider the class NET[d, p] of a single-layers neu-789

ral network, where the activation function is Lipschitz continuous with Lipschtiz factor L, monotone,790

and has a bounded output in [−B,B]p. The global covering number of Gσ ◦ NET[d, p] with respect791

to total variation distance is bounded by792

NU (ϵ,Gσ ◦ NET[d, p],∞, d∞TV ,Gσ ◦ XB,d)

≤

(
10
√
10(4 +B)3/2

(2π)1/4
d5/2L

√
Bu

ϵ3/2σ2
ln

(
5(4 +B)Bd

ϵσ

))p(d+1)

,

where u = max
{∣∣ϕ−1 (B − σϵ/(5(4 +B)d))

∣∣ , ∣∣ϕ−1 (−B + σϵ/(5(4 +B)d))
∣∣}.793

Note that Theorem 25 is a special case of the above theorem where the activation function is the794

sigmoid function with Lipschitz continuity factor of 1 and a bounded domain in [0, 1]p. In the case of795

sigmoid function, we can also conclude that796

u = max
{∣∣ϕ−1 (1− ϵσ/(5(4 +B)d))

∣∣ , ∣∣ϕ−1 (ϵσ/(5(4 +B)d))
∣∣}

=
∣∣ϕ−1 (1− ϵσ/(5(4 +B)d))

∣∣
= ln ((5(4 +B)d− ϵσ)/(ϵσ))

≤ ln ((30d− ϵσ)/(ϵσ)) .

Proof. We bound the global covering number of class NET[d, p] = {f : Rd → Rp | f(x) =797

Φ(W⊤x)} with respect to Wasserstein distance by constructing a grid for the weights Vi ∈ Rd798

in W⊤ = [V ⊤
1 . . . V ⊤

p ]. Then, we find the TV covering number using Theorem 20. To do so,799

we consider two cases for each Vi based on its ℓ2 norm. In case ∥Vi∥2 ≤ Bv, we construct the800

grid based on ∥Vi∥2 and its angle, while for the case that ∥Vi∥2 > Bv, we prove that only a801

grid on the angle of Vi is sufficient. Further, we choose Bv based on ϵ and σ. We then show802

that for each matrix W⊤ = [V ⊤
1 . . . V ⊤

p ], there exists Ŵ⊤ = [V̂ ⊤
1 . . . V̂ ⊤

p ] in the grid such that803

dW

(
Φ(W⊤x),Φ(Ŵ⊤x)

)
is bounded for all x ∈ Gσ ◦ XB,d.804
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Denote r = ⌈ 2Bv

δ ⌉ and805

A = {−Bv + iδ |∈ [r]}d. (22)

Define a new set806

AS =

{
(a1, . . . , ad) ∈ A |

(
d∑

i=1

11{ai = Bv}+
d∑

i=1

11{ai = −Bv}

)
≥ 1

}
.

Informally, AS is the grid of points on sides of a d-dimensional hypercube. For any point b =807

(b1, . . . , bd) ∈ AS , we define the following set of vectors808

Pb = { iζ

Bv
[b1 . . . bd] ∈ Rd | i ∈ [⌈Bv

ζ
⌉]}.

Note that the way we defined AS in Equation 22, implies that for any (b1, . . . , bd) ∈ AS , there exists809

at least one bi such that |bi| = Bv . Therefore, whenever i = ⌈Bv

ζ ⌉, we know that ∥ iζ
Bv

[b1 . . . bd]∥2 ≥810

Bv .811

Now, we can define the grid of vectors V ∈ Rd in the following way812

C =
⋃

b∈AS

Pb.

Informally speaking, we are discretizing the norms in ⌈Bv

ζ ⌉ values and then for each vector from813

origin to gird points on the sides of the hypercube, we use ⌈Bv

ζ ⌉ vectors with the same angle and814

different norms as our grid. Clearly, the size of grid |C| is upper bounded by ⌈Bv

ζ ⌉⌈ 2Bv

δ ⌉d.815

Next, we turn into proving that given any vector V in Rd, there exists a vector V̂ in C such that for816

any z ∈ Gσ ◦ XB,d, dW(Φ(V ⊤z),Φ(V̂ ⊤z)) ≤ (3 + 2
√
2)ϵ.817

Case 1. In this case, we consider vectors V ∈ Rd such that ∥V ∥2 ≤ Bv. The way that we818

constructed the set of vectors C implies that given any vector there exists a b ∈ AS and the set819

of aligned vectors Pb such that the angle between V and vectors in set Pb can be bounded. More820

specifically, for any V ′ ∈ Pb, we know that821

∠(V, V ′) ≤ arcsin
δ

Bv
.

since arcsin is a monotone increasing functions over [−1, 1] and we know that ∥[b1 . . . bd]∥2 ≥ Bv.822

Let θ = arcsin δ
Bv

. Moreover, since ∥V ∥2 ≤ Bv , we know that there exists V̂ ∈ Pb such that823

∣∣∣∥V ∥2 − ∥V̂ ∥2
∣∣∣ ≤ ζ

Bv
∥[b1 . . . bd]∥2 ≤ ζ

Bv

√
dBv ≤

√
dζ.

Without loss of generality, let ∥V ∥2 ≤ ∥V̂ ∥2. We can then write824

∥V̂ ∥2
∥V ∥2

≤ 1 +

√
dζ

∥V ∥2

Denote V̂⊥ = ∥V̂ ∥2sin(∠(V, V̂ ))V⊥ and V̂∥ = ∥V̂ ∥2cos(∠(V, V̂ )) V
∥V ∥2

, where V⊥ is a normalized825

vector orthogonal to V . Denote Bz = (B+σ)
√
d+σ

√
2 ln B

ϵ . For any x ∈ Rd such that ∥x∥2 ≤ Bz ,826

26



we can write827

⟨V̂ , x⟩ = ⟨V̂⊥, x⟩+ ⟨V̂∥, x⟩ = ⟨V̂⊥, x⟩+ ⟨V, x⟩
∥V̂∥∥2
∥V ∥2

= ∥V̂⊥∥2∥x∥2cos(∠(V̂⊥, x)) + ⟨V, x⟩
∥V̂∥∥2
∥V ∥2

≤ ∥V̂⊥∥2∥x∥2 + ⟨V, x⟩
∥V̂∥∥2
∥V ∥2

≤ ∥V̂ ∥2∥x∥2sin(∠(V, V̂ )) + ⟨V, x⟩∥V̂ ∥2cos(∠(V, V̂ ))

∥V ∥2

≤ ∥V̂ ∥2∥x∥2
δ

Bv
+ ⟨V, x⟩∥V̂ ∥2

∥V ∥2

≤
√
dBv∥x∥2

δ

Bv
+ ⟨V, x⟩(1 +

√
dζ

∥V ∥2
).

Therefore, we can conclude that828

⟨V̂ , x⟩ − ⟨V, x⟩ ≤
√
dBv∥x∥2

δ

Bv
+ ∥V ∥2∥x∥2(

√
dζ

∥V ∥2
)

≤ (
√
dδ +

√
dζ)∥x∥2

≤ (
√
dδ +

√
dζ)

(
(B + σ)

√
d+ σ

√
2 ln

B

ϵ

)
.

(23)

Now, for any z ∈ Gσ ◦ XB,d, by Lemma 56, we know that we can find a mixture of m = ⌈B
η ⌉

d829

d dimensional Gaussians random variables h =
∑m

i=1 wigi with bounded means in [−B,B]d and830

covariance matrices σ2Id such that dTV (h, z) ≤ 18
√
dη/σ. Let H be the class of all such mixtures.831

From Lemma 32, we know that832

P
[
∥x∥22 ≥ (B + σ)

√
d+ σ

√
2t
]
≤ e−t. (24)

Setting t = ln B
ϵ and δ = ζ = ϵ/(2dL ln B

ϵ ), we can conclude that833

P [∥x∥2 ≥ Bz] = P

[
∥x∥2 ≥ (B + σ)

√
d+ σ

√
2 ln

B

ϵ

]
≤ ϵ

B
. (25)

Therefore, from Equations 23 and 25, we can conclude that for the random variable h =
∑m

i=1 wigi834

with D(h) = Ih and for the coupling π∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
as defined in notations we can write835 ∫

Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤
∫
Balld(0,Bz)

L
√
d(δ + ζ)

(
(B + σ)

√
d+ σ

√
2 ln

B

ϵ

)
dIh

+

∫
Rd\Balld(0,Bz)

2B dIh

≤ (B + σ)ϵ

2 ln B
ϵ

+
ϵσ√

2d ln B
ϵ

+ 2ϵ,

(26)

where we used the fact that for any x ∈ Rd, we know that ∥V ⊤x − V̂ ⊤x∥2 is bounded and the836

activation function ϕ(x) is Lipschitz continuous with Lipschitz constant L. Here, we assume that837

the variance of noise is always smaller than 1, i.e., σ ≤ 1. We know that d ≥ 1 and assuming that838

ln B
ϵ ≥ 1 (*), we can rewrite Equation 26 as839 ∫
Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤ (B + 1)ϵ+ ϵ+ 2ϵ ≤ (B + 4)ϵ,
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Then, we have840

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
= inf

π∈Π(ϕ(V ⊤h),ϕ(V̂ ⊤h))

∫
Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤
∫
Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤ (B + 4)ϵ.

