
Supplementary material for ‘KSD Aggregated Goodness-of-fit Test’

A Assumptions

A.1 Assumptions common to all theoretical results

• kernel k is C0-universal (Carmeli et al., 2010, Definition 4.1)

• KSD2
p,k(q) = Eq,q[hp,k(X,Y)] < 1

• Ck � 1, where Ck := Eq,q[hp,k(X,Y)2] < 1 as defined in Equation (2)

• kqk
1

 M for some M > 0

• Eq

h���r
⇣
log p(X)

q(X)

⌘���
2

2

i
< 1

• ↵ 2 (0, e�1)

• � 2 (0, 1)

A.2 Assumptions for Theorem 3.1

• Assumptions of Appendix A.1

• B1 � 3
�
log
�
8/�

�
+ ↵(1� ↵)

��
↵2

• assumption for parametric bootstrap: n
�p

Ck � ln(1/↵)

• assumption for wild bootstrap: Lipschitz continuity of hp,k

• constant C depends on M and d

A.3 Assumptions for Theorem 3.3 and Corollary 3.4

• Assumptions of Appendix A.1

• B1 � 12
⇣
max
k2K

w�2
k

⌘�
log(8/�) + ↵(1� ↵)

��
↵2

• B2 � 8 log
�
2/�

��
↵2

• B3 � log2
�
4min

k2K

w�1
k

�
↵
�

• positive weights (wk)k2K satisfying
P

k2K
wk 1

• assumption for parametric bootstrap: n
�p

Ck � ln(1/↵wk) for k 2 K
• assumption for wild bootstrap: Lipschitz continuity of hp,k

• constant C depends on M and d

A.4 Assumptions for Theorem 3.5

• Assumptions of Appendix A.1

• B1 � 12
⇣
max
�2⇤

w�2
k�

⌘�
log(8/�) + ↵(1� ↵)

��
↵2

• B2 � 8 log
�
2/�

��
↵2

• B3 � log2
�
4min

�2⇤
w�1

k�

�
↵
�

• assumption for parametric bootstrap: n
�p

Ck� � ln(1/↵wk�) for � 2 ⇤

• assumption for wild bootstrap: Lipschitz continuity of hp,k�

• constant C is independent of the sample size N

16

B Collection of bandwidths for KSDAGG?

In this section, we explain how the collection for the robust test KSDAGG? is constructed. First, we
compute the maximal inter-sample distance

�M := max
�
kxi � xjk2 : 0 i < j N

,

�max := max
�
�M, 2

.

The collection of B bandwidths is then defined as
n
d�1�(i�1)/(B�1)

max : i = 1, . . . , B
o

where d is the dimension of the samples. This collection is a discretisation of the interval⇥
d�1, d�1�max

⇤
. In the limit as the number of bandwidths B goes to infinity, the collection be-

comes the continuous interval. In practice, we use B = 10 bandwidths and we observed that
increasing B in all three experiments (B = 100, 200, . . .) does not affect the power, that is, by using
10 bandwidths we obtain the same power as if we were to consider the aggregated test with the
continuous collection

⇥
d�1, d�1�max

⇤
of bandwidths.

C Background on Kernel Stein Discrepancy

Background. Stein’s methods (Stein, 1972) have been widely used in the machine learning and
statistics communities. At the heart of this field, for the Langevin Stein operator Ap defined as

(Apf)(x) := f(x)>r log p(x) + Tr
�
rf(x)

�
,

is the fact that smooth densities p and q are equal if and only if

Eq

⇥
(Apf)(x)

⇤
= 0

for smooth functions f vanishing at the boundaries. This is known as Stein’s identity (Stein, 1972;
Stein et al., 2004), and also holds more generally for other Stein operators. Gorham and Mackey
(2015) utilised this identity to define Stein discrepancies as

sup
f2F

Eq

⇥
f(x)>r log p(x) + Tr

�
rf(x)

�⇤

for some space of smooth functions F satisfying Stein’s identity. As proposed by Oates and Girolami
(2016), choosing F to be the unit ball in a Reproducing Kernel Hilbert Space (Aronszajn, 1950,
RKHS) denoted H, that is F := {f : kfkH 1}, we obtain the Kernel Stein Discrepancy (KSD;
Liu et al., 2016; Chwialkowski et al., 2016). The KSD can also be expressed in terms of the Stein
kernel as presented in Section 2.

