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Abstract

We develop a new reduction that converts any online convex optimization algorithm
suffering O(

√
T ) regret into an ϵ-differentially private stochastic convex optimiza-

tion algorithm with the optimal convergence rate Õ(1/
√
T +

√
d/ϵT ) on smooth

losses in linear time, forming a direct analogy to the classical non-private “online-
to-batch” conversion. By applying our techniques to more advanced adaptive
online algorithms, we produce adaptive differentially private counterparts whose
convergence rates depend on apriori unknown variances or parameter norms.

1 Introduction

Solving stochastic convex optimization (SCO) problems forms a core component of training models
in machine learning, and is the topic of this paper. The SCO problem is to optimize an objective L:

min
x∈W

L(x) = E
z∼Pz

[ℓ(x, z)] (1)

Here, x represents model parameters or weights lying in a convex domain W ⊂ Rd, Pz is some
unknown distribution over examples z and ℓ(x, z) represents a loss function we will assume to be
convex and smooth in x. Although we do not know Pz , we do know the loss ℓ, and we have access to
an i.i.d. dataset Z = (z1, . . . , zT ) that may have been obtained via user surveys or volunteer tests.
Using this information, we would like to solve the optimization problem (1). The quality of a putative
solution x̂ is measured by the suboptimality gap L(x̂)− L(x⋆) for x⋆ ∈ argminx∈W L(x).
In addition to solving (1), we also wish to preserve privacy for the people who contributed to the
dataset Z. To this end, we require our algorithms to be differentially private (Dwork et al., 2006;
Dwork and Roth, 2014), which means that replacing any one zt with a different z′t has a negligible
effect on x̂. There is a delicate interplay between privacy, dataset size, and solution quality. As T
grows, the influence of any individual zt on x̂ decreases, increasing privacy. However, for any finite
T , one must necessarily leak some information about the dataset in order to achieve a nontrivial
L(x̂)− L(x⋆). The goal, then, is to minimize L(x̂)− L(x⋆) subject to the privacy constraint.

This problem has been well-studied in the literature, and by now the optimal tradeoffs are known
and achievable1. In particular, Bassily et al. (2019) exhibits a polytime algorithm that achieves

1We focus on the harder stochastic optimization problem rather than empirical risk minimization, which is
also well-studied, e.g. (Chaudhuri et al., 2011; Kifer et al., 2012).
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L(x̂) − L(x⋆) ≤ Õ(1/
√
T +

√
d/ϵT ) where ϵ is a measure of privacy loss (large ϵ means less

private), and moreover they show that this bound is tight in the worst case. Then, Feldman et al.
(2020) provides an improved algorithm that obtains the same guarantee in O(T ) time. Further work
on this problem considers assumptions on the geometry (Asi et al., 2021), gradient distributions
(Kamath et al., 2021), or smoothness (Bassily et al., 2020; Kulkarni et al., 2021).

All private optimization algorithms we are aware of fall into one of two camps: either they employ
some simple pre-processing that “sanitizes” the inputs to a non-private optimization algorithm (e.g.
the empirically popular DP-SGD of Abadi et al. (2016)), or they make a careful analysis of the
dynamics of their algorithm (e.g. bounding the sensitivity of a single step of stochastic gradient
descent). In the former case, the algorithm typically does not achieve the optimal convergence rate
for stochastic optimization. In the latter case, the algorithm becomes more rigidly tied to the privacy
analysis, resulting in delicate “theory-crafted” methods that are less popular in practice.

In contrast, in the non-private setting, there is a simple and general technique to produce stochastic
optimization algorithms with optimal convergence guarantees: the online-to-batch conversion (Cesa-
Bianchi et al., 2004). This method directly converts any online convex optimization (OCO)(Shalev-
Shwartz, 2011; Hazan, 2019; Orabona, 2019) algorithm into a stochastic optimization algorithm. OCO
is a simple and elegant game-theoretic formulation of the optimization problem that has witnessed an
explosion of diverse algorithms and techniques, so that this conversion result immediately implies a
vast array of practical optimization algorithms. In summary: producing private stochastic optimization
algorithms with optimal convergence rates is currently delicate and difficult, while producing non-
private algorithms is essentially trivial.

Our goal is to rectify this issue. To do so, we produce a new differentially private online-to-batch
conversion. In direct analogy to the non-private conversion, our method converts any OCO algorithm
into a private stochastic optimization algorithm. After using our conversion, any OCO algorithm that
achieves the optimal regret (the standard measure of algorithm quality in OCO), will automatically
achieve the optimal suboptimality gap of Õ(1/

√
T+

√
d/ϵT ). Our conversion has additional desirable

properties: although convexity is required for the guarantee on suboptimality, it is not required for the
privacy guarantee, meaning that the method can be easily applied to non-convex tasks (e.g. in deep
learning). Further, by largely decoupling the privacy analysis from the algorithm design through this
reduction, we can leverage the rich literature of OCO to build private algorithms with new adaptive
guarantees. For two explicit examples, (1) we construct an algorithm guaranteeing L(x̂)− L(x⋆) ≤
Õ(σ/

√
T +

√
d/ϵT ), where σ is the apriori unknown standard deviation in the gradient ∇ℓ(w, z),

and (2), we construct an algorithm guaranteeing L(x̂) − L(x⋆) ≤ Õ(∥x⋆ − x1∥/
√
T +

√
d/ϵT ),

where x1 is any user-supplied point. This last guarantee may have applications in private fine tuning
(Li et al., 2022; Yu et al., 2021; Hoory et al., 2021; Kurakin et al., 2022; Mehta et al., 2022), as the
bound automatically improves when the algorithm is provided with a good initialization point.

1.1 Preliminaries

Problem setup We define the loss function as ℓ :W ×Z → R where W ⊆ Rd is a convex domain
and Z = (z1, . . . , zT ) is an element of ZT for some dataspace Z . We assume Z is an i.i.d. dataset
and zt ∼ Pz for some unknown disribution over Z . We then define L(x) = Ez∼Pz

[ℓ(x, z)].

Let ∥ · ∥ be a norm on Rd, with dual norm ∥ · ∥∗ defined by ∥g∥∗ = sup∥x∥≤1⟨g, x⟩. By definition,
⟨g, x⟩ ≤ ∥g∥∗∥x∥, (Fenchel-Young’s inequality). We make the following assumptions:
Assumption 1. ∥ · ∥2 is λ-strongly convex w.r.t. ∥ · ∥: for all x, y ∈ Rd and g ∈ ∂∥x∥2,

∥y∥2 ≥ ∥x∥2 + ⟨g, y − x⟩+ λ

2
∥y − x∥2.

Assumption 2. W has diameter at most D: ∀ x, y ∈W , ∥x− y∥ ≤ D.
Assumption 3. ℓ(x, z) is G-Lipschitz in x: ∀ x ∈W, z ∈ Z, ∥∇ℓ(x, z)∥∗ ≤ G.
Assumption 4. ℓ(x, z) is H-smooth in x: ∀ x, y ∈W, z ∈ Z, ∥∇ℓ(x, z)−∇ℓ(y, z)∥∗ ≤ H∥x− y∥.
Assumption 5. E[∥∇L(x)−∇ℓ(x, z)∥2∗] ≤ σ2

G for all x, z.
Assumption 6. E[∥[∇L(x)−∇L(y)]− [∇ℓ(x, z)−∇ℓ(y, z)]∥2∗] ≤ σ2

H∥x− y∥2 for all x, y, z.

Note that if ℓ is G-Lipschitz and H-smooth in x, then so it L, and Assumption 5 and 6 hold with
σG ≤ 2G and σH ≤ 2H . Moreover, notice that Assumption 2 - 6 depend on the norm ∥ · ∥.
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Differential Privacy We now provide a formal definition of our privacy metric, differential privacy
(DP). The definition hinges on the notion of neighboring datasets: datasets Z = (z1, . . . , zT ) and
Z ′ = (z′1, . . . , z

′
T ) in ZT are said to be neighbors if |Z − Z ′| ≜ |{t | zt ̸= z′t}| = 1.

Definition 1 ((ϵ, δ)-DP (Dwork and Roth, 2014)). A randomized algorithm M : ZT → Rd is
(ϵ, δ)-differentially private for ϵ, δ ≥ 0 if for any neighboring Z,Z ′ ∈ ZT and S ∈ Rd:

P{M(Z) ∈ S} ≤ exp(ϵ)P{M(Z ′) ∈ S}+ δ

An alternative definition is Rényi differential privacy (RDP), which is a generalization of DP that
allows us to compose mechanisms more easily and achieve tighter privacy bounds in certain cases.
Definition 2 ((α, ϵ)-RDP (Mironov, 2017)). A randomized mechanism M : ZT → Rd is said to be
(α, ϵ)-Rényi differentially private for α > 1, ϵ ≥ 0 if for any neighboring datasets Z,Z ′ ∈ ZT :

Dα(M(Z)||M(Z ′)) ≤ ϵ

where Dα(P ||Q) ≜ 1
α−1 logEx∼Q

(
P (x)
Q(x)

)
.

RDP can be easily converted to the usual (ϵ, δ)-DP as follows (Mironov, 2017): if a randomized
algorithm M is (α, ϵ)-RDP, then it is also (ϵ+ log 1/δ

α−1 , δ)-DP for all δ ∈ (0, 1). In particular, if M is
(α, αρ2/2)-RDP for all α > 1, then it is also (2ρ

√
log(1/δ), δ)-DP for all δ ≥ exp(−ρ2).

Throughout the paper, we also frequently use the notion of sensitivity:
Definition 3 (Sensitivity). The sensitivity of a function f : ZT → Rd w.r.t. norm ∥ · ∥ is:

∆f = sup
|Z−Z′|=1

∥f(Z)− f(Z ′)∥∗.

Almost all methods for ensuring differential privacy involve injecting noise whose scale increases
with the sensitivity of the output. In other words, small sensitivity implies high privacy.

2 Diffentially Private Online-to-Batch

In this section, we present our main differentially private online-to-batch algorithm. To start, we need
to define online convex optimization (OCO). OCO is a “game” in which for T rounds, t = 1, . . . , T ,
an algorithms predicts a parameter wt ∈W . It then receives a convex loss ℓt :W → R and pays the
loss ℓt(wt). The quality of the algorithm is measured by the regret w.r.t. a competitor u, defined as
RegretT (u) =

∑T
t=1 ℓt(wt)− ℓt(u).

Online-to-batch algorithms (Cesa-Bianchi et al., 2004) convert OCO algorithms (online learners)
into stochastic convex optimization algorithms. In particular, for β1, . . . , βT > 0, the anytime
online-to-batch conversion (Cutkosky, 2019) defines the t-th loss as ℓt(w) = ⟨βt∇ℓ(xt, zt), w⟩,
where xt =

∑t
i=1

βiwi

β1:t
.2 Convergence of anytime online-to-batch builds on the following key result,

and its proof is in Appendix A for completeness.
Theorem 1 (Cutkosky (2019)). For any sequence of βt > 0, gt ∈ Rd, suppose an online learner
predicts wt and receives t-th loss ℓt(w) = ⟨gt, w⟩. Define xt =

∑t
i=1

βiwi

β1:t
where β1:t =

∑t
i=1 βi.

Then for any convex and differentiable L,

β1:T (L(xT )− L(u)) ≤ RegretT (u) +

T∑
t=1

⟨βt∇L(xt)− gt, wt − u⟩, ∀u ∈ Rd.