Therefore, we have proved that for any V ∈ Rd such that ∥V ∥2 ≤ Bv, there exists a vector V̂ in C841

such that for any z ∈ Gσ ◦ XB,d and its estimation with a mixture h of Gaussian random variables,842

we have843

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤ (B + 4)ϵ.

Case 2 Now, we turn to analyze the case where we have vectors V in Rd such that ∥V ∥2 > Bv.844

We assume that the function ϕ is invertible. Taking into account that ϕ is also bounded in [−B,B],845

denote u = max
{
|ϕ−1(B − ϵ)|, |ϕ−1(−B + ϵ)|

}
. For a given vector V ∈ Rd, select b ∈ AS such846

that for all V ′ ∈ Pb, we have ∠(V, V ′) ≤ θ, where θ is defined the same as case 1. From all vectors847

in Pb, select V̂ such that it has the maximum ℓ2 norm, i.e., the one on the side of the hypercube. It848

is obvious that ∥V̂ ∥2 ≥ Bv. We will show that for any h ∈ H, the Wasserstein distance between849

ϕ(V ⊤h) and ϕ(V̂ ⊤h) is bounded.850

Define following two sets851

S1 = {x ∈ Rd | |⟨V, x⟩| ≤ u},
S2 = {x ∈ Rd | |⟨V̂ , x⟩| ≤ u}.

(27)

Given any x ∈ Rd \ S1 ∪ S2 such that ∥x∥2 ≤ Bz , we show that both of ⟨V, x⟩ and ⟨V̂ , x⟩ are852

either smaller than −u or larger than u. Assume that ⟨V̂ , x⟩ > u. Denote α = ∠(V̂ , x) and853

β = ∠(V, V̂ ). From the fact that ⟨V̂ , x⟩ = ∥V̂ ∥2∥x∥2 cosα ≥ u, we conclude that cosα ≥ 0. On854

the other hand, to conclude that ⟨V, x⟩ is also larger than u, we only need to prove that ⟨V, x⟩ ≥ 0855

since x ∈ Rd \ S1 ∪ S2 and we already know that |⟨V, x⟩| ≥ u. Therefore, we want to prove that856

⟨V, x⟩ = ∥V ∥2∥x∥2 cos(α± β) ≥ 0. It implies that we need to prove cosα ≥ sinβ. But we know857

that858

cosα ≥ u

∥V̂ ∥2∥x∥2
≥ u

∥V̂ ∥2Bz

(Since ∥x∥2 ≤ Bz)

≥ u√
dBvBz

(Since V̂ ∈ Pb and ∥V̂ ∥2 ≤
√
dBv)

≥ B − ϵ

LBvBz

√
d

≥ δ

Bv
≥ sin θ ≥ sinβ,

where we used the fact that the function ϕ is Lipschitz continuous and we know that |ϕ(u)−ϕ(−u)| ≤859

2Lu. The last line follows from the fact that Bz ≤ ((B − ϵ)/ϵ)
(
2
√
d ln(B/ϵ)

)
(**). It is easy to860

verify in the same way that if ⟨V̂ , x⟩ ≤ −u, then ⟨V, x⟩ ≤ −u.861

Next, since ϕ is monotone, we can write that for any x ∈ Rd \ S1 ∪ S2 such that ∥x∥2 ≤ Bz , we862

have either both V ⊤x, V̂ ⊤x in [B − ϵ, B] or both V ⊤x, V̂ ⊤x in [−B,−B + ϵ], which means that863

|V ⊤x − V̂ ⊤x| ≤ ϵ. Setting B2
v = 2Bu/(ϵσ

√
2π), for any mixture of Gaussian random variables864
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h ∈ H and for the coupling π∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
, we can write865 ∫

Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤
∫
Balld(0,Bz)\S1∪S2

ϵdIh +

∫
S1∪S2

2BdIh +

∫
Rd\Balld(0,Bz)

2BdIh

≤ ϵ+ 2B
u√

2πσB2
v

+ 2ϵ

≤ 4ϵ,

where we used the fact that x ∈ S1 ∪ S2 is similar to the probability that |x| ≤ u/Bv for the zero866

mean Gaussian random variable x with variance (σBv)
2. We can, again, write that867

dW

(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
= inf

π∈Π(ϕ(V ⊤h),ϕ(V̂ ⊤h))

∫
Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤
∫
Rd×Rd

∥ϕ(V ⊤h)− ϕ(V̂ ⊤h)∥2dπ∗
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤ 4ϵ.

So far, we proved that for any V ∈ Rd there exists a V̂ ∈ C such that dW
(
ϕ(V ⊤h), ϕ(V̂ ⊤h)

)
≤868

(4 + B)ϵ for all mixtures h ∈ H, which comes from the fact that 4ϵ ≤ (4 + B)ϵ. Now, we turn to869

covering functions in NET[d,p]. Note that the output of ϕ(V ⊤x) is real-valued. We also know that Φ870

is applied element-wise. Consider the set of871

CW = {[V ⊤
1 . . . V ⊤

p ]⊤ | Vi ∈ C for i ∈ [p]}.

We know that for any W = [V ⊤
1 . . . V ⊤

p ]⊤ there exists Ŵ⊤ = [V̂ ⊤
1 . . . V̂ ⊤

p ]⊤ such that for every872

i ∈ [p], we have dW

(
ϕ(V ⊤

i h), ϕ(V̂ ⊤
i h)

)
≤ (4 + B)ϵ. Therefore, since we keep the coupling the873

same π∗ for every i ∈ [p], we can conclude that dW
(
Φ(W⊤h),Φ(Ŵ⊤

i h)
)
≤ (4 +B)ϵd.874

Now, using Theorem 20, we get that875

dTV

(
gσ(Φ(W

⊤h)), gσ(Φ(Ŵ
⊤h))

)
≤ 9

2

(4 +B)ϵd

σ
(28)

Consequently, for any z ∈ Gσ ◦ XB,d, we can write876

dTV

(
gσ(Φ(W

⊤z)), gσ(Φ(Ŵ
⊤z))

)
≤ dTV

(
gσ(Φ(W

⊤z)), gσ(Φ(W
⊤h))

)
+ dTV

(
gσ(Φ(W

⊤h)), gσ(Φ(Ŵ
⊤h))

)
+ dTV

(
gσ(Φ(Ŵ

⊤h)), gσ(Φ(Ŵ
⊤z))

)
≤ 36

√
dη

σ
+

9

2
(4 +B)

ϵd

σ
,

(29)

where we used data processing inequality and Equation 28. Equation 29 implies that CW is a global877

cover for Gσ ◦ NET[d, p] with respect to dTV metric. Clearly,878

|CW | ≤
(
(Bv)

d+1

δdζ

)p

=

(
2BvdL ln B

ϵ

ϵ

)p(d+1)

.

Therefore, setting η =
√
d(4 +B)ϵ/72 and ϵ′ = ϵσ/(5(4 +B)d) we conclude that879

NU

(
ϵ,Gσ ◦ NET[d, p],∞, dTV ,Gσ ◦ XB,d

)
≤
(
10(4 +B)d2LBv

ϵσ
ln

(
5(4 +B)Bd

ϵσ

))p(d+1)

≤

(
10
√
10(4 +B)3/2

(2π)1/4
d5/2L

√
Bu′

ϵ3/2σ2
ln

(
5(4 +B)Bd

ϵσ

))p(d+1)

,

(30)
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where880

u′ = max
{
|ϕ−1(B − ϵ′)|, |ϕ−1(−B + ϵ′)|

}
= max

{∣∣ϕ−1 (B − ϵσ/(5(4 +B)d))
∣∣ , ∣∣ϕ−1 (−B + ϵσ/(5(4 +B)d))

∣∣} ,
and881

σ ≤ 5(4 +B)Bd

ϵ
≤ 5(4 +B)Bd

ϵ
.

Note that we always use σ ≤ 1. In that case, having σ > 5(4+B)Bd/ϵ means that ϵ > 5(4+B)Bd >882

B
√
d. On the other hand, the domain of the output of Φ is in [−B,B]d and, therefore, in this case883

the covering number would be simply one and no further analysis is required. Furtheremore, the884

assumotion (*) always hold since in order to obtain an ϵ-cover for the single-layer neural network,885

we will need to bound the Wassestein distance between ϕ(V ⊤h̄) and ϕ(V̂ ⊤h̄) by (4 +B)ϵ′. In this886

case we have887

ln
B

ϵ′
≥ 1

⇔ B

ϵ′
≥ e

⇔ B

e
≥ ϵσ

5(4 +B)d

⇔ 5(4 +B)d

eσ
B ≥ ϵ,

which holds since we consider σ ≤ 1 and ϵ ≤ B
√
d. Moreover, for assumption (**) to hold, we need888

Bz ≤
(
B − ϵ′

ϵ

)
2
√
d ln(

B

ϵ′
)

⇔ (B + σ)
√
d+ σ

√
2 ln

B

ϵ′
≤
(
B − ϵ′

ϵ′

)
2
√
d ln(

B

ϵ′
)

⇔ B + 1√
ln B

ϵ′

+

√
2√
d
≤ 2

(
B − ϵ′

ϵ′

)√
ln

B

ϵ′

⇔ B + 1

(ln B
ϵ′ )

1/4
+

√
2√

d ln(Bϵ′ )
≤ 2

(
B − ϵ′

ϵ′

)

⇔

 B + 1

(ln B
ϵ′ )

1/4
+

√
2√

d ln(Bϵ′ )

 ϵ′

2
≤ B − ϵ′

⇔

(
B + 1 +

√
2

2
+ 1

)
ϵ′ ≤ B

⇔

(
B + 3 +

√
2

2

)(
ϵσ

5(4 +B)d

)
≤ B

⇔ ϵ ≤ 10(4 +B)d

(B + 3 +
√
2)σ

B,

which is always true if σ ≤ 1. Note that in both (*) and (**) we were interested in values of ϵ that are889

smaller than B
√
d; Otherwise, the covering number would be one.890

We can also simplify the constants and write Equation 30 as891

NU

(
ϵ,Gσ ◦ NET[d, p],∞, dTV ,Gσ ◦ XB,d

)
≤

(
20(4 +B)3/2

d5/2L
√
Bu′

ϵ3/2σ2
ln

(
5(4 +B)Bd

ϵσ

))p(d+1)

.