Goodness-of-fit related work. Stein methods have been used to construct goodness-of-fit tests in
various types of data: directional data (Xu and Matsuda, 2020), time-to-event data (Fernandez et al.,
2020), data on Riemannian manifolds (Xu and Matsuda, 2021), conditional data (Jitkrittum et al.,
2020) , graph data (Weckbecker et al., 2022; Xu and Reinert, 2021, 2022a), functional data (Wynne
et al., 2022; Wynne and Duncan, 2022), and generative data (Xu and Reinert, 2022b). We also point
out the works of Fernandez and Gretton (2019) on an MMD-based goodness-of-fit test for censored
data, of Key et al. (2021) on composite goodness-of-fit tests using either the MMD or KSD, of
Jitkrittum et al. (2017) on a linear-time KSD goodness-of-fit test, of Gorham and Mackey (2017) on
measuring sample quality with kernels and on KSD dominating weak convergence for some kernels,
of Huggins and Mackey (2018) on random feature Stein discrepancies, of Korba et al. (2021) on the
KSD Wasserstein gradient flow, of Oates et al. (2019) on convergence rates for a class of estimators
based on Stein’s method, and of Barp et al. (2019) on minimum Stein discrepancy estimators. Lim
et al. (2019) and Kanagawa et al. (2019) use KSD tests for multiple model comparison and for
comparing latent variable models, respectively. It is worth noting those score-based methods suffer
from blindness to isolated components and mixing proportions (Wenliang and Kanagawa, 2020;
Zhang et al., 2022). Xu (2021, 2022) present unified approaches for goodness-of-fit testing, and
Fernandez and Rivera (2022) introduce a general framework for analysing kernel-based tests working
directly with random functionals on Hilbert spaces. Finally, Anastasiou et al. (2021) provide a review
of recent developments based on Stein’s methods.

17

D Asymptotic level for KSD test with wild bootstrap

The proof of asymptotic level of the KSD test using a wild bootstrap was proved by Chwialkowski et al.
(2016, Proposition 3.2) relying on the result of Leucht (2012, Theorem 2.1) and of and Chwialkowski
et al. (2014, Lemma 5). Their results for V -statistics can be extended to the use of U -statistics. They
proved this result for the more general non-i.i.d. case, while we need only the result for the simpler
i.i.d. case. They proved that the difference between true quantiles and the wild bootstrap quantiles
converges to zero in probability under the null hypothesis with the following dependence on N :

sup
t2R

���P(NBN > t | XN)� P(NKN > t)
���

converges to 0 in probability, where KN is the KSD estimator of Equation (1), and BN is the wild
bootstrap KSD of Equation (5). Lipschitz continuity of the Stein kernel hp,k (defined in Section 2) is
required for the result to hold.

E Runtimes comparison of all KSD tests considered

The time complexity of KSDAGG is O
�
|K|(B1 +B2)N2

�
as provided in Algorithm 1. It grows

linearly with the number of kernels |K|, quadratically with the sample size N , and linearly with the
number of bootstrap samples B1 +B2.

Table 1: Runtimes (averaged over 10 runs and reported in seconds) for the Normalizing Flow MNIST
experiment presented in Section 4.5 using a wild bootstrap.

SAMPLE
SIZE

KSDAGG
KSD

MEDIAN
KSD
SPLIT

KSD SPLIT
EXTRA DATA

100 0.037 0.005 0.022 0.023
200 0.084 0.010 0.064 0.070
300 0.162 0.020 0.132 0.145
400 0.276 0.034 0.230 0.253
500 0.421 0.051 0.359 0.395

We report in Table 1 the runtimes of KSDAGG, KSD median, KSD split, and KSD split extra data,
all using a wild bootstrap to estimate the quantiles in the MNIST Normalizing Flow experimental
setting considered in Section 4.5.

Since we consider a collection of bandwidths ⇤, the time complexity of KSDAGG is O(|⇤|(B1 +
B2)N2) and the one for median KSD is O(B1N2) where, in the setting considered, we have |⇤| = 21
and B1 = B2 = 500. While KSDAGG takes roughly 10 times longer to run than KSD median,
we could have expected a larger difference looking at the time complexities. This can be explained
by the fact that there are two major time-consuming steps: (i) computing the kernel matrices, and
(ii) computing the wild bootstrap samples. While (i) has complexity O(N2) and (ii) complexity
O(BN2 +NB2), the constant for step (i) is much larger than the one for step (ii) since (i) requires
computing the matrix of pairwise distances while (ii) only consists in computing some matrix
multiplications. Note that to compute the |⇤| kernel matrices for KSDAGG, we need to compute the
matrix of pairwise distances only once.

When splitting the data, the computationally expensive step is to select the bandwidth. All the |⇤|
kernel matrices need to be computed, as for KSDAGG, which is the expensive step (i). The KSD
split test runs only slightly faster than the KSD split extra test; it runs faster than KSDAGG but their
runtimes are of the same order of magnitude.

F Details on MNIST Normalizing Flow experiment

We provide details about the results reported in Figure 3b of the MNIST Normalizing Flow experiment
presented in Section 4.5. In that case, the median bandwidth �med is on average 2437. The collection
of bandwidths considered for KSDAGG is ⇤(�20, 0) :=

�
2i�med : i = �20, . . . , 0

. When

18

KSDAGG rejects the null hypothesis, the smallest bandwidth 2�20�med ⇡ 2�20 · 2437 ⇡ 0.002
(among others) rejects the single test with adjusted level. The bandwidth selected by KSD split extra
data is the largest bandwidth 20�med ⇡ 2437. The bandwidth selection is performed by maximizing
the criterion in Equation (9). Sutherland et al. (2017) showed that this is equivalent to maximizing
asymptotic power in the case of the MMD; the same result holds straightforwardly for the KSD due to
similar asymptotic properties. The criterion only maximizes asymptotic power and has no guarantee
when using limited data. In this high-dimensional setting (d = 784) with sample sizes smaller than
500, the asymptotic regime is not attained, and the criterion used for bandwidth selection does not
maximize the power in this non-asymptotic setting. So, even though split extra has access to some
extra data, it does not have an accurate criterion to select the bandwidth and ends up selecting the
largest bandwidth, which is not well-adapted to this problem. This explains the low power obtained
by KSD split extra data.