A tighter bound is possible (Joulani et al., 2020), but the simpler expression above suffices for our
analysis. As an immediate result, choosing βt = 1 and gt = βt∇ℓ(xt, zt) satisfies E[gt|xt] =
βt∇L(xt), so E[L(xT )− L(u)] ≤ E[RegretT (u)]/T . Therefore, any online learner with sub-linear
regret guarantees convergence for the last iterate xT . Notice that due to the formulation of the anytime
online-to-batch, the iterate xt is stable. Consider the case where βt = 1 for all t. Then, we have
∥xt − xt−1∥ = ∥wt − xt−1∥/t ≤ D/t regardless of what the online learner does. This guarantee is

2Throughout this paper, we denote β1:t =
∑t

i=1 βi.
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significantly stronger than the classical online-to-batch result of Cesa-Bianchi et al. (2004). We would
like to take advantage of this stability to design our private online-to-batch algorithm. Intuitively, the
algorithm has much lower sensitivity due to the stability of the iterates, which can be exploited to
improve privacy.

Our goal will be to make the entire sequence g1, . . . , gT private, which, in turn, makes the entire
algorithm private. To do so, we would like to add noise to the gt’s while still having gt be a
good estimate of ∇L(xt). In standard non-private online-to-batch, gt is usually defined as the
stochastic gradient ∇ℓ(xt, zt). However, directly adding noise to ∇ℓ(xt, zt) is not a good idea
because its sensitivity is O(1) (more specifically the sensitivity is bounded by 2G by Lipschitzness).
Consequently, we need to add noise to gt whose variance is of order O(1/ϵ) in order to achieve
ϵ-differential privacy.

Instead, we express gt =
∑t

i=1 δi, where δi = βi∇ℓ(xi, zi)− βi−1∇ℓ(xi−1, zi) and β0 ≡ 0. Since
we assume ℓ is smooth, if we set βi = 1 then ∥δi∥∗ ≤ H∥xi − xi−1∥ ≤ DH/i, i.e., the sensitivity
of δi is O(1/i). As a result, we can privately estimate gt with error roughly Õ(1/tϵ) using the tree
aggregation mechanism (Dwork et al., 2010; Chan et al., 2011), an advanced technique that privately
estimates running sums, such as our

∑t
i=1 δi. Compared to directly adding noise to ∇ℓ(xt, zt), this

method adds less noise (Õ(1/tϵ) compared to O(1/ϵ)) and thus allows us to achieve the optimal rate.

On the other hand, after using these advanced aggregation techniques, gt is no longer an
conditionally unbiased estimator of βt∇L(xt). More specifically, although it remains the
case that Ezi [δi|z1, . . . , zi−1] = βi∇L(xi) − βi−1∇L(xi−1), it is not necessarily true that
E[gt|z1, . . . , zt−1] ̸= βt∇L(xt). Unbiasedness plays a key role in standard convergence analy-
ses, but we will need a much more delicate analysis.

Moreover, although we mostly discuss the βt = 1 case above for intuition, our algorithm is analyzed
using the general case βt = tk for k ≥ 1. The guiding principle for this formula is the sensitivity
of δt. For k ≥ 1, the sensitivity of δt is of order O(tk−1). For k = 1, this is a constant sensitivity,
which is particularly intuitive for analysis. For k = 0 (i.e. the standard weighting in online-to-batch),
the sensitivity is actually O(1/t), which is much more complicated to analyze. In order to apply the
tree aggregation easily, we want the sensitivity of δt to be polynomial in t, rather than the inverse
polynomial 1/t, so we define βt = tk and ask t ≥ k. Furthermore, in all cases except for the
parameter-free case (Section 5), our results hold for all k ≥ 1. In the parameter-free case, we choose
k = 3 for algebraic reasons.

The pseudo-code is presented in Algorithm 1, which has linear time complexity. It is similar to
anytime online-to-batch, while we replace gt with the more complicated definition and add noise
γt generated by the NOISE subroutine, which implements the tree aggregation. More specifically,
given random noises {Rt}, NOISE(t) returns

∑
i∈It

Ri, where It is the set of cumulative sums of
the binary expansion of t. That is, for some n ≥ ⌊log2(t)⌋ + 1, we define bin(t) ∈ {0, 1}n by
t =

∑n
i=1 bin(t)[i]2

n−i. Then, It consists of all non-zero sums of the form
∑i

k=1 bin(t)[i]2
n−i.

For examples, 7 = 4 + 2 + 1, so I7 = {4, 6, 7}; 8 = 8, so I8 = {8}.

Algorithm 1 Differentially-Private Online-to-Batch
1: Input: OCO algorithm A with domain W , positive sequence {βt}, distribution D, dataset Z.
2: Initialize: Set β0 = 0, x0 = 0 and g0 = 0. Set global variable R = {}.
3: for t = 1, . . . , T do
4: Get wt from A and compute xt = (β1:t−1xt−1 + βtwt)/β1:t.
5: Compute gradient difference δt = βt∇ℓ(xt, zt)− βt−1∇ℓ(xt−1, zt).
6: Update gt = gt−1 + δt and generate noise γt = NOISE(t).
7: Send ℓt(w) = ⟨gt + γt, w⟩ to A as the t-th loss.

8: function NOISE(t)
9: Initialize: Set k = 0, It = {}, bin(t) be the binary encoding of t, and n = ⌊log2 t⌋+ 1.

10: for i = 1, . . . , n do
11: If bin(t)[i] = 1, update k = k + 2n−i and It = It ∪ {k}.
12: Generate noise R̃t ∼ D, compute Rt = σtR̃t, and update R = R∪ {Rt}.
13: Return γt =

∑
i∈It

Ri.
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Convergence Following Theorem 1 and Fenchel-Young’s inequality, Algorithm 1 satisfies:

β1:T (L(xT )− L(x∗)) ≤ RegretT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − x∗⟩ (2)

≤ RegretT (x
∗) +

T∑
t=1

D∥βt∇L(xt)− gt∥∗ +
T∑

t=1

D∥γt∥∗. (3)

(3) decomposes the suboptimality gap L(xT )−L(x∗) into three components: (i) regret RegretT (x
∗),

(ii) error associated with variance of gt, measured by ∥βt∇L(xt) − gt∥∗, and (iii) error from DP
mechanism, measured by ∥γt∥∗. To get a tight bound, we observe that βt∇L(xt) − gt and γt are
sums of conditionally mean-zero random vectors (Lemma 15 in Appendix A). With a martingale
bound in high dimension with general norm (Lemma 13), we can derive the following bounds. In
particular, we show (Lemma 15) that if Assumption 1 - 6 hold and set βt = tk, then

E[∥βt∇L(xt)− gt∥2∗] ≤ 4(k + 1)2(σ2
G +D2σ2

H)t2k−1/λ, . (4)

Moreover, we show (Lemma 16) that if E[Rt] = 0 and E[∥Rt∥2∗] ≤ σ̄2
t , then

E[∥γt∥2∗] ≤ 2(max
i≤t

σ̄2
i ) log2(2t)/λ. (5)

Privacy The next step is to determine how much noise is sufficient for Algorithm 1 to be RDP. We
first make the following assumption on the distribution D.

Definition 4 ((V, α)-RDP distribution). A distribution D on Rd is said to be a (V, α)-RDP distribution
on ∥ · ∥ if it satisfies that for R ∼ D (i) E[R] = 0, (ii) E[∥R∥2∗] ≤ V , and (iii) for all ρ > 0 and
µ, µ′ ∈ Rd, if σ2 ≥ ∥µ− µ′∥2∗/ρ2, then Dα(σR+ µ∥σR+ µ′) ≤ αρ2/2.3

Remark 2. A standard (V, α)-RDP distribution on theL2 norm is the multivariate normal distribution.
Let R ∼ N (0, I) then it is clear that E[R] = 0 and E[∥R∥22] = d. For the third condition, we can
show that for all µ, µ′ and α > 1, Dα(N (µ, σ2I)∥N (µ′, σ2I)) ≤ α∥µ−µ′∥22/2σ2, which is further
bounded by αρ2/2 for all σ2 ≥ ∥µ − µ′∥22/ρ2 (Lemma 18) . Therefore, N (0, I) is a (d, α)-RDP
distribution for all α > 1.

As its name suggests, adding noise sampled from RDP distribution is sufficient to make a deterministic
algorithm RDP. Consider function f̂(Z) = f(Z) + σR, where R ∼ D and D is a (V, α)-RDP
distribution on ∥ · ∥. Let ∆ be the sensitivity of f w.r.t ∥ · ∥. Set σ2 ≥ ∆2/ρ2, then by Definition 4,

Dα(f̂(Z)∥f̂(Z ′)) = Dα(f(Z) + σR∥f(Z ′) + σR) ≤ αρ2/2.

Thus, f̂ is (α, αρ2/2)-RDP. Moreover, we can compose RDP mechanisms via the tree aggregation
mechanism. Specifically, we set βt = tk and define the variance σ2

t in Algorithm 1 as follows:

σ2
t =

4(k + 1)2

ρ2
(G+Hmax

i∈[t]
∥wi − xi−1∥)2 log2(2T )t2k−2, (6)

We assume ∥wi − xi−1∥ ≤ D. Upon substituting (6) into (5), we get E[∥Rt∥2∗] ≤ σ̄2
t ≤ V σ2

t and:

E[∥γt∥2∗] ≤
8(k + 1)2V (G+DH)2

λρ2
log22(2T )t

2k−2. (7)

The following theorem shows that Algorithm 1 is Rényi differentially private if we define σ2
t as in

(6). Its proof is presented in Appendix B. Note that the privacy guarantee does not require i.i.d. Z.

Theorem 3. Suppose ∥ · ∥2 is λ-strongly convex, W is bounded by D, ℓ is G-Lipschitz and H-smooth,
and D is a (V, α)-RDP distribution. If βt = tk and σ2

t is as defined in (6), then Algorithm 1 is
(α, αρ2/2)-DP for all datasets Z.

3Here we slightly abuse the notation. For random vectors X,Y , Dα(X∥Y ) denotes the Rényi divergence of
the underlying distributions of X and Y .
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Main Result. Now we can combine all the previous results to prove the privacy and convergence
guarantee of our algorithm.
Theorem 4. Suppose Assumption 1 - 6 hold, and D is a (V, α)-RDP distribution. If we set βt = tk

and define σ2
t as in (6), then Algorithm 1 is (α, αρ2/2)-RDP and E[L(xT )− L(x∗)] is bounded by:

(k + 1)E[RegretT (x∗)]
T k+1

+
2(k + 1)2D√

λ

(
σG +DσH√

T
+

√
2V (G+DH) log2(2T )

ρT

)
.

Moreover, recall that the online learner receives t-th loss ℓt(w) = ⟨gt + γt, w⟩. It holds that

E[∥gt + γt∥2∗] ≤ 3t2k
(
G2 +

4(k + 1)2

λ

(
(σG +DσH)2

t
+

2V (G+DH)2 log22(2T )

ρ2t2

))
.

Remark 5. As an example, let’s consider the Gaussian distribution N (0, I) on the 2-norm, which is
a (d, α)-RDP distribution for all α > 1 (Remark 2). For many popular online learners (OSD, OMD,
FTRL), if E[∥∇ℓt(wt)∥2∗] ≤ Ĝ2 for all t, then E[RegretT (x∗)] ≤ O(DĜ

√
T ). Hence, Theorem 4

with D = N (0, I) implies that

E[L(xT )− L(x∗)] = O

(
D(G+DσH)√

T
+

√
dD(G+DH) log T

ρT

)
.