Also since ϕ is a monotone function, we can approximate u′ by892

u′ ≤ max

{∣∣∣∣ϕ−1

(
B − σϵ

5(4 +B)d

)∣∣∣∣ , ∣∣∣∣ϕ−1

(
−B +

σϵ

5(4 +B)d

)∣∣∣∣} .
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E Proofs of theorems and and lemmas in Section 7893

E.1 Proof of Theorem 26894

Proof. We will prove the theorem for the stronger case where the output of single-layer neural895

network classes and H is in [−B,B]pT . Consider two consecutive classes NET[pi − 1, pi] and896

NET[pi, pi+1]. From Lemma 18 we know that897

NU

(
2ϵ

2BT
√
pT

,Gσ ◦ NET[pi, pi+1] ◦ Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
≤ NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
.NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[pi, pi+1],∞, d∞TV ,Gσ ◦ XB,pi

)
= Ni.Ni+1.

(31)

Let898

Q = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2].

It is clear that F = Q ◦ Gσ ◦ NET[d, p1]. Equation 31 is true for every 2 ≤ i ≤ T . Therefore, we899

can conclude that900

NU

(
(T − 1)ϵ

2BT
√
pT

,Q,∞, d∞TV ,Gσ ◦ XB,p1

)
≤

T∏
i=2

Ni.

Using Lemma 18, we can again write that901

NU

(
ϵ

2B
√
pT

,F ,m, dℓ2TV ,∆d

)
≤ NU

(
(T − 1)ϵ

2BT
√
pT

,Q,∞, d∞TV ,Gσ ◦ XB,p1

)
.NU

(
ϵ

2BT
√
pT

,Gσ ◦ NET[d, p1],∞, dℓ2TV ,∆d

)
≤

T∏
i=1

Ni.

Finally, from Theorem 17 and the fact that F is a class of functions from Rd to [−B,B]p, we can902

conclude that903

NU

(
ϵ,F ,m, ∥.∥ℓ22

)
≤ NU

(
ϵ

2B
√
pT

,F ,m, dℓ2TV ,∆d

)
≤

T∏
i=1

Ni.

904

E.2 A technique to build deeper networks from networks with bounded covering number905

The following lemma is a technique that can be used to “break” networks in two parts. Then one can906

find a ∥.∥2 covering number for the first few layers and use Theorem 26 for the rest. It is a useful907

technique that enables the use of existing networks with bounded ∥.∥2 covering number to create908

deeper networks while controlling the capacity. Another possible application of the following lemma909

is that it gives us the opportunity to get tighter bounds on the covering number in special settings.910

One example of such settings would be networks that have small norms of weights in the first few911

layers and potentially large weights in the final layers. In this case, it is possible to use ∥.∥2 covering912

numbers that are dependent on the norms of weights for the first few layers and Theorem 26 for the913

rest, which does not depend on the norms of weights.914

Lemma 35. Let Q be a class of functions (e.g., neural networks) from Rd to Rp and915

NET[p, p1],NET[p1, p2], . . . ,NET[pT−1, pT ] be T classes of neural networks. Denote the com-916

position of the T -layer neural network and Q as917

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[p, p1] ◦ Gσ ◦ Q,

31



and let H = {h : Rd → [−B,B]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Define the uniform covering918

numbers of composition of neural network classes with the Gaussian noise class (with respect to919

d∞TV ) as920

Ni = NU

(
ϵ

4BT
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
, 1 ≤ i ≤ T, p0 = p,

and define the uniform covering number of class Q as921

N0 = NU

(
ϵσ

18B
√
pT

,Q,m, ∥.∥ℓ22
)
.

Then we have,922

NU

(
ϵ,H,m, ∥.∥ℓ22

)
≤

T∏
i=0

Ni.

Proof. From Corollary 21, we can conclude that923

NU (
ϵ

4B
√
pT

,Gσ ◦ Q,m, dℓ2TV ,∆d) ≤ NU (
ϵσ

18B
√
pT

,Q,m, ∥.∥ℓ22 ) = N0.

Same as proof of Theorem 26, by using Lemma 18, we can say that for two consecutive classes924

NET[pi − 1, pi] and NET[pi, pi+1]925

NU

(
2ϵ

4BT
√
pT

,Gσ ◦ NET[pi, pi+1] ◦ Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
≤ NU

(
ϵ

4BT
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ XB,pi−1

)
.NU

(
ϵ

4BT
√
pT

,Gσ ◦ NET[pi, pi+1],∞, d∞TV ,Gσ ◦ XB,pi

)
= Ni.Ni+1

Let926

E = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p, p1].
It is clear that F = E ◦ Gσ ◦ Q. Now, from Lemma 18, we can conclude that927

NU

(
ϵ

2B
√
pT

,F ,m, dℓ2TV ,∆d

)
≤ NU

(
ϵ

4B
√
pT

, E ,∞, d∞TV ,Gσ ◦ XB,p

)
.NU (

ϵ

4B
√
pT

,Gσ ◦ Q,m, dℓ2TV ,∆d)

≤
T∏

i=0

Ni.

Lastly, from Theorem 17, we can conclude that928

NU (ϵ,H,m, ∥.∥ℓ22 ) ≤ NU

(
ϵ

2B
√
pT

,F ,∞, dℓ2TV ,∆d

)
≤

T∏
i=0

Ni.

929

F Uniform convergence by bounding the covering number930

In this section we provide some technical backgrounds that are related to estimating NVAC and931

finding valid GBs. Specifically, we discuss how to turn a bound on ∥.∥ℓ22 covering number to a bound932

on generalization gap with respect to ramp loss.933

Preliminaries. For any x ∈ R, the ramp function rγ with respect to a margin γ is defined as934

rγ(x) =


0 x ≤ −γ,

1 + x
γ [−γ, 0],

1 γ > 0.
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Let x = [x(1), . . . , x(k)]⊤ ∈ Rk be a vector and Y = [k]. The margin function M : Rk × Y → R is935

defined as M(x, i) := x(i) −maxj ̸=i x
(j). Next, we define the ramp loss for classification.936

Definition 36 (Ramp loss). Let f : X → Rk be a function and let D be a distribution over X × Y937

where Y = [k]. We define the ramp loss of function f with respect to margin parameter γ as938

lγ(f) = E(x,y)∼D [rγ(−M (f(x), y))]. We also define the empirical counterpart of ramp loss on an939

input set S ∼ Dm by l̂γ(f) =
1
m

∑
(x,y)∈S rγ(−M(f(x), y)).940

It is worth mentioning that using (surrogate) ramp loss is a natural case for classification tasks941

(Bartlett et al., 2006); (Boucheron et al., 2005).942

Next, we define the composition of a hypothesis class with the ramp loss function.943

Definition 37 (Composition with ramp loss)). Let F be a hypothesis class from X to Rd and Y = [k].944

We denote the class of its composition with the ramp loss function by Fγ : X ×Y → [0, 1] and define945

it as Fγ = {(fγ(x, y) = rγ (−M(f(x), y)) : f ∈ F}.946

The following lemma states that we can always bound the 0-1 loss by the ramp loss.947

Lemma 38. Let D be a distribution over X × Y , where Y = [k] and let f be a function from X to948

Rk. We have949

E(x,y)∼D
[
l0−1(f(x), y)

]
≤ E(x,y)∼D [rγ(−M(f(x), y))] = lγ(f).

For a proof of Lemma 38 see section A.2 in Bartlett et al. (2017).950

One way to bound the generalization gap of a learning algorithm is to find the rate of uniform951

convergence for class Fγ . We define uniform convergence in the following.952

Definition 39 (Uniform convergence). Let F be a hypothesis class and l be a loss function. We say953

that F has uniform convergence property if there exists some function mUC : (0, 1)2 → N such that954

for every distribution D over X × Y and any sample S ∼ Dm if m ≥ mUC(ϵ, δ) with probability at955

least 1− δ (over the randomness of S) for every hypothesis f ∈ F we have956 ∣∣∣∣∣∣E(x,y)∼D [l(f(x), y)]− 1

m

∑
(x,y)∈S

l(f(x), y)

∣∣∣∣∣∣ ≤ ϵ.