G Details on our aggregation procedure

More powerful than Bonferroni correction. The Bonferroni correction for multiple testing cor-
responds to using the adjusted level ↵/|K| for each of the |K| tests. With the correction used for
KSDAGG with uniform weights, the adjusted level for each test is u↵/|K| with u↵ defined in Equa-
tion (6). It can be shown that u↵ � ↵ (Albert et al., 2022, Lemma 4), which means that KSDAGG
will always reject the null when the test with Bonferroni correction would reject it. When using
uniform weights, the multiple testing correction we use is guaranteed to always lead to a test as least
as powerful as the one using the Bonferroni correction. The proof that the Bonferroni correction
guarantees control of the probability of type I error uses a loose union bound argument, the method
we use aims to tighten this loose upper bound. We present edge-case examples to illustrate the
strengths of our multiple testing correction. First, assume that the |K| events are all disjoints, then
the union bound is tight and both methods yield the adjusted levels ↵/|K|. Second, assume that all
events are the same (e.g. same kernels), then the Bonferroni correction still yields adjusted levels
↵/|K|, while our multiple testing strategy can detect that there is nothing to correct for and provide
‘adjusted’ levels ↵. We note that, given some fixed weights and level, there does not exist a single u↵

associated to them, it will depend on what the events are.

Choice of weights. Without any prior knowledge (which is often the case in practice), we recommend
using uniform weights since we do not expect any particular kernels/bandwidths to be better-suited
than others. If the user has some prior knowledge of which kernels/bandwidths would be better for
the task considered, then those should be given higher weights. We allow for weights whose sum
is strictly smaller than 1 simply for the convenience of being able to add a new kernel/bandwidth
with a new weight without changing the previous weights (as in Theorem 3.5 with weights 6/⇡2`2

for ` 2 N \ {0}). Multiplying all the weights by a constant simply results in dividing the correction
u↵ defined in Equation (6) by the same constant. This means that the product u↵w� remains the
same, and hence the definition of the aggregated test is not affected by this change. For simplicity, in
practice, we use weights whose sum is equal to 1.

Interpretability. When KSDAGG rejects the null hypothesis, we can check which specific kernels
reject the adjusted tests: this provides the user with information about the kernels which are well-
adapted to the problem considered. The ‘best’ selection of kernels is naturally returned as a side-effect
of the test (without requiring data splitting). This contributes to the interpretability of KSDAGG, for
instance in the case where different kernels prioritise different features.

Extension to uncountable collections of kernels. Our KSDAGG test aggregates over a finite
collection of kernels. While even for large collections of kernels KSDAGG retains high power
(due our multiple testing correction), it would be theoretically interesting to be able to consider an
uncountable/continuous collection of kernels (parametrised by the kernel bandwidth on the positive
real line for example). Optimizing the kernel parameters continuously can be done by selecting
the parameters which maximise a proxy for test power as in Equation (9), but to the best of our
knowledge, this has currently never been done without data splitting (which usually result in a loss of
power). The extension to the case of uncountable collections remains a very challenging problem,
and it would be of great theoretical interest to derive such a method in the future. However, as
shown empirically in Appendix B, with a discretisation using only 10 bandwidths, our aggregated
test KSDAGG? already obtains the same power as the test using the continuous interval (in limit of
the discretisation).

19

Extension to KSD tests with adaptive features. Our proposed test, KSDAGG, provides a solution
to the problem of KSD adaptivity in the goodness-of-fit framework without requiring data splitting.
A potential future direction of interest could be to tackle the adaptivity problem of the KSD-based
linear-time goodness-of-fit test proposed by Jitkrittum et al. (2017). In this setting, the data is split to
select feature locations (and the kernel bandwidth), the KSD test is then run using those adaptive
features. A challenging problem would be to obtain those adaptive features using an aggregation
procedure which avoids splitting the data.

H Adversarially constructed settings in which KSDAGG might fail

Median bandwidth test. In settings (possibly adversarially constructed) where the median bandwidth
is the ‘best’ bandwidth, the KSD test with median bandwidth could in theory be more competitive
than KSDAGG since by considering a large collection of bandwidths we are not only considering
the ‘best’ median bandwidth, but also ‘worse’ bandwidths. However, in practice, we cannot know in
advance which bandwidth would perform well, and KSDAGG retains power even for large collections
of bandwidths (21 bandwidths considered in MNIST Normalizing Flow experiment in Section 4.5).

Data splitting test. Another setting (also possibly adversarially constructed) could be one in which
the ‘best’ bandwidth lies in between two bandwidths of our collection which are ‘worse’ bandwidths.
In that case, a test which uses data splitting to select an ‘optimal’ bandwidth would be able to select
it, however, one must bear in mind the loss of power due to data splitting. In such a setting, the power
of KSDAGG could then be improved by considering a finer collection of bandwidths. However, this
issue did not arise in our experiments where we found that the aggregation procedure outperformed
the competing approaches.