This bound is of Õ(1/
√
T +

√
d/ρT ), which can be translated to an equivalent (ϵ, δ)−DP bound of

Õ(1/
√
T+
√
d log(1/δ)/ϵT ). This bound matches the optimal rate for private stochastic optimization

with convex and smooth losses (Bassily et al. (2019)).

Proof of Theorem 4. From Eq. (3), we have:

E[L(xT )− L(x∗)] ≤ 1

β1:T
E

[
RegretT (x

∗) +D

T∑
t=1

(∥βt∇L(xt)− gt∥∗ + ∥γt∥∗)

]

Recall the bounds of E[∥βt∇L(xt) − gt∥2∗] and E[∥γt∥2∗] in (4) and (7). By Jensen’s inequality,
E[∥X∥∗] ≤

√
E[∥X∥2∗]. Moreover, since βt = tk and k ≥ 1, it holds that β1:T ≥ T k+1/k + 1, so:

≤ E[Regret]
β1:T

+
D

β1:T

T∑
t=1

2(k + 1)(σG +DσH)tk−
1
2

√
λ

+

√
8V (k + 1)(G+DH) log2(2T )t

k−1

√
λρ

≤ (k + 1)E[RegretT (x∗)]
T k+1

+
2(k + 1)2D√

λ

(
σG +DσH√

T
+

√
2V (G+DH) log2(2T )

ρT

)
.

For the second part of the theorem,

E[∥gt + γt∥2∗] ≤ 3E[∥βt∇L(xt)∥2∗ + ∥gt − βt∇L(xt)∥2∗ + ∥γt∥2∗]

We bound the first term by Lipschitzness, the second by (4), and the third by (7)

≤ 3t2kG2 +
12(k + 1)2(σ2

G +D2σ2
H)t2k−1

λ
+

24V (k + 1)2(G+DH)2 log22(2T )t
2k−2

λρ2

= 3t2k
(
G2 +

4(k + 1)2

λ

(
(σG +DσH)2

t
+

2V (G+DH)2 log22(2T )

ρ2t2

))
.

3 The Optimistic Case

In this section, we show that choosing an optimistic online learner (Chiang et al., 2012; Rakhlin
and Sridharan, 2013; Steinhardt and Liang, 2014) will accelerate our DP online-to-batch algorithm.
Optimistic algorithms are provided with additional “hints” in the form of ℓ̂t(w) = ⟨ĝt, w⟩ as an
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approximation of the true loss ℓt(w) = ⟨gt, w⟩, and they can incorporate ℓ̂t to decide wt. The regret
of an optimistic algorithm depends on the quality of hints: if ĝt ≈ gt, then it achieves a low regret.
Formally, in this paper, we say an online learning algorithm is optimistic w.r.t. norm ∥ · ∥ if its regret
is the following:

RegretT (x
∗) ≤ O

D
√√√√ T∑

t=1

∥ĝt − gt∥2∗

 , (8)

where D denotes the diameter of the learner’s domain.

A common choice of the hint ĝt is gt−1, the gradient in the last round since intuitively, one could
expect gt−1 ≈ gt when the loss functions are smooth. In this section, we also follow this choice.
Recall that in Algorithm 1, the online learner receives t-th loss ℓt(w) = ⟨gt + γt, w⟩, where
gt =

∑t
i=1 δi is the sum of gradient differences, and γt is some noise. Therefore, we define the t-th

hint as ĝt = gt−1 + γt−1.
Theorem 6. Suppose Assumption 1 - 4 hold, and D is a (V, α)-RDP distribution. Set βt = tk and
σ2
t as defined in (6), If the online learner is optimistic (satisfying (8)) with t-th gradient ḡt = gt + γt

and t-th hint ĝt = ḡt−1, then

E[RegretT (x∗)]
β1:T

≤ O

(
D(G+DH)

(
1 +

√
V log T√
λρ

)
1

T 3/2

)
.

The proof is in Appendix D. As an immediate corollary, if we further assume Assumption 5 and 6,
then Theorem 4 applies. Together with this theorem, they imply that optimistic learners achieve the
following convergence rate that is adaptive to the variance:

E[L(xT )− L(x∗)] = O

(
D(σG +DσH)√

T
+

√
dD(G+DH) log T

ρT

)
.

Compared to the bound in the non-optimistic case (Remark 5), this bound has σG instead of G in the
first term. Thus, when the gradient ∇ℓ(xt, zt) has low variance, i.e., σG ≪ G, the optimistic bound
outperforms the standard bound.

4 The Strongly Convex Case

In this section, we prove that in the case of strong convexity, our algorithm can be improved by
regularizing the loss of online learner. If L is strongly convex, then we can prove a similar result to
Theorem 1 (the proof is in Appendix E).
Lemma 7. Suppose L is µ-strongly convex w.r.t. ∥ · ∥. If we replace ℓt(w) = ⟨gt + γt, w⟩ with
ℓ̄t(w) = ℓt(w) +

βtµ
4 ∥w − xt∥2 in Algorithm 1, and denote the associated regret by RegretT , then

β1:T (L(xT )− L(x∗)) ≤ RegretT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − x∗⟩ − βtµ

8
∥wt − x∗∥2

≤ RegretT (x
∗) +

T∑
t=1

2∥βt∇L(xt)− gt − γt∥2∗
βtµ

.

Compared to Lemma 1 and Equation 3, in the strongly convex case, there is an additional term
−βtµ

8 ∥wt − x∗∥2, which allows the improved convergence rate:
Theorem 8. Suppose Assumption 1 - 6 hold, and D is a (V, α)-RDP distribution. Also suppose L is
µ-strongly convex. Set βt = tk and σ2

t as defined in (6). Then E[L(xT )− L(x∗)] is bounded by:

(k + 1)E[RegretT (x∗)]
T k+1

+
16(k + 1)3

λµ

(
(σG +DσH)2

T
+

2V (G+DH)2 log22(2T )

ρ2T 2

)
.

Moreover, for all ḡt ∈ ∂ℓ̄t(wt),

E[∥ḡt∥2∗] ≤ t2k
(
4G2 + µ2D2 +

16(k + 1)2

λ

(
(σG +DσH)2

t
+

2V (G+DH)2 log22(2T )

ρ2t2

))
.
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Remark 9. As an example, again consider the case D = N (0, I) with L2 norm. Online subgradient
descent (OSD) with appropriate learning rate on µt-strongly convex losses ℓt achieves:

RegretT (u) ≤
T∑

t=1

∥gt∥22
2
∑t

i=1 µi

,

where gt ∈ ∂ℓt(wt). In our case, ∥ ·∥22 is 2-strongly convex and the regularized loss ℓ̄t is βtµ
2 -strongly

convex, i.e. µt = µtk/2 and
∑t

i=1 µi = O(µtk+1). Therefore, by Theorem 8,

E[RegretT (x∗)] ≤ O

(
T k

µ

(
G2 + µ2D2 +

(σG +DσH)2

T
+
d(G+DH)2 log2 T

ρ2T 2

))
.

Consequently,

E[L(xT )− L(x∗)] ≤ O

(
(G+ µD +DσH)2

µT
+
d(G+DH)2 log2 T

µρ2T 2

)
.

This again matches the optimal private convergence rates.

Proof of Theorem 8. We have already bounded E[∥βt∇L(xt) − gt∥2∗] and E[∥γt∥2∗] in (4) and (7)
respectively, so

E[∥βt∇L(xt)− gt − γt∥2∗] ≤ 2E[∥βt∇L(xt)− gt∥2∗ + ∥γt∥2∗]

≤ 8(k + 1)2t2k−1

λ

(
(σG +DσH)2 +

2V (G+DH)2 log22(2T )

ρ2t

)
.

Upon substituting this into Lemma 7 and replace βt = tk, we get:

β1:T E[L(xT )− L(x∗)]

≤E[RegretT (x∗)] +
T∑

t=1

16(k + 1)2tk−1

λµ

(
(σG +DσH)2 +

2V (G+DH)2 log22(2T )

ρ2t

)
≤E[RegretT (x∗)] +

16(k + 1)2

λµ

(
(σG +DσH)2T k +

2V (G+DH)2 log22(2T )T
k−1

ρ2

)
.

Dividing both sides by β1:T ≥ T k+1/(k + 1) proves the first part of the theorem.

For the second part, recall that ℓ̄t(w) = ⟨gt+γt, w⟩+ βtµ
4 ∥w−xt∥2. Therefore, for all ḡt ∈ ∂ℓ̄t(w),

ḡt = gt + γt +
βtµ
4 v, where v ∈ ∂∥wt − xt∥2. We follow the same argument in Theorem 4:

E[∥ḡt∥2∗] ≤ 4E[∥βt∇L(xt)∥2∗ + ∥βt∇L(xt)− gt∥2∗ + ∥γt∥2∗ + ∥βtµ
4 v∥2∗]

Here v ∈ ∂∥wt − xt∥2. We bound the first term by Lipschitz, the second by (4), and the third by (7).
Moreover, by chain rule (Proposition 21), we can show that ∥v∥∗ ≤ 2D, so:

≤ 4t2kG2 +
16(k + 1)2(σG +DσH)2t2k−1

λ

+
32V (k + 1)2(G+DH)2t2k−2 log22(2T )

λρ2
+ µ2D2t2k

≤ t2k
(
4G2 + µ2D2 +

16(k + 1)2

λ

(
(σG +DσH)2

t
+

2V (G+DH)2 log22(2T )

ρ2t2

))
.

5 Parameter-free Algorithm

In this section, we apply Algorithm 1 with a “parameter-free” online learner. These are algorithms
that guarantee RegretT (u) ≤ Õ(∥u∥

√
T ) for all competitors u simultaneously (Orabona and Pál,
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2016; Cutkosky and Orabona, 2018; Mhammedi and Koolen, 2020). By shifting coordinates, it is
possible to obtain RegretT (u) ≤ Õ(∥u− x0∥

√
T ) for any pre-specified point x0. Thus, if x0 ≈ u is

some good initialization, perhaps generated by pretraining, this bound yields significantly smaller
regret than if we had used the worst-case diameter bound ∥u− x0∥ ≤ D.

In order to obtain this refined bound with privacy, we need to make a small modification to our
conversion. For simplicity, we focus on Euclidean space with 2-norm, and we assume the distribution
D is in addition sub-Gaussian, i.e., for R ∼ D,

P{ sup
∥a∥2=1

⟨R, a⟩ ≥ ϵ} ≤ exp

(
− ϵ2

2σ2

)
.

In general, the proof extends to any Banach space and any distribution D that concentrates on it.

In previous analysis (Equation (3)), we roughly bound ∥wt − x∗∥ ≤ D. However, in this section,
we come up with a finer high probability bound that maintains a dependence on ∥wt∥, ∥x∗∥. We
then replace the loss ℓt(w) in Algorithm 1 with a regularized loss ℓt(w) + ξt∥w∥2 + νt∥w∥22, and we
show that the new algorithm with regularized loss can achieve a parameter-free bound. The complete
proof is presented in Appendix F.
Theorem 10. Suppose w.r.t. 2-norm, W is bounded by D and ℓ is G-Lipschitz and H-smooth.
Suppose D is (V, α)-RDP distribution and is σD-sub-Gaussian. If we set βt = t3 (i.e. k = 3) and set
σ2
t as defined in (6), then with probability at least 1− δ,

L(xT )− L(x∗) ≤ 4

T 4

(
RegretT (x

∗) +

T∑
t=1

ξt(∥wt∥2 + ∥x∗∥2) + νt(∥wt∥22 + ∥x∗∥22)

)
.

where C is a universal constant, A = 8
√
2C2, A′ = 8

√
dσDC

2, κ = 1 +DH/G, and

ξt = AGΦt5/2 +A′(G+DH)
Φ log2(2T )t

2

ρ
, νt = 28AHΦt5/2, Φ =

√
log

20dT log(2κT )

δ
.