An standard approach for finding the rate of uniform convergence is by analyzing the Rademacher957

complexity of Fγ . We now define the empirical Rademacher complexity.958

Definition 40 (Empirical Rademacher complexity). Let F be a class of hypotheses from Z to R and959

D be a distribution over Z . The empirical Rademacher complexity of class F with respect to sample960

S = {z1, . . . , zm} ∼ Dm is denoted by R̂(F|S) and is defined as961

R̂(F|S) = Eσ

[
sup
f∈F

m∑
i=1

σif(zi)

]
where σ = (σ1, . . . , σm) and σi are i.i.d. Rademacher random variables uniformly drawn from962

{0, 1}.963

The following theorem relates the Rademacher complexity of Fγ to its rate of uniform convergence964

and provides a generalization bound for the ramp loss and its empirical counterpart on a sample S.965

Theorem 41. Let F be a class of functions from X to Rk and D be a distribution over X ×Y where966

Y = [k]. Let S ∼ Dm denote a sample. Then, for every δ and every f ∈ F , with probability at least967

1− δ (over the randomness of S) we have968

lγ(f) ≤ l̂γ(f) + 2R̂(Fγ |S) + 3

√
ln(2/δ)

2m

Theorem 41 is an immediate result of standard generalization bounds based on Rademacher com-969

plexity (see e.g. Theorem 3.3 in (Mohri et al., 2018)) once we realize that E(x,y)∼D [fγ ] = lγ(f) and970

1
m

∑
(x,y)∈S fγ(x, y) = l̂γ(f).971

We will use Dudley entropy integral (Dudley, 2010) for chaining to bound the Rademacher complexity972

by covering number; see (Shalev-Shwartz and Ben-David, 2014) for a proof.973
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Theorem 42 (Dudley entropy integral). Let F be a class of hypotheses with bounded output in [0, cx].974

Then975

R(F|S) ≤ inf
ϵ∈[0,cx/2]

{
4ϵ+

12√
m

∫ cx/2

ϵ

√
lnNU (ν,F ,m, ∥.∥ℓ22 ) dν

}
.

Putting Theorems 41, 42, and Lemma 38 together, we can state the following theorem to bound the976

0-1 loss based on the covering number of Fγ and empirical ramp loss.977

Theorem 43. Let F be a class of functions from X to Rk and D be a distribution over X ×Y where978

Y = [k]. Let S ∼ Dm be a sample. Then, with probability at least 1− δ (over the randomness of S)979

for every f ∈ F we have980

E(x,y)∼D
[
l0−1(f(x), y)

]
≤

lγ(f) ≤ l̂γ(f) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
m

∫ 1/2

ϵ

√
lnNU (ν,Fγ ,m, ∥.∥ℓ22 ) dν

]}
+ 3

√
ln(2/δ)

2m
.

We will use above theorem in the next appendix to estimate NVAC based on ∥.∥ℓ22 covering number981

of composition of a class with ramp loss.982

G Estimating NVAC using the covering number983

In this appendix, we will use Theorem 43 to establish a way of approximating NVAC from a covering984

number bound. In Remark 44 we state the technique used to approximate NVAC and in the following985

we will justify why this would be a good approximation.986

Remark 44. Let F be a hypothesis class from X to Rk, S be a sample of size m and ĥ ∈ F . We find987

n∗ such that the following holds988

6√
mn∗

√
lnNU (ϵ,Fγ ,mn∗, ∥.∥ℓ22 ) ≤ ϵ, ϵ =

1− l̂γ(ĥ)

10
, (32)

and choose mn∗ as an approximation of NVAC. Here, l̂γ(ĥ) is the empirical ramp loss of ĥ on sample989

S. In Appendix I, where we empirically compare NVAC of different covering number bounds, we990

choose S to be the MNIST dataset and ĥ as the trained neural network (from a class F of all neural991

networks with a certain architecture) on this dataset.992

In the following we discuss why this choice of mn∗ is a good estimate of NVAC. First, let Sn ∈993

(X × Y)mn be an input set and D be a distribution over (X × Y), where mn is larger than mn∗ as994

found in Remark 44. From Theorem 43 and using the fact that the ramp loss is in [0, 1] we can write995

E(x,y)∼D

[
l0−1(ĥ(x), y)

]
≤ l̂γ(ĥ) + 2R(Fγ |Sn) + 3

√
ln(2/δ)

2mn

≤ l̂γ(ĥ) + inf
ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
mn

∫ 1/2

ϵ

√
lnNU (ν,Fγ ,mn, ∥.∥ℓ22 ) dν

]}
+ 3

√
ln(2/δ)

2mn
.

(33)
Since Sn consists of n copies of the sample S, we can replace l̂γ(ĥ) on Sn by the ramp loss of ĥ996

on S (this would be equal to the ramp loss of trained neural network when we empirically compare997

NVACs in Appendix I). Moreover, since the number of samples are very large and δ = 0.01, we can998

approximate the last term in the right hand side of Equation 33 with zero. Therefore, we can write999
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that1000

E(x,y)∼D

[
l0−1(ĥ(x), y)

]
≤ l̂γ(ĥ) + inf

ϵ∈[0,1/2]

{
2

[
4ϵ+

12√
mn

∫ 1/2

ϵ

√
lnNU (ν,Fγ ,mn, ∥.∥ℓ22 ) dν

]}

≤ l̂γ(ĥ) + 2

[
4ϵ+

12√
mn∗

∫ 1/2

ϵ

√
lnNU (ν,Fγ ,mn∗, ∥.∥ℓ22 ) dν

]
(∀ϵ ∈ [0, 1/2])

≤ l̂γ(ĥ) + 2

[
4ϵ+

6√
mn∗

√
lnNU (ϵ,Fγ ,mn∗, ∥.∥ℓ22 )

]
,

(34)
where we used the fact that NU (ϵ,Fγ ,mn, ∥.∥ℓ22 ) decreases monotonically with ϵ and the integral is1001

over [ϵ, 1/2]. Note that in the above equation we subtly used the fact that covering number grows at1002

most polynomially with the number of samples and, therefore, increasing number of samples will1003

always result in smaller right hand side term in Equation 34. In Appendix H, we will show why this is1004

a valid assumption for the covering number bounds that we use in our experiments (see Remark 54).1005

Since Equation 34 holds for any ϵ ∈ [0, 1/2], we can set ϵ = (1− l̂γ(ĥ))/10 and conclude that1006

E(x,y)∼D

[
l0−1(ĥ(x), y)

]
≤ l̂γ(ĥ) + 2

[
4ϵ+

6√
mn∗

√
lnNU (ϵ,Fγ ,mn∗, ∥.∥ℓ22 )

]
≤ l̂γ(ĥ) + 2

5(1− l̂γ(ĥ))

10
≤ 1.

(35)

From the above equation, we can conclude that by setting mn to be larger that mn∗ as defined in1007

Remark 44, we can provide the following valid generalization bound with respect to l0−1 and lγ :1008

GB(ĥ, Sn) = 2

[
4ϵ+

6√
mn

√
lnNU (ϵ,H,mn, ∥.∥ℓ22 )

]
.

Moreover, for any Sn such that mn ≥ mn∗ we can conclude that the GB defined above results in a1009

non-vacuous bound, i.e.,1010

GB(ĥ, Sn) + l̂γ(ĥ) ≤ 1,

which concludes that mn∗ is a reasonable approximation for NVAC.1011

In the next appendix, we discuss different covering number bounds that were mentioned in Section 9.1012

We state these covering number bounds for a general T -layer network in Appendix H. Finally1013

in Appendix I, we present the settings of our experiments and the empirical results of NVAC in1014

Remark 44.1015

H Different approaches to bound the covering number1016

In the following, we will state the covering number bounds that were compared in Section 9. We1017

first give two preliminary lemmas. Lemma 46 connects the covering number of a hypothesis class1018

F to the covering number of Fγ , which is used in Remark 44 to obtain generalization bounds. In1019

Lemma 47 we will show a way to find the covering number of a class of functions from Rd to Rp1020

from the covering number of real-valued classes that correspond to each dimension. We will use1021

this lemma when we want to compare covering number bounds in the literature that are given for1022

real-valued functions, i.e., Norm-based, Lipschitzness-based, and Pseudo-dim-based approaches.1023

In the following remark, we will discuss the motivation behind the choice of specific generalization1024

bounds in Section 91025

Remark 45 (Choice of generalization bounds). In our experiments in Section 9 we have not assessed1026

the PAC-Bayes bound in Neyshabur et al. (2018) since it is always looser than the Spectral bound1027
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of (Bartlett et al., 2017); see Neyshabur et al. (2018) for a discussion. Furthermore, we exclude the1028

generalization bounds that are proved in “two steps”. For example, a naive two-step approach is1029

to divide the training data into a large and a small subsets; one can then train the network using1030

the large set and evaluate the resulting hypothesis using the small set. This will give a rather tight1031

generalization bound since in the second step we are evaluating a single hypothesis. However, it1032

does not explain why the learning worked well (i.e., how the learning model came up with a good1033

hypothesis in the first step). More sophisticated two-step approaches such as Dziugaite and Roy1034

(2017); Arora et al. (2018); Zhou et al. (2019) offer more insights on why the model generalizes.1035

However, they do not fully explain why the first step works well (i.e., the prior distribution in Dziugaite1036

and Roy (2017) or the uncompressed network in Arora et al. (2018); Zhou et al. (2019). Therefore,1037

we focus on bounds based on covering numbers (uniform convergence).1038

Next, we state the preliminaries lemmas that we use in some of the covering number bounds in1039

literature to relate them to covering numbers for the composition of neural networks with the ramp1040

loss.1041

Lemma 46 (From covering number of F to covering number of Fγ). Let F be a hypothesis class1042

of functions from X to Rp and Fγ : X × Y → [0, 1] be the class of its composition with ramp loss,1043

where Y = [k]. Then we have1044

NU (ϵ,Fγ ,m, ∥.∥ℓ22 ) ≤ NU (
γϵ

2
,F ,m, ∥.∥ℓ22 ).