I Proofs

I.1 Proof of Theorem 3.1

Note that

Pq

�
�k

↵(XN) = 0
�
= Pq

⇣
[KSD

2

p,k(XN) bq k
1�↵

⌘

= Pq

⇣
[KSD

2

p,k(XN)�KSD2
p,k(q) bq k

1�↵ �KSD2
p,k(q)

⌘

where

KSD2
p,k(q) = Eq

h
[KSD

2

p,k(XN)
i

since [KSD
2

p,k is an unbiased estimator. By Chebyshev’s inequality (Chebyshev, 1899), we know that

� � Pq

0

BB@
���KSD2

p,k(q)� [KSD
2

p,k(XN)
��� �

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�

1

CCA

� Pq

0

BB@KSD2
p,k(q)� [KSD

2

p,k(XN) �

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�

1

CCA

= Pq

0

BB@[KSD
2

p,k(XN)�KSD2
p,k(q) �

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�

1

CCA.

20

We deduce that Pq

�
�k

↵(XN) = 0
�
 � if

bq k
1�↵ �KSD2

p,k(q) �

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�

KSD2
p,k(q) � bq k

1�↵ +

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�
. (10)

The condition in Equation (10), which controls the probability of type I error of �k
↵, needs to hold

with high probability since bq k
1�↵ depends on the randomness of, either the new samples drawn from

p for the parametric bootstrap in Equation (4), or of the Rademacher random variables for the wild
bootstrap in Equation (5).

We want to derive a condition in terms of kp� qk22 rather than in terms of KSD2
p,k(q) as in Equa-

tion (10). For this, using Stein’s identity, we obtain
⌦
 , Thp,k

↵
2
=

Z

Rd

 (y)
�
Thp,k

�
(y) dy

=

Z

Rd

Z

Rd

hp,k(x, y) (x) (y) dx dy

=

Z

Rd

Z

Rd

hp,k(x, y)(p(x)� q(x))(p(y)� q(y)) dx dy

=

Z

Rd

Z

Rd

hp,k(x, y)q(x)q(y) dx dy

= Eq,q[hp,k(X,Y)]

= KSD2
p,k(q)

which gives

KSD2
p,k(q) = h , Thp,k i =

1

2

⇣
k k22 +

��Thp,k
��2
2
�
�� � Thp,k

��2
2

⌘
.

To guarantee Pq

�
�k

↵(XN) = 0
�
 �, an equivalent condition to the one presented in Equation (10)

is then

k k22 �
�� � Thp,k

��2
2
�
��Thp,k

��2
2
+ 2bq k

1�↵ + 2

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�
(11)

which needs to hold with high probability over the randomness in bq k
1�↵. We now upper bound the

quantile and variance terms in Equation (11) to obtain a new condition ensuring control of the type II
error.

To bound the quantile term bq k
1�↵ using B1 wild bootstrapped statistics, using the Dvoretzky–Kiefer–

Wolfowitz inequality (Dvoretzky et al., 1956; Massart, 1990) as done by Schrab et al. (2021, Appendix
E.4), it is sufficient to bound the quantile bq k,1

1�↵ using wild bootstrapped statistics without finite
approximation provided that B1 � 3

↵2

�
log
�
8
�

�
+ ↵(1� ↵)

�
. Using the concentration bound for i.i.d.

Rademacher chaos of de la Peña and Giné (1999, Corollary 3.2.6) as presented by Kim et al. (2022,
Equation 39), there exists some constant C > 0 such that

P✏

0

@

������
1

N(N � 1)

X

1i 6=jN

✏i✏jhp,k(Xi, Xj)

������
� t

��� XN

1

A 2 exp

0

BBBB@
� CtN(N � 1)s X

1i 6=jN

hp,k(Xi, Xj)
2

1

CCCCA

which gives

bq k,1
1�↵ C

log(2/↵)

N(N � 1)

s X

1i 6=jN

hp,k(Xi, Xj)
2

21

for some different constant C > 0. Using Markov’s inequality, for any � 2 (0, 1), with probability at
least 1� � we have

X

1i 6=jN

hp,k(Xi, Xj)
2 1

�
N(N � 1)Eq,q

⇥
hp,k(X,Y)2

⇤
=

CkN(N � 1)

�

which gives

bq k,1
1�↵ C

log(2/↵)

N(N � 1)

r
CkN(N � 1)

�
=

Cp
�

log(2/↵)p
N(N � 1)

p
Ck C log

✓
1

↵

◆ p
Ck

N

since ↵ 2 (0, e�1), where in the last inequality C > 0 is a different constant depending on �. Using
Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956) as explained above, we deduce that

2bq k
1�↵ C log

✓
1

↵

◆ p
Ck

N
(12)

with arbitrarily high probability, for some constant C > 0. The same quantile bound also holds for the
parametric bootstrap provided that n

�p
Ck � ln(1/↵) as derived by Albert et al. (2022, Appendix

C.4.1). Their reasoning holds in our setting by replacing 1
�p

�1 · · ·�pµ1 · · ·µq by
p
Ck, this is

justified as for a kernel k� with bandwidths �1, . . . ,�d we have Eq,q[k�(X,Y)2] C
�
�1 · · ·�d.