Theorem 11. Following the assumptions and notations in Theorem 10, if we replace ℓt(w) in
Algorithm 1 with regularized loss ℓ̄t(w) = ℓt(w) + ξt∥w∥2 + νt∥w∥22 and denote the associated
regret as Regrett, then with probability at least 1− δ, L(xT )− L(x∗) is bounded by:

4RegretT (x
∗)

T 4
+

8A∥x∗∥(G+ 28∥x∗∥H)Φ√
T

+
8A′∥x∗∥(G+DH)Φ log2(2T )

ρT
.

Moreover, with probability at least 1− δ, for all t and for all w ∈W, ḡt ∈ ∂ℓ̄t(w),

∥ḡt∥2 ≤ Gt3 +A(2G+ 57DH)Φt5/2 + 2A′(G+DH)
Φ log2(2T )t

2

ρ
.

Remark 12. If ∥ḡt∥2 ≤ Ĝ for all t, parameter-free algorithms achieve regret bound RegretT (u) =

Õ(∥u∥2Ĝ
√
T ). Therefore, with D = N (0, I), D is 1-sub-Gaussian and A′ = O(

√
d), so Theorem

11 implies that with probability 1− δ,

RegretT (x
∗)

T 4
= Õ

(
∥x∗∥2G√

T
+

∥x∗∥2(G+DH)

T
+

∥x∗∥2
√
d(G+DH)

ρT 3/2

)
.

Consequently,

L(xT )− L(x∗) ≤ Õ

(
∥x∗∥2(G+DH)√

T
+

∥x∗∥2
√
d(G+DH)

ρT

)
.

Proof of Theorem 11. The regularized regret satisfies

RegretT (x
∗) = RegretT (x

∗) +

T∑
t=1

ξt(∥wt∥2 − ∥x∗∥2) + νt(∥wt∥22 − ∥x∗∥22).

9



Hence, upon substituting this equation into Theorem 10, we get: with probability at least 1− δ,

L(xT )− L(x∗) ≤ 4RegretT (x
∗)

T 4
+

8

T 4

T∑
t=1

ξt∥x∗∥2 + νt∥x∗∥22

≤ 4RegretT (x
∗)

T 4
+

8(AGΦ∥x∗∥2 + 28AHΦ∥x∗∥22)√
T

+
8A′(G+DH)Φ log2(2T )∥x∗∥

ρT
.

The second inequality is from
∑T

t=1 ξt ≤ TξT because ξt is increasing with t (so is νt).

For the second part of the theorem, for each fixed t and for all ḡt ∈ ℓ̄t(wt), ḡt = gt+γt+ξtu+2νtwt,
where u ∈ ∂∥wt∥2 and thus ∥u∥2 ≤ 1. Therefore,

∥ḡt∥2 ≤ ∥gt − βt∇L(xt)∥2 + ∥βt∇L(xt)∥2 + ∥γt∥2 + ∥ξtu∥2 + ∥2νtw∥2
By Lipschitzness, ∥βt∇L(xt)∥2 ≤ Gt3. SinceW is bounded, ∥2νtwt∥2 ≤ 2Dνt. Also, ∥ξtu∥2 ≤ ξt.
Moreover, we can prove (in Eq. 14 and 17) that for each t, with probability at least 1− δ/2T ,

∥βt∇L(xt)− gt∥2 ≤ 8C2Φ

√√√√ t∑
i=1

i4(G+H∥wi − xi−1∥2)2 ≤ AΦ(G+DH)t5/2,

∥γt∥2 ≤ A′

ρ
(G+DH)Φ log2(2T )t

2.

Upon taking the union bound for all t and the definition of ξt, νt, we get the desired bound.

6 Conclusion

We have presented a new online-to-batch conversion that produces private stochastic optimization
algorithms on smooth losses. Online algorithms achieving the optimal O(

√
T ) regret automatically

achieve the optimal Õ(1/
√
T +

√
d/ϵT ) convergence rate. Combining this technique with the

literature on online learning can yield new private optimization algorithms.

Limitations: Our algorithm requires smoothness, and unlike some other bounds, we cannot tolerate
large H . In the worst case when H =

√
T and σH = H , our standard bound in Remark 5 becomes

O(1). In other words, we need to assume H = o(
√
T ) to ensure a non-trivial bound. Removing this

restriction would significantly improve the generality of the procedure,

The dependence on H comes from the sensitivity of δt (Lemma 15), where we apply smoothness
to bound ∥βt(∇ℓ(xt, zt)−∇ℓ(xt−1, zt))∥ ≤ βtH∥xt − xt−1∥ and use the stability of xt to further
bound ∥xt − xt−1∥ ≤ Dβt/β1:t, which are necessary steps in order to bound the sensitivity of δt by
O(tk−1). Hence, it’s not clear how to remove the smoothness assumption.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318.

Asi, H., Duchi, J., Fallah, A., Javidbakht, O., and Talwar, K. (2021). Private adaptive gradient
methods for convex optimization. In International Conference on Machine Learning, pages
383–392. PMLR.

Bassily, R., Feldman, V., Guzmán, C., and Talwar, K. (2020). Stability of stochastic gradient descent
on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:4381–4391.

Bassily, R., Feldman, V., Talwar, K., and Thakurta, A. (2019). Private stochastic convex optimization
with optimal rates. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pages 11282–11291.

Bauschke, H. H., Combettes, P. L., et al. (2011). Convex analysis and monotone operator theory in
Hilbert spaces, volume 408. Springer.

10



Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2004). On the generalization ability of on-line
learning algorithms. Information Theory, IEEE Transactions on, 50(9):2050–2057.

Chan, T.-H. H., Shi, E., and Song, D. (2011). Private and continual release of statistics. ACM
Transactions on Information and System Security (TISSEC), 14(3):1–24.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3).

Chiang, C.-K., Yang, T., Lee, C.-J., Mahdavi, M., Lu, C.-J., Jin, R., and Zhu, S. (2012). Online
optimization with gradual variations. In Conference on Learning Theory, pages 6–1.

Cutkosky, A. (2019). Anytime online-to-batch, optimism and acceleration. In International Confer-
ence on Machine Learning, pages 1446–1454.

Cutkosky, A. and Orabona, F. (2018). Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pages 1493–1529.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pages 265–284. Springer.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. (2010). Differential privacy under continual
observation. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
715–724.

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407.

Feldman, V., Koren, T., and Talwar, K. (2020). Private stochastic convex optimization: optimal
rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 439–449.

Hazan, E. (2019). Introduction to online convex optimization. arXiv preprint arXiv:1909.05207.

Hoory, S., Feder, A., Tendler, A., Erell, S., Peled-Cohen, A., Laish, I., Nakhost, H., Stemmer, U.,
Benjamini, A., Hassidim, A., et al. (2021). Learning and evaluating a differentially private pre-
trained language model. In Findings of the Association for Computational Linguistics: EMNLP
2021, pages 1178–1189.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan, M. I. (2019). A short note on concentration
inequalities for random vectors with subgaussian norm. arXiv preprint arXiv:1902.03736.

Joulani, P., Raj, A., György, A., and Szepesvári, C. (2020). A simpler approach to accelerated
stochastic optimization: Iterative averaging meets optimism. Internation Conference on Machine
Learning.

Kamath, G., Liu, X., and Zhang, H. (2021). Improved rates for differentially private stochastic convex
optimization with heavy-tailed data. arXiv preprint arXiv:2106.01336.

Kifer, D., Smith, A., and Thakurta, A. (2012). Private convex empirical risk minimization and
high-dimensional regression. In Conference on Learning Theory, pages 25–1. JMLR Workshop
and Conference Proceedings.

Kulkarni, J., Lee, Y. T., and Liu, D. (2021). Private non-smooth empirical risk minimization and
stochastic convex optimization in subquadratic steps. arXiv preprint arXiv:2103.15352.

Kurakin, A., Chien, S., Song, S., Geambasu, R., Terzis, A., and Thakurta, A. (2022). Toward training
at imagenet scale with differential privacy. arXiv preprint arXiv:2201.12328.

Li, T., Zaheer, M., Reddi, S. J., and Smith, V. (2022). Private adaptive optimization with side
information. arXiv preprint arXiv:2202.05963.

Mehta, H., Thakurta, A., Kurakin, A., and Cutkosky, A. (2022). Large scale transfer learning for
differentially private image classification. arXiv preprint arXiv:2205.02973.

11



Mhammedi, Z. and Koolen, W. M. (2020). Lipschitz and comparator-norm adaptivity in online
learning. Conference on Learning Theory.

Mironov, I. (2017). Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 263–275. IEEE.

Orabona, F. (2019). A modern introduction to online learning. arXiv preprint arXiv:1912.13213.

Orabona, F. and Pál, D. (2016). Coin betting and parameter-free online learning. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural Information
Processing Systems 29, pages 577–585. Curran Associates, Inc.

Rakhlin, A. and Sridharan, K. (2013). Online learning with predictable sequences. In Conference on
Learning Theory (COLT), pages 993–1019.

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194.

Steinhardt, J. and Liang, P. (2014). Adaptivity and optimism: An improved exponentiated gradient
algorithm. In International Conference on Machine Learning (ICML).

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Kamath, G., Kulkarni, J., Lee, Y. T., Manoel, A.,
Wutschitz, L., et al. (2021). Differentially private fine-tuning of language models. arXiv preprint
arXiv:2110.06500.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See discussion in Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [No] This paper

addresses mathematical problems, and we do not anticipate negative societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 1
for all assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] In the main text,
we only leave the proofs for the most important results because of page limitation.
However, the complete proofs of all results are included in the supplementary material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We did not run
experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [No] We did not run experiments.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We did not run experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We did not run experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [No] We did not run

experiments.
(b) Did you mention the license of the assets? [No] We did not run experiments.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We did not run experiments.

12



(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] We did not run experiments.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We did not run experiments.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] We did not use crowdsourcing nor conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No] We did not use crowdsourcing nor conduct
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] We did not use crowdsourcing nor conduct
research with human subjects.

13



A Proofs for Convergence (Section 2)

Theorem 1 (Cutkosky (2019)). For any sequence of βt > 0, gt ∈ Rd, suppose an online learner
predicts wt and receives t-th loss ℓt(w) = ⟨gt, w⟩. Define xt =

∑t
i=1

βiwi

β1:t
where β1:t =

∑t
i=1 βi.

Then for any convex and differentiable L,

β1:T (L(xT )− L(u)) ≤ RegretT (u) +

T∑
t=1

⟨βt∇L(xt)− gt, wt − u⟩, ∀u ∈ Rd.

Proof. Since L is convex,
T∑

t=1

βt(L(xt)− L(u)) ≤
T∑

t=1

βt⟨∇L(xt), xt − wt + wt − u⟩

=

T∑
t=1

⟨∇L(xt), βt(xt − wt)⟩+ ⟨βt∇L(xt)− gt + gt, wt − u⟩.