Proof. First, it is easy to verify that rγ and −M(x, y) (with respect to the first input) are Lipschitz1045

continuous functions with respect to ∥.∥2 with Lipschitz factors of 1/γ and 2, respectively; see e.g.,1046

section A.2 in Bartlett et al. (2017). Therefore, we can conclude that rγ (−M(f(x), y)) is Lipschitz1047

continuous with Lipschitz factor of 2/γ.1048

Fix an input set S = {(x1, y1), . . . , (xm, ym)} ⊂ X × Y and let C = {f̂i|S | f̂i ∈ F , i ∈ [r]} be1049

an (γϵ/2)-cover for F|S . In the following, we will denote the composition of f̂i with ramp loss by1050

f̂γ,i for the simplicity of notation. Now, we prove that Cγ = {f̂γ,i|S | f̂γ,i ∈ Fγ , i ∈ [r]} is also an1051

ϵ-cover for Fγ |S1052

Given any f ∈ F , there exists f̂i|S ∈ C such that1053

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (f(x1), . . . , f(xm))
∥∥∥ℓ2
2

≤ γϵ

2
.

We can then write that1054

∥∥∥(f̂γ,i(x1), . . . , f̂γ,i(xm))− (fγ(x1), . . . , fγ(xm))
∥∥∥ℓ2
2

=

√√√√ 1

m

m∑
k=1

(
f̂γ,i(xk)− (fγ(xk)

)2

≤

√√√√ 1

m

m∑
k=1

(
rγ

(
−M(f̂i(xk), yk)

)
− rγ(−M(f(xk), yk))

)2
(36)

From the Lipschitz continuity of rγ (−M(x, y)) we can conclude that for any (x, y) ∈ X × Y1055

∣∣∣rγ (−M(f(x), y))− rγ(−M(f̂i(x), y))
∣∣∣ ≤ 1

γ
∥M(f̂i(x), y)−M(f(x), y)∥2 ≤ 2

γ
∥f̂i(x)− f(x)∥2.
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Taking the above equation into account, we can rewrite Equation 36 as1056

∥∥∥(f̂γ,i(x1), . . . , f̂γ,i(xm))− (fγ(x1), . . . , fγ(xm))
∥∥∥ℓ2
2

≤ 2

γ

√√√√ 1

m

m∑
k=1

(
(f̂i(xk)− f(xk))

)2
≤ 2

γ

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (f(x1), . . . , f(xm))
∥∥∥ℓ2
2

≤ 2

γ

γϵ

2

≤ ϵ.

In other words, for any fγ|S ∈ Fγ |S there exists f̂γ,i|S ∈ S such that
∥∥∥f̂γ,i|S − fγ|S

∥∥∥ℓ2
2

≤ ϵ and,1057

therefore, Cγ is an ϵ-cover for Fγ |S and the result follows.1058

The following lemma finds a covering number for a class of functions with outputs in Rp from the1059

covering number of the classes of real-valued functions corresponding to each dimension1060

Lemma 47. Let F1, . . . ,Fp : X → R be p classes of real valued functions. Further let F =1061 {
f(x) = [f1(x), . . . , fp(x)]

⊤ | fi ∈ Fi, i ∈ [p]
}

be a class of functions from X to Rp, where each1062

dimension i in their output comes from the output of a real-valued function in Fi. Then, we have1063

NU (ϵ,F ,m, ∥.∥ℓ22 ) ≤
p∏

i=1

NU (
ϵ
√
p
,Fi,m, ∥.∥ℓ22 ).

Proof. Fix an input set S = {x1, . . . , xm} ⊂ X . Let C1, . . . , Cp be (ϵ/
√
p)-covers for1064

F1|S , . . . ,Fp|S , respectively. We will construct the set C as follows and prove that C is an ϵ-cover1065

for F|S .1066

C =
{
[f̂1(xk), . . . , f̂p(xk)]

⊤ | f̂i|S ∈ Ci, i ∈ [p], k ∈ [m]
}
.

Particularly, from each class Fi, we are choosing all functions f̂i such that f̂i|S is in Ci. We then use1067

those functions as the dimension i of the output to get functions f ∈ F . Then we put the restriction1068

of these functions to set S in C. Clearly, |C| ≤
∏p

i=1 |Ci|.1069

Let f(x) = [f1(x), . . . , fp(x)]
⊤ be any function in F . Since C1, . . . , Cp are (ϵ/

√
p)-covers for1070

F1, . . . ,Fp we know that there exists another set of functions f̂i ∈ Fi, i ∈ [p] such that f̂i|S ∈ Ci1071

and1072

∥∥∥(f̂i(x1), . . . , f̂i(xm))− (fi(x1), . . . , fi(xm))
∥∥∥ℓ2
2

≤ ϵ
√
p
, ∀i ∈ [p].
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Let f̂(x) = [f̂1(x), . . . , f̂p(x)]
⊤. We can then write that1073 ∥∥∥f|S − f̂|S

∥∥∥ℓ2
2

=
∥∥∥(f(x1), . . . , f(xm))− (f̂(x1), . . . , f̂(xm))

∥∥∥ℓ2
2

=

√√√√ 1

m

m∑
k=1

∥∥∥f(xk)− f̂(xk)
∥∥∥2
2

≤

√√√√ 1

m

m∑
k=1

p∑
i=1

(
fi(xk)− f̂i(xk)

)2

≤

√√√√ p∑
i=1

m∑
k=1

1

m

(
fi(xk)− f̂i(xk)

)2

≤

√√√√ p∑
i=1

(∥∥∥(fi(x1), . . . , fi(xm))− (f̂i(x1), . . . f̂i(xm))
∥∥∥ℓ2
2

)2

≤

√√√√ p∑
i=1

ϵ2

p

≤ ϵ

Therefore, we can conclude that C is an ϵ-cover for F|S . Since |C| ≤
∏p

i=1 |Ci| the result follows.1074

1075

In the following we will state the covering number bounds that are compared using their NVACs in1076

Section 9 .1077

Covering number bounds. We first state the bound in Theorem 26, where we use the covering1078

number of Theorem 25 for each layer of the neural network.1079

Theorem 48 (The bound of Theorem 26). Let NET[d, p1],NET[p1, p2], . . . ,NET[pT−1, pT ] be T1080

classes of neural networks. Denote the T -layer noisy network by1081

F = Gσ ◦ NET[pT−1, pT ] ◦ . . . ◦ Gσ ◦ NET[p1, p2] ◦ Gσ ◦ NET[d, p1],

and let H = {h : Rd → [0, 1]pT | h(x) = Ef

[
f(x)

]
, f ∈ F}. Then we have1082

lnNU

(
ϵ,Hγ ,m, ∥.∥ℓ22

)

≤
T∑

i=2

pi.pi−1 ln

282

(4T
√
pT )

3/2p
5/2
i−1

√
ln

(
(120/γ)T

√
pT pi−1 − ϵσ
ϵσ

)
(γϵ)3/2σ2

ln

(
120Tpi−1

√
pT

γϵσ

)
+ dp1 ln

(
18Tem

√
pT

γϵσ

)
.

Proof. We first use Theorem 25 to find the covering number of NET[pi−1, pi]. Particularly, for any1083

2 ≤ i ≤ T we have,1084

lnNi = lnNU

(
ϵ

2T
√
pT

,Gσ ◦ NET[pi−1, pi],∞, d∞TV ,Gσ ◦ X1,pi−1

)

≤ pi.pi−1 ln

282

(2T
√
pT )

3/2p
5/2
i−1

√
ln

(
60T

√
pT pi−1 − ϵσ
ϵσ

)
ϵ3/2σ2

ln

(
60Tpi−1

√
pT

ϵσ

) .
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Moreover, we use Lemma 14.17 in Anthony et al. (1999) to find a bound on N0. This lemma1085

provides a bound with respect to ∥.∥∞2 , however, we know that ∥.∥ℓ22 is always smaller than ∥.∥∞21086

(see Remark 5). Therefore, we can bound N0 as follows1087

lnN0 ≤ dp1 ln

(
9Tem

√
pT

ϵσ

)
.

From Theorem 26 we know that lnNU

(
ϵ,H,m, ∥.∥ℓ22

)
≤
∑T

i=1 lnNi, therefore, we can write that1088

lnNU

(
ϵ,H,m, ∥.∥ℓ22

)

≤
T∑

i=1

pi.pi−1 ln

282

(2T
√
pT )

3/2p
5/2
i−1

√
ln

(
60T

√
pT pi−1 − ϵσ
ϵσ

)
ϵ3/2σ2

ln

(
60Tpi−1

√
pT

ϵσ

)
+ dp1 ln

(
9Tem

√
pT

ϵσ

)
.