We now bound the variance term in Equation (10). Using the result of Albert et al. (2022, Equation
6), there exists C > 0 such that

varq
⇣
[KSD

2

p,k(XN)
⌘
 C

✓
�2
1

N
+
�2
2

N2

◆

where
�2
2 := Eq,q

⇥
hp,k(X,Y)2

⇤
= Ck

and

�2
1 := EY⇠q

⇣
EX⇠q [hp,k(X,Y)]

⌘2�

= EY⇠q

⇣�
Thp,k

�
(Y)
⌘2�

=

Z

Rd

⇣�
Thp,k

�
(y)
⌘2

q(y) dy

 kqk
1

Z

Rd

⇣�
Thp,k

�
(y)
⌘2

dy

 M
��Thp,k

��2
2

since
�
Thp,k

�
(y) :=

Z

Rd

hp,k(x, y) (x) dx

=

Z

Rd

hp,k(x, y)p(x) dx�
Z

Rd

hp,k(x, y)q(x) dx

= 0�
Z

Rd

hp,k(x, y)q(x) dx

= �EX⇠q [hp,k(X, y)]

by Stein’s identity. We deduce that

varq
⇣
[KSD

2

p,k(XN)
⌘
 C

 ��Thp,k
��2
2

N
+

Ck

N2

!

for some different constant C > 0 depending on M and d.

22

Using the classical inequalities
p
x+ y

p
x+

p
y and 2

p
xy x+ y for x, y > 0, which are also

considered in the works of Fromont et al. (2013), Albert et al. (2022) and Schrab et al. (2021), we
obtain

2

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�
 2

s

C

��Thp,k
��2
2

�N
+ C

Ck

�N2

 2

s
��Thp,k

��2
2

C

�N
+ 2

s

C
Ck

�N2

��Thp,k

��2
2
+

C

�N
+ 2

p
C

p
Ckp
�N

��Thp,k

��2
2
+
⇣
C + 2

p
C
⌘ p

Ck

�N

��Thp,k

��2
2
+ C log

✓
1

↵

◆ p
Ck

�N
(13)

since ↵ 2 (0, e�1), � 2 (0, 1) and Ck � 1 by assumption, where the constant C > 0 is different on
the last line. By considering the largest of the two constants in the quantile and variance bounds of
Equations (12) and (13) multiplied by two, we obtain

2bq k
1�↵ + 2

vuutvarq
⇣
[KSD

2

p,k(XN)
⌘

�

��Thp,k

��2
2
+ C log

✓
1

↵

◆ p
Ck

�N
.

By combining this bound with the condition in Equation (11), we get that Pq

�
�k

↵(XN) = 0
�
 � if

k k22 �
�� � Thp,k

��2
2
�
��Thp,k

��2
2
+
��Thp,k

��2
2
+ C log

✓
1

↵

◆ p
Ck

�N
,

k k22 �
�� � Thp,k

��2
2
+ C log

✓
1

↵

◆ p
Ck

�N
,

which concludes the proof.

I.2 Proof of Proposition 3.2

Recall that the correction term in Equation (6) is defined as

u↵ := sup

⇢
u 2

⇣
0,min

k2K

w�1
k

⌘
:

1

B2

B2X

b=1

✓
max
k2K

⇣
eKb
k � bq k

1�uwk

⌘
> 0

◆
 ↵

�

where bq k
1�uwk

= K̄ •d(B1+1)(1�uwk)e
k , as defined in Equation (3). Hence, we have

1

B2

B2X

b=1

✓
max
k2K

⇣
eKb
k � bq k

1�u↵wk

⌘
> 0

◆
 ↵. (14)

Recall that our estimator is [KSD
2

p,k(XN) where XN := (Xi)Ni=1 are drawn from q. Recall also from
Equation (4), that for the parametric bootstrap each element eKb

k is computed by drawing new samples

(X 0

i)
N 0

i=1 from the model p and computing [KSD
2

p,k

⇣
(X 0

i)
N 0

i=1

⌘
. Hence, at every sample size, under

the null hypothesis H0 : p = q the quantities eKb
k and [KSD

2

p,k(XN) are identically distributed. For
the wild bootstrap, as defined in Equation (5), Chwialkowski et al. (2014, 2016) show that, under H0,
eKb
k and [KSD

2

p,k(XN) have the same asymptotic distribution (details are presented in Appendix D).

23

Therefore, by taking the expectation in Equation (14), we obtain

↵ � Pp

✓
max
k2K

⇣
[KSD

2

p,k(XN)� bq k
1�u↵wk

⌘
> 0

◆

= Pp

⇣
[KSD

2

p,k(XN) > bq k
1�u↵wk

for some k 2 K
⌘

= Pp

�
�k

u↵wk
(XN) = 1 for some k 2 K

�

= Pp

�
�K

↵ (XN) = 1
�

which holds non-asymptotically using the parametric bootstrap, and asymptotically using the wild
bootstrap. Note that this is different from the two-sample case where using a wild bootstrap yields
well-calibrated non-asymptotic levels (Schrab et al., 2021, Proposition 8).