By construction of xt, it holds that βt(xt − wt) = β1:t−1(xt−1 − xt). By convexity,

⟨∇L(xt), β1:t−1(xt−1 − xt)⟩ ≤ β1:t−1 (L(xt−1)− L(xt)) .
Next, we move

∑
βtL(xt) to the right, giving:

−β1:TL(u) ≤
T∑

t=1

(β1:t−1L(xt−1)− β1:tL(xt) + ⟨βt∇L(xt)− gt + gt, wt − u⟩)

= −β1:TL(xT ) + RegretT (u) +

T∑
t=1

⟨βt∇L(xT )− gt, wt − u⟩,

where the equality follows from (i) the telescopic sum of β1:t−1∇L(xt−1) + β1:t∇L(xt) and (ii) the
definition of regret that RegretT (u) =

∑T
t=1⟨gt, wt − u⟩.

Lemma 13. Suppose ∥ · ∥2 is λ-strongly convex w.r.t. ∥ · ∥, and let {Xt} be a sequence of random
vectors such that (i) E[∥Xt∥∗] <∞ and (ii) E[Xt+1 | X1:t] = 0 for all t. Then,

E

∥∥∥∥∥
T∑

t=1

Xt

∥∥∥∥∥
2

∗

 ≤ 2

λ

T∑
t=1

E[∥Xt∥2∗].

Proof. We use the regret approach to prove this statement. For simplicity, denote MT =
∑T

t=1Xt.
Consider an online learner which receives ℓt(x) = ⟨Xt, x⟩ as t-th loss and updates wt+1. Then by
definition of regret, for any u,

−⟨MT , u⟩ ≤ RegretT (u)−
T∑

t=1

⟨Xt, wt⟩.

Since wt only depends on X1:t−1 but not on Xt, wt is constant given X1:t−1. Therefore,

E[⟨Xt, wt⟩] = E
X1:t−1

E
Xt

[⟨Xt, wt⟩|X1:t−1]

= E
X1:t−1

[
⟨E
Xt

[Xt|X1:t−1], wt⟩
]
= 0,

where the second equality follows from the assumption that E[Xt|X1:t−1] = 0. Therefore,

E[⟨MT ,−u⟩] ≤ E[RegretT (u)].
Recall the definition of the dual norm that ∥MT ∥∗ = sup∥x∥=1⟨MT , x⟩. Therefore, if we define
u∗ = ∥MT ∥∗ argmax∥u∥=1⟨MT ,−u⟩, then it holds that

⟨MT ,−u∗⟩ = ∥MT ∥2∗ and ∥u∗∥ = ∥MT ∥∗.
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Let the follow-the-regularized-leader (FTRL) algorithm be the online learner. Orabona (2019) proved
that for any regularizer ψ that is λ-strongly convex w.r.t. ∥ · ∥, FTRL achieves the following regret:

RegretT (u) ≤
ψ(u)

η
+

η

2λ

T∑
t=1

∥Xt∥2∗.

Since we assume ∥ · ∥2 is λ-strongly convex w.r.t. ∥ · ∥, we can define ψ(x) = ∥x∥2 and get:

E[⟨MT ,−u∗⟩] = E[∥MT ∥2∗] ≤ E[RegretT (u∗)] ≤ E

[
∥MT ∥2∗
η

+
η

2λ

T∑
t=1

∥Xt∥2∗

]
.

Equivalently, upon moving terms around we have:

E[∥MT ∥2∗] ≤ E

[
η2

2λ(η − 1)

T∑
t=1

∥Xt∥2∗

]
≤ E

[
2

λ

T∑
t=1

∥Xt∥2∗

]
.

The second inequality holds because infη
η2

η−1 = 4 when η = 2.

In this paper, we will always set βt = tk for some k ≥ 1. The following proposition gives relevant
bounds for βt − βt−1 and β2

t /β1:t.

Proposition 14. If βt = tk, then (i) βt − βt−1 ≤ ktk−1 and (ii) β2
t /β1:t ≤ (k + 1)tk−1.

Proof. For the first part, by mean value theorem, there exists some τ ∈ [t− 1, t] such that

βt − βt−1 = tk − (t− 1)k = kτk−1 ≤ ktk−1.

For the second part, for any increasing function f , it holds that
∑t

i=1 f(i) ≥
∫ t

0
f(x) dx, so

β1:t =

t∑
i=1

ik ≥
∫ t

0

xk dx =
tk+1

k + 1
.

Hence, β2
t /β1:t ≤ (k + 1)tk−1.

Lemma 15. Suppose ∥ · ∥2 is λ-strongly convex, W is bounded by D, and ℓ is G-Lipschitz and
H-smooth. If we set βt = tk, then

∥δt∥∗ ≤ (k + 1)(G+H∥wt − xt−1∥)tk−1.

If we further assume Assumption 5 and 6, then βt∇L(xt)− gt =
∑t

i=1Xi such that:

(i) Xi = [βi∇L(xi)− βi−1∇L(xi−1)]− [βi∇ℓ(xi, zi)− βi−1∇ℓ(xi−1, zi)],

(ii) E[Xi|z1:i−1] = 0, and (iii) E[∥Xi∥2∗] ≤ 2(k + 1)2(σ2
G +D2σ2

H)i2k−2.

Consequently,
E[∥βt∇L(xt)− gt∥2∗] ≤ 4(k + 1)2(σ2

G +D2σ2
H)t2k−1/λ.

Proof. For the first part, note that

δt = βt∇ℓ(xt, zt)− βt−1∇ℓ(xt−1, zt)

= (βt − βt−1)∇ℓ(xt−1, zt) + βt(∇ℓ(xt, zt)−∇ℓ(xt−1, zt)).

Since ℓ is G-Lipschitz and H-smooth, ∥∇ℓ(xt−1, zt)∥∗ ≤ G and

∥∇ℓ(xt, zt)−∇ℓ(xt−1, zt)∥∗ ≤ H∥xt − xt−1∥ ≤ (βt/β1:t)H∥wt − xt−1∥,

where the second inequality follows from the definition of xt that β1:t(xt − xt−1) = βt(wt − xt−1).
The first result then follows from Proposition 14.
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For the second part, by telescopic sum βt∇L(xt) =
∑t

i=1 βi∇L(xi)− βi−1∇L(xi−1), and recall
that gt =

∑t
i=1 δi. Therefore,

βt∇L(xt)− gt =

t∑
i=1

[βi∇L(xi)− βi−1∇L(xi−1)]− [βi∇ℓ(xi, zi)− βi−1∇ℓ(xi−1, zi)].

We denote each summand by Xi, and we can check Xi satisfies condition (ii) and (iii). First, since
we assume ∇L(w) = Ez[∇ℓ(w, z)] for all w, it holds that E[Xi|z1:i−1] = 0. Second, we decompose
Xi in the same way as the first part:

E[∥Xi∥2∗] = E[∥(βi − βi−1)[∇(L(xi−1)−∇ℓ(xi−1, zi)]

+ βi([∇L(xi)−∇ℓ(xi, zi)]− [∇L(xi−1)−∇ℓ(xi−1, zi)])∥2∗]

Recall the assumption of σ2
G and σ2

H and that ∥xi − xi−1∥ ≤ βi/β1:i∥wi − xi−1∥.

≤ 2(βi − βi−1)
2σ2

G + 2β2
i σ

2
H∥xi − xi−1∥2

≤ 2(βi − βi−1)
2σ2

G + 2(β2
i /β1:i)

2σ2
H∥wi − xi−1∥2

≤ 2(k + 1)2(σ2
G +D2σ2

H)i2k−2.

The last inequality follows from the assumption that ∥wi − xi−1∥ ≤ D and Proposition 14.

The last part of the theorem is a direct result from Lemma 13:

E[∥∇L(xt)− gt∥2∗] ≤
2

λ

t∑
i=1

E[∥Xi∥2∗] ≤
4(k + 1)2

λ
(σ2

G +D2σ2
H)t2k−1.

Lemma 16. Suppose E[Rt] = 0 and E[∥Rt∥2∗] ≤ σ̄2
t , then

E[∥γt∥2∗] ≤ 2(max
i≤t

σ̄2
i ) log2(2t)/λ.

Proof. By construction, γt =
∑

i∈It
Ri, andRi’s are independent and mean-zero. Therefore, Lemma

13 can be applied, which yields

E[∥γt∥2∗] ≤
2

λ

∑
i∈It

E[∥Ri∥2∗] ≤
2

λ

∑
i∈It

σ̄2
i ≤ 2(max

i≤t
σ̄2) log2(2t)/λ.

The last inequality is from the fact that |It| ≤ log2(2t).

B Proofs for RDP (Section 2)

In this section, we prove the tree aggregation mechanism for RDP mechanisms implemented in
Algorithm 1 correctly composes individual RDP mechanisms. Before that, we will first prove a
general composition theorem for RDP.

B.1 Advanced Composition for RDP

Throughout this section, we use the subscript 1 : T to denote a sequence of T elements. We denote Z
the data space and Z = (z1, . . . , zT ), Z

′ = (z′1, . . . , z
′
T ) neighboring datasets in ZT that differs only

at the q-th element (i.e., zt ̸= z′t if and only if t = q). We consider RDP mechanisms F1, . . . , FT

such that F1 : ZT →W and Ft : ZT ×W t−1 →W . We assume that for each t, there exists some
index set St ⊆ [T ] such that Ft only depends on St. Formally, we assume:

Assumption 7. Let Z,Z ′ ∈ Z be two neighboring datasets which differs only at the q-th element.
Each Ft associates with St ⊆ [T ] such that if q ̸∈ St, then Ft(Z, x1:t−1) = Ft(Z

′, x1:t−1) for all
x1:t−1 ∈W t−1.
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For a fixed norm ∥ · ∥, we assume D is a (V, α)-RDP distribution on norm ∥ · ∥ (see Definition 4),
and we define the sensitivity of Ft w.r.t. ∥ · ∥ as ∆t(x1:t−1), a function of inputs x1:t−1:

∆t(x1:t−1) = sup
|Z−Z′|=1

∥Ft(Z, x1:t−1)− Ft(Z
′, x1:t−1)∥∗.

We also define the output as f̂t = Ft(Z, f̂1:t−1) + σtζt, where ζt ∼ D and σ2
t ≥ ∆t(f̂1:t−1)

2/ρ2. In
particular, σt only depends on f̂1:t−1 and does not depend on f̂t:T , i.e., the future. The pseudo-code
of this composition is in Algorithm 2. For simplicity, we assume F ’s are deterministic mechanisms,
but we can extend to random mechanisms by treating the random generator as part of the input.

Algorithm 2 Advanced Composition for RDP Mechanisms
1: Input: Dataset Z; functions F1, . . . , FT with sensitivity ∆1, . . . ,∆T ; (V, α)-RDP distribution

D; privacy constants ρ1, . . . , ρT .
2: Sample random ζ1 ∼ D and compute σ2

1 ≥ ∆2
1/ρ

2
1.

3: Set f1 = F1(Z) and f̂1 = f1 + σ1ζ1
4: for t = 2, . . . , T do
5: Sample random ζt ∼ D and compute σ2

t ≥ ∆t(f̂1:t−1)
2/ρ2t .

6: Set ft = Ft(Z, f̂1:t−1) and f̂t = ft + σtζt.
7: Return f̂1, . . . , f̂T .

By definition of RDP distribution, each f̂t is (α, αρ2/2)-RDP. We will also show that the composition
(f̂1, . . . , f̂T ) is also RDP.
Theorem 17. We define IN(q) = {t : q ∈ St} and OUT(q) = {t : q ̸∈ St}. If F1, . . . , FT satisfy
Assumption 7, then Algorithm 2 is (α, S)-RDP, where

S = max
q∈[T ]

∑
t∈IN(q)

αρ2t/2.