Applying Lemma 46 to turn this covering number into a covering number for Hγ concludes the1089

result.1090

Notation. For the rest of this section, we will be presenting the covering number bounds in literature.1091

For some of these bounds we will require the norm of the weights of network. Therefore, we use a1092

new notation for the class of single-layer neural networks. More precisely, we will use NET[d, p,W ]1093

to denote the same class as NET[d, p] but we are also pointing out the weight matrix W ∈ Rd×p.1094

For a matrix W ∈ Rd×p we denote its ∥.∥s,t norm as ∥(∥W:,1∥s, . . . , ∥W:,p∥s)∥t, where W:,i1095

denotes the ith column of W (e.g. for a weight matrix W , ∥W⊤∥1,∞ refers to the maximum of1096

∥.∥1 norm of incoming weights of a neuron). By ∥W∥σ we denote the spectral norm of a matrix.1097

For a matrix X ∈ Rd×m we denote its normalized Frobenious norm by∥X∥F , which is defined as1098

∥X∥F =
√

1
m

∑
x2
i,j .1099

We would like to mention that, in the experiments, we use a slightly different form of sigmoid function1100

for the activation function rather than the one in Definition 23. Indeed, we will add a constant to1101

the sigmoid function to turn it into an odd function in [−1/2, 1/2]. In the following remark we will1102

discuss the reason behind this choice and the fact that it does not change the covering number in1103

Theorem 48.1104

Remark 49. The bound in the Spectral covering number requires the activation functions to output 01105

at the origin. Therefore, in our experiments in Section 9, we set ϕ(x) = 1
1+e−x − 1

2 as activation1106

functions for neurons of the network, so that ϕ(0) = 0 and ϕ(x) ∈ [−1/2, 1/2]. This will not affect1107

the covering number bound of Theorem 48. The bound in Theorem 48 is derived from the covering1108

number bound of Theorem 25 for single-layer neural network classes. There are three sources of1109

dependency on the activation function in Theorem 25. The first one is the dependence on the range1110

of output, which is 1 for both ϕ(x) = 1
1+e−x − 1

2 and the sigmoid function (ϕ(x) = 1
1+e−x ) defined1111

in Definition 23. The second dependecy is the Lipschitz factor which is 1 for both of the activation1112

functions. The final dependency is on u = max
{∣∣ϕ−1(B − ϵ)

∣∣ , ∣∣ϕ−1(−B + ϵ)
∣∣}. It is easy to verify1113

that the value of u for ϕ(x) = 1
1+e−x − 1

2 is exactly the same as the value of u for ϕ(x) = 1
1+e−x . As1114

a result, using both ϕ(x) = 1
1+e−x and ϕ(x) = 1

1+e−x − 1
2 will result in the same covering number1115

bound in Theorem 48. Generally, adding a constant to the output of functions in a class will not1116

change its covering number.1117

We will now discuss the Norm-based bound from Theorem 14.17 in Anthony et al. (1999), which is a1118

bound for real-valued networks. Therefore, we will apply Lemma 47 to relate it to a covering number1119

for neural networks with p output dimensions.1120

Theorem 50 (Norm-based covering number). Let NET[d, p1,W1], . . . ,NET[pT−1, pT ,WT ] be T1121

classes of neural networks and F = NET[pT−1, pT ,WT ] ◦ . . . ◦ NET[d, p1,W1]. Denote by V the1122
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maximum of ∥.∥1,∞ among the layers of the network, i.e., V = maxi ∥W⊤
i ∥1,∞. Then we have1123

log2 NU (ϵ,Fγ ,m, ∥.∥ℓ22 ) ≤
√
pT

2
(
2
√
pT

γϵ
)2T (2V )T (T+1) log2(2d+ 2).

Proof. The proof simply follows from Theorem 14.17 in Anthony et al. (1999) and Lemmas 46 and1124

47 once we realize that the sigmoid function is Lipschitz continuous with Lipschitz factor of 1.1125

Next we state the Pseudo-dim-based bound.1126

Theorem 51 (Psuedo-dim-based covering number). Let NET[d, p1], . . . ,NET[pT−1, pT ] be T1127

classes of neural networks and F = NET[pT−1, pT ] ◦ . . . ◦ NET[d, p1]. Denote the total num-1128

ber of weights of network by W = dp1 +
∑T

i=2 pi−1.pi and the total number of hidden neurons by1129

r =
∑T

i=1 pi. Furthermore, let P be as follows1130

P = ((W + 2)r)
2
+ 11(W + 2)r log2

(
18(W + 2)r2

)
.

Then we have1131

lnNU (ϵ,Fγ ,m, ∥.∥ℓ22 ) ≤ √
pTP ln

(
2
√
pT em

Pγϵ

)
.

Proof. By Theorem 14.2 in Anthony et al. (1999) we know that the pseudo dimension (Pdim) of Fi is1132

smaller or equal to P , where Fi is the class of real-valued functions corresponding ith dimension1133

of output of functions in class F (for a definition of pseudo dimension see for instance Chapter 111134

in Anthony et al. (1999)). Furthermore, from the standard analysis of covering number and pseudo1135

dimension (see e.g., Theorem 12.2 in Anthony et al. (1999)), we can write1136

lnNU (ϵ,Fi,m, ∥.∥ℓ22 ) ≤ Pdim ln(
em

ϵPdim
).

Combining the above equation with Lemmas 46 and 47 concludes the result.1137

Now we turn into presenting the Lipschitzness-based bound.1138

Theorem 52 (Lipschitzness-based covering number). Let NET[d, p1,W1], . . . ,NET[pT−1, pT ,WT ]1139

be T classes of neural networks and F = NET[pT−1, pT ,WT ] ◦ . . . ◦ NET[d, p1,W1]. Denote by1140

V the maximum of ∥.∥1,∞ among all but the first layers of the network, i.e., V = maxi≥2 ∥W⊤
i ∥1,∞1141

and denote the total number of weights of network by W = dp1 +
∑T

i=2 pi−1.pi. Then we have1142

lnNU (ϵ,Fγ ,m, ∥.∥ℓ22 ) ≤ W
√
pT ln

(
4em

√
pTWV T

γϵ(V − 1)

)
.

Proof. The covering number follows from the bound in Theorem 14.5 in Anthony et al. (1999),1143

which is a ∥.∥∞2 covering number, but we know that ∥.∥ℓ22 is always smaller than ∥.∥∞2 . Therefore,1144

from Theorem 14.5 in Anthony et al. (1999), Lemma 47, and the fact that sigmoid is a Lipschitz1145

continuous function with Lipschitz factor of 1 we know that1146

lnNU (ϵ,F ,m, ∥.∥ℓ22 ) ≤ W
√
pT ln

(
2em

√
pTWV T

ϵ(V − 1)

)
.

Combining the above equation with Lemma 46 will result in the desired bound.1147

Finally, we will present the Spectral bound in Bartlett et al. (2017). In our experiments, we consider1148

the reference matrices Mi in the following theorem to be zero.1149

Theorem 53 (Spectral covering number). Let NET[d, p1,W1], . . . ,NET[pT−1, pT ,WT ] be T1150

classes of neural networks and F = NET[pT−1, pT ,WT ] ◦ . . . ◦ NET[d, p1,W1]. Let refer-1151

ence matrices M1 ∈ Rd×p1 and Mi ∈ Rpi−1×pi , 2 ≤ i ≤ T be given. For an input set1152

S = {x1, . . . , xm} ⊂ Rd define X = [x1 . . . xm] ∈ Rd×m as the collection of input samples.1153

Further, for any i ∈ [T ], let ∥Wi∥σ ≤ si and ∥W⊤
i −M⊤

i ∥2,1 ≤ bi. Then we have1154

lnNU (ϵ,Fγ ,m, ∥.∥ℓ22 ) ≤ 4∥X∥2F ln(2W 2)

γ2ϵ2

(
T∏

i=1

s2i

)(
T∑

i=1

(
bi
si

)2/3
)3

.
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The original bound in Bartlett et al. (2017) considers the input norm ∥X∥2F to be the sum of ∥.∥221155

norms of input samples and adjusts the chaining technique of Theorem 42 to account for this1156

assumption. Here, for the sake of consistency, we consider the Forbenious norm to be normalized1157

and use the conventional chaining technique, which applies to the ∥.∥ℓ22 metric.1158

Remark 54. Some of the bounds that we presented are dependent on the number of input samples m.1159

However, for all of them the logarithm of covering number has at most a logarithmic dependence1160

on the number of samples. It is also worth mentioning that the Spectral bound is dependent on the1161

normalized Frobenious norm and increasing the number of copies of S in Equation 34 (i.e., mn)will1162

not change this norm and, therefore, the Spectral bound.1163

I Empirical results1164

In this appendix we will discuss details of the learning settings for the empirical results that were1165

stated in Section 9. We train fully connected neural networks on the publicly available MNIST dataset,1166

which consists of handwritten digits (28× 28 pixel images) with 10 labels. Our baseline architecture1167

has 3 hidden layers each containing 250 neurons, one input layer, and one output layer. The input layer1168

has 784 neurons, which are pixels of each image in MNIST dataset. The output layer has 10 neurons,1169

corresponding to the 10 labels. All the activation functions are the shifted variant of the sigmoid1170

function as discussed in Appendix H, i.e., ϕ(x) = 1
1+e−x − 1

2 . The additional architecures that we1171

use are as follows: (a) fully connected neural networks with one input layer, one output layer, and1172