The same reasoning holds by replacing u↵ by any value u 2 (0, u↵). In particular, it holds for
the lower bound of the interval obtained by performing the bisection method to approximate the
supremum in the definition of u↵. This lower bound is the one we use in practice, as shown in
Algorithm 1 with the step ‘u↵ = umin’. We have proved that the test with correction term u↵

approximated with a bisection method also achieves the desired level ↵.

I.3 Proof of Theorem 3.3

As explained in Appendix I.2 and utilised in Algorithm 1, we use the lower bound bu↵ of the interval
obtained by performing the bisection method to approximate the supremum in the definition of u↵ in
Equation (6). The assumptions B2 � 8

↵2 log
�
2
�

�
and B3 � log2

�
4
↵ min

k2K

w�1
k

�
ensure that bu↵ � ↵/2

as shown by Schrab et al. (2021, Appendix E.9).

The probability of type II error of �K

↵ is

Pq

�
�K

↵ (XN) = 0
�
= Pq

�
�k

bu↵wk
(XN) = 0 for all k 2 K

�

 Pq

�
�k

bu↵wk
(XN) = 0 for some k 2 K

�

 Pq

⇣
�k

↵wk/2
(XN) = 0 for some k 2 K

⌘
.

To guarantee Pq

�
�K

↵ (XN) = 0
�
 �, it is then sufficient to guarantee Pq

⇣
�k⇤

↵wk⇤/2(XN) = 0
⌘
 �

for some k⇤ 2 K to be specified shortly in Equation (15). By assumption, we have

B1 �
✓
max
k2K

w�2
k

◆
12

↵2

✓
log

✓
8

�

◆
+ ↵(1� ↵)

◆
.

In order to apply Theorem 3.1 to �k
↵k

with ↵k := ↵wk/2 for k 2 K, we need to ensure that the
condition on B1 of Theorem 3.1 is satisfied for all k 2 K, that is

B1 � 3

↵2
k

✓
log

✓
8

�

◆
+ ↵k(1� ↵k)

◆

for all k 2 K. Since 0 < ↵k < ↵ < e�1, we have ↵(1� ↵) � ↵k(1� ↵k) for k 2 K. We also have
✓
max
k2K

w�2
k

◆
12

↵2
� 3

✓
2

↵wk

◆2

=
3

↵2
k

for all k 2 K. We deduce that

B1 �
✓
max
k2K

w�2
k

◆
12

↵2

✓
log

✓
8

�

◆
+ ↵(1� ↵)

◆

� 3

↵2
k

✓
log

✓
8

�

◆
+ ↵k(1� ↵k)

◆

for all k 2 K, and so, applying Theorem 3.1 to �k
↵k

for k 2 K is justified. We obtain that

Pq

⇣
�k

↵wk/2
(XN) = 0

⌘
 � if

k k22 �
�� � Thp,k

��2
2
+ C log

✓
2

↵wk

◆p
Ck

�N
,

24

or, with a different constant C > 0, if

k k22 �
�� � Thp,k

��2
2
+ C log

✓
1

↵wk

◆p
Ck

�N

since log
⇣

2
↵wk

⌘
(log(2) + 1) log

⇣
1

↵wk

⌘
as ↵ 2 (0, e�1) and wk 2 (0, 1). Now, let

k⇤ := argmin
k2K

✓�� � Thp,k
��2
2
+ C log

✓
1

↵wk

◆p
Ck

�N

◆
. (15)

Finally, we have Pq

�
�K

↵ (XN) = 0
�
 � if Pq

⇣
�k⇤

↵wk⇤/2(XN) = 0
⌘
 �, that is, if

k k22 �
�� � Thp,k⇤

��2
2
+ C log

✓
1

↵wk⇤

◆p
Ck⇤

�N

= min
k2K

✓�� � Thp,k
��2
2
+ C log

✓
1

↵wk

◆p
Ck

�N

◆
,

as desired.

I.4 Proof of Theorem 3.5

Recall that we suppose that the following assumptions hold.

• The model density p is strictly positive on its connected and compact support S ✓ Rd.
• The score function r log p(x) is continuous and bounded on S.
• The support of the density q is a connected and compact subset of S.

• The kernel used is a scaled Gaussian kernel k�(x, y) := �2�d exp
⇣
�kx� yk22 /�2

⌘
.

We introduce some notation. For some c 2 R, we write c := (c, . . . , c) 2 Rd. We write
(a1, . . . , ad) (b1, . . . , bd) when ai bi for i = 1, . . . , d. We use C,C 0 to denote some generic
constants which may change on different lines.

Note that, by properties of compactness on Rd, there exists some a > 0 such that S ✓
⇥
�a

2 ,
a
2

⇤d.
Since the score function r log p(x) is continuous and bounded on the compact set S, there exists
some c1 > 0 such that

|(r log p(x))i| c1 for i = 1, . . . , d and for all x 2 S.

We work with a scaled Gaussian kernel with bandwidth � 1, defined as

k�(x, y) := �2�d exp

�kx� yk22

�2

!

which satisfies

rxk�(x, y) = 2��d(y � x) exp

�kx� yk22

�2

!
 2��da exp

�kx� yk22

�2

!
,

ryk�(x, y) = 2��d(x� y) exp

�kx� yk22

�2

!
 2��da exp

�kx� yk22

�2

!
,

dX

i=1

@

@xi@yi
k�(x, y) =

⇣
2d��d � 4��2�dkx� yk22

⌘
exp

�kx� yk22

�2

!