As an immediate corollary, if we set ρt = ρ for all t and define U = maxq |IN(q)|, then Algorithm 2
is (α,Uαρ2/2)-RDP.

Proof. Let Z,Z ′ be any neighboring datasets and assume they differ at q, and we denote f̂t =

Ft(Z, f̂1:t−1) + σt(f̂1:t−1)ζt and f̂ ′t = Ft(Z
′, f̂ ′1:t−1) + σt(f̂

′
1:t−1)ζt. In this proof, we use the

notation σt(f̂1:t−1) to emphasize that σt satisfying σ2
t ≥ ∆t(f̂1:t−1)

2/ρ2t is a function of f̂1:t−1.

The probability density of the joint distribution of f̂1:T , say P , and the density of f̂ ′1:T , say Q, are:

P (x1:T ) =

T∏
t=1

Pt(xt|x1:t−1), Q(x1:T ) =

T∏
t=1

Qt(xt|x1:t−1),

where Pt(·|x1:t−1) is the density of (f̂t|f̂1:t−1 = x1:t−1) = Ft(Z, x1:t−1) + σt(x1:t−1)ζt and
Qt(·|x1:t−1) is the density of Ft(Z

′, x1:t−1) + σt(x1:t−1)ζt. Note that σt is the same for Pt and Qt.

By definition of Rényi divergence,

Dα(P∥Q) =
1

α− 1
log

∫
P (x1:T )

αQ(x1:T )
1−α dx1:T . (9)

Previous multiplication rule implies that:

P (x1:T )
αQ(x1:T )

1−α =
∏

t∈IN(q)⊔OUT(q)

(
Pt(xt|x1:t−1)

αQt(xt|x1:t−1)
1−α

)
For all t ∈ OUT(q) (i.e., q ̸∈ St), Assumption 7 implies that Ft(Z, x1:t−1) = Ft(Z

′, x1:t−1), so
Pt(·|x1:t−1) = Qt(·|x1:t−1) and∫

Pt(xt|x1:t−1)
αQt(xt|x1:t−1)

1−α dxt =

∫
Pt(xt|x1:t−1) dxt = 1. (10)
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The second inequality holds because Pt(·|x1:t−1) is a probability density.

On the other hand, for all t ∈ IN(q),

σt(x1:t−1)
2 ≥ ∆t(x1:t−1)

2/ρ2t

≥ ∥Ft(Z, x1:t−1)− Ft(Z
′, x1:t−1)∥2∗/ρ2t ,

so by Definition 4,

Dα(Pt∥Qt) =
1

α− 1
log

∫
Pt(x|x1:t−1)

αQt(x|x1:t−1)
1−α dx ≤ αρ2t/2.

Equivalently, ∫
Pt(x|x1:t−1)

αQt(x|x1:t−1)
1−α dx ≤ exp((α− 1)αρ2t/2). (11)

Note that Pt, Qt only depend on x1:t−1 and not on xt:T , so we can rearrange the integral in (9) as:∫
P (x1:T )

αQ(x1:T )
1−α dx1:T

=

∫
PT (xT |x1:T−1)

αQT (xT |x1:T−1)
1−α · · ·

(∫
P1(x1)

αQ1(x1)
1−α dx1

)
· · · dxT

Evaluating the composite integral from inside to outside with (10) and (11) gives:

≤ exp

 ∑
t∈IN(q)

(α− 1)αρ2t/2

 .

In conclusion, for all |Z − Z ′| = 1,

Dα(P∥Q) =
1

α− 1
log

∫
P (x1:T )

αQ(x1:T )
1−α dx1:T ≤ max

q

∑
t∈IN(q)

αρ2t/2 = S.

B.2 Algorithm 1 is RDP

Now we are ready to prove the tree aggregation in Algorithm 1.
Theorem 3. Suppose ∥ · ∥2 is λ-strongly convex, W is bounded by D, ℓ is G-Lipschitz and H-smooth,
and D is a (V, α)-RDP distribution. If βt = tk and σ2

t is as defined in (6), then Algorithm 1 is
(α, αρ2/2)-DP for all datasets Z.

Proof. Recall the definition of It in Algorithm 1: we define s0 = 0, and si = maxk{si−1 + 2k :
2k|t − si−1} until sn = t for some n, and we define It = {s1, . . . , sn}. For example, I4 = {4}
and I7 = {4, 6, 7}. We then define St = {sn−1 + 1, sn−1 + 2, . . . , t} (e.g., S4 = {1, 2, 3, 4} and
S7 = {7}). Observe that {Si : i ∈ It} is a partition of [t].

Let Z,Z ′ be neighboring datasets that differ at the q-th element. Define Ft : ZT ×W t−1 →W as:

Ft(Z, f̂1:t−1) =
∑
i∈St

δi(Z, f̂1:t−1)

=
∑
i∈St

βi∇ℓ (xi, zi)− βi−1∇ℓ (xi−1, zi) ,

where xi’s are the parameters as defined in Algorithm 1, and zi is the i-th data in Z. We then define
f̂t = Ft(Z, f̂1:t−1) + σt(f̂1:t−1)R̃t and f̂ ′t = Ft(Z

′, f̂ ′1:t−1) + σt(f̂
′
1:t−1)R̃t, where R̃t ∼ D.

For simplicity, we denote δt = δt(Z, f̂1:t−1) and σt = σt(f̂1:t−1) (and δ′t, σ
′
t respectively). We also

denote xi, wi and x′i, w
′
i as parameters w.r.t. Z,Z ′ respectively. Since {Si : i ∈ It} partitions [t],

gt + γt =

t∑
i=1

δi +
∑
i∈It

Ri =
∑
i∈It

∑
j∈Si

δj + σiR̃i

 =
∑
i∈It

f̂i.

18



By construction of Algorithm 1, x1, . . . , xt are determined by {gi + γi}t−1
i=1 and equivalently by

f̂1:t−1. In particular, they do not depend on ft:T . Consequently, this implies that (i) if f̂1:t−1 = f̂ ′1:t−1
then x1:t = x′1:t and w1:t = w′

1:t and (ii) if in addition zi = z′i then δi = δ′i.

This implies that Ft’s satisfy Assumption 7: if q ̸∈ St (i.e., zi = z′i for all i ∈ St), then for any
fixed f1:t−1 ∈W t−1, Ft(Z, f1:t−1) = Ft(Z

′, f1:t−1) because δi = δ′i for all i ∈ St. Consequently,
Theorem 17 can be applied, which states that if σt(f̂1:t−1)

2 ≥ ∆t(f̂1:t−1)
2/ρ2, then (f̂1, . . . , f̂T ) is

(α,Uαρ2/2)-RDP where U = maxq |IN(q)| and IN(q) = {t : q ∈ St}. Note that U ≤ log2(2T ).

The sensitivity of Ft at fixed f1:t−1 ∈W t−1 is bounded by:

∆t(f1:t−1) = sup
|Z−Z′|=1

∥Ft(Z, f1:t−1)− Ft(Z
′, f1:t−1)∥∗

= sup
q∈St

∥δq − δ′q∥∗ ≤ sup
q∈St

∥δq∥∗ + sup
q∈St

∥δ′q∥∗

We proved that ∥δi∥∗ ≤ (k+1)ik−1(G+H∥wi−xi−1∥) and ∥δ′i∥∗ ≤ (k+1)ik−1(G+H∥w′
i−x′i−1∥)

(Lemma 15). Note that wi = w′
i and xi = x′i for all i ≤ t. Also note that i ≤ t for all i ∈ St, so:

≤ 2(k + 1)tk−1(G+Hmax
i∈[t]

∥wi − xi−1∥).

Since U ≤ log2(2T ) and σ2
t as defined in (6) satisfies the condition σ2

t ≥ ∆t(f̂1:t−1) log2(2T )/ρ
2,

Theorem 17 and post-processing imply that {gt+γt}Tt=1 is (α, αρ2/2)-RDP (so is Algorithm 1).

C Further Discussions about Differential Privacy

C.1 Example of RDP Distribution

In this subsection, we prove that the multivariate Gaussian distribution N (0, I) is a (d, α)-RDP
distribution w.r.t. 2-norm on Rd for all α > 0 (Definition 4). Namely, N (0, I) satisfies the following
three properties: let R ∼ N (0, I), then (i) E[R] = 0, (ii) E[∥R∥22] ≤ d, and (iii) for all ρ > 0 and
µ, µ′ ∈ Rd, if σ2 ≥ ∥µ− µ′∥22/ρ2 then Dα(P∥Q) ≤ αρ2/2, where P,Q denote the distribution of
σR+ µ and σR+ µ′ respectively.

The first property follows immediately from the definition of N (0, I). For the second property,
R = (r1, . . . , rd) where ri ∼ N(0, 1) iid., so E[∥R∥22] =

∑d
i=1 E[r2i ] = d. To check the third

property, we need the following lemma:
Lemma 18. Dα(N (µ, σ2I)∥N (µ′, σ2I)) = α∥µ− µ′∥2/2σ2.

Consequently, for all σ2 ≥ ∥µ− µ′∥22/ρ2, Dα(N (0, σ2I)∥N (µ, σ2I)) ≤ αρ2/2. This proves that
N (0, I) is indeed a (d, α)-RDP distribution.

Proof of Lemma 18. The density of N (µ, σ2I) is (2πσ2)−d/2 exp(−∥x− µ∥22/2σ2). For short we
denote A = (2πσ2)−d/2 and B = 1/2σ2. Then

Dα(N (µ, σ2I)∥N (µ′, σ2I))

=
1

α− 1
log

(∫
Rd

Aα exp(−Bα∥x− µ∥22)A1−α exp(−B(1− α)∥x− µ′∥22) dx
)

=
1

α− 1
log

(∫
Rd

A exp
(
−B(α∥x− µ∥22 + (1− α)∥x− µ′∥22)

)
dx

)
.

Next, observe that

x− µ = (x− αµ− (1− α)µ′)− (1− α)(µ− µ′),

x− µ′ = (x− αµ− (1− α)µ′) + α(µ− µ′).

Consequently, upon expanding out ∥x− µ∥22, ∥x− µ′∥22, we get:

α∥x− µ∥22 + (1− α)∥x− µ′∥22 = ∥x− αµ− (1− α)µ′∥22 + α(1− α)∥µ− µ′∥22.
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Note thatA exp(−B∥x−αµ−(1−α)µ′∥22) is the density of N (αµ+(1−α)µ′, σ2I), so it integrates
to 1. Therefore,

Dα(N (µ, σ2I)∥N (µ′, σ2I))

=
1

α− 1
log

(∫
Rd

A exp(−B∥x− αµ− (1− α)µ′∥22) exp(−Bα(1− α)∥µ− µ′∥22) dx
)

=
1

α− 1
log
(
exp(−Bα(1− α)∥µ− µ′∥22)

)
= Bα∥µ− µ′∥22.

Recall that B = 1/2σ2, and this completes the proof.

C.2 Extension to Pure-DP Mechanisms

In the main text, we focus on Renyi differential privacy, and we defined RDP-distribution (Definition
4) accordingly. We can always extend our result in a pure differential privacy setting.
Definition 5 (V -DP distribution). A distribution D on Rd is said to be a DP distribution on norm
∥ · ∥ with variance constant V (or simply D is V -DP on ∥ · ∥) if it satisfies that for R ∼ D (i)
E[R] = 0, (ii) E[∥R∥2∗] ≤ V , and (iii) for all ϵ > 0 and µ, µ′ ∈ Rd, if σ2 ≥ ∥µ − µ′∥2∗/ϵ2, then
p((x− µ)/σ)/p((x− µ′)/σ) ≤ exp(ϵ) for all x ∈ Rd, where p(x) is the density of D.