2, 4, 5 hidden layers each containing 250 neurons; (b) fully connected neural networks with one input1173

layer, one output layer, and three hidden layers each containing 64, 150, 350, 500, 800, 1000, 15001174

neurons. All of the experiments are performed using NVIDIA Titan V GPU.1175

Networks are trained with SGD optimizer with a momentum of 0.9 and a learning rate of 0.3. For the1176

purpose of training the loss is set to be the cross-entropy loss. For the rest of the experiments (e.g., to1177

report the accuracy and NVACs) ramp loss with a margin of γ = 0.1 is used. The size of training,1178

validation, and test sets are 59000, 1000, and 10000, respectively. In Theorem 26 we are considering1179

noisy networks with its expectation as output. Therefore, for reporting results of Theorem 26 we1180

compute the output 50 times and take an average. Computing random outputs several times and1181

averaging them yields in negligible error bars in the demonstrated results.1182

The results of NVAC as a function of depth and width are depicted in Figure 2. All of the NVACs are1183

derived according to Remark 44. In Figure 2, we also include the Norm-based approach (Theorem 50)1184

which was omitted from the Figures in Section 9 due to its large scale. As mentioned in Section 9, the1185

bounds that are based on norms and group norms perform poorly compared to those that are based on1186

parameter count. In the following, we will investigate this observation.1187

The first justification behind this observation is the dependence on 1/ϵ. From Theorems 50 and 53 we1188

know that the logarithm of covering number in Norm-based approach has a polynomial dependence1189

on 1/ϵ, i.e., O((1/ϵ)2T ), while in the Spectral approach it has a linear dependence, i.e, O(1/ϵ). On1190

the other hand, Pseudo-dim-based, Lipschitzness-based, and Theorem 26 has a logarithmic dependece1191

on 1/ϵ.1192

The second reason behind this observation is that the Spectral and Norm-based approaches depend1193

on the product of the weights. Although one may think that in networks with large number of1194

parameters this dependency would be better than those on the number of parameters, we will see1195

that the Pseudo-dim-based, Lipschitzness-based, and Theorem 26 perform better in these cases. For1196

instance, consider the netwrok that has been trained with three hidden layers, each containing 15001197

neurons. In this case, the number of parameters is ≈ 5 × 109, while in the Spectral approach, the1198

contribution of product of norms to covering number is ≈ 1 × 109 and the contribution of 1/ϵ is1199

≈ 4× 104. In the norm-based approach the contribution of the product of norms is ≈ 1× 1053 alone.1200

Finally, we will explore the observation that the bound in Theorem 26 performs better than the1201

Pseudo-dim-based and Lipschitzness-based bounds. Let w denote the maximum number of neu-1202

rons in a hidden layer. The logarithm of the covering number bound in Theorem 26 depends on1203

O(w2 ln(w5/2)), while the Pseudo-dim-based bound in Theorem 51 depends on O(w6). Com-1204

paring Theorem 26 with the Lipschitzness-based covering number is more challenging because1205

Lipschitzness-based bound depends on O(w2 ln(w2)) and also on T ln(V ). It is also important to1206

note that Theorem 26 works naturally for multi-output layer while Lipschitzness-based bound works1207
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Figure 2: NVAC of different generalization bounds as a function of the number of hidden layers and
width of the network.

for real-valued functions and requires to find a covering number for each output separately. The1208

empirical results, however, suggests that the Lipschitzness-based bound is worse than the bound1209

in Theorem 26. It is worth mentioning that in the rightmost graph in Figure 1, the output of noisy1210

networks are averaged over 1000 noisy outputs to obtain results that are more close to the true1211

expectation that has been considered in the output of architecture in Theorem 26.1212

J Techniques to estimate smooth densities with mixtures of Gaussians1213

Notation. Denote by D(x) the probability density function of the random variable x. Let 11{x ∈ S}1214

be an indicator function that outputs 1 if x ∈ S and 0 if x /∈ S. For a function f : X → Y , let1215

f+(x) = max{0, f(x)} and f−(x) = min{0, f(x)}. By Rd \ [−B,B]d we refer to the complement1216

of set [−B,B]d with respect to Rd. We also denote by f ∗ g the convolution of functions f and g. For1217

two sets S1 and S2, we define their Cartesian product by S1 × S2 and by Sd we refer to the Cartesian1218

power, i.e., Sd = {(s1, . . . , sd) | si ∈ S, ∀i ∈ [d]}. In the following lemma, we sometimes drop the1219

overlines in our notation and simply write x when we are referring to random variables. When it is1220

clear from the context, we write f instead of f(x).1221

Lemma 55 (Gaussian kernel estimation of bounded distributions). Let x be a random variable in1222

XB,d and denote its probability density function by f = D(x). Let g be the density function of a zero1223

mean Gaussian random variable with covariance matrix σ2Id. Given a set S = {x1, . . . , xn} ⊂ Rd1224

of i.i.d. samples xi ∼ f, i ∈ [n], we define the empirical measure as µn(x) =
11{x∈S}

n . Then, we1225

have1226

E
[∫

Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]
≤ 2

√
1

n

(
2B√
(2πσ2)

+ 1

)d

Proof. Note that
∫
µn(x)dx = 1 and since f and g are probability density functions, we know that1227 ∫

(f ∗ g)(x)dx = 1 and
∫
(µn ∗ g)(x)dx = 1. Therefore, we have (for simplicity, we write Exi∼f1228
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instead of Exi∼f,
i∈[n]

)1229

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

=

∫
Rd

Exi∼f [|(µn ∗ g)(x)− (f ∗ g)(x)| dx]

= 2

∫
Rd

Exi∼f

[
(µn ∗ g − f ∗ g)+ (x)dx

]
≤ 2

∫
Rd

√
Exi∼f

[
((µn ∗ g)(x)− (f ∗ g)(x))2

]
dx (By Jensen’s inequality)

≤ 2

∫
Rd

√√√√√Exi∼f

( 1

n

n∑
i=1

g(x− xi)−
∫

f(y)g(x− y)dy

)2
dx.

(37)
Now, we can write1230

Exi∼f

( 1

n

n∑
i=1

g(x− xi)−
∫

f(y)g(x− y)dy

)2
 = Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2


+ Exi∼f

[(∫
f(y)g(x− y)dy

)2
]
− Exi∼f

[
2

(
1

n

n∑
i=1

g(x− xi)

)(∫
f(y)g(x− y)dy

)]

= Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2
+

(∫
f(y)g(x− y)dy

)2

− 2

(∫
f(y)g(x− y)dy

)(
1

n

n∑
i=1

Exi∼f [g(x− xi)]

)

= Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2
−

(∫
f(y)g(x− y)dy

)2

,

(38)
where the last equality comes from the fact that the expectation is over random variables x1, . . . , xn1231

1

n

n∑
i=1

Exi∼f [g(x− xi)] =
1

n

n∑
i=1

∫
g(x− y)f(y)dy =

∫
g(x− y)f(y)dy = f ∗ g.

Next, we know that1232

Exi∼f

( 1

n

n∑
i=1

g(x− xi)

)2
 =

1

n2
Exi∼f

( n∑
i=1

g(x− xi)

)2


=
1

n2
Exi∼f

[
n∑

i=1

g(x− xi)
2

]
+

1

n2
E

 n∑
i ̸=j

g(x− xi)g(x− xj)


=

1

n2

n∑
i=1

Exi∼f

[
g(x− xi)

2
]
+

1

n2

n∑
i ̸=j

Exi,xj∼f [g(x− xi)g(x− xj)]

=
1

n
Exi∼f

[
g(x− xi)

2
]
+

1

n2

n∑
i ̸=j

Exi∼f [g(x− xi)]Exj∼f [g(x− xj)]

=
1

n
Exi∼f

[
g(x− xi)

2
]
+ (1− 1

n
) (Exi∼f [g(x− xi)])

2

=
1

n
Exi∼f

[
g(x− xi)

2
]
+ (1− 1

n
)

(∫
g(x− y)f(y)dy

)2

.

(39)
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Putting Equations 39 and 38 together, we have1233

Exi∼f

( 1

n

n∑
i=1

g(x− xi)−
∫

f(y)g(x− y)dy

)2


=
1

n
Exi∼f

[
g(x− xi)

2
]
− 1

n

(∫
g(x− y)f(y)dy

)2

=
1

n

∫
g(x− y)2f(y)dy − 1

n

(∫
g(x− y)f(y)dy

)2

=
1

n

(
f ∗ g2 − (f ∗ g)2

)
.

(40)

Therefore, we can rewrite Equation 37 as1234

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

≤ 2

∫
Rd

√
1

n
(f ∗ g2 − (f ∗ g)2)dx

≤ 2

√
1

n

∫
Rd

√
(f ∗ g2 − (f ∗ g)2)dx.