 2d��d exp

�kx� yk22

�2

!
.

25

The Stein kernel associated to k� satisfies

hp,k�(x, y) :=
�
r log p(x)>r log p(y)

�
k�(x, y) +r log p(y)>rxk�(x, y)

+r log p(x)>ryk�(x, y) +
dX

i=1

@

@xi@yi
k�(x, y)

 2
�
dc21 + 2dc1a�

�d + d��d
�
exp

�kx� yk22

�2

!

 C0⇡
�d/2��d exp

�kx� yk22

�2

!

since � 1, where the constant is C0 := 2⇡d/2(dc21 + 2dc1a+ d). The Stein kernel can be upper
bounded by a scaled Gaussian kernel on S. Writing

k̄�(x, y) := ⇡�d/2��d exp

�kx� yk22

�2

!
,

which is of the form considered by Schrab et al. (2021, Section 3.1) with equal bandwidths for each
dimension, we have shown that

hp,k�(x, y) C0k̄�(x, y) for all x, y 2 S. (16)

Writing := p� q, recall from Theorem 3.1 that a sufficient condition for control of the probability
of type II error by � is

k k22 �
��� � Thp,k�

���
2

2
+ C log

✓
1

↵

◆pEq,q[hp,k�(X,Y)2]

�N
.

Using the upper bound

Eq,q[hp,k�(X,Y)2] C2
0Eq,q

⇥
k̄�(X,Y)2

⇤
 C2

0
M

�d

where the last inequality holds as in Schrab et al. (2021, Equation (22)), we obtain the sufficient
condition

k k22 �
��� � Thp,k�

���
2

2
+ C

log(1/↵)

�N�d/2
(17)

where we have absorbed the term C0

p
M in the constant C.

We would like to upper bound the term
��� � Thp,k�

���
2

2
by
�� � Tk̄�

��2
2

but this is not possible
using Equation (16). Instead, we can use the triangle inequality to get

��� � Thp,k�

���
2

2

�� � Tk̄�

��2
2
+
���Tk̄�

 � Thp,k�

���
2

2

�� � Tk̄�

��2
2
+
⇣��Tk̄�

��
2
+
���Thp,k�

���
2

⌘2

�� � Tk̄�

��2
2
+ 2

✓��Tk̄�

��2
2
+
���Thp,k�

���
2

2

◆

�� � Tk̄�

��2
2
+ 2(C2

0 + 1)
��Tk̄�

��2
2

since
�
Thp,k�

�
(y) =

Z

S
hp,k�(x, y) (x) dx C0

Z

S
k̄�(x, y) (x) dx = C0

�
Tk̄�

�
(y)

for all y 2 S.

Recall that we assume that 2 Ss,t
d (R,L) for some L to be determined, in particular 2 Ss

d(R).

For the term
�� � Tk̄�

��2
2
, we use the fact that 2 Ss

d(R). The term
�� � Tk̄�

��2
2

can then be
upper bounded exactly as done by Schrab et al. (2021, Appendix E.6) with the difference that we

26

choose et > 0 such that S1 < 0.5 rather than S1 < 1 (S1 is defined in Schrab et al. (2021, Appendix
E.6)). Following their reasoning, since 2 Ss

d(R), we obtain that there exists some S1 2 (0, 0.5)
and some constant C > 0 (depending on d, s and R) such that

�� � Tk̄�

��2
2
 S2

1k k
2
2 + C�2s 1

4
k k22 + C�2s.

To upper bound the term
��Tk̄�

��2
2
, we modify the reasoning of Schrab et al. (2021, Appendix E.6)

used for the term
�� � Tk̄�

��2
2
, and utilise the restricted Sobolev ball regularity assumption. First,

note that since k̄� is translation-invariant, Tk̄�
is a convolution as

�
Tk̄�

�
(y) =

Z

S
k̄�(x, y) (x) dx =

Z

S
'�(x� y) (x) dx =

�
 ⇤ '�

�
(y)

where

'�(u) :=
dY

i=1

��1K
⇣ui

�

⌘
, and K(u) := ⇡�1/2 exp(�u2).

By properties of Fourier transforms, we have c'�(⇠) =
Qd

i=1
bK(�⇠i) for ⇠ 2 Rd. Note that

�����

dY

i=1

bK(⇠i)

�����
dY

i=1

Z

R

��K(x)e�ix⇠i
�� dx =

dY

i=1

Z

R
|K(x)| dx = 1.

For some L to be determined, by assumption, we have 2 Ss,t
d (R,L), so

Z

k⇠k2t

��� b (⇠)
���
2
d⇠ 1

L

Z

Rd

��� b (⇠)
���
2
d⇠ =

�� b
��2
2

L
.

For s > 0, define

Ts := sup
k⇠k2>t

���
Qd

i=1
bK(⇠i)

���
k⇠ks2

 1

ts
< 1.