The tree aggregation described in Appendix B also works for pure DP mechanisms as well. Therefore,
if we assume D in Algorithm 1 with a V -DP distribution and change the definition of σ2

t in (6)
correspondingly, Algorithm 1 can be modified to an purely ϵ-DP mechanism.

Next, we can show that exponential mechanism in general norm satisfies this definition:
Theorem 19. Consider a probability density p(x) = A exp(−∥x∥∗) on (Rd, ∥ · ∥), where A is some
normalization constant. Also define V =

∫
Rd ∥x∥2∗A exp(−∥x∥∗) dx. Then distribution D with

density p is a K-DP distribution.

Proof. Let R ∼ D, µ, µ′ ∈ Rd, and σ2 ≥ 0. Since the density p is symmetric, E[R] = 0; and by
definition, E[∥R∥2∗] = V . For the third property,

p((x− µ)/σ)

p((x− µ′)/σ)
=

A exp(−∥x− µ∥∗/σ)
A exp(−∥x− µ′∥∗/σ)

= exp

(
−∥x− µ∥∗ + ∥x− µ′∥∗

σ

)
By triangular inequality, −∥x− µ∥∗ + ∥x− µ′∥∗ ≤ ∥µ− µ′∥∗, so:

≤ exp

(
∥µ− µ′∥∗

σ

)
.

Hence, for all σ ≥ ∥µ− µ′∥∗/ϵ, this is further bounded by exp(ϵ).

D Proofs for the Optimistic Case (Section 3)

Theorem 6. Suppose Assumption 1 - 4 hold, and D is a (V, α)-RDP distribution. Set βt = tk and
σ2
t as defined in (6), If the online learner is optimistic (satisfying (8)) with t-th gradient ḡt = gt + γt

and t-th hint ĝt = ḡt−1, then

E[RegretT (x∗)]
β1:T

≤ O

(
D(G+DH)

(
1 +

√
V log T√
λρ

)
1

T 3/2

)
.

Proof. Recall that gt =
∑t

i=1 δi, then

∥ḡt − ĝt∥2∗ = ∥δt + γt − γt−1∥2∗ ≤ 3∥δt∥2∗ + 3∥γt∥2∗ + 3∥γt−1∥2∗.

We showed (Lemma 15) that

∥δt∥∗ ≤ (k + 1)(G+H∥wt − xt−1∥)tk−1 ≤ (k + 1)(G+DH)tk−1.
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Also recall the bound of E[∥γt∥2∗] in (7), so:

E[∥ḡt − ĝt∥2∗] ≤ 3(k + 1)2(G+DH)2t2k−2 +
48(k + 1)2V (G+DH)2

λρ2
log22(2T )t

2k−2

= 3(k + 1)2(G+DH)2t2k−2

(
1 +

16V log22(2T )

λρ2

)
.

Recall that E[RegretT (x∗)] ≤ O(E[D
√∑T

t=1 ∥ḡt − ĝt∥2∗]). By Jensen’s inequality,

E

D
√√√√ T∑

t=1

∥ḡt − ĝt∥2∗

 ≤ D

√√√√ T∑
t=1

E[∥ḡt − ĝt∥2∗]

≤
√
3(k + 1)D(G+DH)

(
1 +

4
√
V log2(2T )√

λρ

)
T k−1/2.

Finally, dividing this bound by β1:T ≥ T k+1/(k + 1) completes the proof.

E Proofs for the Strongly Convex Case (Section 4)

Lemma 20. For any sequence βt > 0, gt ∈ Rd, suppose an online learner predicts wt and receives
t-th loss ℓt(w) = ⟨gt, w⟩, and define xt =

∑t
i=1

βiwi

β1:t
. If L is µ-strongly convex w.r.t. ∥ · ∥, then

β1:T (L(xT )− L(x∗)) ≤ RegretT (x
∗) +

T∑
t=1

(
⟨βt∇L(xt)− gt, wt − x∗⟩ − βtµ

2
∥xt − x∗∥2

)
.

Proof. We start with the strong convexity identity L(x∗) ≥ L(xt)+⟨∇L(xt), x∗−xt⟩+ µ
2 ∥xt−x

∗∥2:
T∑

t=1

βt(L(xt)− L(x∗)) ≤
T∑

t=1

βt⟨∇L(xt), xt − x∗⟩ − βtµ

2
∥xt − x∗∥2. (12)

With the same argument in the proof of Lemma 1, we can show:

βt⟨∇L(xt), xt − x∗⟩ = βt⟨∇L(xt), xt − wt⟩+ βt⟨∇L(xt), wt − x∗⟩

Recall the definition that β1:txt = β1:t−1xt−1 + βtwt and thus βt(xt − wt) = β1:t−1(xt−1 − xt).
Also, since L is convex, ⟨∇L(xt), xt−1 − xt⟩ ≤ L(xt−1)− L(xt), so:

≤ β1:t−1L(xt−1)− β1:t−1L(xt) + ⟨βt∇L(xt)− gt + gt, wt − x∗⟩.

Consequently, moving
∑T

t=1 βtL(xt) to the right side and taking the telescopic sum in (12) gives:

−β1:TL(x∗) ≤
T∑

t=1

βt⟨∇L(xt), xt − x∗⟩ − βtL(xt)−
βtµ

2
∥xt − x∗∥2

≤ −β1:TL(xT ) + RegretT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt, wt − x∗⟩ − βtµ

2
∥xt − x∗∥2.

Moving β1:TL(xT ) to the left completes the proof.

This lemma immediately implies Lemma 7.
Lemma 7. Suppose L is µ-strongly convex w.r.t. ∥ · ∥. If we replace ℓt(w) = ⟨gt + γt, w⟩ with
ℓ̄t(w) = ℓt(w) +

βtµ
4 ∥w − xt∥2 in Algorithm 1, and denote the associated regret by RegretT , then

β1:T (L(xT )− L(x∗)) ≤ RegretT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − x∗⟩ − βtµ

8
∥wt − x∗∥2

≤ RegretT (x
∗) +

T∑
t=1

2∥βt∇L(xt)− gt − γt∥2∗
βtµ

.
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Proof. By definition, ℓ̄t(w) = ℓt(w) +
βtµ
4 ∥w − xt∥2, so

RegretT (x
∗) =

T∑
t=1

(
ℓt(wt) +

βtµ

4
∥wt − xt∥2

)
−
(
ℓt(x

∗) +
βtµ

4
∥x∗ − xt∥2

)

= RegretT (x
∗) +

T∑
t=1

βtµ

4
(∥wt − xt∥2 − ∥xt − x∗∥2).

Upon substituting this equation into Lemma 20, we get:

β1:T (L(xT )− L(x∗))

≤ RegretT (x
∗)−

T∑
t=1

βtµ

4
(∥wt − xt∥2 − ∥xt − x∗∥2)

+

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − x∗⟩ − βtµ

2
∥xt − x∗∥2

≤ RegretT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − xt⟩ −
βtµ

4
(∥wt − xt∥2 + ∥xt − x∗∥2)

≤ RegretT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − x∗⟩ − βtµ

8
∥wt − x∗∥2.

The last inequality follows from the identity ∥wt − x∗∥2 ≤ 2∥wt − xt∥2 + 2∥xt − x∗∥2.

For the second inequality in the lemma, by Fenchel-Young’s inequality,

⟨βt∇L(xt)− gt − γt, wt − x∗⟩ − βtµ

8
∥wt − x∗∥2

≤∥βt∇L(xt)− gt − γt∥∗∥wt − x∗∥ − βtµ

8
∥wt − x∗∥2

For any quadratic of form ax− bx2 and a, b > 0, note that supx ax− bx2 ≤ a2/4b, so:

≤2∥βt∇L(xt)− gt − γt∥2∗
βtµ

.

Proposition 21. Suppose W is a convex bounded domain with diameter D, and let u ∈ W and
f(w) = ∥w − u∥2. Then for all w ∈W and v ∈ ∂f(w), ∥v∥∗ ≤ 2D.

Proof. Let ϕ(r) = r2 and g(w) = ∥w−u∥, then f(w) = ϕ◦g(w). By chain rule of sub-differentials
(Corollary 16.72 Bauschke et al. (2011)),

∂f(w) = {αv′ : α ∈ ∂ϕ(g(w)), v′ ∈ ∂g(w)}
= {2∥w − u∥v′ : v′ ∈ ∂∥w − u∥}.

By assumption, ∥w − u∥ ≤ D. Moreover, ∥ · ∥ is 1-Lipschitz (because ∥x∥ − ∥y∥ ≤ ∥x− y∥), so
∥v′∥∗ ≤ 1 for all v′ ∈ ∂∥w−u∥. As a result, for all v ∈ ∂f(w), ∥v∥∗ = 2∥w−u∥∥v′∥∗ ≤ 2D.

F Proofs for the Parameter-free Case (Section 5)

Definition 6. A random vector X ∈ Rd is said to be σ-norm-sub-Gaussian, denoted by nSG(σ) if

P{∥X − E[X]∥2 ≥ ϵ} ≤ 2 exp

(
− ϵ2

2σ2

)
, ∀ϵ.

We will rely on the following concentration bound on norm-sub-Gaussian random vectors.
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Lemma 22 (Lemma 1, Jin et al. (2019)). There exists a universal C such that (i) if ∥X∥ ≤ σ, then
X is nSG(Cσ) nad (ii) if X is σ-sub-Gaussian, then X is nSG(C

√
dσ).

Lemma 23 (Corollary 8, Jin et al. (2019)). There exists a universal constant C such that if Xi|X1:i−1

is mean-zero nSG(σi) for all X1, . . . , Xt, then for any fixed δ > 0 and B > b > 0 such that
b <

∑t
i=1 σ

2
i ≤ B almost surely, with probability at least 1− δ,∥∥∥∥∥

t∑
i=1

Xi

∥∥∥∥∥
2

≤ C

√√√√ t∑
i=1

σ2
i

(
log

2d

δ
+ log log

B

b

)
.

Recall that βt∇L(xt)− gt =
∑t

i=1Xi (Lemma 15), where

Xi = [βi∇L(xi)− βi−1∇L(xi−1)]− [βi∇ℓ(xi, zi)− βi−1∇ℓ(xi−1, zi)];

and γt =
∑

i∈It
Ri, where Ri = σiR̃i and Ri ∼ D i.i.d. We have the following lemma:

Lemma 24. Suppose Assumption 2 - 4 hold w.r.t. the 2-norm, and suppose D is a (V, α)-RDP
distribution and is σD-sub-Gaussian, i.e.,

P{ sup
∥a∥=1

⟨X, a⟩ ≥ ϵ} ≤ exp

(
− ϵ2

2σ2
D

)
.

Also set βt = tk. Then there exists a universal constant C such that Xi|X1:i−1 are mean-zero
nSG(σXi) and Ri|R1:i−1 are mean-zero nSG(σRi) for all i, where

σXi = 2C(k + 1)(G+H∥wi − xi−1∥2)ik−1,

σRi
= C

√
dσDσi.

Proof. Since we assume E[∇ℓ(x, z)] = ∇L(x) for all x, E[Xi|X1:i−1] = 0. Also, since D is a
(V, α)-RDP distribution (Definition 4) and Ri = σiR̃i’s are independent, E[Ri|R1:i−1] = E[R̃i] = 0.