(41)

We know that g is the probability density function of N (0, σ2Id). Consequently, we know that1235

g(x)2 =
1

(2π)dσ2d
exp(− 1

σ2
x⊤x) ≤ 1

(2πσ2)d
,

and we can rewrite Equation 41 as1236

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

≤ 2

√
1

n

∫
Rd

√
(f ∗ g2 − (f ∗ g)2)dx ≤ 2

√
1

n

∫
Rd

√
f ∗ g2dx

≤ 2

√
1

n

∫
Rd

√∫
g(x− y)2f(y)dy dx

= 2

√
1

n

∫
Rd

√∫
1

(2πσ2)d
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

= 2

√
1

n

∫
[−B,B]d

√∫
1

(2πσ2)d
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

+ 2

√
1

n

∫
Rd\[−B,B]d

√∫
1

(2πσ2)d
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

≤ 2

√
1

n

∫
[−B,B]d

√∫
1

(2πσ2)d
f(y)dy dx

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx.
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We can then conclude that1237

Exi∼f

[∫
Rd

|(µn ∗ g)(x)− (f ∗ g)(x)| dx
]

≤ 2

√
1

n

∫
[−B,B]d

√
1

(2πσ2)d
dx

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
f(y)dy dx

≤ 2

√
1

n

(2B)d√
(2πσ2)d

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

σ2
(x− y)⊤(x− y)

)
dy dx

≤ 2

√
1

n

(2B)d√
(2πσ2)d

+ 2

√
1

n

∫
Rd\[−B,B]d

√
1

(2πσ2)d

∫
exp

(
− 1

2σ2
(x− y)⊤(x− y)

)
dy dx

≤ 2

√
1

n

(2B)d√
(2πσ2)d

+ 2

√
1

n

d∑
i=1

(
d

i

)
(2B)d−i

√
(2π)iσi√

(2πσ2)d

≤ 2

√
1

n

d∑
i=0

(
d

i

)
(2B)d−i√
(2πσ2)d−i

= 2

√
1

n

(
2B√
(2πσ2)

+ 1

)d

.

(42)
Here, we used the fact that for f is supported on [−B,B]d and the maximum value of1238

exp(−(1/σ2)(x − y)⊤(x − y)) is 1 over [−B,B]d. Moreover, for a fixed x in Rd \ [−B,B]d,1239

the maximum value of exp(−(1/σ2)(x− y)⊤(x− y)) happens when (x− y)⊤(x− y) is minimized,1240

therefore, Whenever x(i) > B, the minimization occurs when y(i) = B. On the other hand, when1241

x(i) < B, the minimization happens when y(i) = −B. We can, then, consider the integration over1242

Rd \ [−B,B]d as sum of integrals over subsets where for some i ∈ [d], |x(i)| > B. Then we can1243

upper bound the integration over each subset by the marginalization of the Gaussian variable in1244

dimensions where |x(i)| > B and consider the fact that the exponent is always smaller than the1245

exponent of an i dimensional Gaussian distribution in those subsets. Note that, when we use this1246

lemma, we consider large values of n such that the expectation of our kernel estimation can get as1247

small as desired. It is also noteworthy that the upper bound on the expectation implies that there1248

exists a set of samples S = {x1, . . . , xn} that can achieve the desired upper bound.1249

Lemma 55 can be used to estimate any bounded distribution that is perturbed with Gaussian noise1250

with a mixture of Gaussians with bounded means and equal diagonal covariance matrix. To do so, we1251

can first use Lemma 55 to approximate the distributions with Gaussian kernels over n i.i.d samples1252

from the distribution. We can then divide the subset [−B,B]d into several subsets and define a1253

Gaussian on each subset that has a weight equal to the number of samples on each interval. We1254

provide the formal version of this estimation in the following lemma.1255

Lemma 56. Let x ∈ XB,d be a random variable and denote its probability density function by1256

f = D(x). Let g be the density function of a zero mean Gaussian random variable with covariance1257

matrix σ2Id. Then for any small value η, we can estimate f ∗ g by a mixture of ⌈B
η ⌉

d Gaussians1258 ∑k
i=1 g(x− µi), where µi ∈ [−B,B]d and1259

dTV (f ∗ g,
k∑

i=1

g(x− µi)) ≤
18

√
dη

σ

Proof. From Lemma 55, we know that there exists a set S = {x1, . . . , xn} ⊂ Rd of i.i.d. samples1260

from f and its empirical measure µn(x) =
11{x∈S}

n such that the total variation between f and the1261

sum of Gaussian kernels defined on empirical measure is bounded1262

dTV

(
f ∗ g,

n∑
i=1

g(x− xi)

)
≤ 2

√
1

n

(
2B√
(2πσ2)

+ 1

)d

= ϵ.
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Denote m = ⌈B
η ⌉. We construct the following grid P of points on [−B,B]d and choose means of1263

the Gaussian densities based on it1264

P = {−B + 2iη | i ∈ [m]}d.

For any a = (a1, . . . , ad) ∈ [m]d, we define1265

µa = [−B + (2a1 + 1)η, . . . ,−B + (2ad + 1)η]
⊤ ∈ Rd

as a choice of mean vector for the Gaussian mixture. We claim that by choosing appropriate weights,1266

we can estimate f ∗ g with respect to total variation distance by a mixture of Gaussians with means in1267

the following set1268

M =
{
µa = [µ(1)

a . . . µ(d)
a ]⊤ ∈ Rd | µ(i)

a = −B + (2ai + 1)η, ∀a = (a1, . . . , ad) ∈ [m]d
}
.

For the set S = {x1, . . . , xn} that was sampled for kernel estimate µn ∗ g, we choose the weight wa1269

for the Gaussian density with mean µa as follows. Define the set Sa as1270

Sa = {xi ∈ S | xi ∈ [−B + 2a1η,−B + 2(a1 + 1)η]× . . .× [−B + 2adη,−B + 2(ad + 1)η]}
(43)

Next, we select wa as1271

wa =
1

n

n∑
i=1

11 {xi ∈ Sa} =
|Sa|
n

.

In other words, wa is the number of samples in S that the ℓ∞ distance between those samples and µa1272

is smaller than 2η. Note that the cardinality of M , which is the number of Gaussian densities in the1273

mixture is |M | = (⌈B
η ⌉)

d.1274

We now prove that the total variation distance between µn ∗ g and
∑

a∈[m]d wag(x− µa) is smaller1275

than 9
√
d

σ η.1276

dTV

 1

n

n∑
i=1

g(x− xi),
∑

a∈[m]d

wag(x− µa)


=

1

2

∥∥∥∥∥∥ 1n
n∑

i=1

g(x− xi)−
∑

a∈[m]d

wag(x− µa)

∥∥∥∥∥∥
1

=
1

2

∥∥∥∥∥∥
∑

a∈[m]d

(
1

n

∑
xi∈Sa

g(x− xi)− wag(x− µa)

)∥∥∥∥∥∥
1

≤ 1

2

∑
a∈[m]d

∥∥∥∥∥
(
1

n

∑
xi∈Sa

g(x− xi)− wag(x− µa)

)∥∥∥∥∥
1

(By triangle inequality).

(44)

Now, we can write1277 ∥∥∥∥∥ 1n ∑
xi∈Sa

g(x− xi)− wag(x− µa)

∥∥∥∥∥
1

≤

∥∥∥∥∥ 1n ∑
xi∈Sa

(g(x− xi)− g(x− µa))

∥∥∥∥∥
1

(Since wa =
|Sa|
n

)

≤ 1

n

∑
xi∈Sa

∥g(x− xi)− g(x− µa)∥1 .

(45)

From Theorem 30, we know that1278

2dTV (g(x− xi)− g(x− µa)) = ∥g(x− xi)− g(x− µa)∥1

≤ 9
∥xi − µa∥2

σ
≤ 9

√
d

σ
2η.

(46)
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Putting Equation 46 into Equation 45, we have1279 ∥∥∥∥∥ 1n ∑
xi∈Sa

g(x− xi)− wag(x− µa)

∥∥∥∥∥
1

≤ 1

n

∑
xi∈Sa

9
√
d

σ
2η = wa

9
√
d

σ
2η.

(47)

Now, putting Equations 45 and 47 together, we can rewrite Equation 44 as1280

dTV

 1

n

n∑
i=1

g(x− xi),
∑

a∈[m]d

wag(x− µa)


≤ 1

2

∑
a∈[m]d

∥∥∥∥∥
(
1

n

∑
xi∈Sa

g(x− xi)− wag(x− µa)

)∥∥∥∥∥
1

≤ 1

2

∑
a∈[m]d

wa
9
√
d

σ
2η

=
9
√
d

σ
η.

(48)

Note that the bound in Equation 48 does not depend on the size of sampled set S. Therefore, we can1281

choose n as large as we want. Specifically, we choose n as follows1282

n =

(
2B√
2πσ2

+ 1

)2d

.

(
9
√
d

2σ
η

)−2

We can then conclude that for any random variable x defined over [−B,B]d, we can approximate1283

the density function of x + z, z ∼ N (0, σ2Id) with a mixture of ⌈B
η ⌉

d Gaussians with means in1284

[−B,B]d such that1285

dTV

f ∗ g,
∑

a∈[m]d

wag(x− µa)

 ≤ ϵ+
9
√
d

σ
η =

18
√
dη

σ
.

1286
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