Then, using Plancherel’s Theorem as in Schrab et al. (2021, Appendix E.6), we obtain

(2⇡)d
��Tk̄�

��2
2

= (2⇡)dk ⇤ '�k22

=
���c'�

b
���
2

2

=

Z

Rd

|c'�(⇠)|2
��� b (⇠)

���
2
d⇠

=

Z

Rd

�����

dY

i=1

bK(�⇠i)

�����

2 ��� b (⇠)
���
2
d⇠

=

Z

k⇠k2t

�����

dY

i=1

bK(�⇠i)

�����

2 ��� b (⇠)
���
2
d⇠ +

Z

k⇠k2>t

�����

dY

i=1

bK(�⇠i)

�����

2 ��� b (⇠)
���
2
d⇠

Z

k⇠k2t

��� b (⇠)
���
2
d⇠ + T 2

s

Z

k⇠k2>t
k�⇠k2s2

��� b (⇠)
���
2
d⇠

 1

L

�� b
��2
2
+ �2sT 2

s

Z

Rd

k⇠k2s2
��� b (⇠)

���
2
d⇠

 (2⇡)d

L
k k22 + �2sT 2

s (2⇡)
dR2.

27

Combining those results, the upper bound on
��� � Thp,k�

���
2

2
becomes

��� � Thp,k�

���
2

2

�� � Tk̄�

��2
2
+ 2(C2

0 + 1)
��Tk̄�

��2
2

✓
1

4
k k22 + C�2s

◆
+

✓
2(C2

0 + 1)

L
k k22 + C 0�2s

◆

=

✓
1

4
k k22 + C�2s

◆
+

✓
1

4
k k22 + C 0�2s

◆

 1

2
k k22 + C�2s,

where we let L := 8(C2
0 + 1). The condition in Equation (17) then becomes

k k22 � 1

2
k k22 + C�2s + C 0

log(1/↵)

�N�d/2

which gives

k k22 � C

✓
�2s +

log(1/↵)

�N�d/2

◆
. (18)

Having proved the power guaranteeing condition in Equation (18), we can then derive rates for the
KSD and KSDAGG tests as similarly done by Schrab et al. (2021). Set � := N�2/(4s+d) to get the
condition

k k22 � C
⇣
N�4s/(4s+d) +N�1Nd/(4s+d)

⌘
= CN�4s/(4s+d)

which is the minimax rate over (unrestricted) Sobolev balls Ss
d(R) (Li and Yuan, 2019; Balasubrama-

nian et al., 2021; Albert et al., 2022; Schrab et al., 2021).

In practice, the smoothness parameter of the Sobolev ball is not known, so we cannot set � :=
N�2/(4s+d) (i.e. it cannot be implemented). Instead, we can use our aggregated test KSDAGG.
Adapting the proof of Theorem 3.3 with the single test power condition Equation (18), we obtain the
aggregated test power condition

k k22 � Cmin
�2⇤

✓
�2s + log

✓
1

↵w�

◆
1

�N�d/2

◆
. (19)

Similarly to Schrab et al. (2021, Corollary 10), consider

⇤ :=
n
2�` : ` 2

n
1, . . . ,

l2
d
log2

⇣ N

ln(ln(N))

⌘moo
, w� :=

6

⇡2 `2
.

Let
`⇤ :=

l 2

4s+ d
log2

⇣ N

ln(ln(N))

⌘m

l2
d
log2

⇣ N

ln(ln(N))

⌘m
.

The bandwidth �⇤ := 2�`⇤ 2 ⇤ satisfies

ln

✓
1

w�⇤

◆
 C ln(`⇤) C ln(ln(N))

as w�⇤ := 6⇡�2(`⇤)
�2, and

1

2

✓
N

ln(ln(N))

◆�2/(4s+d)

 �⇤
✓

N

ln(ln(N))

◆�2/(4s+d)

.

We get

�2s
⇤

✓

N

ln(ln(N))

◆�4s/(4s+d)

and

log

✓
1

↵w�⇤

◆
1

�N�d/2⇤

 C

✓
N

ln(ln(N))

◆�1✓ N

ln(ln(N))

◆d/(4s+d)

 C

✓
N

ln(ln(N))

◆�4s/(4s+d)

.

The KSDAGG power condition of Equation (19) then becomes

k k22 � C

✓
N

ln(ln(N))

◆�4s/(4s+d)

,

which concludes the proof.

28

	Introduction
	Notation
	Construction of tests and bounds
	Single test
	Aggregated test
	Bandwidth selection
	Uniform separation rates over restricted Sobolev balls

	Implementation and experiments
	Alternative bandwidth selection approaches
	Experimental details
	Gamma distribution
	Gaussian-Bernoulli Restricted Boltzmann Machine
	MNIST Normalizing Flow

	Acknowledgements
	Assumptions
	Assumptions common to all theoretical results
	Assumptions for lem:singlepower
	Assumptions for theo:aggpower and cor:aggpowerbandwidth
	Assumptions for theo:raterestricted

	Collection of bandwidths for KSDAgg
	Background on Kernel Stein Discrepancy
	Asymptotic level for KSD test with wild bootstrap
	Runtimes comparison of all KSD tests considered
	Details on MNIST Normalizing Flow experiment
	Details on our aggregation procedure
	Adversarially constructed settings in which KSDAgg might fail
	Proofs
	Proof of lem:singlepower
	Proof of prop:agglevel
	Proof of theo:aggpower
	Proof of theo:raterestricted