For the second part, in Lemma 15 we proved that

∥δi∥2 = ∥βi∇ℓ(xi, zi)− βi−1∇ℓ(xi−1, zi)∥2 ≤ (k + 1)(G+H∥wi − xi−1∥2)ik−1.

The same bound holds for βi∇L(xi)− βi−1∇L(xi−1) following the same argument. Therefore,

∥Xi∥2 ≤ 2(k + 1)(G+H∥wi − xi−1∥2)ik−1.

Moreover, since we assume R̃i ∼ D is σD-sub-Gaussian, Ri = σiR̃i is σiσD-sub-Gaussian. Hence,
by Lemma 22, Xi|X1:i−1 and Ri|R1:i−1 are norm-sub-Gaussian.

Theorem 10. Suppose w.r.t. 2-norm, W is bounded by D and ℓ is G-Lipschitz and H-smooth.
Suppose D is (V, α)-RDP distribution and is σD-sub-Gaussian. If we set βt = t3 (i.e. k = 3) and set
σ2
t as defined in (6), then with probability at least 1− δ,

L(xT )− L(x∗) ≤ 4

T 4

(
RegretT (x

∗) +

T∑
t=1

ξt(∥wt∥2 + ∥x∗∥2) + νt(∥wt∥22 + ∥x∗∥22)

)
.

where C is a universal constant, A = 8
√
2C2, A′ = 8

√
dσDC

2, κ = 1 +DH/G, and

ξt = AGΦt5/2 +A′(G+DH)
Φ log2(2T )t

2

ρ
, νt = 28AHΦt5/2, Φ =

√
log

20dT log(2κT )

δ
.

Proof. We start with Eq. (2):

β1:T (L(xT )− L(x∗)) ≤ RT (x
∗) +

T∑
t=1

⟨βt∇L(xt)− gt − γt, wt − x∗⟩

≤ RT (x
∗) +

T∑
t=1

(∥βt∇L(xt)− gt∥2 + ∥γt∥2) (∥wt − x∗∥2). (13)

23



Step 1. By Lemma 23 and 24, for each t, with probability 1− δ/2T ,

∥βt∇L(xt)− gt∥2 ≤ C

√√√√ t∑
i=1

σ2
Xi

(
log

4dT

δ
+ log log

B

b

)
.

Since we choose βt = t3 (i.e., k = 3),

σXi
= 8Ci2(G+H∥wi − xi−1∥2).

Next, we can bound
∑t

i=1 σ
2
Xi

as follows: for all t,∑t
i=1 σ

2
Xi

≤ B := 64C2(G+DH)2T 5,∑t
i=t σ

2
Xi

≥ b := σ2
X1

= 64C2(G+H∥w1∥2)2.
Recall that κ = 1 +DH/G, so

B

b
=

(G+DH)2T 5

(G+H∥w1∥2)2
≤ (κT )5.

Also recall that Φ =
√

log(20dT log(2κT )/δ), so√
log

4dT

δ
+ log log

B

b
≤
√

log
20dT log(κT )

δ
≤ Φ.

Therefore, with probability at least 1− δ/2T ,

∥βt∇L(xt)− gt∥2 ≤ CΦ

√√√√ t∑
i=1

[8Ci2(G+H∥wi − xi−1∥2)]2

≤ 8C2Φ

√√√√ t∑
i=1

i4(G+H∥wi − xi−1∥2)2. (14)

By union bound, with probability at least 1− δ/2,
T∑

t=1

∥βt∇L(xt)− gt∥2∥wt − x∗∥2

≤8C2Φ

T∑
t=1

√√√√ t∑
i=1

i4(G+H∥wi − xi−1∥2)2∥wt − x∗∥2

We use the identity (a+ b)2 ≤ 2a2 + 2b2 and
√
a+ b ≤

√
a+

√
b:

≤8C2Φ

T∑
t=1


√√√√ t∑

i=1

2G2i4 +

√√√√ t∑
i=1

2H2∥wi − xi−1∥22i4

 ∥wt − x∗∥2 (15)

1.1. We bound these two sums separately. For the first sum, recall that A = 8
√
2C2, so

8C2
T∑

t=1

√√√√ t∑
i=1

2G2i4∥wt − x∗∥2 ≤ AG

T∑
t=1

t5/2(∥wt∥2 + ∥x∗∥2).

1.2. For the second sum, we apply Young’s inequality (ab ≤ 1
2λa

2 + λ
2 b

2) for each t:

8C2
T∑

t=1

√√√√ t∑
i=1

2H2∥wi − xi−1∥22i4∥wt − x∗∥2

≤AH
T∑

t=1

1

2λt

t∑
i=1

(∥wi − xi−1∥22i4) +
λt
2
∥wt − x∗∥22
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We first bound ∥wi − xi−1∥22 ≤ 2∥wi∥22 + 2∥xi−1∥22. Recall that x0 = 0 and for i ≥ 2, xi−1 =∑i−1
j=1

βj

β1:i−1
wj , so ∥xi−1∥22 ≤

∑i−1
j=1

βj

β1:i−1
∥wj∥22 by convexity. Consequently,

≤AH
T∑

t=1

 1

λt

t∑
i=1

i4∥wi∥22 +
1

λt

t∑
i=2

i4
i−1∑
j=1

βj∥wj∥22
β1:i−1

+ λt(∥wt∥22 + ∥x∗∥22)

 . (16)

We define λt = ct5/2 for some constant c to be determined later, and we apply change of summation
on the first two sums:

Lemma 25. For any sequence ai, bj , ck,
N∑
i=1

ai

i∑
j=1

bj =

N∑
i=1

bi

N∑
j=i

aj , and
N∑
i=1

ai

i∑
j=1

bj

j∑
k=1

ck =

N∑
i=1

ci

N∑
j=i

aj

j∑
k=i

bk.

1.2.1. For the first summation,
T∑

t=1

1

λt

t∑
i=1

i4∥wi∥22 =

T∑
t=1

T∑
i=t

1

λi
t4∥wt∥22

For decreasing function f ,
∑T

i=t+1 f(i) ≤
∫ T

t
f(x) dx, then:

≤
T∑

t=1

(
1

ct5/2
+

∫ ∞

t

1

cx5/2
dx

)
t4∥wt∥22 ≤

T∑
t=1

5

3c
t5/2∥wt∥22.

1.2.2. For the second term, by Proposition 14, β1:i−1 ≥ (i− 1)4/4, so
T∑

t=1

1

λt

t∑
i=2

i4
i−1∑
j=1

βj∥wj∥22
β1:i−1

≤
T∑

t=1

1

ct5/2

t∑
i=2

4i4

(i− 1)4

i∑
j=1

j3∥wj∥22

For all i ≥ 2, we can bound i/(i− 1) ≤ 2. We then apply change of summation, which gives:

≤
T∑

t=1

T∑
i=t

1

ci5/2

i∑
j=t

64t3∥wt∥22 ≤
T∑

t=1

192

c
t5/2∥wt∥22.

The last inequality is again derived from the integral bound:
T∑
i=t

1

i5/2

i∑
j=t

1 ≤
T∑
i=t

1

i3/2
≤ 1

t3/2
+

∫ ∞

t

1

x3/2
dx ≤ 3

t1/2
.

In conclusion, upon substituting 1.2.1. and 1.2.2. into (16) and setting c = 14, we get:

8C2
T∑

t=1

√√√√ t∑
i=1

2H2∥wi − xi−1∥22i4∥wt − x∗∥2

≤AH
T∑

t=1

(
5

3c
t5/2∥wt∥22 +

192

c
t5/2∥wt∥22 + ct5/2(∥wt∥22 + ∥x∗∥22)

)

≤AH
T∑

t=1

28t5/2(∥wt∥22 + ∥x∗∥22).

Moreover, upon substituting 1.1. and 1.2. into (15), we get: with probability at least 1− δ/2,
T∑

t=1

∥βt∇L(xt)− gt∥2∥wt − x∗∥2

≤AΦ
T∑

t=1

Gt5/2(∥wt∥2 + ∥x∗∥2) + 28Ht5/2(∥wt∥22 + ∥x∗∥22).
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Step 2: We can bound
∑T

t=1 ∥γt∥2∥wt − x∗∥2 in a similar way. By Lemma 24 and definition of σt
in (6), Ri|R1:i−1 is mean-zero nSG(σRi), where

σRi
= C

√
dσDσi =

8
√
dσDC

ρ

√
log2(2T )(G+Hmax

j∈[i]
∥wj − xj−1∥2)i2.

Next, we can bound
∑

i∈It
σ2
Ri

as follows: for all t,∑
i∈It

σ2
Ri

≥ min
i∈It

σ2
Ri

≥ b :=
64dσ2

DC
2

ρ2
log2(2T )G

2.

On the other hand, since |It| ≤ log2(2T ),∑
i∈It

σ2
Ri

≤ Bt :=
64dσ2

DC
2

ρ2
log22(2T )(G+DH)2t4.

Hence, Bt/b ≤ log2(2T )κ
2T 4 ≤ (2κT )5 (because log2(2T ) ≤ 2T and κ ≥ 1). By definition of Φ,√

log
4dT

δ
+ log log

Bt

b
≤
√

log
20dT log(2κT )

δ
= Φ.

Recall that A′ = 8
√
dσDC

2. By Lemma 23, for each t, with probability at least 1− δ/2T ,

∥γt∥2 ≤ C

√√√√∑
i∈It

σ2
Ri

(
log

4dT

δ
+ log log

Bt

b

)
≤ A′

ρ
(G+DH)Φ log2(2T )t

2. (17)

By union bound, with probability at least 1− δ/2,

T∑
t=1

∥γt∥2∥wt − x∗∥2 ≤
T∑

t=1

A′

ρ
(G+DH)Φ log2(2T )t

2(∥wt∥2 + ∥x∗∥2).

In conclusion, we take the union bound on the results from step 1. and step 2. and substitute it back
to the starting point (13). Then with probability at least 1− δ,

β1:T (L(xT )− L(x∗)) ≤ RT (x
∗) +

T∑
t=1

28AHΦt5/2(∥wt∥22 + ∥x∗∥22)

+

T∑
t=1

(
AGΦt5/2 +A′(G+DH)

Φ log2(2T )t
2

ρ

)
(∥wt∥2 + ∥x∗∥2).

Define ξt, νt as in the theorem, and recall that β1:T ≥ T 4/4. This completes the proof.

Lemma 25. For any sequence ai, bj , ck,

N∑
i=1

ai

i∑
j=1

bj =

N∑
i=1

bi

N∑
j=i

aj , and
N∑
i=1

ai

i∑
j=1

bj

j∑
k=1

ck =

N∑
i=1

ci

N∑
j=i

aj

j∑
k=i

bk.

Proof. The proof is basically re-pairing the summations:

N∑
i=1

i∑
j=1

aibj = a1b1 + a2(b1 + b2) + a3(b1 + b2 + b3) + · · ·

= (a1 + · · ·+ aN )b1 + (a2 + · · ·+ aN )b2 + · · ·
T∑

i=1

T−i∑
j=0

at−jbi.
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For the second part of the theorem, denote Bi
j =

∑i
k=j bk. By first part,

LHS =

N∑
i=1

ai

i∑
j=1

cj

i∑
k=j

bk

=

N∑
i=1

i∑
j=1

aicj(B
N
j −BN

i+1)

=

N∑
i=1

N∑
j=i

ajciB
N
i − ajciB

N
j+1

=

N∑
i=1

N∑
j=i

ajciB
j
i .

We then recover the lemma once we substitute Bj
i =

∑j
k=i bk.
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